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Abstract—In this paper we give an overview of our recent
results on the phase retrieval problem for solutions of two
partial differential equations: the free Shrödinger equation and
the Helmholtz equation. In particular, we show that structured
signals often imply uniqueness in the phase retrieval problem.
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I. INTRODUCTION

The phase retrieval problem consists in reconstructing a

function from its modulus or the modulus of some transform of

it (frame coefficient, Fourier transform,...) and some structural

information on the function (e.g. to be compactly supported).

Such a problem occurs in many scientific fields: microscopy,

holography, crystallography, neutron radiography, optical co-

herence tomography, optical design, radar signal processing,

quantum mechanics to name a few. We refer to the books

[Hu], [St], the review articles [KST], [Mi], [Fi], [LBL] and

to the introduction of our previous paper [Ja] for descriptions

of various instances of this problems, for some solutions to it

(both theoretical and numerical) and for further references.

The problem can be split into two main questions:

– design algorithms for the reconstruction of at least one

solution.

– obtain uniqueness results.

After having long been ignored by mathematicians, recent

progress on the algorithmic aspect of the problem [CSV],

[WdAM] has triggered a lot of attention to this problem.

While the design of numerical algorithms that allow the

reconstruction of one solution is of course essential, the task

can only be complete once one is certain to reconstruct all

solutions of interest. This is generally not possible as long as

uniqueness is not guarantied and plainly justifies the second

part of the problem. Uniqueness is also usefull in order to have

stability results in presence of additive noise. In this paper, we

will only deal with the uniqueness aspect of the problem. More

precisely, the phase retrieval problem is extremely common in

optical sciences. Among other reasons, this is due to the lack

of sensitivity of optical measurement instruments to phase. It

turns out that optical signals are solution of Partial Differential

Equations and our aim is to show that this information can be

of some use in the phase retrieval problem. We will concentrate

on two equations.

The first equation we consider is the free Shrödinger equa-

tion on Rd with initial condition u0 ∈ L2(Rd) :



i∂tu+

1

4π
∆2

xu = 0

u(x, 0) = u0(x)
(I.1)

where ∆x =
∑

j ∂
2
xj

is the usual Laplace operator. In this

case, we ask the following:

Problem 1 (Phase Retrieval Problem for the Free Shrödinger

Equation).

Let u0, v0 ∈ L2(Rd) and let u and v be the solutions of the

Free Shrödinger equation (I.1) with initial value u0 and v0.

Let τ = {ti}i∈I ⊂ [0,+∞) be a set of times (finite or not) at

which one measures |u| and |v|. Assume that

|u(x, ti)| = |v(x, ti)| for all i ∈ I. (I.2)

i) Does this imply that u = cv for some constant c ∈ C,

|c| = 1?

ii) If we restrict u ∈ D for some set D ⊂ L2(Rd) does (I.2)

imply that u = cv for some constant c ∈ C, |c| = 1?

iii) If we further restrict both u, v ∈ D for some set D ⊂
L2(Rd) does (I.2) imply that u = cv for some constant

c ∈ C, |c| = 1?

The second equation we consider is the Helmholtz equation

on Rd

∆u + u = 0. (I.3)

An entire (defined on the whole of Rd) solution u of (I.3) can

be expressed in polar coordinates as a series

u(rθ) ∼
(2π)1/2

r(d−2)/2

∞∑

m=0

N(m)∑

j=1

am,jJν(m)(r)Y
j
m(θ) (I.4)

where Jν are the Bessel functions, ν(m) = m + (d − 2)/2
and {Y j

m}j=1,...,N(m) is a basis for the spherical harmonics of

degree m in Rd.

The far-field-pattern f is defined to be the spherical part of

r(d−1)/2u(rθ) as r → ∞, i.e., for θ ∈ Sd−1 (the unit sphere

of Rd),

f(θ) ∼
∞∑

m=0

N(m)∑

j=1

am,j(f)Y
j
m(θ). (I.5)



A solution u of (I.4) is said to be a Herglotz wave function if

its far-field-pattern is a function f ∈ L2(Sd−1) and we then

write u = uf . We will denote the space of Herglotz wave

functions by W2(Rd). The problem we then address is the

following:

Problem 2 (Phase Retrieval Problem for the Helmholtz Equa-

tion).

Let uf , ug ∈ W2(Rd) be such that |ug| = |uf |. Does this

imply that either ug = cuf or ug = cūf for some c ∈ C with

|c| = 1.

What if f is in some subspace of L2(Sd−1), or if both f, g
belong to some subspace L2(Sd−1).

In this paper, we will report on our work [Ja], [AJ], [JPE]

to show that, under some structural restriction on the solution,

uniqueness may be achieved in the phase retrieval problem.

II. THE FREE SHRÖDINGER EQUATION

A. Reformulation of the problem

Let us recall that the solution of the Free Shrödinger

Equation (I.1) with initial data u0 ∈ L2(R) has solution

u(x, t) =

∫

R

e−iπ|ξ|2t+2iπ〈x,ξ〉û0(ξ) dξ = F−1
[
e−iπξ2tû0

]
(x)

where F−1 is the inverse Fourier transform. Let us introduce

the Fractional Fourier Transform (FrFT): let α ∈ R \ πZ, let

cα =
exp i

2

(
α− π

2

)
√
| sinα|

. For u ∈ L1(Rd) and α /∈ πZ, define

Fαu(ξ) = cαe
−iπ|ξ|2 cotα ×

×

∫

R

u(t)e−iπt2 cotαe−2iπtξ/ sinαdt.

A straightforward computation then shows that, for α ∈
(−π/2, π/2),

Fαu0(ξ) =

(
ieiα/2√
| cosα|

)d

e−iπ|ξ|2 cotαu(ξ/ cosα, cotα).

Next, let us now recall that the ambiguity function of u ∈
L2(R) is defined by

A(u)(x, y) =

∫

R

u
(
t+

x

2

)
u
(
t−

x

2

)
e−2iπtydt.

The link between the FrFT and the ambiguity function comes

from the following property:

A(Fαu)(x, y)

= A(u)(x cosα− y sinα, x sinα+ y cosα).

In particular,

A(u)(−y sinα, y cosα) = A(Fαu)(0, y)

= F [|Fαu|
2](y). (II.1)

It follows that the knowledge of |u(x, t)| is equivalent to the

knowledge of A(u) on the line R(1, t). In other words, the

Phase Retrieval Problem 1 has been changed into a sampling

problem for the ambiguity function. Exploiting this link, we

have been able to prove the following:

Theorem II.1 (Jaming [Ja]). Let u0, v0 ∈ L2(R) and u, v be

the corresponding solutions of (I.1). Let τ ⊂ R be a set of

times and assume that

|u(x, t)| = |v(x, t)| for every x ∈ Rd and t ∈ τ.

1) If τ = R (or is dense in R). Then there exists c ∈ C with

|c| = 1 such that v = cu.

2) If τ ⊂ R has an accumulation point (in particular if τ
has positive measure) and if u0, v0 are both compactly

supported, then there exists c ∈ C with |c| = 1 such that

v = cu.

3) Let a > 0 if u, v ∈ L2(R) have compact support included

in [−a, a] and if τ =
{

k
a2 , k ∈ Z

}
then there exists c ∈ C

with |c| = 1 such that v = cu.

Sketch of proof. If |u(x, t)| = |v(x, t)| for every x, t then

A(u) = A(v) and it is well known that this implies u = v.

The two other items are based on the observation that

A(u)(x, ·) is the Fourier transform of the function ϕx(t) :=

u
(
t+ x

2

)
u
(
t− x

2

)
. But, if u is compactly supported, so is

ϕx, thus A(u) is an entire function in the second variable thus

if A(u)(x, ·), A(v)(x, ·) coincide on a large set, they coincide

everywhere.

Further, if u and v are supported in intervals, so is ϕx and

we may simply apply Shannon’s sampling theorem.

This theorem still requires the knowledge of the solution at

infinitely many times. It turns out that if we ask u, v to be

“structured”, then less is needed:

Theorem II.2 (Jaming [Ja]). Let u0, v0 ∈ L2(R) and u, v be

the corresponding solutions of (I.1). Let τ ⊂ R be a set of

times and assume that

|u(x, t)| = |v(x, t)| for every x ∈ Rd and t ∈ τ.

1) Assume u0, v0 are Hermite functions (of the form Pγ
where P is a polynomial and γ(x) = e−πx2

), τ =
{cotα} with α ∈ R \Qπ. Then v = cu with |c| = 1.

2) Assume u0, v0 are rectangular pulse trains (of the form∑
finite cj1[j,j+η) with 0 < η ≤ 1

2 and cj a finite

sequence of complex numbers) and τ = {t0}, t0 > 0,

then v = cu with |c| = 1.

3) Assume u0, v0 are of the form
∑

finite cie
−π(t−ai)

2

, ci ∈
C and ai ∈ R, and τ = {t0}, t0 > 0, then v = cu with

|c| = 1.

Sketch of proof. The proofs of these three facts are algebraic

in nature and require to expand u0, v0 in some representing

system and to identify coefficients.



For Hermite functions, the problem is best solved for the

FrFT and we use the Hermite basis and write u(t) =

N∑

j=0

cjHj ,

v(t) =

M∑

j=0

cjHj . Then, as is well known,

Fθ[u](t) =

N∑

k=0

cke
−ikθHk(t)

and a similar expression holds for Fθ[v]. Then |v|2 = |u|2 and

|Fθ[v]|2 = |Fθ[u]|2 is equivalent to

M∑

j,k=1

djdkHj(t)Hk(t) =

N∑

j,k=1

cjckHj(t)Hk(t)

and

M∑

j,k=1

djdke
i(k−j)βHj(t)Hk(t)

=
N∑

j,k=1

cjcke
i(k−j)βHj(t)Hk(t)

An induction starting from the highest order term then leads

to the result.

For the pulse trains, the ambiguity function reformulation is

the most convenient. We first introduce the discrete ambiguity

function of a sequence a:

A(a)(k, y) =
∑

j∈Z

ajaj−ke
2iπjy .

Then we write u(t) =
∑

aj1[0,η)(t − j) where aj is a

finite sequence. A simple commutation shows that, for x ∈[
j −

1

2
, j +

1

2

]
,

A(u)(x, y) = eiπjyA(a)(j, y)A(1[0,η))(x− j, y)

and a similar expression holds for A(v). The part

A(1[0,η))(x − j, y) being common to A(u) and A(v), the

problem reduces to a problem on the discrete part which is

again solve by an induction procedure.

The last case is more elaborate and we refer to [Ja].

This theorem mislead us to conjecture that three different

times might be sufficient to obtain uniqueness. This was

disproved in [CHST] who noticed that as soon as there exists

a triplet for which non-uniqueness could be achieved, then no

triplet would work and then elaborated on a counter-example

given in [Ja] that showed that the condition on the time in

the case of Hermite function is necessary. Let us here give a

different proof that appeals to an argument of A.E.J.M Janssen

[Jan] and an oblique marginal formula for the Zak transform

Z[f ](x, ξ) =
∑

k∈Z

f(x+ k)e−2iπkξ .

which is of independent interest.

Theorem II.3 (Andreys-Jaming [AJ]).

Let p ∈ Z \ {0}, q ∈ N be relatively prime integers and let α
be defined by cotα = p

q . For n ∈ Z, and x ∈ [0, 1], let

cn,p,q =
1

q

q−1∑

k=0

(−1)kpeiπ
p
q
k2

e−2iπ nk
q

and, for x ∈ [0, 1], n ∈ Z, write ξn,p,q(x) = p
qx + 1

2p + n
q

and Ap,q(x) = {n ∈ Z| 0 ≤ ξn,p,q(x) ≤ 1}. Then, for every

f ∈ L2(R),

Fαf(ξ) = cαe
−iπ p

q
ξ2
∫ 1

0

e−2iπ ξ
sinα

x−iπ p
q
x2

×
∑

n∈Ap,q(x)

cn,p,q Zf

(
x,

ξ

sinα
+ ξn,p,q(x)

)
dx. (II.2)

The identity has to be taken in the L2(R) sense.

This theorem is a (rigourous) elaboration on the formal

computation that allows to compute the Zak transform of a

chirp. From this, it is easy to obtain the following:

Corollary II.4 (Andreys-Jaming [AJ]). Let r1, . . . , rm ∈ Q be

m different rational numbers and N ∈ N. For j = 1, . . . ,m
let αj ∈ [0, π) be defined via cotαj = rj . Then there exists

f1, . . . , fN ∈ L2(R) such that, for j = 1, . . . ,m and k 6= ℓ =
1, . . . , N ,

suppFαj
fk ∩ suppFαj

fℓ = ∅. (II.3)

In particular, for every j = 1, . . . ,m and for every

c1, . . . , cN ∈ C with |ck| = 1,
∣∣∣∣∣Fαj

[
N∑

k=1

ckfk

]∣∣∣∣∣ =
∣∣∣∣∣Fαj

[
N∑

k=1

fk

]∣∣∣∣∣. (II.4)

Taking u0 =
∑N

k=1 fk, v0 =
∑N

k=1 ckfk and solving the

Shrödinger equation with these initial conditions, we obtain

functions u(t, x), v(t, x) that have modulus coinciding at m
different times but still being different.

Corollary II.4 is established as follows: if one takes a

function F ∈ L2 supported in a (union) small disc in

[0, 1]× [0, 1], then this function is the Zak transform of some

function f ∈ L2(R), F = Zf and the support of Fα[f ]
is then obtained from (II.2) by looking at all oblique lines

(x, ξ sinα+ ξn,p,q(x)) appearing in that formula that intersect

the disc (see Figure 1).

III. THE HELMHOLTZ EQUATION

The aim of this section is to show that solutions of the

Helmholtz equation are often uniquely determined by their

modulus. The main result is the following:

Theorem III.1 (Jaming & Pérez-Esteva [JPE]). Let uf , ug ∈
W2(Rd) be such that |ug| = |uf |. Assume one of the following

holds:

— f and g are real valued;

— f has non-zero mean;

— the dimension is d = 2;
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Fig. 1. In this figure p = 2, q = 1 and the slope is
p

q
=

1

2
. The support

of Z[f ] is the union of the black discs. Then the set J is such that, for
each η ∈ J , the (periodic) line starting at (0, η) with slope q/p = 1/2
(tanα = q/p) intersects at least once the support of Zf (one such line
is drawn dotted). Here J = [0, 1/4] ∪ [1/2, 3/4] Finally, the support of
Fα[f ] is then included in the set of all ξ such that ξ/ sinα + p/2 ∈ J +
Z =

⋃
k∈Z

[k/2, (k + 1/2)/2]. As p = 2, q = 1, sinα = 2/
√
5, thus

suppFα[f ] ⊂
⋃

k∈Z
[k/

√
5, (k + 1/2)/

√
5].

— d ≥ 3 and f, g are zonal functions.

Then either ug = cuf or ub = cuf for some c ∈ C with

|c| = 1.

Recall that a zonal function is a function of the form

ϕ(〈x, x0〉) for some x0 ∈ Sd−1.

Sketch of proof. The case f, g being real is of a slightly

different nature to the other statements. In this case, uf , ug

are also real and |uf | = |ug| is equivalent to u2
f = u2

g thus

(uf−ug)(uf+ug) = 0. It follows that at least one of uf = ug

or uf = −ug holds on a set of positive measure. But they are

also analytic, so that if such a relation holds on a set of positive

measure, it holds everywhere.

Next notice that if uf ∈ W2(Rd), then (I.4) implies

|uf (rθ)|
2 =

2π

rd−2

∞∑

m,n=0

cm,n(f)Jm+ d−2

2

(r)Jn+ d−2

2

(r)

where

cm,n(f) =

N(m)∑

j=1

N(n)∑

k=1

am,j(f)an,k(f)Y
j
m(θ)Y k

n (θ).

The key observation is that, thanks to the properties of the

Bessel functions, |uf | = |ug| can be reformulated in terms of

the cm,n’s only:

Lemma III.2. Let uf , ug ∈ W2(Rd). Then |uf | = |ug| if and

only if for every 0 ≤ m ≤ n

ℜ
(
cm,n−m(f)

)
= ℜ

(
cm,n−m(g)

)
. (III.1)

Then a0,1(f) is the mean of f and |a0,1(f)|2 = c0,0(f) =
c0,0(g) = |a0,1(g)|2. Up to replacing f, g by multiples of

them, we can assume that a0,1(f) = a0,1(g) is real (and

non zero). Then ℜ
(
c0,n(f)

)
= ℜ

(
c0,n(g)

)
for every n.

But, if we chose the basis of spherical harmonics to be

real valued, this implies that ℜ
(
aj,k(f)

)
= ℜ

(
aj,k(f)

)
for

every j, k thus ℜ(f) = ℜ(g) and ℜ(uf ) = ℜ(ug). As

|ug|
2
= |uf |

2
we deduce that |Im (ug)|

2
= |Im (uf )|

2
. But

Imug = uIm (g), Imuf = uIm (f) are real Herglotz functions.

The real valued case then implies that

either Imug = Imuf or Imug = −Imuf ,

that is g = f or g = f̄ .

The case of zonal functions is of similar flavor when d ≥ 3.

The d = 2 case uses the fact that ℜcm,m(f) = ℜcm,m(g)
reduces to

|f̂(m)eimθ + f̂(−m)e−imθ| = |ĝ(m)eimθ + ĝ(−m)e−imθ|

so that, for each m, there exists κm ∈ C with |κm| = 1 such

that

— either f̂(m)eimθ + f̂(−m)e−imθ = κm

(
ĝ(m)eimθ +

ĝ(−m)e−imθ
)

— or f̂(m)eimθ + f̂(−m)e−imθ =

κm

(
ĝ(m)eimθ + ĝ(−m)e−imθ

)
.

One then uses the other relations to show that κm does not

depend on m and that the choice between both alternatives

also does not depend on m.
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