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Abstract—Determining a set of points in Rd from its projection
on lower dimensional spaces is a common task in data analysis.
The aim of this note is to overview some general results from

the 50s that might have been overlooked in the data analysis
community and then to summerize our recent work on the subject
in which the data is assumed to be supported on a quadratic
manifold. Special attention is devoted to the spherical case.

Projections; Cramér-Wold Theorem

I. INTRODUCTION

The object of this paper is the determination of a point

distribution in the d-dimensional space Rd from its projections

on lines Rθ or hyperplanes θ⊥, θ ∈ Sd−1 (the unit sphere of

Rd).

Let us be more precise. To a finite set of points A ⊂ Rd

we may associate a measure δA =
∑

a∈A δa where δa is the δ
probability measure at a, δa(E) = 1 if a ∈ E and 0 otherwise.

For θ ∈ Sd−1, the projection πℓ
θ(A) of A on Rθ (resp. the

projection πH
θ (A) of A on θ⊥) is

πℓ
θ(A) =

{
n(t) := |{s ∈ θ⊥ : s+ tθ ∈ A}|, t ∈ R

}

πH
θ (A) =

{
n(t) := |{s ∈ R : t+ sθ ∈ A}|, t ∈ θ⊥

}
.

Note that, as A is finite, n(t) 6= 0 only for finitely many t’s,

precisely those t’s so that the corresponding point tθ (resp. t ∈
θ⊥) onto which A projects. Then n(t) is the number of points

in A that project to that point. In other words, πℓ
θ(A), π

H
θ (A)

give both the number of points of A that project to a given

element of Rθ or θ⊥ and the position of these projections.

Thus πℓ
θ(A), π

H
θ (A) can be identified with measures on Rθ or

θ⊥:

πℓ
θ(δA) =

∑

t∈R

n(t)δtθ

πH
θ (δA) =

∑

t∈θ⊥

n(t)δt.

The first one is a measure on Rθ while the second is a measure

on θ⊥

The question we are dealing with here is thus the following:

Problem 1. Given A,B two finite sets and Θ ⊂ Sd−1. Assume

that πℓ
θ(A) = πℓ

θ(B) — resp. πH
θ (A) = πH

θ (B)— for every

θ ∈ Θ, is A = B?

Now, as is well known, a measure is uniquely determined

by its Fourier transform (characteristic function in probabilistic

language). Our problem can thus be reformulated as follows:

is

δ̂A(ξ) =
∑

a∈A

ei〈a,ξ〉 , ξ ∈ Rd

uniquely determined by the Rθ-Fourier transform

π̂ℓ
θ(δA)(ηθ) =

∑

t∈R

n(t)eitη

=
∑

a∈A

ei〈ηθ,a〉 = δ̂A(ηθ) η ∈ R

(since there are n(t) points in A such that 〈ηθ, a〉 = tη) or by

the θ⊥-Fourier transform

π̂H
θ (δA)(η) =

∑

t∈θ⊥

n(t)ei〈t,η〉

=
∑

a∈A

ei〈η,a〉 = δ̂A(η) η ∈ θ⊥.

The reader may have recognized the Fourier-Slice Theorem for

the Radon transform. This allows us to reformulate Problem

1 as:

Problem 2. Given A,B two finite sets and Θ ⊂ Sd−1. Assume

that δ̂A = δ̂B on Rθ — resp. on θ⊥– for every θ ∈ Θ, is

A = B?

As such, our problem can be seen as a spectral estimation

problem. The first consequence of this change of view is that,

if Θ = Sd−1 then the set of Rθ’s or of θ⊥’s covers Rd. We

then immediately obtain the following thereom:
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Fig. 1. The knot points in the proof of Theorem I.2

Theorem I.1 (Cramér-Wold [CW]). Given A,B two finite

sets.

If δ̂A = δ̂B on Rθ — resp. on θ⊥– for every θ ∈ Sd−1 then

A = B.

If πℓ
θ(A) = πℓ

θ(B) — resp. πH
θ (A) = πH

θ (B)— for every

θ ∈ Sd−1 then A = B.

The actual theorem is more general as it deals with arbitrary

probability measures, not only with point distributions. Intu-

itively, a finite number of projections should be sufficient to

determine finite point distributions. This has been proved by

G. Hajós (published in a paper of A. Rényi [Re]) in dimension

d = 2 and in full generality by A. Heppes [He]:

Theorem I.2 (Hajós-Rényi-Heppes [Re], [He]). Let

θ1, . . . , θk+1 ∈ Sd−1 be such that the hyperplanes

θ⊥1 , . . . , θ
⊥
k+1 are all distinct. If A,B have cardinality at most

k and are such that πH
θj
(A) = πH

θj
(B) for j = 1, . . . , k + 1

then A = B.

Let us reproduce the simple and elegant argument here.

Proof. Let A ⊂ Rd and set Aj = πH
θj
(A). For each α ∈ Aj ,

consider the line α+Rθj issued from this point in the direction

θj orthogonal to θ⊥j . We will say that a point x ∈ Rd is a knot

point if x is the intersection of at least k + 1 such lines.

Note first that every point of A is a knot point, since its

projection on θ⊥j is in Aj for every j. Let us prove that every

knot point is in A. To do so, let x be a knot point and let

α1, . . . , αk+1 be the projections of x on θ⊥1 , . . . , θ
⊥
k+1. As each

line αj + Rθj contains at least one of the k points of A, the

pigeon hole principle implies that at least two of these lines

contain the same point of A. But their only intersection point

is x thus x ∈ A.

Note that this proof is algorithmic, but this algorithm

requires generically to solve ∼ kk equations.

Note that the theorem is best possible: let Ω be a regular

planar 2k-gon and number the vertices consecutively (see

Firgure 2). Let A be those that are numbered evenly and B
those that are numbered oddly. Let θj , j = 1, . . . , k be the

directions of the edges. Then A and B have same projections

on θ⊥j .

Of course, the set of directions is very particular, and one

would be tempted to think that some set of directions might

allow to distinguish finite sets. This is not the case:
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Fig. 2. A regular 2k-gon shows optimality in Theorem I.2
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Fig. 3. The construction in Theorem I.3.

Theorem I.3 (Hajós-Rényi-Heppes [Re], [He]). Let θ1, . . . , θk
be a set of directions. There exist two distinct sets A 6= B such

that πH
θj
(A) = πH

θj
(B) for j = 1, . . . , k.

Proof. Let us consider the sets

A =





k∑

j=1

2jεjθj , εj ∈ {0, 1},
k∑

j=1

εj even





B =





k∑

j=1

2jεjθj , εj ∈ {0, 1},

k∑

j=1

εj odd



 .

The coefficient 2j guaranteed that all points
∑k

j=1 2
jεjθj ,

εj ∈ {0, 1} are distinct so that A and B have both 2k−1

elements and have no element in common. Now, to each point

in A, its projection on θ⊥j corresponds to the point in B where

εj is replaced by 1− εj .

This time, the sets A and B are more or less “lattice type”.

One may thus ask if finite sets, supported in some special

manifolds, might be distinguished by fewer directions. The

aim of this paper is to show that this is indeed the case for

finite sets supported on quadratic manifolds.

II. THE 2-DIMENSIONAL CASE

In this section, we restrict our attention to the planar case

R2 so that hyperplanes are lines.

In this section, we will now assume that A,B ⊂ Γ where

Γ = {γ(t), t ∈ I} is a known smooth planar curve. Typical

examples we have in mind are the parabola and the circle.



Let us start with the parabola, or more generally, with curves

that look like parabolas:

Proposition II.1. Let ψ : R → R be a continuous function

and Γ =
{(
t, ψ(t)

)
, t ∈ R

}
. Let A,B ⊂ Γ be two finite sets.

— Let θ = (1, 0). Then πℓ
θ(A) = πℓ

θ(B) if and only if

A = B.

— Assume that ψ is strictly decreasing on (−∞, 0], strictly

increasing on [0,+∞) and t−1ψ(t) → +∞ when t → ±∞
and let θ1 6= ±θ2 ∈ S1. Then πℓ

θj
(A) = πℓ

θj
(B), j = 1, 2 if

and only if A = B.

Remark II.2. The result is actually valid for any finite measure

supported on Γ. It has been proved for measures that are

absolutely continuous with respect to arc length in [JK], the

case of the parabola was proved by Sjölin [Sj2].

The result holds of course for any rotation of Γ provided

(1, 0) is rotated by the same angle.

Sketch of proof. The first case is trivial as the projection πℓ
(1,0)

is one-to-one from Γ onto R(1, 0).
The second case is slightly more subtle assume that A 6=

B and let x0 ∈ A \ B. As πℓ
θ1
(A) = πℓ

θ1
(B), there exists

y1 ∈ B \A such that πℓ
θ1
(y1) = πℓ

θ1
(x0). But then, there exist

x1 ∈ A \ B such that πℓ
θ2
(x1) = πℓ

θ2
(y1) from which we get

y2 ∈ B \A such that πℓ
θ1
(y2) = πℓ

θ1
(x1).... and it is not hard

to see (and was proved in [JK]) that this sequence is infinite,

which contradicts the assumption that A and B were finite.
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Fig. 4. The construction of xk, yk

For the circle, the polygonal case of Figure 2 shows that

some condition needs to be imposed on the angles. This is

obtained as follows:

Theorem II.3. Let Γ be a circle and θ1, θ2 ∈ S1 be two

vectors with an angle that is an irrational multiple of π: θ :=
1

π
arccos 〈θ1, θ2〉 /∈ Q. Let A,B ⊂ Γ be two finite sets. Then

πℓ
θj
(A) = πℓ

θj
(B), j = 1, 2, if and only if A = B.

Remark II.4. The result is actually valid for any finite measure

supported on Γ. It has been proved for measures that are abso-

lutely continuous with respect to arc length by P. Sjölin [Sj1]

and N. Lev [Le] independently. A slightly more geometric

proof appears in [JK] and another proof appears in [GJ], see

the next section.

Sketch of proof. The proof is almost the same as previously,

the main point is that the operation xn → xn+1 is simply the

rotation by an angle 2θ centered at the center of the circle

since it is obtained from the composition of the reflections

with respect to Rθ1 and Rθ2. Now if this angle is an irrational

multiple of π, the sequence xn is infinite (and even uniformly

distributed), otherwise, it is periodic.

The argument extends to smooth closed convex curves

but the precise condition on the angles θ1, θ2 is in general

impossible to compute explicitely.
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Fig. 5. The construction of xk, yk for a closed convex curve. In the case of
a circle, xk → yk and yk → xx+1 are given by orthogonal symmetries.

Once this is understood, it becomes easy to geometrically

guess what curves and what angles lead to uniqueness. Figure

6 provides two more examples.

Γ

Fig. 6. Closed curve with a corner point and a cusp. The cusp is slightly more
subtle as some lines may intersect the cusp three times. One needs first to
eliminate this part of the curve by exploiting the fact that some lines intersect
the cusp only once. For the precise argument, see [JK].

III. THE HIGHER DIMENSIONAL CASE FOR QUADRATIC

SURFACES - PROJECTION ON HYPERPLANES

In higher dimension, the situation becomes more compli-

cated. To start, projections on hyperplanes are no longer pro-

jections on lines. As lines contain much less information than

hyperplanes, it would of course be more difficult to extract

information from projections on lines than from projections

on hyperplanes and may even be impossible.



Further, in the previous section, we saw two very different

behaviors: on the parabola, the points xk we constructed were

always wandering (to infinity) while on the circle, they may

be either periodic or rotating for ever. In higher dimension,

both situations may occur for a given manifold e.g. on the

paraboloid. However, we have been able to prove the follow-

ing:

Theorem III.1 (Gröchenig-Jaming [GJ]). Let Q be a

quadratic form on Rd, v ∈ Rd, ρ ∈ R and S = {x ∈
Rd : Q(x) + 2〈v, x〉 = ρ}. There exists an exceptional set

E = E(Q, v, ρ) of pairs of distinct directions such that

i) the set E has measure zero with respect to the surface

measure on Sd−1 × Sd−1;

ii) when θ1, θ2 ∈ Rd satisfy Q(θ1), Q(θ2) 6= 0 and

(θ1, θ2) /∈ E , then, for every finite sets A,B ⊂ S
πH
θj
(A) = πH

θj
(B), j = 1, 2, if and only if A = B.

The full proof is too long to be reproduced here, except for

the sphere:

Sketch of proof when S = Sd−1. Consider δA, δB the mea-

sures associated to A and B. Then πH
θj
(A) = πH

θj
(B) is

equivalent to δ̂A = δ̂B on θ⊥j . Let us introduce µ̂ := δ̂A − δ̂B
and note that this is a continuous function. It is not difficult

to see that this is equivalent to the fact that µ̂ satisfies the

invariance property

µ̂(s+ tθj) = −µ̂(s− tθj) s ∈ θ⊥j , t ∈ R.

In other words, µ̂ is odd with respect to the reflection with

respect to the hyperplane θ⊥j , thus it is invariant with re-

spect to the composition of these two reflections. Again, if
1
π arccos 〈θ1, θ2〉 /∈ Q this is a rotation with angle an irrational

multiple of π. A continuous function that is invariant under

such a transformation is constant (the orbit of a point is dense),

and it vanishes on θ⊥j , it has to be 0 everywhere. It follows

that δ̂A = δ̂B , thus δA = δB and then A = B.

Remark III.2. The result is not specific to point distributions

but is valid for any finite measure. In the case of the sphere,

it is even valid for any Schwartz-distribution.

IV. PROJECTIONS ON LINES OF MEASURES ON THREE

DIMENSIONAL SPHERES

Recently, we have started a new approach which consist

in using the following fact: if µ is a measure supported on

Sd−1, then u = µ̂ is a solution of the Helmholtz equation

∆u + u = 0 in Rd. Our original problem of reconstructing

point distributions on the sphere from their projections on

hyperplanes is then a particular case of the following:

Problem 3. Let u be a solution of the Helmholtz equation

∆u+ u = 0 on Rd and let θ1, . . . , θk ∈ Sd−1.

— Does u = 0 on θ⊥1 , . . . , θ
⊥
k imply that u = 0 on Ω.

— Does u = 0 on Rθ1, . . . ,Rθk imply that u = 0 on Ω.

For the problem considered here there is a further restriction

on u, namely that u is of the form δ̂A, that is, u is a

trigonometric polynomial while here we don’t have such a

requirement and u can even be a Schwarz distribution. This

new vision of the problem leads to new questions: what

happens if Rd is replaced by a domain Ω ⊂ Rd? Can some of

the Dirichlet conditions u = 0 on θ⊥j be replaced by Neumann

or even Robin conditions? Can the lines and hyperplanes be

replaced by more general manifolds?

We will now describe some progress we could make through

this approach. To do so we will also restrict attention to

dimensions d = 2 and d = 3. We refer to [FBGJ] for more

general results.

The key observation is that the Helmohltz equation can be

solved in polar coordinates. The solutions are then expressed

as an expansion in spherical harmonics which involves Bessel

functions:

u(rθ) =

∞∑

m=0

N(m)∑

j=1

am,j

Jν(m)(r)

r(d−2)/2
Y j
m(θ) (IV.1)

where Jν are the Bessel functions, ν(m) = m + (d − 2)/2
and {Y j

m}j=1,...,N(m) is a basis for the spherical harmonics of

degree m in Rd.

In dimension d = 2, the spherical harmonics just correspond

to the usual Fourier basis so that

u(rθ) = a0J0(r) +
∞∑

m=1

(
ame

imθ + a−me
−imθ

)
Jm(r).

The key property is that, when r → 0, Jk+1(r) = o
(
Jk(r)

)
.

In particular, u(0) = 0 implies that a0 = 0. Further, if a0 = 0
and if a±1 = · · · = a±(m−1) = 0 then

u(r, θ) =
(
ame

imθ + a−me
−imθ

)
Jm(r) + o

(
Jm(r)

)
.

Now, if u(rθ1) = u(rθ2) = 0, then u(0) = 0 thus a0 = 0,

and if a±1 = · · · = a±(m−1) = 0 then the previous estimate

implies that

{
ame

imθ1 + a−me
−imθ1 = 0

ame
imθ2 + a−me

−imθ2 = 0
.

The determinant of this system is 2i sinm(θ1 − θ2) 6= 0 if

θ1 − θ2 /∈ Qπ thus am = a−m = 0. An induction shows that

am = 0 for all m ∈ Z and u = 0. This is another proof of

Theorem II.3 and also extends to higher dimensions.

Let us now show that hyperplanes can not be replaced

by lines in dimension d = 3. Let θ1, . . . , θk be a finite set

of directions. In this case N(m) = 2m + 1 and a simple

dimension argument shows that, if m ≥ k/2 there is a

linear combination Z of the {Y j
m}j=1,...,2m+1 that vanishes at

±θ1, . . . ,±θk. Then u(rθ) =
Jν(m)(r)√

r
Z(θ) is a non-zero solu-

tion of the Helmholtz equation that vanishes on Rθ1, . . . ,Rθk.

Note however that the function u we constructed is not a

trigonometric polynomial and, at this stage, it is unclear to

us whether points on the sphere are uniquely determined by

their projections on certain lines or not.



V. CONCLUSION

In this paper, we have given an overview of the problem

of unique determination of a set of points in Rd from their

projection on lines and on hyperplanes. We have shown that,

if the set of points is known to be on a (fixed) sphere, then

there exists a set of a few lines that allow to determine uniquely

the set of points.
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