
HAL Id: hal-01513750
https://hal.science/hal-01513750v1

Preprint submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Having Fun With 31.521 Shell Scripts
Nicolas Jeannerod, Yann Régis-Gianas, Ralf Treinen

To cite this version:
Nicolas Jeannerod, Yann Régis-Gianas, Ralf Treinen. Having Fun With 31.521 Shell Scripts. 2017.
�hal-01513750�

https://hal.science/hal-01513750v1
https://hal.archives-ouvertes.fr

Having Fun With 31.521 Shell Scripts
Nicolas Jeannerod

Département d’Informatique
École normale supérieure

Paris, France
Email: nicolas.jeannerod@irif.fr

Yann Régis-Gianas
IRIF

Université Paris-Diderot, CNRS
INRIA PI.R2, Paris, France

Email: yrg@irif.fr

Ralf Treinen
IRIF

Université Paris-Diderot, CNRS
Paris, France

Email: treinen@irif.fr

Abstract—Statically parsing shell scripts is, due to various
peculiarities of the shell language, a challenge. One of the
difficulties is that the shell language is designed to be executed
by intertwining reading chunks of syntax with semantic actions.

We have analyzed a corpus of 31.521 POSIX shell scripts
occurring as maintainer scripts in the Debian GNU/Linux distri-
bution. Our parser, which makes use of recent developments in
parser generation technology, succeeds on 99.9% of the corpus.
The architecture of our tool allows us to easily plug in various
statistical analyzers on the syntax trees constructed from the shell
scripts. The statistics obtained by our tool are the basis for the
definition of a model which we plan to use in the future for the
formal verification of scripts.

I. INTRODUCTION

Free and open-source software (FOSS) provides today a
gigantic corpus of software which is available for everyone for
use, modification, and scrutiny. FOSS is nowaday ubiquitous
in almost everybody’s computing environment. The probably
most important way of acquiring, installing, and updating a
FOSS-based system is by using one of the so-called dis-
tributions [7]. Debian is one of the oldest distributions of
GNU/Linux systems, and certainly the largest by the number
of software packages maintained by the distribution itself.

A software package deployed by such a distribution con-
sists, roughly speaking, of an archive of files which are to
be placed on the target machine, meta-data like dependencies
on other packages, and possibly scripts (called maintainer
scripts in the context of Debian) which are to be executed at
various stages of package installation, removal, and upgrade.
As part of our long-term goal of applying formal methods to
the quality assessment of free and open-source software (see,
e.g., [13], [4], [1]), we are currently trying to apply methods
of formal program verification to the maintainer scripts that
are part of the Debian GNU/Linux distribution.

Errors occurring during an attempt to install a package
can be classified into static and dynamic [6]. Static failures,
which are due to unsatisfiable meta-data of packages such as
dependencies, conflicts, etc., are usually detected by a meta-
installer like APT even before any actual installation process
in started. Dynamic failures, however, are due to failures of
maintainer scripts. Failures may also go undetected, that is
the installation process terminates without reporting a failure,
even though the resulting system is in an inconsistent state.
We hope to be able in the future to address these dynamic
failures, and possibly even undetected failures.

As a first step towards the goal of verifying maintainer
scripts we have defined an intermediate language [17] , which
can be used as input to the verification tools and which
avoids some of the pitfalls of POSIX shell. The language is
designed with the goal that an automatic translation of actual
maintainer scripts written in POSIX shell into that language is
possible. The design of this language hinges on an analysis on
what features of the POSIX shell language, and what UNIX
commands with what options are actually encountered in the
corpus containing the 31.832 maintainer scripts to be found
in Debian sid. We are interested in questions such as: Do
scripts use EVAL? Are recursive functions actually used? How
are WHILE loops used in scripts? Are the lists over which
FOR loops iterate known statically? What options of UNIX
commands like LN are mostly used, and in what combination?

Our aim is to have a tool which allows us to define easily
new kinds of analyses on the corpus. In order to do this, we
need a way of constructing concrete syntax trees for all scripts
of our corpus. New analyses which are executed on these
concrete syntax trees are then easily written. Static syntax
analysis of shell scripts, however, is far from trivial, and even
impossible in some corner cases as we will explain in the
next section. One, but not the only obstacle is the fact that the
shell language was designed to be read by an interpreter on the
fly, intertwined with various expansion mechanisms. Another
problem is that the shell language is a serious challenge for the
textbook approach of pipelining lexing and parsing. Neverthe-
less, we managed to write a modular syntactic analyzer, largely
using code generators, by exploiting recent developments in
parser generation technology.

The rest of this article is organized as follows: We start
by showing the difficulties that we have encountered with the
syntax of POSIX shell in Section II; Section III explains how
we could maintain a modular, though nonstandard, design of
our syntactic analyzer despite the pitfalls of shell language. In
Section IV we sketch how different analyzers of shell scripts
can be written and combined with the syntactic analyzer. Some
statistical results obtained on the corpus of Debian maintainer
scripts are given in Section V. We conclude with some current
limitations of our tool and plans for future work in Section VI,
and compare our approach to related work in Section VII.

II. THE PERILS OF POSIX SHELL

The POSIX Shell Command Language is specified by the
Open Group and IEEE in the volume “Shell & Utilities” of
the POSIX standard. Our implementation is based on the latest
published draft of this standard [12].

This standardization effort synthesizes the common con-
cepts and mechanisms that can be found in the most common
implementations of shell interpreter (like bash or dash). Un-
fortunately, it is really hard to extract a high-level declarative
specification out of these existing implementations because
the shell language is inherently irregular, and because its
unorthodox design choices fit badly in the usual specification
languages used by other programming language standards.

Syntactic analysis is most often decomposed into two dis-
tinct phases: (i) lexical analysis, which synthesizes a stream
of lexemes out of a stream of input characters by recognizing
lexemes as meaningful character subsequences and by ignoring
insignificant character subsequences such as layout; (ii) pars-
ing which synthesizes a parse tree from the stream of lexemes
according to some formal grammar.

In this section, we describe several aspects which make
the shell language hard (and actually impossible in general)
to parse using the standard decomposition described above,
and more generally using the standard parsing tools and tech-
niques. These difficulties not only raise a challenge in terms
of programming but also in terms of reliability. Indeed, the
standard techniques to implement syntactic analyzers are based
on code generators. These tools take as input high-level formal
descriptions of the lexical conventions and of the grammar
and produce low-level efficient code using well-understood
computational devices (typically finite-state transducers for
lexical analysis, and pushdown automata for parsing). This
standard approach is trustworthy because (i) the high-level
descriptions of the lexical conventions and grammar are very
close to their counterparts in the specification; (ii) the code
generators are usually based on well-known algorithms like
LR-parsing which have been studied for almost fifty years.
Despite of the pitfalls of the shell language, we nonetheless
managed to maintain an important part of generated code in
our implementation, described in Section III.

A. Non standard specification of lexical conventions

1) Token recognition: In usual programming languages,
most of the categories of tokens are specified by means of
regular expressions. As explained earlier, lexer generators (e.g.
lex) conveniently turn such high-level specifications into
efficient finite state transducers, which makes the resulting
implementation both reliable and efficient.

The token recognition process for the shell language is
described in Section 2.3 of the specification [12], unfortunately
without using any regular expressions. While other languages
use regular expressions with a longest-match strategy to de-
limit the next lexeme in the input, the specification of the shell
language uses a state machine which explains instead how
tokens must be delimited in the input and how the delimited

chunks of input must be classified into two categories: words
and operators.

The state machine which recognizes the tokens is unfor-
tunately not a regular finite state machine. It is almost as
powerful as a pushdown automaton since it must be able
to recognize nested quotations like the ones found in the
following example.

Example 1 (Quotations): Consider the following input:
1 BAR=’foo’"ba"r
2 X=0 echo x$BAR" "$(echo $(date))

By the lexical conventions of most programming languages,
the first line would be decomposed as five distinct tokens
(namely BAR, =, ’foo’, "ba" and r) while the lexical
conventions of the shell language considers the entire line
BAR=’foo’"ba"r as a single token, classified into the
category of words. On the second line, the input is split into
the tokens X=0, echo and x$BAR" "$(echo $(date)).
Notice that the third token contains nested quotations of the
form $(..$(..)) the recognition of which is out of the
scope of regular finite state machines (without a stack).

2) Layout: The shell language also has some unconven-
tional lexical conventions regarding the interpretation of new-
line characters. Usually, newline characters are simply ignored
by the lexing phase since they only serve as delimiters between
tokens. In shell, however, newline characters are meaningful,
and there even are four different interpretations of a newline
depending on the parsing context. Therefore, most of the
newline characters (but not all, as we shall see in the next
example) must be transmitted to the parser.

Example 2 (Interpretations of newline characters): The four
interpretations of the newline characters occur in the following
example:

1 $ for i in 0 1
2 > # Some interesting numbers
3 > do echo $i \
4 > + $i
5 > done

On line 1, the newline character has a syntactic meaning
because it acts as a marker for the end of the sequence over
which the for-loop is iterating. On line 2, the newline character
at the end of the comment must not be ignored. But here, it is
collapsed with the newline character of the previous line. On
line 3, the newline character is preceded by a backslash. This
sequence of characters is interpreted as a line-continuation,
which must be handled at the lexing level. Therefore in that
case, the newline is actually interpreted as layout. On lines 4
and 5, the final newline terminates a command.

3) Here-documents: Depending on the parsing context,
the lexer must switch to a special mode to deal with here-
documents. Here-documents are chunks of text embedded in
a shell script. They are commonly used to implement some
form of template-based generation of files (since they may
contain variables). To use that mode, the user provides textual
end-markers and the lexer then interprets all the input up to
an end-marker as a single token of the category of words. The
input characters are copied verbatim into the representation

of the token, with the possible exception of quotations which
may still be recognized exactly as in the normal lexing mode.

Example 3 (Here-documents):
1 cat > notifications << EOF
2 Hi $USER,
3 Enjoy your day!
4 EOF
5 cat > toJohn << EOF1 ; cat > toJane << EOF2
6 Hi John!
7 EOF1
8 Hi Jane!
9 EOF2

In this example, the text on lines 2 and 3 is interpreted as
a single word which is passed as input to the cat command.
The first cat command of line 5 is fed with the content of
line 6 while the second cat command of line 6 is fed with
the content of line 8. This example with two successive here-
documents illustrates the non-locality of the lexing process
of here-document: the word related to the end-marker EOF1
is recognized several tokens after the introduction of EOF1.
This non-locality forces some form of forward declaration of
tokens, the contents of which is defined afterwards.

B. Parsing-dependent lexical analysis

While the recognition of tokens is independent from the
parsing context, their classification into words, operators,
newlines and end-of-files must be refined further to obtain
the tokens actually used in the formal grammar specified by
the standard. The declaration of these tokens is reproduced
in Figure 1. While a chunk categorized as an operator is
easily transformed into a more specific token like AND_IF or
OR_IF, an input chunk categorized as a word can be promoted
to a reserved word or to an assignment word only if the parser
is expecting such a token at the current position of the input;
otherwise the word is not promoted and stays a WORD. This
means that the lexical analysis has to depend on the state of
the parser.

1) Parsing-sensitive word assignment recognition: The pro-
motion of a word to an assignment depends both on the
position of this word in the input and on the string representing
that word. The string must be of the form w=u where the
substring w must be a valid name, a lexical category defined
in Section 3.235 of the standard by the following sentence:

[. . .] a word consisting solely of underscores, digits,
and alphabetics from the portable character set. The first
character of a name is not a digit.

Example 4 (Promotion of a word as an assignment):
1 CC=gcc make
2 make CC=cc
3 ln -s /bin/ls "X=1"
4 "./X"=1 echo

On line 1, the word CC=gcc is recognized as a word
assignment of gcc to CC because CC is a valid name for
a variable, and because CC=gcc is written just before the
command name of the simple command make. On line 2, the
word CC=cc is not promoted to a word assignment because
it appears after the command name of a simple command. On
line 4, since "./X" is not a valid name for a shell variable,

%token WORD
%token ASSIGNMENT_WORD
%token NAME
%token NEWLINE
%token IO_NUMBER

/* The following are the operators (see XBD Operator)
containing more than one character. */

%token AND_IF OR_IF DSEMI
/* ’&&’ ’||’ ’;;’ */
%token DLESS DGREAT LESSAND
/* ’<<’ ’>>’ ’<&’ */
%token GREATAND LESSGREAT DLESSDASH
/* ’>&’ ’<>’ ’<<-’ */
%token CLOBBER
/* ’>|’ */
/* The following are the reserved words. */
%token If Then Else Elif Fi Do Done
/* ’if’ ’then’ ’else’ ’elif’ ’fi’ ’do’ ’done’ */
%token Case Esac While Until For
/* ’case’ ’esac’ ’while’ ’until’ ’for’ */
/* These are reserved words, not operator tokens, and are

recognized when reserved words are recognized. */
%token Lbrace Rbrace Bang
/* ’{’ ’}’ ’!’ */
%token In
/* ’in’ */

Fig. 1. The tokens of the shell language grammar.

the word "./X=1" is not promoted to a word assignment and
is interpreted as the command name of a simple command.

2) Parsing-sensitive keyword recognition: A word is pro-
moted to a reserved word if the parser state is expecting this
reserved word at the current point of the input:

Example 5 (Promotion of a word to a reserved word):

1 for i in a b; do echo $i; done
2 ls for i in a b

On line 1, the words for, in, do, done are recognized as
reserved words. On line 2, they are not recognized as such
since they appear in position of command arguments for the
command ls.

C. Evaluation-dependent lexical analysis

The lexical analysis also depends on the evaluation of
the shell script. Indeed, the alias builtin command of the
POSIX shell amounts to the dynamic definition of macros
which are expanded just before lexical analysis. Therefore,
even the lexical analysis of a shell script cannot be done
without executing it, that is lexical analysis of unrestricted
shell scripts is undecidable. Fortunately, restricting the usage
of the alias command to only top level commands, that is
outside of control structures, restores decidability.

Example 6 (Lexical analysis is undecidable):

1 if ./foo; then
2 alias x="ls"
3 else
4 alias x=""
5 fi
6 x for i in a b; do echo $i; done

To decide if for is a reserved word, a lexer must be able to
decide the success of an arbitrary program ./foo, which is
impossible. Hence, the lexer must wait for the evaluation of
the first command to be able to parse the second one.

Another problematic feature of the shell language is eval.
This builtin constructs a command by concatenating its argu-
ments, separated by spaces, and then executes the constructed
command in the shell. In other words, the construction of the
command that will be executed depends on the execution of
the script, and hence cannot be statically known by the parser.

D. Ambiguous grammar

The grammar of the shell language is given in Section 2.10
of the standard. At first sight, the specification seems to be
written in the input format of the YACC parser generator. Alas,
YACC cannot be given this specification as-is for two reasons:
(i) the specification is annotated with nine special rules which
are not directly expressible in terms of YACC’s parsing mech-
anisms ; (ii) the grammar contains LR(1) conflicts.

1) Special rules: The nine special rules of the grammar
are actually the place where the parsing-dependent lexical
conventions are explained. By lack of space, we only focus
on the Rule 4 to give the idea. This is an excerpt from the
standard describing this rule:

[Case statement termination]
When the TOKEN is exactly the reserved word esac, the
token identifier for esac shall result. Otherwise, the token
WORD shall be returned.

The grammar refers to that rule in the following case:
pattern:
WORD /* Apply rule 4 */
| pattern ’|’ WORD /* Do not apply rule 4 */
;

Roughly speaking, this annotation says that when the parser
is recognizing a pattern and when the next token is the
specific WORD esac, then the next token is actually not a WORD
but the token Esac. In that situation, the LR parser must pop
up its stack to a state where it is recognizing the non terminal
case_clause defined as follows:
case_clause:
Case WORD linebreak in linebreak case_list Esac
| Case WORD linebreak in linebreak case_list_ns Esac
| Case WORD linebreak in linebreak Esac

to end the recognition of the current case_list.
2) LR(1) conflicts: Our LR(1) parser generator detects five

shift/reduce conflicts in the YACC grammar of the standard.
All these conflicts are related to the analysis of newline
characters in the body of case items in case analysis. Indeed,
the grammar is not LR(1) with respect to the handling of these
newline characters. Here is the fragment of the grammar to be
incriminated for these conflicts:
compound_list: linebreak term

| linebreak term separator
case_list_ns : case_list case_item_ns

| case_item_ns
;

case_list : case_list case_item
| case_item
;

case_item_ns : pattern ’)’ linebreak
| pattern ’)’ compound_list
| ’(’ pattern ’)’ linebreak
| ’(’ pattern ’)’ compound_list
;

case_item : pattern ’)’ linebreak DSEMI linebreak
| pattern ’)’ compound_list DSEMI linebreak
| ’(’ pattern ’)’ linebreak DSEMI linebreak
| ’(’ pattern ’)’ compound_list DSEMI linebreak

separator : separator_op linebreak
| newline_list
;

program

linebreak complete commands

complete command

list

and or

pipeline

pipesequence

pipe sequence

command

simple command

cmd prefix

ASSIGNMENT WORD

cmd word

WORD

cmd suffix

WORD

| linebreak command

simple command

cmd word

WORD

cmd suffix

WORD

linebreak

Fig. 2. Concrete syntax tree for CC=gcc make -C . | grep ’error’

newline_list : NEWLINE
| newline_list NEWLINE
;

linebreak : newline_list
| /* empty */
;

When a NEWLINE is encountered after term in a context
of the following form:

1 case ... in ...)

an LR parser cannot choose between reducing the term
into a compound_list or shifting the NEWLINE to start
the recognition of the final separator of the current
compound_list.

Fortunately, as the newline character has no semantic mean-
ing in the shell language, choosing between reduction or shift
has no significant impact on the output parse tree.

III. UNORTHODOX PARSING

As explained in the introduction, the purpose of our shell
script analyzer is to validate several hypotheses about the
idioms used by package maintainers when writing maintainer
scripts. We may a priori be interested in any kind of question
on the way shell scripts are written, hence the parser should not
do any abstraction on the syntax. Therefore, contrary to parsers
typically found in compilers or interpreters, our parser does
not produce an abstract syntax tree from a syntactically correct
source but a parse tree instead. A parse tree, or concrete syntax
tree, is a tree whose nodes are grammar rule applications.
Figure 2 gives an example of such a concrete syntax tree.
Because we need concrete syntax trees (and also, as we shall
see, because we want high assurance about the compliance
of the parser with respect to the POSIX standard), reusing an
existing parser implementation was not an option.

As a consequence of the difficulties explained in Section II,
we cannot write a syntactic analyzer of shell scripts following
the traditional design found in most textbooks [2], that is a
pipeline of a lexer followed by a parser. Hence, we cannot
use either the standard interfaces of code generated by LEX
and YACC, because these interfaces have been designed to fit
this traditional design.

In this situation, one could give up using code genera-
tors and fall back to the implementation of a hand-written
character-level parser. This is done in DASH for instance: the
parser of DASH 0.5.7 is made of 1569 hand-crafted lines
of C code. This parser is hard to understand because it is
implemented by low-level mechanisms that are difficult to
relate to the high-level specification of the POSIX standard:
for example, lexing functions are implemented by means of
gotos and complex character-level manipulations; the parsing
state is encoded using activation and deactivation of bit fields
in one global variable; some speculative parsing is done by
allowing the parser to read the input tokens several times, etc.

Other implementations, like the parser of BASH, are based
on a YACC grammar extended with some code to work around
the specificities of shell parsing. We follow the same approach
except on two important points. First, we are stricter than
BASH with respect to the POSIX standard: while BASH is
using an entirely different grammar from the standard, we
literally cut-and-paste the grammar rules of the standard into
our implementation to prevent any change in the recognized
language. Second, in BASH, the amount of hand-written code
that is accompanying the YACC grammar is far from being
minimal. Indeed, we counted approximately 5000 extra lines
of C to handle the shell syntactic peculiarities. Our implemen-
tation only needed approximately 250 lines of OCaml to deal
with them.

Of course, these numbers should be taken with some
precaution since OCaml has a higher abstraction level than C,
and since BASH implements a large extension of the shell lan-
guage. Nonetheless, we believe that our design choices greatly
help in reducing the amount of ad hoc code accompanying the
YACC grammar. The next sections try to give a glimpse of the
key aspects of our parser implementation.

A. A modular architecture

Our main design choice is not to give up on modularity. As
shown in Figure 3, the architecture of our syntactic analyzer is
similar to the common architecture found in textbooks as we
clearly separate the lexing phase and the parsing phase in two
distinct modules with clear interfaces. Let us now describe the
original aspects of this architecture.

As suggested by the illustration, we decompose lexing in
two distinct subphases. The first phase called “prelexing” is
implementing the “token recognition” process of the POSIX
standard. As said earlier, this parsing-independent step classi-
fies the input characters into three categories of “pretokens”:
operators, words and potentially significant layout characters
(newline characters and end-of-input markers). This module is
implemented using OCAMLLEX, a lexer generator distributed
with the OCAML language. In Section III-B, we explain
which features of this generator we use to get a high-level
implementation of lexical conventions close to the informal
description of the specification.

The second phase of lexing is parsing-dependent. As a
result, a bidirectional communication between the lexer and
the parser is needed. On one side, the parser is waiting for

Lexer Parser
Tokens

LexerPrelexer Parser
Pretokens

Tokens

State

Fig. 3. Architectures of syntactic analyzers: at the top of the figure, the
standard pipeline commonly found in compilers and interpreters ; at the
bottom of the figure, the architecture of our parser in which there is a
bidirectional communication between the lexer and the parser.

a stream of tokens to reconstruct a parse tree. On the other
side, the lexer needs some parsing context to promote words
to keywords or assignment words, to switch to the lexing
mode for here-documents, and to discriminate between the
four interpretations of the newline character. We manage to
implement all these ad hoc behaviors using speculative pars-
ing, which is easily implemented thanks to the incremental and
purely functional interface produced by the parser generator
MENHIR[16]. This technique is described in Section III-C.

B. Mutually recursive parametric lexers

The lexer generators of the LEX family are standard tools
that compile a pattern matching made of regular expressions
into an efficient finite state machine. When a specific regular
expressions is matched, the generated code triggers the execu-
tion of an arbitrary piece of user-written code. In theory, there
is no limitation on the computational expressiveness of lexers
generated by LEX since any side-effect on the lexing engine
can be performed in the arbitrary code attached to each regular
expression. In practice though, it can be difficult to develop
complex lexical analyzers with LEX especially when several
sublexers must be composed to recognize a single token which
is the concatenation of several words of distinct nature (like the
word $BAR" "$(echo $(date)) we encountered earlier)
or when they have to deal with nested constructions (like the
parenthesized quotations of the shell language for instance).

OCAMLLEX is the lexer generator of the OCAML pro-
gramming language. OCAMLLEX extends the specification
language of LEX with many features, two of which are
exploited in our implementation.

First, in OCAMLLEX, a lexer can be defined by a set of
mutually recursive entry points. This way, even if a word
can be recognized as a concatenation of words from distinct
sublanguages, we are not forced to define these sublanguages
in the same pattern matching: on the contrary, each category
can have a different entry point in the lexer which leads to
modular and readable code. Thanks to this organization of
the lexical rules, we were able to separate the lexer into a
set of entry points where each entry point refers to a specific
part of the POSIX standard. This structure of the source code

eases documentation and code reviewing, hence it increases
its reliability.

Second, each entry point of the lexer can be parameterized
by one or several arguments. These arguments are typically
used to have the lexer track contextual information along
the recognition process. Combined with recursion, these ar-
guments provide to lexers the same expressiveness as de-
terministic pushdown automata. This extra expressive power
of the language allows our lexer to parse nested structures
(e.g. parenthesized quotations) even if they are not regular
languages. In addition, the parameters of the lexer entry points
make it possible for several lexical rules to be factorized out in
a single entry point. For instance, we factorized the recognition
of nested backquotes, parenthesizes and braces using a single
entry “next_nesting nestop level current” where nestop

is the kind of nesting that is being recognized.

C. Incremental and purely functional parsing using Menhir

YACC-generated parsers usually provide an all-or-nothing
interface: when they are run, they either succeed and produce
a semantic value, or they fail if a syntax error is detected.
Once called, these parsers take the control and do not give it
back unless they have finished their computation. During its
execution, a parser calls its lexer to get the next token but the
parser does not transmit any information during that call since
lexing is usually independent from parsing.

As we have seen, in the case of the shell language, when the
lexer needs to know if a word must be promoted to a keyword
or not, it must inspect the parser context to determine if this
keyword is an acceptable token at the current position of the
input. Therefore, the conventional calling conventions of lexers
from parsers is not adapted to this situation.

Fortunately, the MENHIR parser generator has been recently
extended by François Pottier to produce an incremental inter-
face instead of the conventional all-or-nothing interface. In that
new setting, the caller of a parser must manually provide the
input information needed by this parser for its next step of
execution and the parser gives back the control to its caller
after the execution of this single step. Hence, the caller can
implement a specific communication protocol between the
lexer and the parser. In particular, the state of the parser can
be transmitted to the lexer.

Now that the lexer has access to the state of the parser,
how can it exploit this state? Must it go into the internals
of LR parsing to decipher the meaning of the stack of the
pushdown automaton? Actually, a far simpler answer can be
implemented: the lexer can simply perform some speculative
parsing to observationally deduce information about the pars-
ing state. In other words, to determine if a token is compatible
with the current parsing state, the lexer just executes the parser
with the considered token to check whether it produces a
syntax error, or not. If a syntax error is raised, the lexer
backtracks to the parsing state before the occurrence of this
speculative parsing.

If the parsing engine of MENHIR were imperative, the back-
tracking process required to implement speculative parsing

would imply some machinery to undo parsing side-effects.
This kind of machinery is not needed because the parsing
engine of MENHIR is purely functional: the state of the parser
is an explicit value passed to the parsing engine which returns
in exchange a fresh new parsing state without modifying the
input state. From the programming point of view, backtracking
is as free as declaring a variable to hold the state to recover
to if a speculative parsing goes wrong.

D. Benchmarks

On a i7-4600U CPU @ 2.10GHz with 4 cores, an SSD
hard drive and 8GB of RAM, the average time to parse a script
is 12ms (with a standard deviation which is less than 1% of this
duration). The maximum parsing time is 100ms, reached for
the prerm script of package w3c-sgml-lib_1.3-1_all
which is 1121 lines long.

Using 4 workers dispatched over the 4 cores, it takes 61s
to parse the 31521 scripts of the corpus. To avoid reparsing
the scripts for each analysis, the concrete syntax trees are
serialized on the disk. Loading all these files in memory takes
only 120ms.

IV. ANALYZER

Once we have a way to parse (most) shell scripts into
concrete syntax trees, we need a way to define different
analyzers on these concrete syntax trees.

The difficulty of writing analyzers lies in the number of
different syntactic constructions of a realistic language like
shell: the concrete syntax trees have 108 distinct kinds of node.
Even if most of the time a single analysis focuses on a limited
number of kinds of nodes, the analyzer must at least traverse
the other kinds of node to reach them.

This problem is well-known in software engineering and
it enjoys a well-known solution as well: the visitor design
pattern [9]. We follow a slightly modified version of this
design pattern. A visitor for our concrete syntax trees is an
object which has a method for each kind of nodes. Such
a method expects as arguments the children of the nodes it
handles.

Our first visitor is a generic iterator object that only goes
through the concrete syntax tree without doing anything. A
concise definition of any analysis can be obtained by inheriting
from the generic iterator and redefining specific methods for
the constructions under the focus of this analysis. Most of our
analyses can be run in only one pass through the concrete
syntax of each script. An example of a toy analyzer counting
the number of for-loops in the corpus is given in Figure 4.
On line 1, we declare the analyzer as a module that must
implement the common interface Analyzer.S of analyzers. On
line 2, we declare the name for the analyzer and on line 4, the
fact that there is no command line option associated to this
analyzer. On line 8, the function process_script describes
how the complete commands of the script must be processed:
on line 22, the function simply applies a locally defined
visitor iterator’ on each complete command. Thanks to the
inheritance mechanism used on line 12, most of the methods

are reused as-is. The only redefined method appear on line
14 and it describes what must be done on for constructions:
we simply increment a global counter count introduced on
line 6 and recurse on the body of the for-loop. Finally, the
function output_report () implements the final printing of
the analysis results.

a) Miscellaneous: We first have a few very small ana-
lyzers counting various things like the number of uses of the
$@ or $* variables, the number of commands whose name
is taken from variables, the number of scripts that manipulate
the $IFS variable, etc.

b) Variables: We then have an analyzer that aims to
determine the variables that are in fact constants. Identifying
a variable as a constant allows us to expand that variable stati-
cally and, by doing so, to simplify the script. The variables that
we identify as constants are the variables that are assigned to
only once in a script, and not under a compound command—
i.e. at top level (see also Section VI).

c) Structures: We also have an analyzer dedicated to
counting control structures (e.g. if, case, for, etc.). The default
is to just count, but one can then add custom treatments for
specific structures.

We have, for instance, a specific treatment of the for
construct: we are using this analyzer to determine whether or
not for loops can be unfolded, which is possible if the list they
are looping through is known statically. This is achieved by
determining whether the arguments of for loops use variables,
commands or globs.

We also count the number of case instructions that are used
to match on the first argument of the script—the $1 variable.
Once again, this is an important piece of information, insofar
as it will allow us to ignore irrelevant parts of scripts when
working on particular cases.

d) Functions: An other analyzer helps us in classify-
ing uses of functions: in addition to counting them, it also
constructs a dependency graph of the function calls in order
to detect cycles, which would indicate (mutually) recursive
definitions. It also detects when a script defines more than
one function with the same name.

e) Commands: Finally, we have an analyzer working
specifically on the use of simple commands. This helps us
a lot in knowing what commands we should prioritize in our
work. It basically gives us three things:

• The number of uses of commands in the corpus;
• The number of scripts that don’t use too rare commands;
• The combinations of arguments that are used by packages

maintainers.
In order to get a usable result for arguments combination, we

had to provide small specifications of the way these arguments
may be combined for a specific command. These specifications
list the names of the legal options of a command with their
aliases and number of arguments. They also tell if a script may
contract its options, as in rm -rf for rm -r -f. In the cases
where we have a specification of the legal options of a UNIX
command, our tool also gives as a list of unknown options
used with a command. This might indicate a bug in the script,

Construct Occurrences Files
alias 2 2
eval 42 30

Fig. 5. Constructs which may render analysis impossible

Construct Occurrences Files
if 56.643 27.122
while 4.045 3.929
until 1 1
for 3.564 2.400
case 6.227 5.296

Fig. 6. Sequential control structures

or that a variant of an option is not properly documented in
the manpage of the command.

The frequency of the different UNIX commands in the
corpus also allows us to estimate how many scripts we would
have to discard from our future analysis if we restricted
ourselves to scripts using only frequently used commands. We
define, for any natural number i, an exotic command of level i
to be a command that isn’t found in more than i scripts. For
given levels of exotism, we count the number of commands
that are exotic of this level, and—more importantly—the
number of scripts that don’t use any of these commands.

V. RESULTS

We have analyzed the 31.832 maintainer scripts present in
the Debian unstable distribution for the AMD64 architecture,
in the areas MAIN, CONTRIB, and NON-FREE, as of 29 Nov
2016. 296 of these are bash scripts, 14 are perl scripts,
one is an ELF executable1, and hence out of scope for us. Our
parser succeeds on 31.484, that is 99.88% of the remaining
31.521 POSIX shell scripts.

A. Shell features

The first question we have investigated is which features of
the shell are used with which frequency. It should be noted
that already this analysis goes beyond what can be done with
a simple grep -c, due to the difficulties of lexical analysis
explained in Section II.

Figure 5 summarizes the occurrences of shell constructs
which may render syntactic analysis impossible, as explained
in Section II. The alias construct appears only twice in our
corpus, and both occurrences are at the top level. There are
42 occurrences of eval in 30 scripts.

The occurrences of the different sequential command struc-
tures of the shell are given in Figure 6. Constructs related to
process creation and communication are given in Figure 7.
This table shows that the use of &, which creates an asyn-
chronous execution, is very rare in maintainer scripts. This
observation, together with the fact that dpkg does not allow
for concurrent execution of maintainer scripts, justifies our
decision to ignore concurrency in the modelization of shell

1We let the reader find out which package cannot have a preinst script
written in shell.

1 module Self : Analyzer.S = struct
2 let name = "count-for"
3

4 let options = []
5

6 let count = ref 0
7

8 let process_script filename csts =
9 let module Counter = struct

10 class iterator’ = object(self)
11

12 inherit CST.iterator
13

14 method on_for_clause = incr count; CST.(function
15 | ForClause_For_Name_LineBreak_DoGroup (_, _, d)
16 | ForClause_For_Name_LineBreak_In_SequentialSep_DoGroup (_, _, _, d)
17 | ForClause_For_Name_LineBreak_In_WordList_SequentialSep_DoGroup (_, _, _, _, d) ->
18 self#on_do_group d)
19 end
20 end
21 in
22 List.iter (new Counter.iterator’)#on_complete_command csts
23

24 let output_report () =
25 Printf.printf "There are %d for-loops.\n" (!count)
26 end

Fig. 4. A toy analyzer counting the number of for-loops in a script.

Construct Occurrences Files
subshell 431 356
pipe 12.225 6.154
trap 32 28
kill 39 35
& 8 7

Fig. 7. Process creation and communication.

Construct Occurrences Files
set 30.817 30.579
exit 13.915 8.685
echo 10.770 5.010
true 10.740 3.966
dot 4.922 2.900

Fig. 8. Simple shell builtins

scripts [reference hidden]. The five most frequent simple shell
builtins are listed in Figure 8. The dot symbol, which is used
to include another file in the shell script, has almost 5.000
occurrences and hence has definitely to be handled by any
future formal treatment of shell scripts.

B. Structure of scripts

The construction of the concrete syntax trees allows us to
go further than just simple counting of occurrences of reserved
words, and do a more structural analysis of shell scripts.

One important question for the kind of formal analysis we
wish to perform in the future on scripts is how to handle loops.
As we have seen in Figure 6, almost half of the loops found
in our corpus are for loops. Is it possible to statically unfold
these loops? Our analysis shows indeed that only 1.147 of
the 3.564 for loops iterate over the value of an expression

1 for pyversion in 2.4 2.5; do
2 if [-d /usr/lib/python$pyversion/s/m/]; then
3 rm -fr /usr/lib/python$pyversion/s/numpy*
4 fi
5 done
6

Fig. 9. A for loop which can be unrolled statically (directory names are
abbreviated).

containing variables, 213 contain a subshell invocation ($(·),
or backquotes), and 126 contain a glob which is subject to
filename expansion. In other words, at least 59% of the for
loops can be statically unrolled. A typical example is shown
in Figure 9.

Another question concerns the use of case. It turns out
that 5.062 of the 6.227 occurrences of case, that is more
than 80%, do a matching of the expression $1, that is the first
argument of the invocation of the script. The Debian policy
manual [3], which governs our use case, defines which are the
possible first arguments with which a maintainer scripts may
be invoked2. This means that we will be able to unfold, in any
actual verification task, any such case statement.

A significant portion of the variables defined in maintainer
scripts are in fact constants: We found that in 1295 out of
2841 cases (33%), a shell variable is in fact a constant, that is
it is assigned to once in the script, and this assignment occurs
at top level (see also the discussion in Section VI).

Function definitions are quite frequently used in maintainer
scripts: we found 3.455 function definitions in 1.500 files.

2these are strings describing the action, like install or upgrade

Command Occurrences Command Occurrences
[47.633 find 2.144
which 12.669 xargs 1.907
rm 10.383 test 1.594
grep 5.138 chmod 1.562
read 3.896 chown 1.504

Fig. 10. The ten mostly used UNIX commands acting on the file system

Options Occurrences Options Occurrences
-s 333 (none) 5
-f -s 210 -f 4
-r -s 31 -S arg0 -b -s 4
-f -n -s 10 -b -f -s 3
-s -v 5

Fig. 11. Options of ln (605 invocations in total)

Only one single function definition is recursive3. This means
that we can, with only one exception, unroll function def-
initions in scripts, and hence may ignore functions in our
verification tools. We also found 9 maintainer scripts which
contain multiple definitions of the same function. Four of
these cases are caused by a tool of the DEBHELPER family
that should be optimized. There are four scripts which define
the same function differently in the two branches of an if-
then-else, which is in our opinion perfectly OK, and one
script containing two slightly different definitions for the same
function, which could be improved by factorizing the large
common part of the two definitions.

C. UNIX commands

Our tool provides a statistics of the number of occurrences
of each possible combination of options. Figure 11, for ex-
ample, yields the combination of options observed for the
ln command, together with their number of occurrences.
One important conclusion for us is that 596 out of the 605
invocations of ln create symbolic links instead of hard links.
The possibility of multiple hard links in a file system are a
problem for any formal model of file systems since it means
that one has to use acyclic directed graphs as a model, instead
of the much simpler trees. The fact that the creation of multiple
hard links (ln without the -s option) is rather rare justifies
our decision to consider file systems as trees, at least in a
first approach. Our specification of the ln command indicates
that the -S option takes one argument, which is displayed in
Figure 11 as arg0.

3the function run_command in the postinst script of the package
rt4-extension-assettracker, version 3.0.0-1

Command Occurrences Files
dpkg-maintscript-helper 9.992 3.889
dpkg 6.862 6.518
deb-systemd-helper 4.530 1.029
update-alternatives 3.616 2.350
update-menus 3.363 3.336

Fig. 12. Top 5 Debian-specific commands

Level Number Percentage
1 693 2.20%
2 1.032 3.28%
5 1.459 4.63%

10 1.794 5.70%
25 2.364 7.51%
50 3.286 10.44%

100 4.058 12.89%
200 5.232 16.62%
500 8.095 25.71%

Fig. 13. Number of scripts using exotic commands

Figure 12 yields the 5 most frequently used Debian-specific
commands in our corpus. These commands are much harder to
model than the standard UNIX commands since they typically
manipulate the contents of files. The statistics on command
usage help us to focus on the most important ones among
these complex commands.

We have filed a number of Debian bug reports4 against
individual packages, or against Debian tools when appropriate.

Finally, Figure 13 tells how many scripts use exotic com-
mands. For instance, 1.794 scripts use at least one command
that occurs in at most 10 scripts (see Section IV).

D. Reproducibility

A corpus of maintainer scripts as the one we used for our
analysis can easily be extracted on any mirror of the Debian
archive, by extracting the maintainer scripts of all packages of
the chosen distribution and areas using dpkg-deb -e. One
should keep in mind, however, that the contents of Debian
sid is updated four times a day, so that there will certainly
be differences to the version we used. Also, if you have to
download the complete packages first, instead of working
directly on an archive mirror, you should be prepared to
download about 200GB of packages.

VI. CURRENT LIMITATIONS AND FUTURE WORK

An important issue is how to validate our parser. Counting
the number of scripts that are recognized as being syntactically
correct is only a first step since it does not tell us whether the
syntax tree constructed by the parser is the correct one. We
can imagine several ways how the parser can be validated.

One approach is to write a pretty-printer which sequential-
izes the concrete syntax tree constructed by the parser. The
problem is that our parser has dropped part of the layout
present in the shell script, in particular information about
spaces, and comments. Still, a pretty printer can be useful
to a human when verifying the correct action of the parser
on a particular case of doubt. It might also be possible to
compare the result obtained by our pretty-printer with the
original script after passing both through a simple filter that
removes comments and normalizes spaces. Furthermore, a
pretty-printing functionality can be used for an automatic
smoke test on the complete corpus: the action which consists

4https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=
treinen@debian.org

of parsing a shell script and then pretty-printing it must be
idempotent, that is performing it twice on a shell script must
yield the same result as performing it once.

Another possible approach is to combine our parser with
an interpreter that executes the concrete syntax tree. This way,
we can compare the result of executing a script obtained by
our interpreter with the result obtained by one of the existing
POSIX shell interpreters.

Our current variable analyzer is certainly too simple, and
just serves as a proof of concept. We will have to use a more
sophisticated flow analysis of the code in order to detect the
values of which variables at which locations in the code can
be statically deduced.

VII. RELATED WORK

To our knowledge, the only existing attempt to mine a
complete corpus of package maintainer scripts was done in
the context of the Mancoosi project [6]. An architecture of a
software package installer is proposed that simulates a package
installation on a model of the current system in order to detect
possible failures. The authors have identified 52 templates
which cover completely 64.3% of all the 25.440 maintainer
scripts of the Debian Lenny release. These templates are then
used as building blocks of a DSL that abstracts maintainer
scripts. In this work, a first set of script templates had been
extracted from the relevant Debian toolset (DEBHELPER), and
then extended by clustering scripts using the same state-
ments [8]. The tool used in this works is geared towards
comparing shell scripts with existing snippets of shell scripts,
and is based on purely textual comparisons.

There have been few attempts to formalize the shell. Re-
cently, Greenberg [10] has presented elements of formal se-
mantics of POSIX shell. The work behind Abash [14] contains
a formalization of the part of the semantics concerned with
variable expansion and word splitting. The Abash tool itself
performs abstract interpretation to analyze possible arguments
passed by Bash scripts to UNIX commands, and thus to
identify security vulnerabilities in Bash scripts.

Some of the problems with POSIX shell are also encoun-
tered in other scripting languages, For instance, [18] uses an
existing parser to analyze PHP scripts into abstract syntax
trees, and then performs symbolic execution in order to detect
security vulnerabilities.

Several tools can spot certain kinds of errors in shell scripts.
The CHECKBASHISMS [5] script detects usage of Bash-specific
syntax in shell scripts, it is based on matching Perl regular
expressions against a normalized shell script text. This tool is
currently used in Debian as part of the lintian package
analyzing suite. The tool SHELLCHECK [11] detects error-
prone usage of the shell language. This tool is written in
Haskell with the parser combinator library PARSEC. Therefore,
there is no Yacc grammar in the source code to help us
determine how far from the POSIX standard the language
recognized by SHELLCHECK is. Besides, the tool does not
produce intermediate concrete syntax trees which forces the
analyses to be done on-the-fly during parsing itself. This

approach lacks modularity since the integration of any new
analysis requires the modification of the parser source code.
Nevertheless, as it is hand-crafted, the parser of SHELLCHECK
can keep a fine control on the parsing context: this allows for
the generation of very precise and helpful error messages. We
plan to use the recent new ability [15] of MENHIR to obtain
error messages of similar quality.

VIII. CONCLUSION

Statically parsing shell scripts is notoriously difficult, due
to the fact that the shell language was not designed with static
analysis, or even compilation, in mind. Nevertheless, we found
ourselves in need of a tool that allows us to perform easily a
number of different statistical analyses on a large number of
scripts. We have written a parser that maintains a high level
of modularity, despite the fact that the syntactic analysis of
shell scripts requires an interaction between lexing and parsing
that defies traditional compiler design. The definition of the
resulting concrete syntax tree as an object allowed us to easily
define different analyzers based on a visitor design pattern. We
have already obtained many useful results that are guiding us
in the design of the formal verification tools we are going to
build.

ACKNOWLEDGMENT

We thank Patricio Pelliccione and Davide Di Ruscio for
discussion of their work done in the context of the Mancoosi
project.

REFERENCES

[1] P. Abate, R. D. Cosmo, L. Gesbert, F. L. Fessant, R. Treinen, and
S. Zacchiroli. Mining component repositories for installability issues.
In M. D. Penta, M. Pinzger, and R. Robbes, editors, MSR 2015, pages
24–33, Florence, Italy, May 2015. IEEE.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[3] R. Allbery, B. Allombert, A. Barth, and J. Nieder. Debian policy manual,
Mar. 2016. http://www.debian.org/doc/debian-policy/.

[4] C. Artho, K. Suzaki, R. D. Cosmo, R. Treinen, and S. Zacchiroli. Why
do software packages conflict? In M. Lanza, M. D. Penta, and T. Xie,
editors, MSR 2012, pages 141–150, Zurich, Switzerland, June 2012.
IEEE Computer Society.

[5] R. Braakman, J. Rodin, J. Gilbey, and M. Hobley. checkbashisms. https:
//sourceforge.net/projects/checkbaskisms/, Nov. 2015.

[6] R. Di Cosmo, D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Za-
cchiroli. Supporting software evolution in component-based FOSS
systems. Science of Computer Programming, 76(12):1144–1160, 2011.

[7] R. Di Cosmo, B. Durak, X. Leroy, F. Mancinelli, and J. Vouillon.
Maintaining large software distributions: new challenges from the FOSS
era. In Proceedings of the FRCSS 2006 workshop, volume 12 of EASST
Newsletter, pages 7–20, 2006.

[8] D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Zacchiroli. Towards
maintainer script modernization in FOSS distributions. In IWOCE 2009:
International Workshop on Open Component Ecosystem, pages 11–20.
ACM, 2009.

[9] E. Gamma. Design patterns: elements of reusable object-oriented
software. Pearson Education India, 1995.

[10] M. Greenberg. Understanding the POSIX shell as a programming
language. In Off the Beaten Track 2017, Paris, France, Jan. 2017.

[11] V. Holen. shellcheck. https://github.com/koalaman/shellcheck, 2015.
[12] IEEE and The Open Group. The open group base specifications issue 7.

http://www.unix.org/version3/online.html, 2016.

[13] F. Mancinelli, J. Boender, R. D. Cosmo, J. Vouillon, B. Durak, X. Leroy,
and R. Treinen. Managing the complexity of large free and open source
package-based software distributions. In ASE 2006, pages 199–208,
Tokyo, Japan, Sept. 2006. IEEE CS Press.

[14] K. Mazurak and S. Zdancewic. ABASH: finding bugs in bash scripts. In
PLAS07: Proceedings of the 2007 workshop on Programming languages
and analysis for security, pages 105–114, San Diego, CA, USA, June
2007.

[15] F. Pottier. Reachability and error diagnosis in LR(1) parsers. In Proceed-
ings of the 25th International Conference on Compiler Construction, CC
2016, Barcelona, Spain, March 12-18, 2016, pages 88–98, 2016.

[16] F. Pottier and Y. Régis-Gianas. The Menhir parser generator. See:
http://gallium. inria. fr/fpottier/menhir.

[17] J. Signoles and S. Boldo, editors. 18ièmes Journées Francophones des
Langages Applicatifs, Gourette, France, Jan. 2017.

[18] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In A. D. Keromytis, editor, Proceedings of the
15th USENIX Security Symposium, Vancouver, BC, July 2006. USENIX
Association.

