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Abstract

Non-intrusive load monitoring (Nilm) deals with the disaggregation of in-
dividual appliances from the total reading at the power meter. This work
proposes an industrial scale solution which uses a specific modeling tech-
nique for appliance detection, trained and tested on two distinct databases
extracted from actual customers readings. The proposed method is tested
for different household categories to address its robustness. The validation of
the implemented solution is done over a period of one month with a sampling
rate of 10 seconds. The results indicate that high energy consuming appliance
can be correctly detected (>80 % of accuracy). In addition, general cases of
errors are analyzed, paving the way of the next step in the development of a
commercial application of the proposed method.

Keywords: Non-intrusive load monitoring, load disaggregation, data
mining, smart meters, energy efficiency, smart grids.

1. Context

1.1. Smart meters in the context of smart grids

Smart meters are getting deployed worldwide on a large scale. This large
scale generation of digital energy data mandates a deeper look inside the
consumption patterns of different appliances present inside buildings.

In the context of smart grids, insights on the energy consumption patterns
through appliances usages could help system operators to better manage the
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energy distribution [1, 2], especially regarding the integration of more fluc-
tuating energy sources (i.e. renewables). Strategies commonly employed to
that end are usually known as demand response [3, 4]. Through these strate-
gies, it is possible to reduce peaks demands by eliminating consumption, or
by shifting it to non-peak times. For example, the time of use pricing has
been successfully employed to this end [2].

From the point of view of energy consumers, load identification can play
an important role in the prediction of future usages of particular appliances
where the process of historical data collection is made as less intrusive as
possible [5]. The current technology of smart meters allow reporting the
total electrical consumption of a building. But to further develop energy
management strategies, appliances usages insights need to be provided. A
forth part system will very likely be used for that purpose, in addition to the
end user, the energy provider and the energy distributor.

For that reason, an increasing number of innovative industrial solutions
are being under development. The appliances in residential or tertiary build-
ings could be directly monitored but both the associated costs and inconve-
niences to the users represent a significant limitation to a correct gross on
the market for such implementations.

In that context, this paper focuses on the implementation of a generic
solution, based on real-life data acquired in commercial contracts by the
start-up Greeniant B.V. with which algorithms derived from laboratory de-
velopments have been run. The objective is to determine the level of accuracy
that can be reached within strict limits of industrial feasibility, privacy con-
cerns and costs.

1.2. Data analytics and data usage

Non-intrusive methods propose an attractive alternative to in-house load
monitoring with reduced costs and manual overheads. To achieve this goal,
new data analysis mechanisms have to be proposed to inhabitants for their
satisfaction and possible energy costs reduction. Note that just a transfer
from an analog to a digital system is not good enough for the customers.
Indeed, a comprehensive and qualitative data analysis mechanism has to be
coupled with the subsequent load management strategies to present enough
interest.

Next to the necessary efforts on the data-acquisition side, it is equally
important to develop insights in consumers’ needs. Typically, an additional
context, through analysis on the end-users, would benefit significantly to the
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performances of such systems. Customers could be residential consumers,
small-business owners, farmers etc. Mapping a daily/weekly routine in a so-
called “customer journey map” gives insights in jobs-to-do for these end-users
and the pros and cons of using a local energy management system.

1.3. From research to industrial development

As nowadays energy supports most of the indoor activities in buildings,
all these jobs-to-do have a relationship to and/or an impact on the overall
energy consumption of the buildings. As an example, a customer survey was
conducted by Greeniant B.V. to question users on their experiences with their
equipment. When asked if they would like to know their energy consumption
per time used, usually the answer of customers was negative. The same
answer came regarding the associated costs as a function of the time of use.
However, a typical behavior of the energy management system that would
be welcomed as interesting without being too intrusive is to send warnings
at particular times, depending on pre-defined thresholds for example. We
can easily relate these warnings regarding the energy consumption to similar
signals already proposed in a regular household for the daily operation of
typical appliances, for example to clean some machine, or to replace some
filter, etc.

The results of these surveys show that an adequate accuracy and con-
fidence to support an early-warning system is the key to insure that this
system is being widely adopted. A thorough analysis could surface ample
applications of given technologies in a unique, tailored made proposition for
energy utilities and customers.

In that context, this paper proposes a solution mainly validated on resi-
dential buildings but the tools and methodology are fully applicable to any
other kind of building (tertiary, etc.). It is to be noted that this work has
been conducted as a collaboration between an innovative start-up proposing
a solution for energy management in residential households and a research
laboratory working, among other topics, on the grid integration of smart
buildings as non-conventional loads.

2. Problem statement

This work focuses on the power meter readings. The added capacity to
automatically monitor and report these measurements make a classical power
meter a smart meter. In that context, non-intrusive load monitoring (Nilm)

3



deals with the disaggregation of individual appliances, directly from the total
load monitored at the power meter.

If a load curve, considered as a time series L and monitored at a power
meter is the sum of three loads whose consumption is respectively the time
series L1, L2 and L3, then the task is to determine the state of L1, L2 and
L3 individually with the only knowledge of L, as summarized in Figure 1.
Of course, a way to improve the load identification is to add to the only
knowledge of L other useful information, like the weather, historical data,
non-technical data, etc.

Figure 1: The principle of signal separation, leading to load identification.

The application of that principle in a household will decompose its overall
energy consumption into its significant components, as depicted in Figure 2.

Figure 2: Identification and management of appliances through the power meter.

The only interesting ones are loads consuming a significant part of the
overall energy consumption of the building. Indeed, such loads need to be
seen either from the grid point of view as a potential flexibility lever, or from
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the user point of view, as a potential appliance that could participate in the
reduction of their energy consumption, and then directly their energy bill.

From the industrial point of view, it is important to identify periods
during which the appliances were used. A typical example of support for
identification is proposed in Figure 3, directly extracted from the readings
of a smart meter, for one full day. The shown data is then just monitored
and not processed in the identifier yet. This is a time-line representation and
the appliances are emphasized by colors. The blue line represents the total
consumption. On that curve, two loads are identified: the clothes dryer and
the dish washer.

Figure 3: Illustration of periods of usage of appliance (without data-mining involved).

2.1. Load identification

The pioneering work in load disaggregation was published in the early
90’s [6]. It proposed to identify appliances by their respective On/Off
transitions. It tried to consider power consumption changes (i.e. events)
both in the active and reactive power of the signal. An illustration of such
On/Off transitions is illustrated in Figure 4.

Methods were then proposed to identify individual appliances from their
On/Off transitions. From that time, most of the approaches were event-
based and considered a high sampling rate, typically less than one second.
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Figure 4: Non-Intrusive Load Monitoring principle [6] and On/Off transitions.

Even though Nilm is considered one field, there are two fundamentally
different categories. The main difference between them is in the granularity of
the monitored energy data, which drives the use of specific tools and analysis
techniques. The two major categories of granularity are defined based on the
frequency of monitoring.

• High sampling rate: freq.≥50 Hz, up to several kHz (i.e. time ≤ 0.02 s)

• Low sampling rate: freq.≤1 Hz (i.e. time ≥ 1 s)

2.1.1. High sampling rate Nilm

High-frequency measurements allow the analysis of not just the energy
used, but also of the structure of the current-voltage waveform itself [7].
Running different appliances introduces different signatures of disturbances
to the pure sine waveform of the theoretical voltage, which can be used
to disaggregate them. Getting this high-frequency data requires specialized
monitoring equipment such as currents clamps and a lot of computational
and communication power to process them.

In that field, [8] proposed a method to generate signatures based on the
ranges of the active power, the reactive power and the harmonic content.
This kind of approaches typically consists of identifying the steady state (or in
some cases the transient state) features of the appliances, and thus to be able
to recognized them rapidly enough [9, 10]. Subsequently, these signatures are
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matched with earlier learned models using a pattern recognition algorithm
[11, 12].

The drawbacks of these approaches are mainly hardware requirement due
to high sampling rates and the impracticality of the process being totally
non-intrusive [13, 14] and thus widely accepted by customers. Also, these
methods do not fit well into smart meters capabilities (which are country
dependent). An alternative is a separate device, which has to be installed
for training, visualization and communication to the grid. These are major
drawbacks, commercially and practically speaking. The load identification
at a high sampling rate of all appliances also raise privacy concerns as users
activities can be easily detected, interpreted and monitored [15].

2.1.2. Low sampling rate Nilm

Low-frequency measurements obviously complicate the disaggregation pro-
cess, but have one major advantage: they are easily available from smart
meters from all over the world. Typically, these power meters supply whole-
home electricity usage every one second, ten seconds or more. Since all
the information of the waveform is lost, and typically only active power is
available (no reactive power or harmonic content), different techniques are
required for disaggregation.

The major issue at low sampling rates is that low energy consuming de-
vices are difficult to be detected as the switching events are not very promi-
nent. However, high energy consuming appliances, such as a water heater
or a washing machine can still be identified with a reasonable precision even
at a sampling rate of 15 minutes for example [16, 17]. Another illustration
can be found in [18, 19], where the states of high energy consuming appli-
ances, especially the water heater, were identified correctly for consumption
readings monitored at a time step of 10 minutes in France.

Considering the constraint of the low sampling rate, the differentiation
of the methods is directly dependent on the choice of algorithms. Indeed,
algorithms have further been implemented and tested in the field of load
monitoring from one to ten seconds. For example, a method generating ap-
pliances features using Eigen Vectors and a pattern recognition technique
was proposed to match the appliances energy signatures during the testing
time [20]. Another method partially disaggregating the total household elec-
tricity usage into five loads categories has been proposed at a lower sampling
rate in [21] where different sparse coding algorithms are compared and a
discriminative disaggregation sparse coding algorithm is tested. A feature-
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based support vector machine classifier accuracy is also mentioned but not
presented. The method of [21] is an implementation of the blind source sep-
aration problem, which aims at disaggregating mixture of sources into its
individual sources. A classic example for this would be the problem of iden-
tifying individual speakers in a room having multiple microphones placed in
different locations.

In the Nilm context, the problem is undermined as there is only one mix-
ture and a large number of sources. The sources (i.e. appliances or loads) do
have separate usage patterns which could be used but the issue using blind
source separation is the assumption of no prior information about them.
Nevertheless, blind source separation still remains a promising direction of
research in this field. Temporal graphical models such as hidden Markov
models also have been promisingly used in this field as they are a classical
method for sequence learning [22]. The problem is to learn the model param-
eters given the set of observations as input sequence and appliances states
as output sequence. But at a very low sampling rate, they seem to have a
sensitivity to monitoring noise during the training stage.

Finally, [23] proposed a technique using subtractive clustering and the
maximum likelihood classifier. The features used to identify appliances are
the power levels and the On/Off duration. The power levels are computed
using a normal distribution and the On/Off duration using a Weibull dis-
tribution. For six identified appliances, the average accuracy reaches 86 %.

2.1.3. The implemented method

In this work, the technical proposed in [23] is enhanced to take into ac-
count the various power levels (or “states”) at which appliances operate and
also the temporal correlation among them. It is tested for a commercially
viable solution considering all the practical challenges encountered during
the implementation of that solution. The main objective is to identify as
accurately as possible electrical appliances usages from the smart meter mon-
itoring.

The “technical” goal is then to be able to identify individual loads from
the aggregate power consumption in a non-intrusive manner. The novelty of
the work lies in using smart meter data (active power at a 10 seconds sampling
rate) already used in a commercial application in the Netherlands and in
proposing a novel set of appliance state features, which are validated on real-
life data. Note that, even if it was a hard work, the practical implementation
of the solution on a large scale commercial base is intentionally not presented
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here, because the information and telecommunication problems have no room
in the context of this paper.

2.2. Database architecture

The initial database is provided by Greeniant B.V., which is a smart
meter analytics company based in the Netherlands. This database consists
of more than three thousand residential customers with the corresponding
power meter readings hosted in a cloud based server. The training of the
proposed model is built on a subset of the Greeniant B.V. database of ap-
proximately 20 actual houses, with plugs for various appliances in addition
to the power meter of the complete house. For the purpose of validating
the proposed technology, four houses were specifically selected and extracted
from the initial database. Additional plugs for the appliances power readings
were installed in these houses, as they will represent the testing database in
our case.

The database used for validation corresponds then to different houses
than the one used for testing. They have been chosen based on their various
consumption levels, number of inhabitants and surfaces. To sum up, the
model is learned once for all houses from the testing database, and is then
validated on the four houses of the validation database. Both databases have
time series of one year. This is an ambitious validation method for such data
mining technique, compared to the literature.

In Figure 5, the average hourly consumption metrics (mean and standard
deviation) are shown for the full month of simulation.

We can see in that figure that house number two has the maximum hourly
mean and standard deviation, whereas the other houses are clustered in the
same area. This observation led us to statistically analyze approximately
three thousand households from the database available at Greeniant B.V..
The conclusion is that a majority of the houses (> 80 %) presents a similar
profile to houses one, three and four whereas the rest of the houses are similar
to the house number two. Therefore, we decided to keep three houses in the
first category (houses one, three and four) and only one in the second (house
two).

Finally, it is to be emphasized that the testing database is chosen totally
independently from the training database to observe the performances of the
algorithms in an unknown environment (both databases are also geographi-
cally different).
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Figure 5: The energy consumption profile of the residences used for validation.

3. Methodology

The methodology implemented in this paper can be described as a part-
based data driven approach. The power meter readings are time series from
which daily overlapping sub-sequences are generated through the use of a
time sliding window. Before going further, some definitions are in order.

Time Series: Ordered set of n real-valued variables T = T1, . . . , Tn associ-
ated with a continuous ordered time sequence of size n and defined by
its time step t.

Sub-sequence: For a given time series T of length n, a sub-sequence Ck of
T is a sampling of length w ≤ n of contiguous position from T , that is,
Ck = Tk, . . . , Tk+(w−1) for 1 ≤ k ≤ n− (w + 1).

Sliding Time Window: Given a time series T of length n and a sub-
sequence of length w, a matrix M of all possible sub-sequences can be
built by “sliding a time window” across T and placing sub-sequence Ck
in the kth row of M . The size of the matrix M is {(n−w+1)/J}×{w},
with J the “jump” variable that represents the shifting step of the slid-
ing time window.

Event: Detection of a variation of power (in one way or the other) greater
than a threshold value in the considered time sliding window.
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Element: A pair of mapped events (a positive one and a negative one).

Cluster: A partition of n observations into K ≤ n sets that minimizes a
distance between elements within clusters.

Electrical component: A part of any appliance, responsible of a part of
its behavior, monitored through variations in the power meter readings
(for example heating elements or motor spin for the washing machine).
An illustration of identified electrical components for a washing ma-
chine is proposed in Figure 6.

Figure 6: The electrical components as a relation to states of an appliance (here a washing
machine).

The Nilm method can be broadly segmented in a view phases, each help-
ing on various aspects of assessing data [15]. These phases can be converted
in equivalent stages implemented in the data mining associated with the
monitoring recorded at the smart meter level. In this work the data flow
follows these stages, visualized in Figure 7.

1. Database pre-processing;
2. Elements generation from events detection and mapping;
3. Clustering of elements based on their power levels;
4. Feature generation based on power and components clustering;
5. Building the model of the classifier (based on a support vector machine);
6. Testing of the built model on an unseen database;
7. Post-processing calculation (start-time, duration and energy).
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Figure 7: Overall data-processing and analytic pipeline.

3.1. Database pre-processing

As the algorithms are operating on real-life data, measurement errors are
present in the database. At the pre-processing stage, these “noises” in the
data, such as data spikes and missing data, are processed and automatically
removed. It is necessary to remove them as they clearly interfere with el-
ements detection. For illustration, in Figure 8, the spikes occurring in an
extract of the database are highlighted. The spikes are removed using a me-
dian filter and the missing data suppressed using a predefined threshold. Not
to influence results, the appliance identification during the badly monitored
period is not considered for training.

3.2. Event detection and mapping for elements generation

During the training phase, an event is registered when the variation in the
power level is superior to a threshold manually set for the selected database.
As illustrated in Figure 9, a low power fluctuation can be seen in the power
meter data, whose fluctuations vary around 32 W. For that reason, in this
work, the threshold has been set experimentally to 35 W. This minimum
threshold reduces the complexity of events detection and errors due to minor
fluctuations.

The power variation can be expressed by the following equation:
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Figure 8: Spikes occurring in the power meter readings and their corresponding errors
triggered in the events detection.

Figure 9: Fluctuations in the monitored power meter data.
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∆(ti) = P (ti)− P (ti − 1)

∆(ti) > Threshold

}
ti ∈ [0, w] (1)

where w is the size of the sliding-window.
The events generated with a ten seconds time step power meter readings

is proposed in Figure 10. It can be clearly seen that the generated events
correspond to various appliance states, either for the same appliance, or even
multiple ones. The dark blue color corresponds to “no appliance identified”
and the other colors corresponds to “detected appliances” (one color per
appliance).

Figure 10: Events detected in the power meter readings. The washing machine is in red,
a clothes dryer appears in orange and a dish washer in purple.

Within the time sliding window, a first list of consecutive positive events
is sorted then a list of consecutive negative events that come after the last
positive one is also sorted. Negative events from the second list are considered
consecutively and matched with a positive event from the first list. The
matched events are removed from both lists and stored as a new element for
the considered time sliding window. The process continues as an iteration
process to build a library of generated elements per time sliding window.

3.3. Clustering based on power levels

The K-means clustering method is used to partition a set of observations
into a set of clusters where each object belongs to the cluster with the nearest
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average value. It effectively partitions the data into Voronoi cells which is a
way of dividing the space of the database into a given number of regions [24].
Considering a set of observations (x1, x2, . . . , xn), where each observation is
a d-dimensional real vector, the K-means clustering aims to partition the n
observations into K ≤ n sets S = {S1, S2, . . . , SK} that minimize distances
between elements within clusters. The definition of the distance uses in this
paper is expressed as follows:

arg min
S

K∑
i=1

∑
xj∈Si

||xj − µi||2 (2)

where µi is the average value of the points contained in the set Si.
In the classical methods, the number of partitions K had to be provided

but many variants have evolved to overcome this restriction. The X-means
algorithm extends the K-means principle by an improved structuring part.
Indeed, the clusters are split in better defined sectors. Also, the input vector
is normalized using the min-max algorithm.

In this work, the X-means algorithm is used to segment the power levels
into clusters. This is an important step as physically it broadly corresponds
to differentiate the appliances present in the building. An illustration of
identified clusters, based on their power level is proposed in Figure 11 for a
washing machine.

The comparison with Figure 10 shows how the identified clusters roughly
correspond to some of the electrical components of the washing machine, like
the heater, ripples due to washing cycles and various spins.

Two other illustrations of typical signatures of major appliances in actual
houses of our database are proposed in Figure 12 for the clothes dryer and
the dish washer

3.4. Feature generation

The previously exposed appliance-wise power levels are used as features
during the generation step to establish the characteristics of each cluster.
Indeed, the part-based model is built on a specific knowledge of the appliances
we are willing to disaggregate, which is defined as features. Such features
are related to power levels, their corresponding duration, their number of
occurrences within the time-window, etc.

During this stage of the algorithm, the features associated with the el-
ements (i.e. paired events) are computed within clusters. As clusters are
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(a) Raw data.

(b) Data with cluster.

Figure 11: Electric signature of a washing machine and clustering of its electrical compo-
nents.

(a) Clothes Dryer. (b) Dish Washer.

Figure 12: Electric signature of typical appliances in the houses of the database.
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defined based on a power level, features will vary in significance and value
from on cluster to the other. The time difference between each part is also
computed. Except for “mean and standard deviation of the power level of
each cluster”, the following features are generated for each element within a
cluster and a time sliding window.

1. Mean and standard deviation of the power level of each cluster.

2. Mean and standard deviation of the duration of each element in each
cluster.

3. For similar power levels and duration:

(a) Mean and standard deviation of the On duration of an element
(i.e. duration between a positive event and the next negative
event) within each cluster in the considered time sliding window.

(b) Number of occurrences of elements within the time sliding window.
(c) Average time difference between the starting time of successive

generated elements in the clusters (the start time is the first oc-
currence of the considered element).

For the features based on similar power levels and duration, the calculus is
done on elements belonging to the same cluster of a sliding window. First, the
mean of the elements (power and duration) is calculated, then only elements
within ±5 % of these average values are considered. This is primarily a
filtering operation, because for many appliances, the elements within a cluster
exhibit similar characteristics (in power levels and duration).

Assuming all clusters are represented in each sliding window, the num-
ber of training instances is then the product between the number of sliding
windows and the number of considered clusters.

As previously stated, the power level based clustering roughly corresponds
to various states or electrical components of multi-states appliances. It al-
lows taking into consideration the temporal relations between the various
states (as a part-based model). As various appliances are used in tempo-
ral sequences, this temporal correlation is taken into consideration with the
presented part-based model.

3.5. Training of the part-based model parameters

3.5.1. Training instances

The generated elements correspond to various states of a multi-state
appliance. The technique of features generation is part-based on relations
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among the elements as a function of the time. Indeed, the part-based model
utilizes the temporal correlation between the various elements which can
correspond to the time duration between appliances usages.

The models are built per appliance. An appliance is identified to be used
in a particular day if it starts before the end of that day (24:00). In addition,
four hours of time overlap are added at the end of the considered day for the
cross-over cases. Indeed, we have experimentally measured that the average
maximum duration of any appliances usages in the available database lies
around four hours. That duration has been also set for the time sliding
window in the algorithm.

All training instances are generated using the time sliding window (typ-
ically with a window jump of 30 minutes). The output (the state of the
appliances) is taken to be On if the appliance is 100 % present in the con-
sidered time sliding window. It means that, during training, the state of the
appliance is On during a time window of the starting and ending times of
that appliance are within the time window.

Once the features are generated for each time sliding window, they be-
come training instances for the classifier.

3.5.2. Classification

Once the training instances are generated, the task is to learn a classifier
function which can best map the input to the output. For that purpose, we
used the support vector machine algorithm, Svm.

The Svm algorithm is a powerful tool for data classification, well de-
scribed in [25]. The first major step of a Svm classification is to build a
decision plane that separates a set of objects with different class member-
ships. It guarantees the best function to distinguish between members of
classes by maximizing the margin between them. The hyper-planes max-
imizing these margins allow the best generalization abilities and thus the
best classification performances on the training database.

The first step of this procedure requires finding the solution of the fol-
lowing optimization problem:
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min
w,b,ξ

(
1

2
wTw + C

l∑
i=1

ξi

)
(3)

subject to

{
yi
(
wTφ(xi) + b

)
≥ 1− ξi

ξi ≥ 0
(4)

With l the total number of sub-sequences, w the normal vector of the
hyper-plane, b the offset of the hyper-plane, C the penalty parameter of the
error term ξ and φ the kernel function.

The second major step is to choose the kernel function of the algorithm.
The Radial Basis function is preferred over others in this work.

For two groups i and j, the training vectors xi and xj are mapped to a
higher dimensional space by the kernel function φ defined as:

K→

{
K(xi, xj) ≡ φ(xi)

Tφ(xj)

K(xi, xj) = exp
(
−γ||xi − xj||2

)
; γ > 0

(5)

Where γ is a parameter of the kernel. In our work, a grid-search has been
conducted on the parameters C et γ using cross-validation.

To conclude on the training part and the parameters definition, the se-
quential minimal optimization [26] implementation of [27] is used in this work
with a grid search for parameter optimization during training.

3.6. Additional step

Additional steps are implemented to the disaggregation algorithm in order
to make its usage proper for an industrial application. Here are some of
features developed during this work.

• A communication layer to fetch data from the smart meter.

• An update tool to read and write the latest meter reading with the
correct time stamps and consumption values for any customer.

• An implementation of the time-stamps threshold (configurable and sim-
ilar to the power level threshold) to better identify similar events oc-
curring in different houses.
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• A configurable data creation tool, for too long gap between measure-
ments in power meter readings (missing data).

• A tool to automatically identify an appliance if there is no changes in
the power readings during a configurable time period.

• A tool to merge events if power variations are below a configurable
threshold.

4. Performances of the load identification

In this section, the measures used to evaluate the performance of the
developed methodology are first discussed, followed by the observed perfor-
mances. Finally, the results are analyzed, allowing visualizing and identifying
the primary sources of error in the presented algorithm.

4.1. Measures

Given a database of labeled instances, supervised machine learning al-
gorithms seek for hypothesis leading them to correctly predict the class of
future unlabeled instances. In order to compare structures of predictors, in-
dicators are needed, that will propose a quantitative way of assessing the
classifier performances. While comparing these indicators values, the best
predictor can be found for a given appliance.

As the objective is not defined between being the most efficient for just
one appliance, or being on average efficient for all appliances, we introduce
the confusion matrix to compare the algorithms configurations [28].

A confusion matrix contains information about the actual and the pre-
dicted results obtained by a classification system. The performances of such
systems are commonly evaluated using the data contained in this confusion
matrix. Table 1 shows the confusion matrix for a two-class classifier. The
classes that can be predicted are “positive” or “negative” instances, which
in this case signify that the appliance consumes or does not consume energy.

For this study, the entries defined in the confusion matrix reported in
Table 1 have the following meaning:

a is the number of correct predictions where an instance is negative,

b is the number of incorrect predictions where an instance is positive,

c is the number of incorrect of predictions where an instance negative,
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Table 1: Confusion matrix definition.

Predicted
Negative Positive

Actual
Negative a b
Positive c d

d is the number of correct predictions where an instance is positive.

Several standard terms have been defined for this two class’s matrix:

The accuracy is the proportion of the total number of predictions that were
correct. It is determined using the ratio AC = (a+ d)/(a+ b+ c+ d).
It is the percentage of cases where the predicted energy state (On or
Off) is correct for an appliance.

The true positive rate (recall) is the proportion of positive cases that
were correctly identified, as calculated using the equation TP = d/(c+
d). TP represents the ratio between the predicted positives states of
the appliances (On) and the total number of correct positives states of
the appliances.

The precision is the proportion of the predicted positive cases that were
correct, as calculated using the equation P = d/(b + d). P represents
the fraction of the positives states (On) of the appliances correctly
predicted.

We chose to consider the appliance identification to be correct when the
start time is around thirty minutes of the actual start time and for the correct
appliance.

4.2. Disaggregation performance

In Table 2, the house-wise disaggregation performance is shown for the
major appliances present in a typical Dutch residence, as depicted in our
database. Note that a washing machine is present in all the houses and an
electric oven in just one as in most residences it runs on gas.

It can be observed from the results that the algorithm is better performing
for the washing machine and the dish washer (>80 %). The performances
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Table 2: Appliance classification performance, Accuracy (“N.A.” for “non available”).

Appliances
Houses

House 1 House 2 House 3 House 4

Washing machine 1.00 0.80 0.88 0.87
Clothes Drier N.A. 0.40 0.88 N.A.
Electric oven N.A. 0.50 N.A. N.A.
Dish Washer 0.71 0.87 N.A. 0.80

reduce significantly for the clothes dryer and more particularly the electric
oven. It should be noted that it is easier to have a 80 % accuracy for a device
that is On once a week (just never forecast it On) than for a device that is
On 50 % of the time. In that case, the recall is more useful than the accuracy
to assess the performance [29].

A global view of the performances of the implemented solution is pro-
posed in Figure 13. In that figure, the appliances power ranges that can
be realistically disaggregated based on the household consumption is shown.
High power appliances in low energy consuming houses can be expected to
yield higher performances. Thus, the ratio between the global consumption
of the house and the one from a particular appliance represent a significant
criterion for knowing in advance the ease of identification through the de-
veloped algorithm. Indeed, a very low consuming appliance in a household
having a high consumption level will be very likely to be lost in the mea-
surement noises. The only possibility to identify that particular load will be
through its consumption pattern.

As a similar result, it has been observed that the performance is corre-
lated to the number of appliances being present in the house, as the signal
of appliances other than the one which is being identified can disturb the
identification, even if the algorithm is able to forecast several appliances si-
multaneously.

Finally, some use-cases scenarios that can be provided based on the ap-
pliance power level and the household consumption is shown in Figure 14.
It emphasizes the fact that the activity level (i.e. appliances used) and the
average electricity consumption play an important role in electricity load
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Figure 13: Capability assessment of the disaggregation algorithm.

dis-aggregation capabilities and thus its reliability. This is an important ob-
servation, as the current capabilities will be able to operate correctly with a
sizable population.

To conclude on the results section, we can say that this method is able
to reach a similar accuracy as the one proposed in the literature review,
based on a ten seconds time step analysis. The difference here is that the
context of implementation of that method is very demanding regarding code
development, implementation and industrial robustness. Therefore, the per-
formances of the proposed method are considered to be very good in the
context of the collaboration on actual customers data.

4.3. Discussion regarding identification errors

In this section, the major causes of errors are discussed, which include
errors in measures and inter-appliances conflicts. One possible reason, but
not considered in this work, is the potential presence of a previously unob-
served appliance. The algorithm being based on a training set, the accuracy
of the results decreases considerably in that case. The recording of house-
holds meta-data (appliances present in the houses) could be used to reduce
miss-labelling among appliances and thereby increase the performances, at a
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Figure 14: The disaggregation analytics service road-map.

higher installation cost, and also a potential breach in the privacy of inhabi-
tants.

4.3.1. Power measurements errors

Due to measuring errors, there are sometimes two steps instead of one
for an On/Off event.These two steps cause the algorithm to disregard that
event. Most of the false negatives we have identified during testing can be
attributed to this phenomenon. A parametric merge may be included in the
data pre-processing step to deal with this condition. However, this problem
was not often observed in the testing database. This problem is illustrated
in Figure 15.

4.3.2. Invertible appliances conflicts

Inverting appliances, i.e. appliances having multiple On/Off cycles dur-
ing the course of an operating cycle, can usually be primarily distinguished
based on their power levels. For example, we can name in that category
electric ovens, clothes dryers, hair dryers, etc.

As the proposed algorithm considers both the power level and the du-
ration, a better disaggregation capability was expected. For example, the
electric oven is in some cases getting miss-labeled as a clothes dryer. This
occurs because both the appliances have similar power ranges and are mostly
resistive as components.
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Figure 15: Two steps during an On/Off transition.

It is to be noted that this observation is different from the one seen in [23]
where the electric oven power consumption is around 4 kW. A practical ex-
planation comes from the fact that the electric oven may operate at different
power levels depending on its usage and size.

Although one may not be able to detect the exact type of the load in such
case, it is still quite useful to be able to recognize the load as a member of a
known family. Another solution is to add a post-processing module which can
identify a clothes dryer only after the use of a washing machine for example.

4.3.3. Similar appliances conflicts

The heating blocks of both the washing machine and dish washer have
similar signatures. The main difference can only be observed at a low power,
for example with inverting On/Off ripples present in the washing cycles.
But in some cases, due to noises in the signal measurement, the data contains
phases where a washer-like rippling can be observed. In such cases, the dish
washer is being identified as two washing machines in the considered time
sliding window. This is illustrated in Figure 16 .

This is a significant issue that needs to be addressed either at the pre-
processing or at the post-processing stage.

5. Conclusion

In this article, a part-based learning model is trained, validated on real
data in the context of an industrial application for smart houses and energy
efficiency and various sources of practical errors are discussed.
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Figure 16: Illustration of an identification conflict. A washing machine was detected where
a dish washer is in fact measured.

The proposed method is an industrial application at ten seconds sampling
showing the pros and cons of using load disaggregation in residences. The
existing literature is based on acquired database but not actual customers,
which is a challenge in itself. That challenge has been addressed with a
part-based model using power level clustering which is missing in existing
literature, to the best of our knowledge.

The identification results highlight the fact that performances of load
disaggregation decrease as we move from the laboratory setting to the real
residences. This may happen due to errors at various stages: data acquisition,
inter-appliance similarity, presence of previously unobserved appliances, etc.

Nevertheless, the results indicate that the proposed Nilm algorithm is
directly useful for the majority of the houses in the client database of the
start-up Greeniant B.V. (accuracy > 80 %) with a sufficient usability to con-
sider it for an industrial application.

Finally, it can be noted that this algorithm has been effectively imple-
mented in a commercial context during the time of publication of this article.
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