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On the modelling of shallow turbidity flows

Valery Yu. Liapidevskii, Denys Dutykh∗, and Marguerite Gisclon

Abstract. In this study we investigate shallow turbidity density currents and underflows
from mechanical point of view. We propose a simple hyperbolic model for such flows. On
one hand, our model is based on very basic conservation principles. On the other hand,
the turbulent nature of the flow is also taken into account through the energy dissipation
mechanism. Moreover, the mixing with the pure water along with sediments entrainment
and deposition processes are considered, which makes the problem dynamically interesting.
One of the main advantages of our model is that it requires the specification of only two
modeling parameters — the rate of turbulent dissipation and the rate of the pure water
entrainment. Consequently, the resulting model turns out to be very simple and self-
consistent. This model is validated against several experimental data and several special
classes of solutions (such as travelling, self-similar and steady) are constructed. Unsteady
simulations show that some special solutions are realized as asymptotic long time states
of dynamic trajectories.
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1. Introduction

Underwater turbidity currents are sediment-laden underflows that play an important
rôle in the morphology of the continental shelves (more generally of ocean bottoms) and
in the global sediment cycle going to the formation of hydrocarbon reservoirs. We refer to
[117] for a self-contained and comprehensive account of the theory of gravity currents and
intrusions. The presence and entrainment of sediments differentiates them from stratified
flows due to, e.g. temperature or salinity differences. The main physical mechanisms
include the deposition, erosion and dispersion of important amounts of heavy sediment
particles. Turbidity currents are not to be confused with debris flows, which represent
fast-moving masses of poorly sorted heterogeneous material where interactions among the
material pieces (≈ particles) are important. Moreover, debris mix little with the ambient
fluid. Debris flows have been a mainstream topic in the scientific literature due to their
hazard they wreak in mountain regions (and not only).

The driving force is the gravity acceleration acting on dispersed sediment particles along
steep and moderate bottom slopes. The initial perturbation is amplified by this acceler-
ation, which in turn destabilizes the flow into shear instabilities that result in turbulent
mixing and the transfer of mass and momentum. This gravity force creates the horizontal
pressure gradient due to the increase of hydrostatic pressure resulting from the addition
of particles. The heavy sediment particles are suspended in the mixing layer by fluid tur-
bulence. The studied here processes are responsible of the transfer of littoral sediments to
deep ocean regions. One should not disregard the destructive potential of gravity currents
onto underwater structures such as pipelines, cables, etc.Turbidity currents in submarine
canyons can attain surprisingly high velocities of the order of ≈ 8 ∼ 14 m/s [67, 98].
These high velocities in the downstream direction result from the self-acceleration (and
self-suspension) process from an appropriate initial perturbation, when more and more
sediments are entrained by the flow from the bed, thus, increasing the rate of work per-
formed by gravity [98]. This process is sometimes referred to as the “ignition” [44, 97, 98],
which translates the energy imbalance property of such flows. One of important scientific
questions is to determine the conditions necessarily to have an igniting flow. However, the
self-acceleration stage cannot continue indefinitely. Most often the bed slope drops off (due
to the bed morphology) or, simply, the sediment supply ceases. The mechanism of ignition
was already described in Pantin (1979) [96]. However, the first laboratory demonstration
of self-accelerated turbidity flows took 30 more years [108].

Turbidity currents is a particular case of (continuously) stratified flows and they are
fundamentally different from classical density underflows [33]. The main difference comes
from the fact that the source of the density gradient, i.e. the suspended sediment, is not
conservative. The suspended sediments are free to exchange with the core layer near the
sea bed. The ambient still water is also entrained into this process. These exchanges are
difficult to quantify and they constitute one of the main difficulties in the modeling of such
flows [96–98]. In this respect turbidity currents are fundamentally non-conservative flows
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in their nature. Gravity flows may occur in the atmosphere∗ over topography, sub-aerial
(e.g. avalanches, pyroclastic flows) and sub-aqueous environments (e.g. turbidity currents)
over bathymetries. They may result also from anthropogenic activities such as when a
dense buoyant industrial effluent or pollutant is released into a lake, river or ocean. In the
present study we shall consider mainly sub-aqueous flows due to the abundance of available
experimental data. We refer to [83, 99] as general excellent reviews on this topic.

Perhaps, the first serious attempts to observe turbidity currents in natural environments
were performed in late 1960’s at Scripps Canyon offshore of La Jolla, California.
They were reported in [60]. However, the flows reported in that study were so violent
that the instrumentation was lost during these density currents making the detailed anal-
ysis extremely difficult [99]. The exact time moment of these underwater events is un-
predictable which make them difficult to monitor in natural environments. Most of our
physical knowledge on underwater turbidity currents come from small scale laboratory ex-
periments [44, 68, 69, 86]. The experiments are bound to use common liquids for practical
reasons. In general, it is not possible to respect all scalings. To give an example, we can
mention the issue with particle sizes and their settling velocity. Nevertheless, taking into
account the difficulties in obtaining field data, laboratory experiments are the only source
of quantitative data about turbidity currents. The mathematical modelling is needed to ex-
trapolate these experimental results to the scales on which these processes occur in nature.
Nonetheless, the experiments offer a great opportunity for the verification of numerical
results.

The same processes take place on somehow smaller scales in the lakes as well. The first
recognition of the rôle of turbidity currents in limnology goes back to Forel (1885) [42],
who conjectured that a sub-aqueous canyon in Lake Geneva had been created by under-
flows from the Rhône river. This process was investigated experimentally in [70], which is
the first experimental study of density currents to our knowledge. Thus, Kuenen (1938)
[70] recognized scientifically their potential importance in the transport of sediments. Tur-
bidity currents and underwater landslides are the principal natural mechanisms of sediment
transport from shallow to deep waters. Transport distances range from hundred meters to
hundred kilometers for Ocean bottoms. This distance is generally referred as the run-out.
Erosion and deposition by turbidity currents are responsible for numerous features observ-
able on the Ocean bottom. Moreover, we know today that many hydrocarbon reservoirs
consist of turbidity current deposits.

The present study was conducted at the University Savoie Mont Blanc’s Campus
near from the Lake Le Bourget, the biggest natural lake in France. For instance,
the sedimentary depositions in Alpine lakes have been studied recently [8, 20, 21]. In
the same time the water circulation and currents in the Lake Léman (also known as
Lake of Geneva) have been measured recently using a submarine [37–39]. The results
presented in this study could be applied to some aspects of the limnology as well where
the stratified density flows may appear. In natural environments, sub-aqueous sediment

∗For instance, downslope windstorms over topography in Colorado (US) were observed and examined
in [76, 91].
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gravity flow domain can be conventionally divided into three dynamically distinct regions
in the evolution of a downslope current along a slope:

(1) Source region, where the flow is originated
(2) Transfer region, where the flow accelerates
(3) Deposition region, where the flow decelerates and suspended sediments settle down

on the bed.

The gravity current can be divided geometrically into the flow head, body and tail. The
head is shaped as an ellipse and, generally the head is higher than the flow body. In
the present study we are mainly interested in the flow head modelling, where the most
intensive mixing processes take place. Consequently, it influences the whole flow dynamics.
The most advanced point of the flow head is called the front or nose.

The main difficulties in understanding the dynamics of gravity turbidity currents come
from their genuinely turbulent nature. Moreover, the phenomenon is nonlinear, hetero-
geneous and unsteady. The flow complexity increases when the flow entrains more and
more sediments in suspension. The literature devoted to the mathematical modeling of
the density currents is abundant. First of all, we would like to mention the classical mono-
graphs on this subject [75, 113, 115]. The first and simplest models intended to explain
the classical lock-exchange configurations was proposed in [58]. These models are referred
to as integral, box or 0D models, since all quantities are averaged in space. The modern
approaches to the mathematical modeling of such flows were initiated in [96–98]. A dense
cloud 0D model for powder-snow avalanches including non-Boussinesq and sediment en-
trainment effects along the avalanche path was proposed in [103]. Powder-snow avalanches
are large-scale, finite volume release turbidity currents (in the form of large scale suspen-
sion clouds) occurring on mountain slopes. These clouds sometimes reach 100 m in height
and the front velocities of the order of 100 m

s
. Without sediments (i.e. snow in the case

of avalanches) distributed over the incline, the density current first accelerates and then
decelerates without reaching important velocities. With sediments entrainment, the cur-
rent can be maintained in the accelerating self-sustaining state during sufficient intervals
of time to reach the velocities indicated above. In [56] a fair correlation of the avalanche
velocity with the snow cover was demonstrated. The measurements of an avalanche front
velocity in the Sion valley, Switzerland demonstrate a constant increase of the front
velocity with traveled distance [27]. Thus, we come to the conclusion that the inclusion of
sediments entrainment effect is of capital importance to predict the correct density current
front velocity.

Some of recent studies devoted to the sediments transport within depth-averaged models
include [10–12, 16, 40, 66, 88]. This list is far from being exhaustive. The shallow water
approach assumes that vertical accelerations are negligible, so the pressure being essentially
hydrostatic. The sediment concentration is a passive tracer with exchanges among different
layers. The flow is fully turbulent, even if pure viscous effects are generally negligible.
Moreover, the energy required to keep the sediments in the suspension cloud is a negligible
portion of the total turbulent energy production [98]. Thus, the base model has to be
first Reynolds-averaged [109] before applying the long wave approximation. Several
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authors made an effort to take into account the turbulence modeling into the shallow
water type models [35, 36, 82]. Our approach to solve this issue will be detailed below.
Nowadays, the multi-layer approaches to the density stratified flows become more and more
popular [5]. Finally, some researchers chose a more CFD∗-like approach to the simulation
of density flows incorporating eventually the advanced turbulence modeling [13, 34, 94, 95].
Perhaps, the first Direct Numerical Simulation (DNS) of the gravity current dates back
to the year of 2 000 [54]. These simulations have an advantage of being depth-resolving
and, thus, providing very a complete information about the flow structure in two or even
three dimensions. However, due to the high computational complexity, only idealized
academic configurations can be considered within reasonable CPU-time at the current
state of technologies. Recently proposed three-dimensional (3D) turbidity-current models
can be found in [57, 59, 64]. Moreover, the 3D DNS computations are often limited in the
bulk Reynolds number.

In the present study we adopt a simplified (1.5D) approach along the lines of [23, 74, 107]
based on the Eulerian formulation and depth-averaged formulations. A Lagrangian

simplified BANG1D model was proposed in [102]. A simple 1.5D model was proposed in
[62]. The authors parametrized their model by making the entrainment velocity depending
on the dimensionless Richardson number. In the present study we close the model in an
alternative way.

Very similar physical processes take place in powder-snow avalanches where the snow
particles suspension flows down the mountains and the snow plays the rôle of sediments
in underflows [56]. Consequently, very similar mathematical models appear in these two
fields and to make the bibliography review more complete we mention some recent results
in powder-snow avalanche modeling [3, 4, 14, 28, 34, 84, 89, 114].

The goal here is to propose a simple multi-layer (just two or three layers) shallow water-
type model which takes into account mixing processes between the layers. We assume
that the sediment particles are well mixed across the height of each layer. So that their
volume fraction can be effectively approximated by depth-averaged quantities. This model
preferably has to be simple enough to be studied using even analytical methods. The main
scientific question which is currently poorly understood is the influence of flow stratification
on global flow patterns. For instance, the formation of current’s head (or the front region)
and its steady-state velocity have to be carefully explained [74].

The present study is organized as follows. In Section 2 we state the physical and mathe-
matical problem under consideration. In Section 3 we study the derived model analytically
and in Section 4 we validate its predictions by comparing them against experimental data.
Some unsteady simulations and their relation to analytical (self-similar) solutions are pre-
sented in Section 4 as well. Finally, the main conclusions and perspectives of this study
are outlined in Section 5.

∗Computational Fluid Dynamics (CFD).
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Mixing layer Density ow

Sediment deposits

Ambient uid

Figure 1. Sketch of the physical domain and the flow configuration. Various
notations and variables are introduced and explained in the text.

2. Mathematical model

Consider an incompressible liquid which fills a two-dimensional fluid domain Ω. A Carte-
sian coordinate system Ox, x = (x, y) is chosen in a classical way such that the axis Oy
points vertically upward and abscissa Ox is positive along the right horizontal direction.
The fluid is bounded below by a solid non-erodible bottom y = d (x) . Above, the fluid
can be assumed unbounded for the sake of simplicity, since our attention will be focused
on processes taking place in the region close to the bottom.

The fluid is inhomogeneous and the flow can be conventionally divided in three parts.
On the solid bottom there is a heavy fluid layer with density ρ 0 composed mainly of
sedimentary deposits. Its thickness is ζ (x, t) . Above, we have a muddle layer whose
density will be denoted by ρ̄ (x, t) composed of the sediments and the still water mix.
Its thickness is h (x, t) . Finally, the whole domain above these two layers is filled with
the still ambient water of the density ρ a > 0 at rest (ua ≡ 0). This situation is
schematically depicted in Figure 1. We include also into consideration the situation where
a thin motionless layer of sediments with constant thickness ζ s and density ρ s > 0 covers
the slope. It is usually the case in many practical situations and these sediment deposits
may contribute to the flow head dynamics while propagating along the incline. One may
imagine also that a certain mass of a sediment suspension or dense fluid is released into
the flow domain at y = 0 with the mass flux ρ 0 · ζ (0, t) · u (0, t) .
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Remark 1. L. Ovsyannikov (1979) showed [93] that the quiescent still water layer can
be indifferently chosen to have a free surface or to be bounded above by a rigid wall. Some
authors assume the latter case [24, 88]. Both boundary conditions lead to the same mathe-
matical long wave model under the Boussinesq assumption∗ which will be adopted below.
So, in the present study for the sake of convenience we choose the infinite still water layer.

If we assume the fluid to be perfect, its flow can be described by classical incom-
pressible Euler equations. The variable fluid density ρ(x, t) and the fluid velocity field

u(x, t)
def
:=

(
u(x, t), v(x, t)

)
satisfy the following system of equations:

∇ · u = 0 ,

ρt + ∇ · [ ρu ] = 0 ,

(ρu)t + ∇ · [ ρu⊗ u + p I ] = ρg ,

where the subscript t denotes the differentiation with respect to time and the operator

∇
def
:= (∂x, ∂y) is the gradient, p (x, t) is the fluid pressure variable and I = (δij)16 i, j 6 2

is the identity tensor compactly written with the Kronecker δ-operator. Taking into
account the choice of the coordinate system, the gravity acceleration vector is directed
vertically downwards, i.e. g = (0, −g) . The ideal fluid assumption can be also seen as
a flow with an infinitely large Reynolds number Re → +∞ [71, 110]. So, the flow is a
priori turbulent and we shall return to this question below.

In sediment gravity flows the particle (sediment) density is generally larger, but still of
the same order of magnitude as the ambient fluid. Thus, in turbidity flows modeling it is
common to assume that the density variations inside the fluid column are not large, i.e.

ρ 0 − ρ a

ρ a
≪ 1 . (2.1)

In these conditions the so-called Boussinesq approximation can be applied [43, 90], which
consists in taking into account the density variations only in the buoyancy term. This
approximation results in the following system of equations:

∇ · u = 0 , (2.2)

b t + ∇ · [ b ũ ] = 0 , (2.3)

u t + ∇ ·
[
u⊗ u +

p

ρ a
I
]

= b , (2.4)

where for the sake of convenience we replace the density variations
ρ − ρ a

ρ a
by the so-called

buoyancy function b :

b (x, t)
def
:=

ρ − ρa
ρa

g π (x, t) , b (x, t)
def
:=

(
0, −b (x, t)

)
.

∗In turbidity density currents the particle concentrations are in general sufficiently low (with 0.1 – 7%

of the volume [83]). In such concentrations particle/particle interactions are negligible [6]. Thus, from the
modelling point of view the Boussinesq approximation is generally adopted.
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We note that the variable density in the flow can be realized by the variable concentration
of sediments or by dense fluid input. The function π (x, t) is the concentration of the
sediments in the suspension [25, 61, 84]. For instance, the concentration π (x, t) is equal
identically to zero in the still pure water region and it is equal to one in the bottom
sediments layer. However, sometimes the sediments porous nature needs to be taken into
account [32, 52, 85, 92, 104]. In our modeling paradigm it can be achieved through choosing
the concentration value π (x, t) ≡ π0 > 1 in the sedimentary layer slightly smaller than
one.

Remark 2. Earlier we introduced the buoyancy b (x, t) through the variable concentration
of sediments. However, this quantity can be introduced independently of the physical mech-
anism, which creates the density gradient. For instance, the density current can be created
by injecting a heavy fluid into the light ambient. In this case the quantity π (x, t) should
be understood as the heavy fluid volumetric concentration.

Finally, the buoyancy transport velocity ũ incorporates the sediment fall velocity vs ,
which is assumed to be constant in our study:

ũ
def
:= (u, v − vs) .

Some empirical consideration about the determination of the parameter vs can be found
in [26], for example. System (2.2) – (2.4) possesses an energy conservation law which can
be readily obtained:

(
1
2
|u |2 + b y

)

t
+ ∇ ·

[ (
1
2
|u |2 + b y

)
u +

pu

ρa

]

= y (b vs) y , (2.5)

where |u | 2 ≡ u 2 + v 2 denotes the usual Euclidean distance. The subscript (·) y in
the right hand side denotes the partial derivative with respect to y . We underline the fact
that Equation (2.5) is a direct differential consequence of the governing equations (2.2) –
(2.4). So, up to this point equation (2.5) is redundant.

Remark 3. In the description of density currents some important quantities are tradi-
tionally introduced. For instance, one can consider the effective gravitational acceleration
[115]:

g̃
def
:= g

ρ0 − ρa
ρa

≡ g
∆ ρ

ρa
.

Then, the densiometric Froude number can be defined:

Fr d
def
:=

u

g̃ h cosϕ
,

where h is the characteristic height of the density current and u is the typical flow velocity.
The Froude number is a dimensionless quantity, which expresses the relative importance
of buoyancy and inertia.

Finally, the Richardson number can be also introduced [115]:

Ri
def
:=

1

Fr 2d
=

g̃ h cosϕ

u 2
.
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For example, based on extensive experimental observations, Keulegan (1957) [65] derived
a simple equation to estimate the head velocity:

U f ≈ CK

√

g̃ h f ,

where CK is a constant belonging to the range 0.7 ∼ 0.9 and h f is the flow head height.
One could also introduce the so-called Péclet number, which measures the relative

importance of advective effects to the solute∗ diffusion. However, along with the Reynolds

number this parameter is extremely large and, thus, of little help.
Early mathematical models used simple empirical relations to parametrize mixing across

the interfaces. These relations have typically been based on the Richardson number [33].
Recently, a simple shallow water model was augmented with an empirical experiment-based
entrainment rate relation involving the Richardson number [62]. Taking into account
that Reynolds and Péclet numbers are huge for turbidity currents, the Richardson

number is the only primary parameter for this type of flows. We note also that below we
use rather its alter ego — the Froude number.

This remark partially explains the importance of various dimensionless numbers in the
modeling of turbidity density currents.

The flow under consideration is clearly turbulent and we are going to take into account
this fact into our model. Namely, we apply the classical Reynolds decomposition of all
the fields present in our model into the mean and fluctuating parts [2, 53, 109]:

u −→ u + u
′, p −→ p + p ′, b −→ b + b ′ ,

where for the sake of compactness we denote the average part by the same symbol, while
the fluctuations are denoted with primes. After substituting this decomposition into the
governing equations (2.2) – (2.4) and applying an averaging operator [78, 109], we obtain
the following Reynolds averaged version of the model:

∇ · u = 0 , (2.6)

b t + ∇ · [ b ũ + b ′ u ′ ] = 0 , (2.7)

u t + ∇ ·
[
u⊗ u + u ′ ⊗ u ′ +

p

ρa
I
]

= b , (2.8)

where the over bar denotes the classical Reynolds average [106]. The same decomposition
and averaging operations can be applied to the energy conservation equation (2.5):

(
1
2
(|u |2 + q2) + b y

)

t
+ ∇ ·

[ (
1
2
( |u|2 + q2) + b y

)

u +
p

ρ0
I

]

+

+ ∇ ·

[

u′ ⊗ u′ u + y b ′ u ′ +
p ′ u ′

ρa
+ |u ′ |2 u ′

]

= y (b vs)y , (2.9)

∗It could be also the thermal diffusion in other problems, see [22].



Turbidity flow modelling 13 / 59

where q
def
:= |u ′ | is the mean squared velocity of fluctuations∗ [87, 106]. We underline that

up to now, besides the Boussinesq assumption (2.1) no other simplifications have been
undertaken.

Remark 4. Despite the fact that we consider a two-dimensional problem, the two-dimensional
turbulence is unstable in the sense that a tiny perturbation quickly leads to a fully three-
dimensional turbulent state. We would like to underline that equation (2.9) is valid in this
case as well. In fact, we can assume that the velocity field u = (u, v, w) is such that the
mean transverse component w is equal identically to zero everywhere, while the averaged
fluctuations speed q incorporates three components of the velocity field:

q
def
:= |u ′ | def

:=
√

(u ′)2 + (v ′)2 + (w ′)2 .

Consequently, we consider a two-dimensional flow embedded into a three-dimensional tur-
bulence state.

In the flow configuration that we consider in the present study, the horizontal momentum
is advected vertically by the Reynolds stress τ = − ρ0 u ′ v ′ . In the developed turbulent
flow, the following closure relations have been confirmed experimentally [113]:

u ′ v ′ = − σ̃ q2 , σ̃
def
:= σ sign(u y) ,

where σ is a positive constant which will be considered below as a small parameter. Typi-
cally, the value σ ≈ 0.15 corresponds fairly well to the experimental observations. More-
over, the following assumptions are generally adopted [113]:

b ′ v ′ = −σ̃ q ϑ , where ϑ 2 def
:= (b ′)2 .

The turbulence is traditionally assumed to be isotropic, i.e.

(u ′)2 ≡ (v ′)2 . (2.10)

Finally, the third correlations in Equation (2.9) are supposed to have the following asymp-
totic behaviour:

1
2
(u ′)3 + 1

2
u ′(v ′)2 +

p ′u ′

ρ0
= o(σ) q3 , 1

2
(u ′)2 v ′ + 1

2
(v ′)3 +

p ′ v ′

ρ0
= o(σ) q3 .

Remark 5. We note that the isotropy condition (2.10) can be relaxed without any change
to the subsequent derivation. Namely, we can assume a weaker condition on the averages
of quadratic velocity fluctuations:

(u ′)2 ≈ (v ′)2 ,

where we allow for small deviations from the isotropy property which can be of the same
order than the small parameter σ0:

(u ′)2 − (v ′)2 ∝ σ · q2 .
∗The quantity q should not be confused with the turbulent kinetic energy, which is proportional to q 2

in our notation [87].
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Remark 6. The quantity ϑ represents the magnitude of mean buoyancy fluctuations.

(
1
2
b2 + 1

2
ϑ2
)

t
+

[ (
1
2
b2 + 1

2
ϑ2
)
u
]

x
+

[ (
1
2
b2 + 1

2
ϑ2
)
v + b b ′ v ′

]

y
= 0 ,

where subscripts x, y denote differentiation with respect to those variables. Since the quan-
tity ϑ does not explicitly appear in the final model, we do not include this equation into
our consideration. However, this equation is needed, for example, if one is interested in
reconstructing the vertical structure of the flow [75, Chapter 7]. This issue will be addressed
in future studies.

2.1. Long wave scaling

In order to simplify further the governing equations (2.6) – (2.9) we apply the classical
long wave scaling of independent and dependent variables (this operation can be also seen
as a passage to thoroughly chosen dimensionless variables):







x → x , y → εy , t→ ε−
1

2 t , σ → ε σ ,

u → ε
1

2 u , v → ε
3

2 v , vs → ε
3

2 vs , p → ε ρ0 p , b → b ,

u ′ → ε
1

2 u ′ , v ′ → ε
1

2 v ′ , p ′ → ερ0 p
′ , b ′ → b ′ ,

where ε
def
:=

(
h 0

ℓ

)2 ≪ 1 is the shallowness parameter related to the aspect flow ratio,
h 0 being the characteristic flow depth and ℓ the typical wavelength. After applying this
rescaling to Equations (2.6) – (2.9) and neglecting the higher order terms in ε we obtain
the following system of equations:

u x + v y = 0 , (2.11)

b t + [ b u ] x +
[
b (v − v s) + ε−1 b ′ v ′

]

y
= 0 , (2.12)

u t +
[
u 2 + P

]

x
+

[
u v + ε−1 u ′ v ′

]

y
= 0 , (2.13)

(
1
2
(u 2 + q 2) + b y

)

t
+

[
1
2
(u 2 + q 2) u + b y u + P u

]

x
+

[
1
2
(u 2 + q 2) v + b y (v − v s) + P v

]

y
+

ε−1 [ u u ′ v ′ + y b ′ v ′ ] y = − b v s . (2.14)

The pressure P is defined by the following relations:

P y = −b , P
def
:= p + (u ′)2 ≡ p + (v ′)2 ,

where we used the fluctuations isotropy property (2.10). The first relation shows that the
pressure P is hydrostatic. The second relation says that it is not the modified pressure p ,
which is hydrostatic, but its combination with a component (u ′)2 (or equivalently (v ′)2) of
the Reynolds stress. Hereafter we will return to dimensional variables since the long wave
scaling was already applied to the governing equations. We mention also that an alternative
derivation for a similar depth-averaged system can be found in [62, Appendix A].
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Figure 2. Vertical flow structure in turbidity currents. On the left image we

schematically represent the qualitative behaviour of the horizontal velocity
variable u , while on the right image we show the behaviour of the density ρ. The
vertical coordinate y is measured from the solid bottom d(x). This schematic

representation is supported by findings reported in [100].

The vertical structure of turbidity gravity flows has been investigated experimentally
[1, 45, 100]. The horizontal velocity and density dependence on the flow depth are schemat-
ically represented in Figure 2. The density ρ is obviously constant in the bottom (ρ 0) and
pure water (ρ a) layers. In the mixing layer the density varies continuously and almost
linearly between two constant boundary values. The horizontal velocity u (x, t) attains
its maximum on the boundary between the bottom and mixing layers. Then the velocity
u (x, t) goes to zero value on the solid bottom and on the boundary with the still water.
The horizontal velocity u (x, t) behaves in the bottom as in a turbulent boundary layer
[17, 77, 113]. These experimental evidences suggest us to apply a multi-layer approximation
to simplify the model while resolving the vertical structure of the flow.

Consequently, using this a priori knowledge about the flow structure, we will apply the
classical vertical averaging operator to obtain a depth-integrated model. We do not provide
here the details about these computations, however we recall some basic assumptions we
need to adopt:

• The inertial turbulence scale ℓ t in the mixing layer is determined by large eddies
and thus, it is comparable to the layer depth: ℓ t ∝ ζ .

• In the upper quiescent layer, by definition, the water is still (without sediment
particles) and it is motionless.

• On the solid boundary y = d (x) we have the usual bottom impermeability bound-
ary condition. The Reynolds stresses at the bottom are given by the following
relations:

u ′v ′
∣
∣
y= d (x)

≡ u 2
∗
= cw w |w | ≡ cw w

2 , w > 0 ,
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Variable Significance

b s Buoyancy of sediments

b 0 Buoyancy of the lower (bottom) layer

b (x, t) Buoyancy in the mixing layer

ζ s Thickness of the sediment deposit

ζ (x, t) Thickness of the lower (bottom) layer

h (x, t) Thickness of the mixing layer

w (x, t) Depth-averaged mean velocity in the bottom layer

u (x, t) Depth-averaged mean velocity in the mixing layer

q (x, t) Depth-averaged turbulent kinetic energy in the mixing layer

Table 1. Definitions of various parameters used in the approximate models. For
the illustration see Figure 1. A more complete list of employed nomenclature is
given in Appendix C.

b ′v ′
∣
∣
y= d (x)

= 0 .

The variable u ∗ is the so-called friction velocity and the quantity u 2
∗

is proportional
to the turbulent friction stress∗ at the solid boundary and cw ∈ R

+ is a (positive)
constant.

• The sedimentation speed v s = 0 is equal to zero and the buoyancy b (x, t) ≡ b 0
is constant in the bottom layer d (x) < y < d (x) + ζ (x, t) .

The buoyancy b 0 is defined as

b 0
def
:=

(
ρ 0 − ρ a

)
g

ρ a
. (2.15)

The depth-averaged velocities u , w and densities ρ0 , ρ̄ are defined in Figure 1 and sum-
marized in Table 1. We reiterate on the fact that the sediments porosity can be taken into
account in the present modeling by choosing the sediment concentration π (x, t) (appearing
in b 0) smaller than one. More complicated approaches exist as well [10, 11, 52, 85, 88, 92].

After performing the depth-averaging operation under the incompressibility condition
(2.11) and all the assumptions listed above, we obtain the mass, momentum and energy
conservation laws for the averaged quantities:

(b0 ζ + b h)t + [ b0 ζ w + b h u ]x = 0 , (2.16)

(ζ w + h u)t +
[
ζ w2 + h u2 + 1

2
b0 ζ

2 + b ζ h + 1
2
b h2

]

x

= −(b0 ζ + b h) dx − u 2
∗
, (2.17)

∗The drag (or friction) associated with bottom must be parametrized since shallow water depth-
averaged equations do not resolve turbulence produced at this boundary. This is commonly achieved
by introducing a drag coefficient along with an empirical law for the shear velocity near the bottom.
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(
ζ w2 + h (u2 + q2) + b0 ζ

2 + 2 b ζ h + b h2
)

t
+

[
ζ w3 + h u (u2 + q2) + 2 b0 ζ

2w + 2 b ζ hw + 2 b (ζ + h) h u
]

x
=

− E − 2 (b0 ζ w + b h u) dx , (2.18)

where we introduce into the model a dissipative term E coming from the turbulent energy
dissipation [73, 109]. The form of this dissipative term has to be specified. The bottom
stress (or friction) term τ ∗ was already specified above. We remind that in the high
Reynolds number regime, the following expression is widely used:

u 2
∗

= cw w
2 .

For the sediments layer we can write a separate momentum balance equation after the
same averaging procedure:

w t +
[

1
2
w2 + b0 ζ + b h

]

x
= −b0 d x − u 2

∗

ζ
, (2.19)

provided that the layer height ζ > 0 . These equations have to be completed by two
kinematic conditions on the interfaces:

ζ t + [ ζ w ] x = χ− , (2.20)

h t + [ h u ] x = χ+ , (2.21)

where the terms χ± are the entrainment rates which account for the mass exchanges
between the layers. The mass exchange between the mixing and ambient layers is driven
by the widely known Kelvin–Helmholtz instability [55]. This suggests also the presence
of an underlying coupled hydrodynamic/sediment layer instability as well.

Using Equations (2.19), (2.20) and (2.21) the just derived conservation laws (2.16) –
(2.18) can be rewritten also in the following non-conservative form (the whole system is
listed here):

ζt + [ ζ w ]x = χ− , (2.22)

ht + [ h u ]x = χ+ , (2.23)

wt + wwx + [ b0 ζ + b h ]x = − b0 dx − u 2
∗

ζ
(2.24)

bt + u bx = − b0 χ
− + b χ+

h
, (2.25)

ut + u ux + b [ ζ + h ]x + 1
2
h bx = − wχ− + u χ+

h
− b dx , (2.26)

qt + u qx = (2 h q)−1
[ (

2w u − w2 + b0 h − 2 b h
)
χ− +

(
u2 − q2 − b h

)
χ+ − E − b h vs

]

. (2.27)

In particular, this computation shows that our system possesses multiple contact charac-

teristics
dx

dt
= ξ 3, 4 = u (the indices 3 and 4 will become clearer below in Section 2.4).

Below we will use this property to extract from this model a subsystem which governs the
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mixing layer dynamics. At the current stage, disregarding the particular form of the mix-
ing terms, our model has the structure of a two-layer shallow water system coupled with
two advection equations: one for the buoyancy and another one describes the transport of
the turbulent averaged velocity fluctuations. In order to close the system above, we have
to specify the entrainment rates χ± among fluid layers and the energy dissipation term E .
Some approaches to determine entrainment rates are explained below. For the dissipative
term, we assume the following closure relation:

E
def
:= κ q3 , where κ > 0 .

2.2. Determination of entrainment rates without sedimentation

If the sedimentation velocity vs ≡ 0 , the main hypothesis that we can make about the
entrainment rates χ± is that they are related to the mean square root of the turbulent
velocity q . The simplest dependence is the linear proportionality and we adopt it in our
study:

χ± ∝ σ± q . (2.28)

Depending on the flow type, which is realized in practice, the closure law (2.28) can be
further refined. For instance, we may distinguish between two following situations:

• The mass transfer takes place at upper and lower boundaries of the turbulent layer
(the so-called “mixing layer” described below in Section 3.1)

• The mass transfer takes place only at the upper boundary (the so-called bottom
turbulent jet)

So, a more accurate closure relation for mixing layers is obtained by taking σ+ ≡ 2 σ ,
σ− ≡ −σ , yielding the following expressions for entrainment rates:

χ+ = 2 σ q , χ− = −σ q . (2.29)

For bottom turbulent jets we propose the following closure σ+ ≡ σ , σ− ≡ 0 , which
yields

χ+ = σ q , χ− = 0 . (2.30)

The constant σ is usually taken to be σ ≈ 0.15 ∼ 0.17 and they characterizes the ratio
of the characteristic vertical to horizontal flow scales in the long wave approximation. In
the case of flat bottom without friction, the constant σ can be completely removed from
equations by a suitable scaling of independent variables. We introduce also a new constant
δ as the ratio of two previously introduced constants:

δ
def
:=

κ

σ
> 0 . (2.31)

This constant δ shall be used in developments below. In practice, δ is taken in the range

0 6 δ > 8.0 .

We observed using numerical means that δ has a weak influence on the qualitative properties
of unsteady simulations. We would like to mention also that a number of authors considered
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simple constant entrainment rate coefficients independent of Richardson number [15, 105,
111, 116].

2.3. Determination of entrainment rates with sedimentation

In order to prescribe the expressions for χ± in terms of other physical quantities, we
analyze an idealized situation schematically depicted in Figure 3. Namely, we consider a
flat bottom, the horizontal motion is absent and the flow is invariant under the horizontal
translations. In other words, we study the evolution of this layered system under the
sedimentation dynamics with a constant fall speed vs . We denote by y (t) the supposed
upper boundary of particles which will become a part of the sediment layer at the next
time moment t + ∆t . The upper boundary h (t) will fall with the speed v s , while the
lower layer will grow with some velocity v b which is yet to be determined. By definition,
the entrainment rates χ± can be expressed in terms of v s and v b as follows:

χ+ def
:= v s − v b , χ− def

:= v b .

In order to determine the speed v b we will write two kinematic conditions and one sediments
mass conservation equation:

ζ (t + ∆t) − ζ (t) = v b ·∆t ,
y (t) − ζ (t + ∆t) = v s ·∆t ,

(
ζ (t + ∆t) − ζ (t)

)
π− ρ 0 =

(
y (t) − ζ (t)

)
π+ ρ .

By solving these relations, one can easily find the following expression for the sediments
layer growth velocity v b :

v b ≡ v s · π+

π− − π+
.

Finally, in the presence of the turbulent flow we complete the just derived expression of
χ+ by a term σ q responsible of the still water entrainment into the mixing layer. Thus,
the final expressions are

χ− =
v s · b
b0 − b

≡ v b , χ+ = − v s · b 0
b 0 − b

+ σ q , (2.32)

where we replaced equivalently the volume fractions π± by buoyancy variables b 0 , b , since
the system is written using these variables. As one can see, in the mixing layer we have
two competing effects: the sedimentation of particles down to the bottom and the pure
water entrainment into the mixing layer.

2.3.1 Simplified model

Entrainment rates closure (2.32) can be further simplified if we notice that the density of
entrained sediments is much lower than sediments layer in the vicinity of the solid bottom.
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Figure 3. Schematic illustration to the sedimentation process of a uniform layer

in the horizontal extent.

In other words, we can assume that b ≪ b0 . Under this assumption Equation (2.32)
becomes

χ− ≡ 0 , χ+ = σ q − v s . (2.33)

The main difference with the closure proposed in Section 2.2 is that χ− vanishes and
χ+ takes into account the sedimentation velocity v s . Notice also that the sedimentation
velocity v s can take eventually zero value and in this way we recover the previously proposed
closure relation (2.30). This situation is not excluded. This closure turns out to be useful
if we aim mostly to describe the dynamics of the mixing layer and of bottom buoyancy
jets. In particular, it will be successfully used to explain some experiments from [103].

2.3.2 Intermediate conclusions

Let us summarize the developments made so far. The proposed model is self-consistent
and depends essentially on the values of three constants σ , δ and cw , which are to be
specified before the simulations can be run. Our model covers also the situation where the
intermediate mixing layer reaches the bottom and transforms into the so-called bottom
buoyancy jet. It happens when ζ ≪ h . In this case one has to set χ− = 0 and the
computations can be continued. We are aware of the fact that the mixing layer cannot
“touch” the bottom stricto sensu. There is always a little layer of a heavy fluid with
density close to ρ 0 . However, this layer∗ is dynamically passive since the gravity and
bottom friction forces are in equilibrium. In situations, where the mixing layer does not

∗It is depicted in Figure 1 under the dense current and it has the velocity w (x, t) along with the
thickness ζ (x, t) .
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approach bottom (yet), this tiny layer plays the rôle in alimenting the flow head with new
sediment particles. Moreover, the flow head can be supplied by sediments of density ρ 0

located immediately after the front in the downstream direction since the mixing process is
most significant close to the front of the gravity current. Some mathematical considerations
on this situation are given in the following Section.

2.4. Sediments equilibrium model

Hereafter we consider a special regime where the flow attains the equilibrium state in
the lowest bottom layer. Namely, we assume that the gravity force balances exactly the
turbulent friction at the solid bottom, i.e.

cw w
2

ζ
≡ −b 0 d x . (2.34)

In other words, the right-hand side of equation (2.19) vanishes and this relation provides
us an expression of the velocity w as a function of the bottom layer thickness ζ and of the
local bottom slope dx :

w ≡ ψ(ζ, x)
def
:=

√

−b0 ζ dx
cw

, dx 6 0 ,

where we choose the positive branch of solutions w > 0 , since the flow is expected to move
downwards. The bottom layer thickness can be determined by solving the corresponding
kinematic condition (2.20):

ζt +
[
ζ · ψ(ζ, x)

]

x
= χ− . (2.35)

The last equation is related to the rest of the system only through the entrainment rate
χ− at the right-hand side. Thus, the rest of the equilibrium system reads:

ht + [ h u ]x = χ+ , (2.36)

ut + u ux + b hx + 1
2
h bx = −b dx − b0 ζx − ψ χ− + u χ+

h
, (2.37)

bt + u bx = − b 0 χ
− + b χ+

h
, (2.38)

qt + u qx = (2 q h)−1
[
(2ψ u − ψ2 + b0 h − 2 b h)χ− (2.39)

+ (u2 − q2 − b h)χ+ − κ q3 − b h vs
]
. (2.40)
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The last system is always hyperbolic∗ with characteristic speeds
{
ξ i

} 5

i=1
which can be

easily computed:

dx

dt
= ξ 1, 2 = u ±

√
b h ,

dx

dt
= ξ 3, 4 = u ,

dx

dt
= ξ 5 = ψ +

∂ψ

∂ζ
ζ .

The last characteristic ξ 5 corresponds to kinematic waves in the lowest bottom layer de-
scribed by Equation (2.35).

2.5. Equilibrium model without sedimentation

The system derived in the previous Section can be further simplified if we neglect the
effect of the sedimentation velocity v s . In other words, hereafter we will set this parameter
to zero:

v s ≡ 0 . (2.41)

This approximation is valid in a fully developed turbulent flow on time scales comparable
to the lifetime of large structures (the so-called inertial range). It can be also seen from a
different physical perspective: the sedimentation can be neglected while the transport of
sediment particles is governed by the main eddies of the gravity current over an incline. Of
course, it has to be taken into account in regions where the suspension particles trajectory
looks like a free fall. Under the assumption (2.41), the entrainment rates χ± according to
(2.33) become

χ− ≡ 0 , χ+ ≡ σ q ,

which implies that the kinematic equation (2.35) is completely decoupled from System
(2.36) – (2.40). The information about ζ is transported along characteristics of this equation
with the speed ξ 5 . So, if ζ is constant initially and this constant value is maintained at the
channel inflow, ζ will remain so under the system dynamics. We will adopt this assumption
as well in order to focus our attention on the mixing layer dynamics. Below we will consider
only the middle mixing layer. Under these conditions, the equilibrium model (2.36) – (2.40)

∗In order to check it one has to write it in conservative variables, compute the Jacobian matrix of the
advective flux with respect to conservative variables and find its eigenvalues [72]. We skip these standard
steps for the sake of brevity of this study.
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becomes:

ht + [ h u ]x = σ q , (2.42)

bt + u bx = − σ q b

h
, (2.43)

ut + u ux + b hx + 1
2
h bx = − σ q u

h
− b dx , (2.44)

qt + u qx = σ
u2 − q2 − h b − δq2

2h
, (2.45)

where the constant δ was defined above in (2.31). The system (2.42) – (2.45) can be equiva-
lently recast in the conservative form which has an advantage to be valid for discontinuous
solutions as well [47, 72]:

ht + [ h u ]x = σ q , (2.46)

(h b)t + [ h b u ]x = 0 , (2.47)

(h u)t +
[
h u2 + 1

2
b h2

]

x
= − h b dx , (2.48)

(
h (u2 + q2 + h b)

)

t
+

[
(u2 + q2 + 2 h b) h u

]

x
= − 2 h b u dx − κ q3 . (2.49)

Here, κ ∈ R
+ is a positive constant measuring the rate of turbulent dissipation [73, 109].

An important property of this model is the absence of the bottom friction term. This
physical effect was taken into account in (2.34) while excluding the bottom layer (of thick-
ness ζ(x, t)). This gives us the mathematical reason for the absence of a friction term in
model (2.46) – (2.49). Similarly, we can bring also a physical argument to support this fact.
The horizontal velocity takes the maximum value on the boundary between the bottom
sediment and mixing layers (see Figure 2). Consequently, the Reynolds stress τ∗ vanishes
here.

Remark 7. In fact, we can derive an additional balance law by combining together equa-
tions (2.42) and (2.45):

(h q)t + [ h q u ]x = 1
2
σ
(
u2 + (1− δ) q2 − h b

)
.

The last equation is not independent from equations (2.46) – (2.49). Consequently, it does
not bring new information about the equilibrium sedimentation-free model (2.42) – (2.45).
Nevertheless, we provide it here for the sake of the exposition completeness.

The proposed model has an advantage of being simple, almost physically self-consistent∗

and having the hyperbolic structure. It was derived for the first time in [75, Chapter 5].
In order to obtain a well-posed problem the system (2.46) – (2.49) has to be completed
by corresponding boundary and initial conditions. In the following sections, the just de-
rived equilibrium system (2.46) – (2.49) will be studied in more details by analytical and
numerical means.

∗Only two constants σ and δ need to be prescribed to close the system.
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3. Analytical study of the model

In this Section we discuss the steady state solutions and investigate the qualitative
behaviour of two important special classes of solutions — travelling waves and similarity
solutions.

3.1. Mixing layer formation

Mixing layers are formed between two fluid layers having different densities. The initial
stages of mixing processes play a very important rôle in natural and laboratory environ-
ments. The physical mechanism of a mixing layer formation is given by various interfacial
instabilities (e.g. Rayleigh–Taylor or Kelvin–Helmholtz). The most important
mechanism is, of course, the Kelvin–Helmholtz instability [55] because of the shear ve-
locity presence [100]. In supercritical flows the mixing intensity is considerably intensified.
In this way, mixing layers are the most pronounced in transcritical flows over underwater
obstacles (i.e. bathymetric features), since a jet is formed on the obstacle downstream (lee)
side making the flow supercritical. The process of mixing layer formation over an inclined
bottom was studied in [74] in the framework of a three-layer model. In the present study
we apply a similar approach to the two-layer∗ System (2.22) – (2.27). Below we derive a
steady solution, which provides the boundary conditions for the unsteady propagation of
the flow head (see Figure 1).

Stationary solutions to System (2.22) – (2.27) satisfy the following system of differential
equations:

w ζ x + ζ w x = χ− ,

u hx + h u x = χ+ ,

w w x + b 0 ζ x + b hx + h bx = −b 0 d x − τ ∗
ζ
,

u u x + b (ζ x + hx) + 1
2
h bx = − b d x − wχ− + u χ+

h
,

h u bx = −b 0 χ− − b χ+ ,

2 q h u qx =
(
2wu − w 2 + b 0 h − 2 b h

)
χ−

+
(
u 2 − q 2 − b h

)
χ+ − κ q 3 .

The last system of equations can be seen as a quasilinear system with respect to spatial
derivatives of unknown variables

(
hx, u x, bx, ζ x, w x, qx

)
. The determinant ∆(x) of this

system is

∆(x) =
(
u 2 − b h

)
·
(
w 2 − b 0 ζ

)
− b 2 ζ h . (3.1)

∗We remind that the upper layer of the still water is assumed to be motionless in the present study.
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By assuming that ∆ 6= 0 , we obtain:

hx =
a 1 · b h + a 2 ·

(
w 2 − b 0 ζ

)

∆
, (3.2)

u x =
χ+ − u hx

h
, (hx should be taken from the previous equation) (3.3)

bx = − b 0 χ
− + b χ+

h u
, (3.4)

ζ x = − 1

b

(
1
2
h bx +

wχ− + u χ+

h
+ u u x

)

− hx − d x , (3.5)

w x =
χ− − w ζ x

ζ
, (3.6)

qx =

(
2wu − w 2 + b 0 h − 2 b h

)
χ− +

(
u 2 − q 2 − b h

)
χ+ − κ q 3

2 q h u
, (3.7)

where the coefficients a 1, 2 are defined as

a 1
def
:= χ− w + b 0 ζ d x + τ∗ ,

a 2
def
:= χ+ u + b h d x + wχ− + u χ+ .

The last system of equations can be seen as an Initial Value Problem (IVP) in the spatial
variable x , if all spatial derivatives in the right-hand side are replaced by their expressions
(we do not make this operation to keep the shorthand notation). We illustrate below the
behaviour of solutions to System (3.2) – (3.7) on the example of the mixing layer formation
problem over an inclined bottom. The real data to build this solution were taken from
[101].

3.1.1 Problem statement and solution

In this Section we formulate the IVP inspired by the experimental study [101]. Consider
a density current over the flat plane inclined with angle ϕ with respect to the horizontal
direction. Without any loss of generality, we postulate that the mixing layer starts to form
at some location x = x 0 , where we set the initial conditions for the steady System (3.2)
– (3.7). Moreover, we adopt the closure (2.29). We assume that in this point we have
a supercritical flow with velocity w 0 , height ζ 0 and density ρ 0 . The upper layer of still
water with density ρ a is motionless. Thus, we have

w 2
0 > b 0 ζ 0 ,

and b 0 was defined earlier in (2.15). The initial height of the mixing layer is h 0 = 0 by
our assumption on point x 0 . The initial asymptotic stages of the mixing layer formation
as x → x 0 can be determined from the condition that the right hand sides in (3.2) – (3.7)
are bounded [74, 75]:

bL = 1
2
b 0 , uL = 1

2
w 0 , qL =

w 0√
4 + 2 δ

.
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Under the condition ζ > 0 , we shall have b (x) ≡ bL = 1
2
b 0 . This can be seen after

substituting the closure relations for χ± from Equation (2.29) into Equation (3.4). One
readily obtains that

bx = − σ q
(
b 0 − 2 b

)

h u
.

From the the condition bL = 1
2
b 0 , it follows that b (x) ≡ 1

2
b 0 .

By taking into account the last asymptotics for the solution, we can construct it using
standard numerical means until the point x 1 , where the mixing layer will touch the bottom,
i.e. the point where ζ(x 1) ≡ 0 . The solution to system (3.2) – (3.7) taking into account
the aforementioned asymptotics is depicted in Figure 4. We used the following set of
physical parameters in our computations:

σ = 0.15 , δ = 6 , ϕ = 10.8 ◦ , x 0 = 8 cm ,

ζ 0 = 7 cm , w 0 = 5
cm

s

, b 0 = 1.4
cm

s
2
.

The flow geometry along with the initial conditions were taken from [101]. On the upper
panel of Figure 4 we show the comparison with experimental data provided by Armi &
Pawlak (2000) [101], who employed the Laser Induced Fluorescence (LIF) and Digital
Particle Imaging Velocimetry (DPIV) together with a concentration of rhodamine dye
for flow visualization. Color code corresponds to the density gradient (blue is lower, red
is higher). Their results show that instabilities evolve in an asymmetrical manner. In
Figure 4 with a dashed line we show the numerical prediction given by function y = ζ (x)
(lower line) and y = ζ (x) + h (x) (upper line). The reasonable agreement between
the experimental data and our numerical solution at the initial parts of the mixing layer
validate the approximate model (at least for steady solutions). We would like to mention
that in the experiment (as well as in the nature), there is a slight backward flow above
the mixing layer. The typical velocities are of the order 0.5 ∼ 1 cm

s
. In our model this

effect is not taken into account. It could be done by including the third (upper) layer
into consideration [74]. On the left and right sub-plots in upper Figure 4, we show the
experimental distribution of the velocity (solid line) and of the density (dashed line) at the
beginning and at the end of the considered fluid domain.

The theoretical lower bound of the mixing layer coincides fairly well with the experi-
mental estimation of the high density gradient area as it can be seen in Figure 4 (upper
panel). On the other hand, the theoretical upper bound goes sufficiently higher than the
coloured region measured experimentally. This little discrepancy comes from the fact that
the experimental data report the high density gradient, while our model predicts the up-
per bound of large vortices appearing during nonlinear stages of the Kelvin–Helmholtz

(KH) instability development [55]. This situation is described in more details in [75, Chap-
ter 7, § 3]. The experimental evidence for the KH mechanism is shown in [101, Figure 8].
In particular, it is shown there that the mixing layer growth into the still water is

dh

dx
= 2 σ ≡ 0.3 (in our computation) .



Turbidity flow modelling 27 / 59

0 30 40 50 60

0

5

10

15

x (cm)

y
 (

c
m

)

10 20

Mixing layer velocity

Bottom layer velocity

Bottom layer

Upper layer

Mixing layer

Figure 4. The density gradient field image: comparison with the experimental

measurements using Laser Induced Fluorescence (LIF) [101]. The picture is
rotated so that the slope becomes horizontal.

In the same time, the effective thickness of the mixing layer grows according the computed
velocity profile as

dh eff

dx
≈ 0.18 .

This value corresponds much better to numerous experimental findings [75, Fig. 7.4]. Con-
sequently, we may conclude that in the considered case of the stratified fluid flow down
the incline, the effective height∗ of the mixing layer will be smaller than the height of the
computed turbulent layer.

In Figure 4(lower panel) we show with dotted lines the (theoretically predicted) distri-
bution of velocities u (x) and w (x) in the mixing layer. The slope rupture in these curves
is visible. It happens since at x c ≈ 26 cm the determinant (3.1) vanishes, i.e.

∆(x c) ≡ 0 .

Physically speaking it means that the flow remains everywhere supercritical. However, for
small changes of the flow parameters, it is possible that hydraulic jumps will appear along
with following local subcritical zones. We note also that internal hydraulic jumps on the

∗We remind here the definition of the effective height of the mixing layer: it is the fluid body bounded
from above and below by virtual surfaces where w = 0.95×w 0 and w = 0.1×w 0 correspondingly. The
asymmetry in this definition comes from the nonlinear form of the vertical velocity profile.
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downstream side of an underwater obstacle is an important feature of stratified flows (both
in the ocean and in the atmosphere). The inclusion of the mixing layer formation before
the hydraulic jump is of capital importance in such situations.

3.1.2 Sediment layer

When the mixing layer approaches the lower boundary with sediment deposits, the mass
entrainment from the lowest layer decelerates and stops completely. In the framework of
our model, this effect could be realized by ensuring the transition from χ− = −σ q towards
χ− = 0 (and, correspondingly, from χ+ = 2 σ q towards χ+ = σ q). Physically it means
that that the maximum of the flow velocity is achieved somewhere near the boundary
between the mixing layer and bottom layer of constant density ρ 0 . The transition to
χ− = 0 takes place in neighbourhood of the right boundary of the flow represented in
Figure 4.

3.1.3 Intermediate conclusions

The mixing layer structure over a downhill determines the flow structure further down.
In particular, the total mass flux (relative to fluid density ρ a) M 0 = b 0 ζ 0w 0 is divided
into two parts. Namely, this splitting takes place at the point of transition of the mixing
layer into the turbulent jet and the undiluted bottom layer, i.e. at x = x 1 .

The turbulent jet receives the buoyancy flux M j = b 1 h 1 u 1 , while the bottom layer
takes M b = b 0 ζ 1w 1 . We notice also that for the slope angle ϕ = 10.8 ◦ and experimental
facilities considered in Figure 4, the dominant part of the mass flow goes into the turbulent
jet, i.e. M j ≫ M b .

If we assume that the flow velocity at x = x 1 in the bottom layer stabilizes∗ due to
small thickness of the layer, in the bottom layer we have w ≡ w b , ζ ≡ ζ b and the density
in the layer does not change anymore. Hence, the bottom layer becomes completely passive
in the flow dynamics. But in the same time it influences the flow head propagation velocity
for moderate bottom slopes†. This point will be demonstrated below.

3.2. Steady flows

From numerical and experimental points of view, a significant amount of work has been
devoted to the study the transient gravity current problem. The steady flow configuration
has received less attention. However, when one has a dynamical system in hands, it is
natural to begin its study by looking for equilibrium points [63]. Thus, the study of a
mathematical model is not complete if we do not discuss this class of solutions. Moreover,

∗Physically it happens when the gravity force projection along the slope is balanced by the friction
force with the rigid bottom.

†For large inclines the physical mechanisms are slightly different.
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stationary solutions may be realized and observed on certain time scales in laboratory
experiments, if certain conditions are met and maintained during sufficiently long time. For
instance, the buoyant flow entering the inclined channel has to be maintained at constant
rate during the whole experiment. If permanent boundary conditions are maintained not
only in the mixing layer, but also in the bottom layer as well, then, the lower sediment
layer will play a passive rôle in the flow, i.e.

ζ b = const , w b = const , ρ 0 = const .

In other words, the friction and mixing between these two layers do not take place. It is
not difficult to see that fluid flows of the form

u ≡ u j , m = b h ≡ m j , q ≡ q j

satisfy Equations (2.42) – (2.45) provided that the mixing layer thickness depends linearly
on the coordinate x along the channel, i.e.

h (x) = h 0 + ς · (x − x 0) .

Here, quantities with sub-script j denote values in the steady jet. The variable m will be
sometimes referred as the mass, however, physically it represents the excess of the fluid
column weight with respect to the still water level due to the presence of heavy sediment
suspensions. To satisfy the system (2.42) – (2.45), the following identities have to be
satisfied:

ς · u j = σ · q j , (3.8)

ς ·
(
u 2

j + 1
2
m j

)
= α ·m j , (3.9)

ς ·
(
u 2

j + q 2
j + 2m j

)
· u j = 2α ·m j · u j − κ q 3

j , (3.10)

where α
def
:= − d x > 0 . An algebraic consequence of the first two relations (3.8) – (3.9)

above can be easily derived:

u 2
j − m j − (1 + δ) q 2

j = 0 .

The boundary conditions specify also the buoyancy influx M j into the channel:

M j
def
:= m j · u j = U 3

j =⇒ U j = 3

√

M j .

All the relations above can be combined into a single equation for the quantity A j
def
:=

u j

U j

using simple algebraic transformations (see also Appendix A.1):
√

1 − A
−3
j

1 + δ

(
1 + 2A 3

j

)
=

2α

σ
.

There exists a unique solution to this equation for any positive right hand side. Moreover, it
can be shown that A j > 1 . It corresponds to the supercritical flow with u 2

j > m j . Then,
once we determined A j , from Equations (3.8) – (3.10) we can determine the remaining
quantities u j , m j , q j and ς .
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To make a conclusion, in turbidity gravity flows in an inclined channel, where the hor-
izontal (depth-integrated) velocity maximum is achieved on the boundary between the
sediment and turbulent mixing layers, the model (2.42) – (2.45) predicts the stationary
supercritical flow with pure fluid entrainment from the upper layer.

3.3. Travelling waves

One of the main questions in the modelling of turbidity flows is to determine the density
front velocity. The proposed base model (2.42) – (2.45) is sufficiently simple to address
this question analytically.

3.3.1 General considerations

In this Section we describe the class of travelling wave solutions to System (2.46) –
(2.49) in their generality. Since we are mainly interested in smooth solutions, we will use
the characteristic form (2.42) – (2.45) for the sake of convenience. Also, we assume that the
bottom slope α is constant, which is necessary for the existence of solutions with permanent
shape.

The travelling wave ansatz takes the following form:

h (x, t) = h (ξ) , m (x, t) = m (ξ) , u (x, t) = u (ξ) , q (x, t) = q (ξ) ,

where ξ
def
:= x − c · t and c is a positive∗ constant, which has the physical sense of

the travelling wave speed (to be determined later). After substituting this ansatz into
Equations (2.42) – (2.45), we obtain a system of Ordinary Differential Equations (ODEs):

(u − c) h ′ + hu ′ = σ q , (3.11)

(u − c)m ′ + mu ′ = 0 , (3.12)

(u − c) u ′ +
1

2
m ′ +

m

2h
h ′ =

αm − σ q u

h
, (3.13)

(u − c) q ′ =
σ
(
u 2 − (1 + δ)q 2 − m

)

2 h
, (3.14)

where the prime ′ denotes the differentiation operation with respect to ξ . This system
of ODEs describes a transcritical gravity flow in a coordinate system which moves with
velocity c . More precisely, the flow is of supercritical type in the avalanche core and it
switches to the subcritical regime when we cross the wave front. By analogy with the
detonation theory [41], the front velocity c (under certain conditions) is given by the
Chapman–Jouguet principle which states that a transcritical front propagates with the
minimal admissible velocity [19].

∗If the wave travels to the rightwards direction, as we assume without any loss of generality.
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After some computations the ODEs System (3.11) – (3.14) can be reduced to a single
differential equation with implicit dependence on ξ :

dq

du
=

σ

2

def
=: A (q, u)

︷ ︸︸ ︷
(
u2 − (1 + δ) q2 − m

)
·

def
=: D (u)

︷ ︸︸ ︷
(
(u − c)2 − m

)

(u − c)2 ·
(

αm − σ q ·
(
u +

m

2 (u − c)

))

︸ ︷︷ ︸

def
=: B (q, u)

, (3.15)

where the expression for m (ξ) in terms of u (ξ) is obtained by integrating equation (3.12):

m (ξ) = − M (c)

u (ξ) − c
. (3.16)

The integration “constant” M (c) can be determined from the Rankine–Hugoniot con-
ditions written at the wave front [47, 72].

3.3.2 Stability of equilibria

In this Section we study the existence and stability of equilibria points to Equation 3.15.
One of the difficulties is that the right hand side depends on a free parameter δ , whose
variation has to be taken into account. The wave celerity c > u has to be specified as
well.

As the first step, we rewrite equation (3.15) as a dynamical system in the plane
(
q, u

)

with ξ being the evolution variable:

q ′ = σA (q, u)D (u)
def
=: F q (q, u) ,

u ′ = 2 (u − c)2 B (q, u)
def
=: Fu (q, u) .

The equilibria points might be of two kinds:

(1) On the intersection of curves ΓA
def
:=

{
A (q, u) = 0

}
and ΓB

def
:=

{
B (q, u) = 0

}

(2) On the intersection of
{
D (u) = 0

}
and

{
B (q, u) = 0

}

The linear stability of equilibria is determined by eigenvalues of the following Jacobian

matrix:

J (q, u; δ, c)
def
:=







∂F q

∂q

∂F q

∂u

∂Fu

∂q

∂Fu

∂u






. (3.17)
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Figure 5. Eigenvalues of the Jacobian (3.17) for various values of the
parameter δ ∈ [ 0, 1.28 ] . The left and right panels (a, b) correspond to
equilibria of the first and second kinds correspondingly. Eigenvalue positive real

part indicates the instability of the equilibrium point [79]. The arrows in the right
panel indicate the increasing direction of the parameter δ .

The elements of the Jacobian can be computed by direct differentiation:

J1 1 = −2 σ (1 + δ) qD (u) ,

J1 2 = σ

[ [

2 u − M

(u − c)2

]

+
[

2 (u − c) − M

(u − c)2

]

A (q, u)

]

,

J2 1 = −σ (u − c)2
[

2 u − M

(u − c)2

]

,

J2 2 = 4 (u − c)B (q, u) + 2
(
αM − σ qD (u)

)
.

The last expression can be simplified at equilibria locations by taking into account the fact
that A = B ≡ 0 at the first kind and D = B ≡ 0 at equilibria states of the second
kind.

Eigenvalues λ1, 2 (δ) of the Jacobian matrix J as functions of the parameter δ for
both types of equilibria points are shown in Figure 5. The physical parameters used in this
numerical computation are σ = 0.15 , α = tanϕ = 1.0 , c = 2.787 and M = 0.1 c .
From this illustration it is clear now that, at least for these values of parameters, the
equilibria of the first kind are unstable spiral points, while the equilibria of the second kind
are (linearly) stable spirals [79].
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3.3.3 A particular class of travelling waves

Similarly to the construction of steady solutions presented in the previous Section 3.2,
we are looking for travelling wave solutions to system (2.42) – (2.45) of the form:

h (t, x) = h (ξ) , u (t, x) = u (ξ) , m (t, x) = m (ξ) ,

where ξ ≡ x − c · t is a combined independent variable introduced earlier. In other words,
we consider the frame of reference where the travelling wave is steady. Notice that the
model (2.42) – (2.45) does not possess the Galilean invariance property because of the
velocity variables present in the right hand sides. This effect comes from the assumption
that the ambient fluid remains in rest, which privileges this particular frame of reference.
The constant c > 0 is the unknown wave celerity to be determined during the solution
procedure.

Consider travelling waves of the following particular form:

u (ξ) = u f , m (ξ) = m f , q (ξ) = q f , h (ξ) = h f − ς ξ ,

with ς > 0 and ξ < 0 . The travelling wave ansatz presented above satisfies the following
relations:

ς ·
(
c − u f

)
= σ · q f , (3.18)

ς ·
(
(c − u f) u f − 1

2
m f

)
= α ·m f , (3.19)

ς ·
(
(c − u f) ·

(
u 2

f + q 2
f + m f

)
− m f · u f

)
= 2αm f · u f − κ · q 3

f . (3.20)

We use also an additional hypothesis that the flow in the coordinate frame moving with
the travelling wave is critical, i.e.

(
u f − c

) 2
= m f . (3.21)

The last condition can be equivalently recast as

Frf
def
:=

| c − u f |√
m f

≡ 1 ,

where Frf is the Froude number with respect to the wave front [38]. This condition
ensures the existence of the self-sustained regime of the wave propagation independently of
small perturbations which might occur behind the wave front. It is completely analogous
to the so-called Chapman–Jouguet condition for the propagation of a self-sustained
detonation wave in gas dynamics [119].

The wave celerity c might be eliminated from Equations (3.18) – (3.21) by introducing
new variables:

u ⋆ def
:=

u f

c
, q ⋆ def

:=
q f
c
, m ⋆ def

:=
m f

c2
.



V. Liapidevskii, D. Dutykh & M. Gisclon 34 / 59

As a result, we come to the following closed system of equations:

ς · (1 − u ⋆) = σ · q ⋆ , (3.22)

ς · (1 − u ⋆) u ⋆ − 1
2
ς · m ⋆ = α ·m ⋆ , (3.23)

ς ·
(
(u ⋆)2 + (q ⋆)2 + m ⋆

)
− ς ·m ⋆ · u ⋆ = 2αm ⋆ · u ⋆ − κ · (q ⋆)3 , (3.24)
(
1 − u ⋆

)2
= m ⋆ . (3.25)

By assuming that σ · q ⋆ 6= 0 , from last equations we can derive a simple relation:

(u ⋆)2 − m ⋆ − (1 + δ) · (q ⋆)2 = 0 ,

and by using the scaled version (3.25) of relation (3.21), we obtain that

2 u ⋆ − 1 = (1 + δ) · (q ⋆)2 ,

or formally,

q ⋆ =

√

2 u ⋆ − 1

1 + δ
,

provided that u ⋆ > 1
2

so that the value q ⋆ ∈ R
+ . After dividing (3.23) by (3.22) we

have:
(1 − u ⋆) u ⋆ − 1

2
m ⋆

1 − u ⋆
≡ 1

2

(
3 u ⋆ − 1

)
=

α
√
1 + δ (1 − u ⋆)2

σ
√
2 u ⋆ − 1

.

In other words, we have the following equation for u ⋆ :

3 u ⋆ − 1 = β
(1 − u ⋆)2√
2 u ⋆ − 1

, with β
def
:=

2α
√
1 + δ

σ
. (3.26)

Under the same condition on u ⋆ , we can transform Equation (3.26) into the following
algebraic equation:

(3 u ⋆ − 1)2 ·
(
2 u ⋆ − 1

)
= β 2 · (1 − u ⋆)4 .

It can be shown (see Appendix A.2) that there exists a unique positive root to this equation,
which belongs to the interval u ⋆ ∈ ( 1

2
, 1 ) . All other remaining quantities such as ς , m ⋆

and q ⋆ are determined after finding u ⋆ . The velocity c can be found from the mass
conservation equation written at the wave front:

(c − w b) ·m b + (c − u f) ·m f = c ·m s , w b > c .

If m s ≡ 0 , the last equation takes a particularly simple form:

(c − w b)
3

(U b)3
+

(
Fr b

)−
2

3
c

U b
− 1 = 0 ,

where we introduced some notations:

U b
def
:= 3

√

M b , Fr b
def
:=

u b√
m b

=

√
α

cw
.
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We remind that the positive constant cw controls the magnitude of bottom friction effects.

We thus arrive to the following cubic polynomial equation for the quantity C
def
:=

c

U b
:

P (C) ≡ (1 − u ⋆)3C 3 +
(
Fr b

)−
2

3 C − 1 = 0 .

It is not difficult to see that the polynomial P(C) is a monotonically increasing function
of C provided that u ⋆ 6 1 and, thus, there exists a unique positive root (since P (0) =
−1 < 0). The dependence of the computed in this way coefficient C = C e (Fr b) = C e (ϕ)
on the channel slope angle ϕ is shown in Figure 6 with the blue dashed line (for a fixed
value of cw = 0.004 and with σ = 0.15 , δ = 4 ). Note that in the experimental study

[18] the notation C ≡ c

U 0
was used, while we consider another definition C ≡ c

U b
,

where U 0
def
:= 3

√
M 0 . We can see that this prediction does not compare very well with

the experimental data [18, 46, 112, 118] for large slope angles ϕ . This drawback will be
corrected below. The agreement for small angles of inclination is achieved since M j ≪ M b

and, consequently, U 0 − U b ≪ U b . Therefore, the total mass flux M 0 can be replaced by
the bottom flux Mb to find the density current head velocity. It is also worth to mention
that the big scatter in experimental data depicted in Figure 6 can be also partly explained
by the differences between the total M 0 and bottom M b mass fluxes, which depend on
precise inflow conditions.

3.3.4 Further considerations

The stability of the constructed travelling wave solution with the linear growth of the
profile (due to the perpetual entrainment of sediments and still water into the mixing layer)
has to be studied separately. The constructed solution belongs to the important class of
stratified flows with fluid particles (in some parts of this flow) moving faster than the wave
front. It is known that for surface waves it leads to inevitable wave breaking [80]. The
authors are not aware of any mathematical stability studies of such stratified flows.

In the modelling of density currents, where there is a heavy particle (of density ρ 0)
entrainment into the flow, the “boundary” conditions imposed on the wave front have the
capital importance. In the previous Section these conditions were determined by the flow
structure and we saw that it leads to the poor prediction of the wave celerity comparing
with experimental data [18, 46, 112, 118]. Here we propose another set of “boundary”
conditions:

m · (c − u) + b 0 ζ b · (c − w b) = 0 , (3.27)

h ·
(
(u − c) u + 1

2
m)

)
= 0 , (3.28)

(
c − u

)2
= m, (3.29)

which are composed of the mass conservation equation, the flow criticality condition relative
to the wave front and also the momentum conservation equation. It is not difficult to see
that for u < c , it follows that u = 1

3
c and for the dimensionless combination C = c

U b
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Figure 6. Dependence of the flow head speed on the slope angle: analytical

predictions against experimental measurements [18, 46, 112, 118]. The friction
parameter used is cw = 0.004 .

we obtain the following cubic equation:

8

27
C 3 + Fr

−
2

3

b C − 1 = 0 . (3.30)

All intermediate computations are explained in Appendix B. For large values of the Froude

number, the solution C ≈ 1.5 . This estimation is in good agreement with the empirical
conjecture on the density current flow head velocity based on the experiments reported in
[18]:

c ≈ 1.5×M
1

3

0 .

In Figure 6 the solid line shows the dependence of the flow head celerity C = C b (ϕ)
based on Equation (3.30). The overall good agreement of the lower solid curve with the
experimental data [18, 46, 112, 118] certifies the model quality. It is worth to notice that
the proportionality coefficient in experimental studies was determined based on velocity

M
1

3

0 and not on velocity U b . As a result, for more accurate comparisons with considered
models, one has to determine accurately, which part of the mass flow M 0 entered into the

boundary layer, since U b = M
1

3

b =
(

µM 0

) 1

3

, with µ 6 1 .
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3.4. Similarity solutions

Additionally to special solutions considered in two previous Sections, System (2.42) –
(2.45) admits also the following class self-similar solutions:

h (x, t) = t θ+1 ĥ (ξ) , u (x, t) = t θ û (ξ) ,

m (x, t) = t 2 θ m̂ (ξ) , q (x, t) = t θ q̂ (ξ) , (3.31)

where ξ
def
:=

x

t θ+1
and θ ∈ R . For flows with the sustained mass flow M b ≡ const or

with the sustained sediment mass m s ≡ const , from conditions on the front it follows
that θ ≡ 0 . For the sustained mass flow in the turbulent mixing layer M j ≡ const , the
same value for θ follows from boundary conditions, i.e. θ ≡ 0 . Henceforth, for all just
mentioned cases, we look for solutions of the form:

h (x, t) = t · ĥ (ξ) , u (x, t) = û (ξ) ,

m (x, t) = m̂ (ξ) , q (x, t) = q̂ (ξ) , (3.32)

with ξ
def
:=

x

t
. Such solutions play a very important rôle in understanding the system

(2.42) – (2.45), since dynamic solutions tend to self-similar ones at large times provided
that constant mass fluxes are maintained.

Another important class of self-similar solutions (3.31) is realized when M 0 ≡ 0 ,
m s ≡ 0 . This corresponds to the evolution of a finite mass of a heavier liquid, which
propagates under the layer of a lighter fluid. In this case, the mass conservation law

ˆ +∞

0

m (t, x) dx = const

yields self-similar solutions of the form (3.31):

h (x, t) = t 2/3 ĥ (ξ) , u (x, t) = t−1/3 û (ξ) ,

m (x, t) = t−2/3 m̂ (ξ) , q (x, t) = t−1/3 q̂ (ξ) ,

where ξ
def
:=

x

t 2/3
. This self-similar solution indicates that the wave front position x f

behaves asymptotically in time as [105]:

x f ∝ t 2/3 .

From the last estimation, the following asymptotic behaviour of the front velocity U f can
be readily deduced:

U f ∝ x
−1/2
f . (3.33)

The last decay law was validated experimentally in [9, 81]. In the present work this
asymptotic behaviour will be used to validate the numerical simulations. This approach
to the description of turbidity currents is referred as the “thermal theory” [9].

In turbidity flows, in order to construct self-similar solutions for density currents along a
slope (as well as for travelling waves), it is of capital importance to prescribe the adequate
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boundary conditions. During the construction of travelling waves above, we see that the
wave celerity depends on the relations imposed at the wave front. When the solution is
given by ansatz (3.31), the flow head is uniquely determined. However, the applicability
of such similarity solutions to flows in the absence of sediments (i.e. m s ≡ 0 , M b ≡ 0)
has to be studied separately.

The situation changes when we consider the problem of sediments entrainment into the
flow (m s > 0 , M b ≡ 0). In the framework of the conservative system (2.46) – (2.49)
this problem can be interpreted as the mixed Initial–Boundary Value Problem (IBVP).
Namely, at the initial moment of time we know the distribution of heavy sediments in the
sediment layer h s (x) , m s (x) . The sediments might be at rest (u s (x) ≡ 0) or moving
with prescribed velocity u s (x) and turbulent kinetic energy q s (x) . The perturbations
entraining the sediments into the flow are entering the fluid domain from the left boundary
(without any loss of generality). In Figure 1 we depicted the sketch of the fluid domain for
an illustration. In this situation there is no need to separate the flow head and to write
additional relations on the wave front, since the main flow characteristics are obtained in
the process of solving the IBVP. However, the main question remains unanswered: which
self-similar regime (3.31) will appear as the long time limit of the unsteady solution?

System (2.46) – (2.49) is of hyperbolic (and hydrodynamic) type and it corresponds to
the flow of a barotropic gas with chemical reactions in compressible fluid dynamics. We
have already mentioned above the analogy between density currents and the detonation
theory. During the normal detonation, the fluid flow satisfying the Chapman–Jouguet

conditions downstream the flow head is not always realized (especially in the presence of
accompanying chemical reactions). Under certain conditions the wave of detonation might
propagate with the velocity exceeding that of perturbations behind the wave front [41]. The
main conclusion that we can draw from this analogy is that the realizability of self-similar
solutions has to be studied separately. Such an analytical study might turn out to be very
complex. Below we will show by numerical means that the propagation of the flow head
with the speed higher than expected is possible. The similarity solutions described in this
Section are validated below in Section 4.4. We would like to mention also that similarity
solutions for gravity currents were constructed also in [105] and [62, Sections 3 & 4].

4. Model validation and unsteady simulations

Strictly speaking, we already validated steady solutions to System (3.2) – (3.7) by making
comparisons with the experiments from [101]. We show that this system is able to predict
qualitatively and quantitatively the development of the mixing layer over a slope.

4.1. Problem formulation

In this Section we continue the validations by considering unsteady solutions hereinafter.
Moreover, we shall consider the applicability of an even simpler one-layer model (2.36) –
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Figure 7. Sketch of numerical lock-exchange experiments.

(2.40). We apply it to simulate the sediments entrainment process by density currents
over moderate (finite) slopes. Numerical solutions will be compared with experimental
data reported in [103] as well as with exact special solutions of travelling wave type. In
their experiments the dense fluid consisted either of saltwater or of the sawdust particle
suspension. The shape of these particles was irregular in accordance with suspended snow
flakes. The spatial growth of the cloud was determined from the side view images recorded
with a video camera. A 5 cm square grid was drawn on the side glass to facilitate the front
position determination. Moreover, we shall show below that under certain initial conditions
the numerical solution will tend asymptotically to self-similar solutions described earlier.

We made our choice for experimental data of Rastello & Hopfinger (2004) [103] for
the following reasons:

• This experiment corresponds fairly well to the scope and purpose of our numerical
model

• The model (2.36) – (2.40) is suitable for the simulation of gravity currents even
over moderate and large slopes used in the experimental study [103] (see Table 2
for the values of the slope parameter). When using other models, one has to check
that the influence of the sediment bottom layer is taken into account to represent
correctly the front dynamics

• The experiment was conducted for sufficiently long time. In this way we are able
to check our model validity for the acceleration and deceleration stages of the flow.
Finally, we were even able to check the asymptotic behaviour of the flow, which is
very typical for buoyant flows over a slope.

We already mentioned above that the equilibrium system (2.36) – (2.40) possesses the
hyperbolic structure similar to the equations of gas dynamics with two “sonic” and two
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contact characteristics [47, 72]. There is a wide choice for the numerical discretization of
such systems. However, taking into account that we deal with a system of conservation
(balance) laws, it seems to be natural to opt for finite volume schemes [7]. Henceforth, in
order to solve numerically the equilibrium system (2.36) – (2.40) we use the classical and
robust finite volume discretization and the widely used Godunov scheme [48–50]. The
explicit Euler scheme is used in time discretization.

Sketch of the numerical experiment is given in Figure 7. Our goal is to reproduce in
silico some of the laboratory experiments reported in [103]. The values of all physical
parameters are given in Table 2. The initial and boundary conditions are rather standard
as well. Initially, at t = 0 , the distribution of evolutionary quantities is given on the
computational domain [ 0, ℓ ] :

h (x, 0) = h 0 (x) , u (x, 0) = u 0 (x) , m (x, 0) = m 0 (x) , q (x, 0) = q 0 (x) .

On the right boundary we set wall boundary conditions for simplicity∗. On the left ex-
tremity of the computational domain the boundary conditions depend on the flow regime
in the vicinity of the left boundary. If the flow there is supercritical, we impose Cauchy’s
data. Otherwise, we impose a wall boundary condition as well. The case we study below
is depicted in Figure 7 and it will be described in more details below.

4.2. Experimental set-up

In order to reproduce in silico the experiments of Rastello & Hopfinger (2004) [103]
we use the following configuration of the numerical tank. The channel length ℓ is equal
to 200 cm . As we already mentioned, on boundaries we impose wall boundary conditions,
in other words the channel is closed as in experiments. A heavier fluid of buoyancy b ℓ ∈
{
1, 19

} cm

s
2

fills an initially closed container of the length of 20 cm and of variable height

h ℓ , which changed from one experiment to another. This configuration corresponds to
the classical lock-exchange experiment. The heavy fluid “mass†” m ℓ = b ℓ · h ℓ . At the
distance of 50 cm from this recipient the slope is covered by initially motionless sediment
layer of the height ζ s = 0.2 cm and 2 cm . The “mass” of sediments is m s = b s · ζ s .
The length of sediments layer is 100 cm . During the propagation of the heavy fluid head
all these sediments were entrained into the flow. In some experiments the sediment layer
was absent, i.e. m s ≡ 0 . In this case the flow simply propagates over the rigid inclined
bottom. In order to avoid the degeneration of certain equations, in numerical experiments
we cover the whole slope with a micro-layer of sediments with mass m ◦

s > 0 , such that

m ◦

s ≪ m s and m ◦

s ≪ m ℓ .

The values of all physical parameters are given in Table 2. The influence of the model
parameters on predicted values was found to be rather weak. Consequently, in all numerical

∗In any case, the simulation stops before the mass reaches the right boundary. So, the influence of the
right boundary condition on presented numerical results is completely negligible.

†We employ the term mass in the sense of the relative weight of the dense fluid.
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Parameter Experiment 1 Experiment 2

Slope angle, ϕ 32◦ 45◦

Container height, h ℓ 6.5 cm 20 cm

Heavy fluid buoyancy, b ℓ 19 cm

s2
1 cm

s2

Sediment deposit height, ζ s 0.2 cm 2.0 cm

Minimal sediment “mass”, m ◦

s 10−3 cm
2

s2
10−3 cm

2

s2

Sediment “mass”, m s 10 cm
2

s2
; 20 cm

2

s2
3 cm

2

s2

Final simulation time, T 10 s 20 s

Table 2. Parameters used in numerical simulations of the experiments from
Rastello & Hopfinger (2004) [103, Table 2], schematically depicted in
Figure 7.

simulations reported below we used the following values of these parameters:

σ = 0.15 , δ = 0 , cw = 0 .

The results of the critical comparisons with laboratory data are discussed below.

4.3. Numerical results

In Figure 8 we report the results of numerical simulations showing the spatial profiles of
four quantities h , u , m and q . These simulations were performed without the sediments
layer, i.e. m s ≡ 0 . The panels correspond to:

Left panel: Slope angle ϕ = 32◦, the snapshot is taken at T = 10 s

Right panel: Slope angle ϕ = 45◦, the snapshot is taken at T = 20 s .

All quantities reported in Figure 8 are given in dimensional variables. The position of the
density current front is clearly visible in both cases despite the fact that the IBVP was
solved in the domain [ 0, ℓ ]× [ 0, T ] using simple shock-capturing methods (i.e. no special
treatment was necessary to detect the front). This property of the employed numerical
scheme will be used to analyze below the asymptotic behaviour of unsteady solutions.

In Figure 9 we show the dependence of the flow head velocity U f on the distance x f

traveled by the front. The parameters of these numerical/laboratory Experiments 1 & 2
are given in Table 2. Please, note that the heavy fluid density in Experiment 1 is much
higher. The last observation explains why the head velocity in Experiments 1 is higher
than in Experiments 2, even if the slope is bigger in Experiments 2 . Various symbols
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Figure 8. Distribution of depth-integrated physical quantities h , u , m and q in
numerical computations reproducing the experimental set-up from [103]. These

simulations are performed without the presence of sediments along the slope.

(© and
`

) correspond to laboratory measurements of the head velocity and are taken
from [103, Fig. 11]. Solid and dash-dotted lines (with © and

`
) indicate the experiments

with (m s > 0) and without (m s = 0) sediments correspondingly. The presence of
sediments before the head front yields the initial acceleration of the flow. This acceleration
phase is followed by deceleration, since sediments are distributed over a limited distance
in our experiments. A very good agreement with numerical predictions can be observed in
Figure 9.

In Figure 10 we show the long time behaviour of the front velocity from the Experiment 2
reported in Figure 9 with parameters from Table 2. In order to perform this simulation we
increased the computational domain∗ from 200 to 500 cm . Sediments were absent along
the slope in this computation (i.e. m s ≡ 0). The excellent agreement with theoretically

established asymptotics U f ∼
1

√
x f

can be observed in this Figure 10. It validates both

the numerics and the underlying theoretical argument.

4.4. Similarity solutions validation

In the previous Section in Figure 10 we demonstrated how an unsteady solution (M j = 0
and m s = 0) tends to the asymptotic regime (3.33). If we assume that sediments are
distributed uniformly along the slope (m s ≡ const > 0) and initially they remain in the
motionless equilibrium state (until the arrival of the density current), then, the asymptotic
state of the unsteady solution is described by the similarity ansatz (3.32). In order to
demonstrate this property, we consider the same experimental set-up depicted in Figure 7.
However, in order to study long time behaviour of the flow, we consider the channel of the

∗This operation can be made easily in numerical experiments contrary to laboratory experiments,
where the channel size is rather fixed.
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Figure 9. Evolution of the front velocity U f of laboratory clouds as a function
of downstream distance x f . Comparison of the predicted flow head velocity

against the experimental results from Rastello & Hopfinger (2004) [103, Fig. 11].
The upper (lower) group of data corresponds to Experiment 1 (2) from Table 2
correspondingly.
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Figure 10. Asymptotic behaviour (3.33) of the front velocity for the experiment
2 from Table 2.
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Figure 11. Validation of similarity solution by unsteady simulations. Left panel

(a): the exact solution is depicted with solid lines (black — scaled flow height

4 h(ξ)
T , blue — u(ξ)) and unsteady numerical prediction are shown with dashed

lines (red — layer height, blue — horizontal speed). Right panel (b): zoom on the
jump in the velocity variable at the flow head.

length ℓ = 6 000 cm . The left channel boundary coincides with the origin of a Cartesian

coordinate system x = 0 cm . The horizontal axis Ox is directed along the bottom. The
vertical axis O y is directed upwards in the direction orthogonal to the slope. The bottom
slope is taken here to be ϕ = 45◦ . Starting from x = 20 cm and until the channel
end a uniform (h s ≡ 0.1 cm) motionless (u s ≡ 0 , q s ≡ 0) layer of sediments of mass

m s ≡ 0.1 cm
2

s2
is located. Sediment particles start to move when the flow head passes and

the layer depth increases to h = 1.1 h s . In order to initiate a substantial density flow in
the channel after releasing the heavy fluid, it is sufficient to fill the reservoir located for
x ∈ [ 0, 20 ] with the following heavy fluid parameters:

m ℓ = m s , h ℓ = 1.2 h s , u ℓ = 0 , q ℓ = 0 .

For t & 1000 s the numerical solution enters into the asymptotic regime (3.32) and
for all subsequent times the flow picture does not change. The numerical solution for
T = 2000 s is shown in Figure 11. The dashed lines on the left panel (a) show the

theoretical distributions of the scaled wave height 4 h (ξ)
T

(red line) along with the velocity
profile u (ξ) (blue line). In numerical simulations we observed the flow head propagation
speed c num ≈ 2.79 cm

s
. We remark that behind the wave front there is a sufficiently long

zone 1.53 ≈ ξ 1 < ξ < c num , where the solutions can be very well approximated by
linear functions. In this area the wave profile is linear and the velocity is constant. A
zoom on the velocity peak at the flow head is shown in the right panel of Figure 11(b). Its
structure is quite smooth, when the flow is resolved to high resolution.

If at the left boundary of the channel we maintain the constant mass flux M j (we take

M j ≡ 2.5×10−3 cm
3

s3
), then, in the neighbourhood of the left boundary another zone with

the linear wave profile and constant velocity is formed. In our numerical simulations this
zone occupies the interval 0 < ξ < ξ 0 ≈ 0.355 . The flow in this area is supercritical
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(u 2 > m). Consequently, on the left boundary x = 0 we have to specify all evolution
variables:

h ℓ = 0.005 cm , u ℓ = 0.5
cm

s

, m ℓ = 0.005
cm

2

s
2
, q ℓ = 0

cm

s

.

For ξ 1 < ξ < c num the flow is supercritical in the frame of reference moving with the
flow head, i.e. (c num − u)2 > m . That is why behind the wave front the analogue of
Chapman–Jouguet conditions are not verified.

In Section 3.2 some stationary solutions of the form

u ≡ u j , m ≡ m j , q ≡ q j , h ≡ ς j · x

were constructed. These solutions can be used to describe the flow on the interval (0, ξ 0) .
Here the value of ξ 0 coincides with the characteristics, i.e. ξ 0 = u j +

√
m j . The

corresponding solutions on this interval are shown in Figure 11 with solid lines. On the
other hand, the travelling wave solutions with linear profiles constructed in Section 3.3.3
are not suitable in this situation, since the assumption about the critical character of the
flow right behind the flow head is not verified in our numerical simulation. However, the
last assumption can be relaxed. Let us consider an exact travelling wave solution of the
following form:

h (t, x) = t ς f (c − ξ) , u (t, x) = u f , m (t, x) = m f , q (t, x) = q f ,

where c is the prescribed front celerity. Then, if we take c = c num , ξ 1 = u f +
√
m f ,

it can be easily checked that the above solution corresponds fairly well to the unsteady
solution shown in Figure 11. In order to obtain the exact solution, we have to find the
intersection in the plane (q, u) of two curves ΓA and ΓB defined earlier in Section 3.3.2
(see also Section 3.3.1 for the motivation of these definitions):

u2 − m − (1 + δ) q2 = 0 ,
(
ΓA

)

αm − σ q
(

u − m

2 (c − u)

)

= 0 .
(
ΓB

)

Using the relation m =
M

c − u
and the mass conservation condition at the wave front,

we have

M = (c − u)m = cm s .

For parameter values used in our simulations, there exists a unique intersection point of
curves ΓA and ΓB , which satisfies the condition (c − u f)

2 > m f .
In general, the questions of long time behaviour of unsteady solutions and the attraction

property of similarity flows cannot be answered without a thourough additional scientific
investigation. In particular, similar to the detonation theory [41], it is necessary to for-
mulate a criterium for the density current head front celerity selection. This celerity will
determine the location of the wave front on large time intervals. Moreover, this celerity is
a key parameter for evaluating the extent to which suspended material travels.
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5. Discussion

Above we have proposed and tested a new model for density currents. We outline below
the main conclusions and perspectives of this study.

5.1. Conclusions

In the present study we considered the problem of density current modelling propagating
down the slope in the presence of sediment deposits on the rigid bottom. In order to
describe this flow in mathematical terms, we divide it into three zones (from the bottom
vertically upwards): the layer of sediments (i), the mixing layer (ii) and the still water
layer (iii). In order to simplify the mathematical description, we assumed that the upper
layer (iii) of the still water was motionless. The depth-averaged description was adopted
in each of two remaining layers (i) and (ii). As a result, we arrived to a shallow water
two-layer system including turbulent modelling, which can be recast in a conservative form
(2.22) – (2.27) of hyperbolic balance laws [72]. The initially proposed system contains
only six evolution equations to describe the complex density current. However, it can be
further simplified if we assume that the flow in the bottom layer occupied by dense liquid
or suspension with uplifted sediments is in the equilibrium state, i.e. the gravity force is
exactly balanced by the friction forces with the rigid bottom. In this way, we can remove
one equation corresponding to the bottom layer (i). The sediment equilibrium model is
given by System (2.36) – (2.40). This concludes the modelling part of our study.

Then, the proposed equilibrium model is studied using analytical means. Namely, we
were interested in some special, but very important classes of solutions — steady states,
travelling waves and similarity flows. The linear stability of travelling waves was studied.
The initial conditions which yield asymptotically (in time) some special solutions (such
as self-similar and travelling waves) were discussed. The velocity of travelling waves is
of capital importance for the understanding of turbidity flows propagation. Namely, the
travelling wave speed gives an estimation of the flow head propagation along the slope.
This prediction of our travelling wave analysis was checked against the experimental data
from numerous previous studies [18, 46, 112, 118].

The mixing layer formation was discussed in the framework of steady solutions and
our theoretical prediction was compared against experimental data from [100]. Moreover,
unsteady solutions predicted by our model were compared with density flow experiments
made in the LEGI laboratory by Rastello & Hopfinger (2004) [103]. The model
predictions are in good agreement with their measurements of the front velocity. Finally,
the asymptotic behaviour for the flow head velocity as a function of the front position
was measured in our numerical computations and an excellent agreement was found with
existing theoretical estimations. This concludes the validation of the model and also of
several particular solutions derived in this study.
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5.2. Perspectives

In the present study, we have employed only basic legacy first order Godunov finite
volume schemes [48–50]. Their principal advantages are the ease of implementations and
the robustness of numerical results. However, the accuracy might be also important in
some applications, where a quantitative prediction is critically important. Consequently,
some high order finite volume well-balanced schemes have to be developed to solve numer-
ically the density current models proposed in our study. This technology is relatively well
mastered nowadays [29–31, 51].

The system of equations presented earlier in this article is a simplified equilibrium model
based on a number of physical assumptions. Of course, more complete models of higher
physical fidelity should be developed as well in the future along the lines outlined in the
monograph [75]. For instance, in this manuscript we considered density currents with
uniform cross-sections, i.e. 2D flows. In future works 3D effects have to be included.
Moreover, in all examples considered earlier, the uniform bed slopes was used. In part, it
comes from the experimental set-up used in previous investigations. However, in upcoming
works the interaction between the fluid flow with the bed morphology has to be investigated
to advance our understanding of these processes.
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A. An exact solution

In the Appendix we present the construction of a particular steady solution. Using
the information presented above in Sections 3.2 and 3.3, we construct in this Section the
profile of a particular exact solution to Equations (2.42) – (2.45). We assume that in the
bottom layer ζ ≡ ζ b and w ≡ w b . Moreover, we suppose that the total mass inflow
M 0 = b 0 ζ 0w 0 is prescribed on the left boundary. This incident mass flux M 0 splits into
two streams:

M 0 = M j + M b , M j
def
:=

1

2
b 0 hL uL , M b

def
:= b 0 ζ bw b .
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We assume also that the ratio µ
def
:=

M j

M 0
∈ (0, 1 ] is fixed. Thus, M b can be also easily

deduced.
The flow at any fixed moment of time t = tm > 0 is composed of two parts:

(1) Stationary flow: u (x, t) ≡ u j , m (x, t) ≡ m j , q (x, t) ≡ q j and h (x, t) =
h j + ς j · x , where x ∈ [ 0, L j ] , L j = u j · tm .

(2) Travelling wave: This part depends on the variable ξ = x − c·t and u (ξ) ≡ u f ,
m (ξ) ≡ m f , q (ξ) ≡ q f and h (ξ) = h f − ς f · (x − L t) , where ς f > 0 ,

L t − L f 6 x 6 L t and L f
def
:= u f · tm , L t

def
:= c · tm .

The problem consists in finding all solution parameters. The solution algorithm is summa-
rized below.

A.1. Steady flow

Let a
def
:=

u j

U j
be the ratio of two speeds with U j = 3

√
M j and z

def
:= a3 . Then, one

has to find the unique root z > 1 to the following equation:

(

1 − 1

z

)

· (1 + 2 z)2 =
4α2 (1 + δ)

σ2

def
=: β2 ,

which is to be compared with Equation (3.26). It is equivalent to finding the root to the
following cubic polynomial:

P 1 (z) = 4 z3 − (3 + β2) z − 1 .

Let z⋆ be the required root. Then, we find a = 3
√
z⋆ and u j = aU j . We know that

M j = U 3
j = m j u j . Hence, m j =

U 2
j

a
. The remaining variables are:

q j =

√

u 2
j − m j

1 + δ
, ς j =

σ · q j
u j

, bL =
b 0
2
, hL =

m j

bL
.

Finally, the steady part of the turbulent jet layer depth is equal to

h (x, t) = hL + ς j · x , 0 6 x 6 L j = u j · tm .

A.2. Travelling waves

For the travelling wave part we have M b = U 3
b and Fr b

def
:=

w b√
b 0 ζ b

. Let u ⋆ def
:=

u f

c
be

the dimensionless flow velocity. It can be found by solving the following algebraic equation,
which possesses a real root on the interval u ⋆ ∈

(
1
2
, 1

)
:

P 2 (u
⋆) = β 2 (1 − u ⋆)4 − (2 u ⋆ − 1) (3 u ⋆ − 1)2 = 0 ,
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where the constant β was defined earlier in (3.26). The polynomial P 2 (u
⋆) can be ex-

panded:

P 2 (u
⋆) = (u ⋆)4 − (4 + 18β−2) (u ⋆)3 + (6 + 21β−2) (u ⋆)2 − (4 + 8β−2) u ⋆ + 1 + β−2 .

Let us assume that we have found the required root u ⋆ ∈
(
1
2
, 1

)
. Then, we solve another

polynomial equation to determine C = c
U b

:

P 3 (C) = (1 − u ⋆)3C 3 + Fr
−2/3
b C − 1 = 0 .

The last equation admits a unique positive root C ⋆ = C ⋆ (Fr b) = C e (ϕ) as well. The
last dependence is shown in Figure 6 with the dashed line. Then, we consider the flow in
the bottom layer. We have the following relations:

M b = b 0 ζ bw b ≡ U 3
b , w b = Fr b

√

b 0 ζ b ≡ Fr b
√
m b ,

m b = Fr
−2/3
b ·M 2/3

b , ζ b =
m b

b 0
.

We can notice that w b can be also written as w b = Fr
2/3
b U b . Now we come back to the

travelling wave:

c = C ⋆ U b , u f = u ⋆ c ,

and from the relation

(c − u f) · b 0 h f = (w b − c) ·m b

we can find

h f =
(w b − c) ·m b

(c − u f) · b 0
,

provided that (c − u f) · b 0 6= 0 . Finally, we find two last elements of the solution:

q f =

√
√
√
√2

u f

c
− 1

1 + δ
, ς f =

σ q f
c − u f

.

The travelling wave profile is then given by

h (ξ) = h f − ς f · (x − L t) , L t = c · tm , L f = u f · tm .
The last profile is located in the segment x ∈ [L t − L f , L t ] . The solution exists if
u j 6 u f . We underline that in the region between the stationary and travelling wave
parts the flow in general is unsteady. Thus, the indicated boundaries L t − L f and L t

are rather approximations to the reality. Two such exact solutions for two different values
of the parameter µ = 0.05 (left panel) and µ = 0.654 (right panel) are depicted in
Figure 12. This picture shows that at least two different configurations can be realized in
practice:

Two-wave (left panel (a)): when the main portion of the heavy fluid enters into the
boundary layer (µ = 0.05)
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(b) µ = 0.654

Figure 12. Analytical solutions depicted at tm = 50 s . All parameters are the

same except for (a) µ = 0.05 and (b) µ = 0.654 . The exact solutions are
represented with dashed lines, while visible boundaries are shown with solid lines.
Solutions are terminated at the right boundary by the vertical sharp front. Notice

different vertical scales on left and right panels.

One-wave (right panel (b)): when the flow in the buoyant jet reaches the head front
(µ = 0.654).

Remark 8. In experiments in order to highlight the processes happening in the flow, the
heavy fluid of density ρ 0 is in general coloured. Other experimental visualization techniques
are also available, but the fluid painting is the most widely used one. By ρ a we denote the
density of the light ambient fluid. In such experimental conditions the visible interface
between two fluids is located, where the following condition is satisfied:

ρ v − ρ a > ̟ ·
(
ρ 0 − ρ a

)
,

where ρ v is the visible density and ̟ is a constant whose approximate value belongs to the
segment [ 0.01, 0.1 ] ∋ ̟ . For the sake of illustration, we depicted this visible interfaces
in Figure 12 with solid lines, while the exact analytical solutions were shown with dashed
lines. In the preparation of the visible interface we assumed that the fluid density varies
linearly inside the turbulent layer from ρ a to ρ 0 . In other words, the virtual visible interface
y = y v is determined by the following relation:

ρ v − ρ a =
(
ρ 0 − ρ a) ·

(

1 − y v

h

)

= ̟ ·
(
ρ 0 − ρ a

)
.

For the sake of convenience, the last condition can be equivalently reformulated in terms of
the buoyancy variable:

y v (x) =







h (x) ·
(

1 − ̟
b 0
b (x)

)

, b (x) > ̟ b 0 ,

0 , otherwise.
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B. Derivation of the speed-Froude relation

From “boundary” conditions (3.28), (3.29) we deduce the following system of two equa-
tions with respect to unknowns u and c :

(
u − c

)
+ 1

2
m = 0 ,

(
c − u

) 2
= m.

By solving this system we obtain the following solution (u 6= 1):

u = 1
3
c , m = 4

9
c 2 .

Furthermore, by definition we have

Fr b =
w b√
m b

.

Thus,

U 3
b = b 0 ζ bw b = m bw b = Fr bm

3/2
b .

Hence,

m
1/2
b = Fr

−1/3
b U b .

Taking into account the last results, the “boundary” condition (3.27) becomes:

m ·
(
c − u) + U 3

b ·
( c

w b
− 1

)

= 0 .

Or equivalently we have:

m
(
c − u)U −3

b +
(
c · Fr−1

b ·m−1/2
b − 1

)
= 0 .

By rearranging the terms in the last equation we obtain:

8

27

c 3

U 3
b

+ Fr
−2/3
b

c

U b
− 1 = 0 .

By introducing the dimensionless velocity C
def
:= c

U b
we obtain the required Equation (3.30).

C. Nomenclature

In the main text above we used the following notations (this list is not exhaustive):

≡ : equal identically

∝ : proportional

def
:= : the left hand side is defined
def
=: : the right hand side is defined
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> : smaller than the approximate upper bound∗

? : greater than the approximate lower bound∗

ϕ : angle of the bottom slope

α : local bottom slope, i.e. α = tanϕ

h j : total depth of the layer j

ρ j : fluid density in the layer j

ζ : total depth of the bottom layer

b j : buoyancy of the layer j

u j : depth-averaged horizontal velocity of fluid particles in the layer j

v : vertical velocity component

w : transversal velocity component (in 3D)

p : fluid pressure

m j
def
:= b j h j : “mass” contained in the fluid column

M j
def
:= m j u j : mass flux in the layer j

q : depth-averaged turbulent kinetic energy in the mixing layer

ξ : characteristics speed (i.e. eigenvalues of the Jacobian matrix of the hyperbolic fluxes)

λ1, 2 : eigenvalues in the stability studies

π : volume fraction of heavy particles concentration

c : dimensional velocity of the travelling wave

C : dimensionless wave velocity

Fr : the dimensionless Froude number

ℓ, L : length scales

t : time variable

x : “horizontal” coordinate along the bottom slope

y : “vertical” coordinate normal to the bottom

d (x) : the bathymetry (depth) function

g : gravity acceleration

g̃ : reduced gravity acceleration

χ : entrainment rate

u ∗ : friction velocity at the solid bottom

∗We underline the fact that this bound is given approximatively.
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