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Abstract—In this paper, we introduce a new policy defining
a stabilizing event-based controller for linear time-invariant
systems. The plant operation is divided into two phases, a
transient phase and a steady-state regime. In transient regime,
we define a Lyapunov-like function; a positive definite function
that vanishes only at the origin. However, while a regular Lya-
punov function is decaying in time, the Lyapunov-like function
is allowed to increase, provided that it remains bounded, in
order to get larger inter-event times. An upper threshold is thus
fixed in the form of an exponentially decaying function, the rate
of decay of which is set by solving a generalized eigenvalue
problem. In the vicinity of the steady state, the Lyapunov
function is prevented from increasing in time to ensure a faster
convergence with less control updates.

I. INTRODUCTION

Even though most controllers are meant to be imple-
mented on digital platforms, a common practice consists in
designing a continuous-time controller first. The resulting
control signal is then sampled in order to be converted from
an analog to a digital form. A high-frequency sampling is
usually used so as to maintain the properties of the control
signal and to avoid aliasing, resulting in a large amount of
moving data. However, this is not always efficient, especially
if the data is propagating through a communication net-
work with a limited bandwidth and several interconnected
systems.

Event-based control strategies have been developed as a
response to these design concerns. In event-based control,
the control loop is closed only when a variable of the
system, state or other, violates a predefined condition on
proper behavior, designated by the term event-triggering
condition. A zero-order hold (ZOH) is then applied between
two sampling instants.

Different control methods find their event-based counter-
parts in the literature. In [1], an event-based PID controller
is introduced, whereas [2] suggests an event-based output-
feedback approach. More advanced control strategies such
as model predictive control [3] and H∞ control [4] are also
being explored in an event-triggered operation mode.

In this work, we address the problem of stabilizing a
linear time-invariant (LTI) system by means of an event-
triggered state-feedback controller. Several authors have

already worked on the question of feedback stabilization.
For example, in [5] the author plans the execution of the
control task when an error norm becomes too large in
comparison with the state norm. In [6], Sontag’s general
feedback stabilization formula has been extended to the
case of event-based control under the assumption that a
Control Lyapunov Function exists. A novel direction is taken
in [7], where instead of using a ZOH between two events,
a copy of the model generates continuously a control law
using an estimated state. This way, the sensors send the
measured state to the controller only when an event occurs.

In [8], the authors have devised an algorithm that keeps
the Lyapunov-like function of the system enclosed between
the Lyapunov functions of two auxiliary systems. In this
paper we also adopt an approach that relies on a Lyapunov-
like function, that is forced to remain below an exponen-
tially decaying function that we define. Thus, we avoid
the need to define auxiliary systems and we reduce the
complexity of the problem, as the auxiliary systems are of
the same order as the plant.

The use of an exponential threshold function has origi-
nated in [9] and can also be found in [10] and [11]. The only
difficulty in this approach is to find a suitable decay rate
for the exponential envelope function. As one of the main
contributions of this paper, we manage to prove that the
problem of finding the said decay rate can be expressed as
a generalized eigenvalue problem, a class of problems for
which many tools have been developed.

This approach also differs from the above methods and
from the one in [8] in that it uses two different event-
triggering strategies. At first, in transient time, the proce-
dure described above is adopted. When a neighborhood
of steady-state is reached, we force the time derivative of
the Lyapunov function to remain negative, thus ensuring
a faster asymptotic convergence in less executions of the
control task.

This paper is divided as follows. Section II lays out
the basic formulation of the problem and introduces the
concepts that we use in the rest of the paper. The event-
based control algorithm is described in section III, where
we also provide the proofs of the stability of the event-



based control system and the existence of a minimum
inter-sample time. In section IV we test the method on a
numerical example. Finally, in section V, we compare the
results given by this method to three other event-based
strategies found in the literature.

II. PROBLEM DEFINITION

Let us define a LTI control system of the form

ẋ(t ) = Ax(t )+Bu(t ),

x(t0) = x0, t0 = 0,
(1)

where x(t ) ∈ Rn is the state vector, u(t ) ∈ Rm is the
control signal, A and B are matrices of the corresponding
dimensions.

We consider the pair (A,B) to be controllable, thus guar-
anteeing the existence of a linear state feedback of the form

u(t ) =−K x(t ). (2)

The feedback gain K is designed to render the matrix
(A − BK ) Hurwitz, resulting in a globally asymptotically
stable closed-loop system.

The event-based control signal u(t ) is piecewise constant,
updated only when the triggering conditions are satisfied.
Therefore, at times tk (k ∈N) when an event occurs

u(tk ) =−K x(tk ). (3)

Otherwise, at times t ∈]tk , tk+1[ when the system provides
a desirable performance

u(t ) = u(tk ). (4)

We have seen in [12] that a constant event-triggering con-
dition achieves only practical stability. We know from [13]
that asymptotic stability is achieved through a decaying-in-
time triggering condition.
The motivation behind this work is to improve the approach
described in [8]. From that approach, we keep the idea
of a locally increasing Lyapunov-like function that remains
bounded. However, in this work, we introduce an alternative
method for keeping the Lyapunov-like function bounded
from above, without the need for defining reference systems
(see [8]).

III. SCHEDULING OF THE CONTROL TASK

As mentioned earlier, in this paper we split the imple-
mentation of our event-based controller into two parts.
First, in transient time, we define a threshold function that
will serve as an upper limit to the Lyapunov-like function
of the event-based system. Then, in steady-state, we shift
our focus on the time derivative of the Lyapunov function,
by making sure it never becomes positive.

We will show later that it makes more sense to formally
define the limits of the transient and steady-state regime
in terms of the threshold function that we introduce below.
For now we define the transient regime as all time instants

threshold

V (x(t ))

t1 t2 Tlim

transient steady-state

δ

Fig. 1. An illustrative example of the behavior of the Lyapunov-like
function in transient and steady state regimes.

t such that t < Tlim (Tlim > 0). The steady state consists
thus of all time instants t , such that t ≥ Tlim. An illustrative
example of this approach is given in Fig. 1.

A. The Triggering Conditions in Transient Time

We define V :Rn →R+, the Lyapunov-like function asso-
ciated with system (1), as

V (x) = x(t )T P x(t ), (5)

where P ∈ Rn×n is a symmetric positive definite matrix,
solution to the equation

(A−BK )T P +P (A−BK ) =−Q. (6)

In classical control, stability necessitates V to be
decreasing in time. However, as proved in [12], if we allow
V (x) to be locally increasing, the stability property can be
maintained with an event-triggered control law. Moreover,
this allows to obtain events that are sparser in time.
For this reason, it becomes necessary to define a positive
decreasing upper bound for V (x(t )). The instants at which
V (x(t )) reaches the upper bound will serve also as our
triggering events.

1) Defining the Threshold Function: Let W : R+ → R+ be
a scalar function, such that for all t

dW (t )

d t
< 0, (7)

and
V (x(t )) ≤ W (t ). (8)

At t = tk , when the feedback loop is closed and u(t ) is
given by equation (3), the time derivative of (5) takes the
following form

dV (x)

d t
|t=tk = x(tk )T ((A−BK )T P +P (A−BK ))x(tk )

=−x(tk )T Qx(tk ).
(9)

Let λmax(−Q,P ) be the maximum generalized eigenvalue of
the pair (−Q,P ),

λmax(−Q,P ) ≡ max{λ ∈R|det(λP +Q) = 0}, (10)



and P 1/2 be the symmetric square-root of P . Then, from
[14]

λmax(−Q,P ) =−λmin(P−1/2QP−1/2), (11)

λmin(P−1/2QP−1/2) being the minimum eigenvalue of
P−1/2QP−1/2, in the traditional sense of eigenvalue. There-
fore, from equation (9)

dV (x(t ))

d t
|t=tk ≤λmax(−Q,P )V (x(t )). (12)

Extrapolating equation (12) for t > tk we obtain a first order
linear differential inequality, which yields

dV (x(t ))

d t
≤V (x0)e−α(t−t0), (13)

thus providing a suitable upper threshold function

W (t ) =V (x0)e−αt . (14)

The coefficient α is selected such that 0 <α<−λmax(−Q,P )
in order to enforce the condition given by equation (8).
We can now describe the event-triggered strategy.

Theorem 1. Let V (x) be the function given by equation
(5), and W (t ) be the decaying exponential function given
by equation (14). The time instant tk+1 (k ∈ N) is defined
as

tk+1 = inf{t > tk , V (x(t )) =W (t )}.

Then, at time t = tk+1, the event-triggered control law
defined in equations (3) and (4) renders system (1) stable.

Proof. Since W (t ) is exponentially decreasing toward zero,
it is enough to show that V (x(t )) is always lower than W (t ).
We need to show that whenever V (x(t )) = W (t ), V (x(t ))
is pushed back below W (t ). Such is the case at t0, where
W (0) =V (x0), and is also the case for every tk (k ∈N).
At t = tk and from equation (12)

−x(tk )Qx(tk ) ≤λmax(−Q,P ) V (x(tk ).

But, since at instant t = tk , V (x(tk )) =W (tk ), we can re-write
the last equation as

−x(tk )Qx(tk ) ≤λmax(−Q,P ) W (tk )

<−αW (tk ).

In other words, at t = tk

dV (x(t ))

d t
|t=tk < dW (t )

d t
|t=tk ,

V (x(t+k )) <W (t+k ).

Then, we can deduce that

lim
t→∞V (x(t )) ≤ lim

t→∞W (t ) = 0. (15)

This proves that updating u(t ) to −K x(tk ) at t = tk , stabi-
lizes the system.

The problem now is to find a suitable α.
We have a special interest in finding the maximum possible
value of α, in order to be able to satisfy a trade-off between
the number of transmissions and the smoothness behavior
of the system.

2) Finding the Decay Rate α: In what follows, we shall
drop the arguments P and Q and designate the maximum
eigenvalue of the pair (P,Q) simply as λmax.
Equation (12) can be re-written as

x(tk )T ((A−BK )T P+P (A−BK ))x(tk )

≤−λmax x(tk )T P x(tk ).
(16)

λmax is the solution of the following optimization problem

minimize −λ
subject to

(A−BK )T P +P (A−BK ) ≤−λP

P > 0

(17)

This problem is quasiconvex and there exist many works
devoted to its solution in the literature, among which we
can cite [14] and [15].

B. Steady-state Triggering Conditions

We demand a stronger control effort in the neighborhood
of steady-state. In that case, we can require that time
derivative (9) remain negative. This will drive the state to
equilibrium position, from which it is harder to deviate,
thus spreading the controls further in time.

Theorem 2. Let V (x) be the function given by equation (5)
and satisfying equation (9). The time instants tk+1 (k ∈N)
are defined as

tk+1 = inf

{
t > tk ,

dV (x(t ))

d t
= 0

}
.

Then, at time t = tk+1, the event-triggered control law
defined in equations (3) and (4) renders system (1) stable.

Proof. Since dV (x(t ))
d t is guaranteed to remain negative by

the triggering conditions, the plant is stable.

C. Defining Tlim

We define Tlim as the time when V (x(t )) reaches a
predefined small value (δ> 0).

Tlim = min{t |V (x(t )) = δ} . (18)

We know that for all t , V (x(t )) ≤ W (t ), hence we can give
an upper bound for Tlim as

Tlim ≤ min{t |W (t ) = δ} = −1

α
ln

δ

V (x0)
. (19)

D. Minimum Inter-sample Time

Up to now, we have managed to prove asymptotic
stability of the event-based plant. However, the plant has
to remain stable for at least some minimum time span
after tk , that we refer to as τmin > 0. The existence of this
τmin is important, as it prevents the need for an infinite
number of updates in a finite interval of time.

Before we prove the existence of such a minimum time,
let us introduce the following lemma.



Lemma 1. For all ε <
√
δ/λmax(P ), there exists τ1 inde-

pendent of k such that for all t ∈ (tk ,min(tk + τ1, tk+1)),
‖x(t )‖ ≥ ε.

Proof. Let us first estimate ‖x(tk )‖.
Since λmin(P )‖x(tk )‖2 ≤ V (x(tk )) ≤ λmax(P )‖x(tk )‖2, and in
transient time δ≤V (x(tk )) ≤V (x0), we have√

δ

λmax(P )
≤ ‖x(tk )‖ ≤

√
V (x0)

λmin(P )
,

where λmin(P ) and λmax(P ) are the minimum and maxi-
mum eigenvalues of P , respectively.
We cast equation (1) as

ẋ(t ) = (A−BK )x(t )−BK∆k x(t ), (20)

where ∆k x(t ) = x(tk )− x(t ). The solution to equation (1) is
Lipschitz, and therefore there exists a constant Lx such that
‖∆k x(t )‖ ≤ Lx (t − tk ). Then the integral form for equation
(20) is

x(t ) = e(A−BK )(t−tk )x(tk )−
∫ t

tk

e(A−BK )(t−s)BK∆k x(s)d s.

Since A−BK is Hurwitz, we can bound ‖x(t )‖ from below

‖x(t )‖ ≥ ‖x(tk )‖−L
(t − tk )2

2
�BK�

≥
√

δ

λmax(P )
−L

(t − tk )2

2
�BK�,

where � ·� is the subordinated matrix norm.
Therefore, for sufficiently small t , say t − tk < τ1 and 0 < ε<√
δ/λmax(P ), we can guarantee that ‖x(t )‖ ≥ ε.

Theorem 3. There exists a minimum time delay τmin > 0
independent of k, such that for all k ∈N, tk+1 − tk > τmin.

Even though this result is valid in transient and steady
state regimes, we will give the proof for the transient time
only. The proof for the steady state is given in [16].

Proof. The proof follows the same scheme as in [12] but
here the problem is simpler as we do not attempt to track
a reference signal that may contain discontinuities.

Before time tk+1, we know that dV (x(t ))/d t necessarily
vanishes. We will find a minimum time delay, τ2, indepen-
dent of k, lower than τ1 on which dV (x(t ))/d t remains
negative. It will necessarily be lower than the desired τmin.

From equation (20) we can easily deduce that

V (x(t ))

d t
=−x(t )T Qx(t )−2∆k x(t )T K T B T P x(t ).

We now suppose that tk < t < tk + τ1. According to
Lemma 1

−x(t )T Qx(t ) ≤−λmin(Q)ε2 =: −β.

We also have

‖−2∆k x(t )T K T B T P x(t )‖ ≤ 2‖∆k x(t )T ‖�K T B T P�‖x(t )‖

≤ 2Lx (t − tk )�K T B T P�
√

V (x0)

λmin(P )
.

For 0 < τ2 < τ1, this can be rendered lower than β/2 and
hence dV (x(t ))/d t < −β/2 < 0. This τ2 can be chosen as
τmin.

IV. SIMULATION RESULTS

In this section we test the validity of the approach on
a numerical example. For this, we consider the following
second order linear system

ẋ(t ) =
[

0 1
−2 3

]
x(t )+

[
0
1

]
u(t ), (21)

where x(t ) = [
x1(t ) x2(t )

]T
.

The initial state x0 is given as

x0 =
[

1 −1
]

.

The linear feedback control law is chosen (for a conver-
gence time of 3 seconds) as

u(t ) = [ −1.7329 −5.6667
]

x(t ).

We associate to the system a quadratic Lyapunov-like
function, as described by (5), with a first time derivative
given by equation (9).
In this work, to find P , Q, the decay rate α and W (t ), we
solve the maximum generalized eigenvalue problem using
the ’gevp’ command of Matlab, which is based on the
algorithms in [15]. This command relies on the formulation
of problem (17) as linear matrix inequalities (LMI) using
the LMI declaration tools of the Robust Control Toolbox.
We obtain as a result

P =
[

12.1917 4.3548
4.3548 3.2660

]
, Q =

[
32.5123 11.6128
11.6128 8.7089

]
.

The solver gives a value of λmax = 2.6653. So we pick
α = 2.3. We also set δ = 0.01 and W (0) = 10.5437. We
have simulated the behavior of the system for 8 seconds
(both transient and steady state included), and we have
chosen a sampling period of 10−4 s, resulting in 8 × 104

time units. The choice to sample at such high frequency
is motivated by the fact that detecting the exact moment
at which V (x(t )) intersects with W (t ) is impossible in
a discrete-time simulation, and thus we try to emulate
continuous-time behavior as close as possible.

Fig. 2 represents the evolution of the states, x1(t ) and
x2(t ) in time. It shows that even though the response is
not quite smooth in transient time, the oscillations are not
exaggerated and die out quickly. The states converge to
the equilibrium point at zero in 3 seconds: Tlim = 3.16.

Fig. 3 represents the event-based control law. The
control signal is updated only 16 times for 80,000 time
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Fig. 2. The time evolution of the states of the event-based system.

units, i.e, we have reduced the number of samples by a
factor of 1/5000 compared to a periodic implementation.
This result is illustrated better through Fig. 4, where the
intersections between the pseudo-Lyapunov function and
the envelope function W (t ) represent the events.

In Fig. 3, we notice that even if the updates of the control
are distant in time, they occur, on average, at a regular pace.
The reason for this is the linearity and time-invariance of
the system, which make for a predictable behavior.
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Fig. 3. The piecewise constant event-based control law.

0 1 2 3 4 5 6 7 8

Time

0

2

4

6

8

10

12

V(x)

W(t)

Fig. 4. The time evolution of the Lyapunov-like function along with the
exponentially decaying upper threshold function.

Note that after each event, the Lyapunov function is
sent back to a decreasing state, proving the stability of the

scheme.

In steady state, after t = 3s, the norm of the state vector
drops to a very small value, and therefore, it would be
hard to see the events on the curve of the derivative of the
Lyapunov function. For this reason we propose a graph
of the distribution of the events for the entire simulation
interval, as given by Fig. 5. It shows that in steady state,
we do in fact obtain less updates than if we had kept
the same triggering conditions for the entire simulation
interval.
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Fig. 5. The distribution in time of the events in transient and steady-state
regimes.

Remark 1. In continuous time, an event is detected when
V (x(t )) =W (t ). However, as the simulation is run in discrete
time, this equality is impossible to detect. Instead we detect
the instants at which V (x(t )) ≥W (t ).
As in that case, there is no guarantee that an update of
u(t ) will send V (x(t )) below W (t ), we propose the following
update at t = tk

W (tk ) =V (x(tk )).

It is perfectly possible to do so, as W (t ) is a fictitious
function and does not correspond to any actual data.
Additionally, this update corresponds to continuous-time
behavior.
This way, we render the system robust to impulsive distur-
bances.

Remark 2. At t = 0, we choose to set W (0) > V (x0), as
a safety measure. This is not really necessary as we have
proved that the case when W (0) =V (x0) is well handled by
the algorithm. Therefore, for t ∈ [t0, t1[, W (t ) = W (0)e−αt ;
whereas for k ≥ 1 and t ≥ tk , W (t ) =V (tk )e−α(t−tk ).

V. COMPARISON WITH OTHER METHODS

In this section we compare the performances of the
method described above with other event-based control
methods. We have chosen three methods from the literature
and we will compare them in terms of number of updates of
the control law and in terms of quality of the performance.
The first method that we explore is the one developed in
[5]. Since this method has been primarily developed for
nonlinear systems and is based on the existence of an



Input-to-State Stable (ISS) Lyapunov function, we refer to
it as the ISS method.
The second method that can be found in [6], relies on an
extension of Sontag’s stabilization formula and for nonlin-
ear systems, requires the existence of a Control Lyapunov
Function (CLF). For this reason, we refer to it as the CLF
method.
Finally, the method of [8] is based on reachability analysis
and therefore is referred to as the rechability method.
To describe these methods, we keep the notations used up
to now in this paper.

A. The ISS Method

As said previously, this method relies on the existence
of an ISS Lyapunov function. However, for the simpler
linear case, this property is satisfied as long as the plant
is controllable.
For the linear case, the event-triggering scheme ensures that

‖x(t )−x(tk )‖ ≤σ‖x(t )‖, ∀t (22)

where 0 < σ < 1. If this condition is satisfied for all t ,
dV (x(t ))/d t < 0, thus guaranteeing stability. In order to
perform the comparaison, we have tested our method and
the ISS method uder the same conditions, the ones stated
in section IV.

The parameter σ is chosen such that

λmin(Q) >σ‖K T B T P +PBK ‖, (23)

where λmin(Q) is the smallest eigenvalue of Q (Q, P , B
and K are the same as the ones defined in the previous
sections of this article). Condition (23) yields a value
σ= 0.05.

Fig. 6 represents the evolution of the states of system
(21). We can notice that the response is of good quality and
does not exhibit any oscillations as ours does. However,
such good quality comes at a price, as this implementation
required 356 updates of the control law for 80,000 sampling
instants. This is a relatively high number compared to our
16 updates for the same simulation interval.

If we use the control law developed by the author of this
method in [5], the number of updates is reduced to 176,
but is still very large compared to our results.

B. The CLF method

This method proves that it is possible to extend Sontag’s
stabilizing formula to event-based systems in the existence
of a CLF.
Again the existence of a CLF is guaranteed in the linear case
by the controllability of the plant. The event-based algo-
rithm detects the time instants when the Lyapunov function
is not decreasing enough. Some smoothness considerations
are also added to the triggering conditions.
In the linear case, this method translates into an optimal
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Fig. 6. The time evolution of the states as obtained through the ISS
method.

control problem, for which we need to introduce the
following weighting matrices on the state and the control
respectively

Q =
[

2 0
0 2

]
, R = 1

12
.

To find P , a Riccati equation of the form PA + AT P −
R−1PBB T P =−Q is solved. We have obtained a value of

P =
[

3.2743 0.2743
0.2743 0.7743

]
.

Fig. 7 represents the evolution of the states of plant (21). It
shows that the quality of the response is relatively good. For
a simulation interval of 8 seconds, it requires 22 updates of
the control law.
Even though our approach has required less samples, for
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Fig. 7. The time evolution of the states as obtained through the CLF
method.

a simulation of 8 seconds, the difference is not significant.
The advantage of our method appears in the long run. As
we run the simulation for 30 seconds, our method requires
45 samples, while the CLF method needs about the double
(85 samples).

C. The Reachability Method

In this method, a Lyapunov-like function, similar to the
one we describe, is associated to the plant. This function
is then forced to remain framed between the decaying
Lyapunov functions of two auxiliary systems, a slow and
a fast system. An event is generated when the pseudo-
Lyapunov function intersects with either the upper or lower
threshold.
Since the faster system does not play a part in the stability



of the event-based implementation, we have decided to
omit it in our analysis. The speed of the slow system has
been decreased by a factor βs = 0.95 compared to the event-
based system, and is of the following form

ẋs (t ) =βs (A−BK )xs (t ),

where xs (t ) ∈Rn is the state of the slow system, which is is
in closed-loop for all t .
This value of βs has been chosen after sweeping the interval
of definition of βs , ]0,1[, and noticing that the method
yields better results as βs gets closer to 1. For the rest, we
have kept the parameters of section IV.
The response is shown in Fig. 8. As expected, the quality
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Fig. 8. The time evolution of the states as obtained through the reachability
method.

of the response is similar to ours, as the two methods work
on the same principle. The reachability method needed 22
samples for an 8 seconds simulation.
The reachability method also requires the definition of
extra systems, thus increasing the complexity of the imple-
mentation as the order of the plant increases. Conversely,
our method requires the introduction of a simpler scalar
function, regardless of the order of the system.

VI. CONCLUSION

This work introduces two new concepts to the event-
based stabilization of an LTI system. First, in order to
further decrease the number of calls to the controller,
different strategies are adopted for the transient regime
and for the steady-state regime. For both regimes, the fact
that the triggering conditions consist in a single scalar
function renders the implementation straightforward. The
parameters of this scalar function can easily be derived
from the data of the problem, using numerical methods
readily available in the mathematical literature and software
packages.
The second contribution of this paper consists in an explicit
solution to the problem of determining the speed of con-
vergence. Writing the problem as a famous optimization
problem has allowed us to optimize the system’s conver-
gence speed, while developing two different approaches for
the two operation regimes maximized the time between two
events.
One drawback of this method is the lack of smoothness
of the response in transient time, due to the oscillations

experienced by the Lyapunov-like function. There is a range
of applications for which this might not be suitable, but the
category of applications for which this approach is designed
are those that do not require high precision and are not
sensitive to oscillations and abrupt changes. Moreover, our
main objective is to drastically decrease the number of
times the control task is applied.
The algorithm does not include the cases where distur-
bances are acting on the various parts of the control loop, or
when the emission or reception of signals experiences time
delays. These can nonethless be seen as areas of expansion
for future works.
Additionally, the simplicity of the approach renders it easily
adaptable to the case of nonlinear plants, as another idea
to explore.
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