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Grandjean, F. (20163apid recovery of nuclear and mitochondrial genes by genome
skimming.fremNorthern Hemisphere freshwater crayfighologica Scripta, 00,
000-000;:

Molecular.phylogeaticshas benefited tremendously from the advent of next-
generation sequencing, enabling quick eosteffective recovery of whole
mitogenomes via an approadferred toas “genomeskimming”. Recently, genome
skimming has beeutilisedto recover highlyrepetitive nuclear genes such as 18S and
28S ribosoral RNA geneghat are useful for inferring deepevolutionary
relationshipsTo address some outstanding issues in the relationships among Northern
Hemisphere freshwater crayfi§hstacoide® we sequenced the partial genoofie
crayfish.species frorAsian North American and European genanal report the
successfulrecovery of whole mitogenogsguences addtion to three highly
repetitivesnucleagenesamely histone H3, 18S and 28S ribosomal RNArsistent
with someprevious studies usirghortmtDNA and nuclear gene fragments,
phylogenetic analysbased on the concatenation of recovengdchondrial and/or
nuclearsequencescoveredhe Asian cambarid lineage as basabll astacidsand

North American cambarg] whichconflicts withthe current taxonomiclassification
based on morpholagal and reproductiomelated characterkastly, we show that

complete H3, 18S and 28S ribosomal RNA garaslsobe consistently recovered

This article is protected by copyright. All rights reserved
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from a diverse range of animal taxd@monstrating the potential wide utility of

genome skimming for nuclear markers.

K eywords:Genome skimming, mitogenomes, nuclear markestcidae,

Parastacidag&ambaridae

| ntroduction

Estimation of evolutionary relationships among organissiisg DNA
sequence informatiois now an established part of comparabi@ogy due to the
PCR and.automated Sanger sequencing revolution since the late A%86%( al.
200Q Hillis'et al. 1999. Early inthis phylogenetic revolutiomost studies utilised
sequencesf single mibchondrial genes such as the 16S ribosd®NA, cytochrome
b, cytochome oxidase br nuclear genes especially the 18S ribosomal RN&eRt
studies have increasingly used nucleotide data from multiple mitochondrialayghes
severalnuclear genes, resulting lergerdataseteommonly in the order of 5,000
10,000 bpThedevelopment of nexteneration sequencing (NGS) technolbggled
to rapidly.declining costs fdDNA sequencing and shows promise in producing
datasets'comprising blundredsif not thousands of loa@r characters

Assembling datets using PClRasedmethodgresents severahallenges
especially with the increasing expectations that multiple lodieayeiredfor robust
phylogenies. This amounts to thoussiodl base pairand is oftercoupled with the
need foradequate taxon samplesquiring up taand evenn exces®f 100 samples.
These challenges becomaglified with the use of museum-held specimens, which
have many advantages in relation to suppottiodiversityrelatedand phylogenetic
studies (Graham et al. 20McCormack et al. 201x5uarez & Tsutsui 2004 homas
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et al. 1990)Tissue samples from museum specimemesofterimited in volume and
are usuallycharacterised by highlgegraded DNAequiring multiple rounds of short
amplicon sequencing often with low success (Atalersen & Mills 2012Aznar
Cormano et al. 201%.i et al. 201%McCormack et al. 2015in et al. 2014). The use
of next-generation sequencing rather than Sanger sequencing can reduce the cost of
this approach, often referred to as Targeted Amplicon Sequencing (Bybee et al. 2011).
Nevethelessthis does not overcome the time and cost of multiple and failed PCR
reactions which will beommon fordegradegamplesandalsothe bioinformatics
workload of.assembling and aligning data from multiple short fragmifasnberg
et al. 2016).

With high throughput sequencing, it is now possiblegquenethe genome
of eukaryotic organisms for a few thousand dollars in a matter of weeks (Goodwin et
al. 2016). Hwever, it is stillcostly and time-consuming to geatersufficient
sequences faobust phylogenetic reconstruction, while also maximising taxon
sampling. Currently, the two most popular methods for genersitzagle
phylogenemic datets are(1) theanchored hybrid enrichment approatkroimon et
al. 2012.Ruane et al. 2015) arfd) the ultra-conserved element proceduFaifcloth
et al. 2012McCormack et al. 2015). Other methods are being developed to exploit
museum_ samples withighly-degraded DNA but require whole genome resources for
read mappingTin et al. 2014

Alternatively, asimple rapid,and lowcostmethod of rapidlyassembling
dataset®f approximately 10-15 kbjs to use ailNGS-based approadhvolving
partial genome scams samplesalso referred to agenome skimmingGan et al.
2014 Malé et al. 2014Straub et al. 203 Z'an et al. 2015). Mostnimalgenome
skimmingstudieshave focusd on mitochondriabequencethatare present in many
copieslinthe eukaryotic cell Mitochondrial genomelsave reduced intergenic
elementanaking them saighforwardto recover, assembland annotate using a
suite ofsbieinformécs methods and pipelineBdrmnt et al. 2013Hahn et al. 2013
Malé etzal. 2014 some of which alstacilitate phylogenetic analysi@famura et al.
2013 Tanet.al. 2015)A major dravbackof this approach is that phylogeniessed
on mitochondrial sequences may noté#ective of the full evolutionary history of
the organisms under study as represented by their nuclear geffomes&
BrackenGrissom 2015).
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In this regardan importanteécentdevelopmenis the discovery thatepetitive
nuclear genetic elements, predominately from the nuclear ribosomal ctastelso
be recovered by genome skimming. The diatan thesepartial genome scans, often
representing less than 1% of the genpcoatain sufficient reads from repéti
nucleargenes to allow them to be routinely recovered for phylogenetic studies
(Besnard et al. 201®odsworth et al. 2019<ocher et al. 2015 ocher et al. 2014
Malé etal. 2014Richter et al. 2015Straub et al. 2012). In this studye demonstrate
the wide utility of genome skimming to 2pecief Northern and Southern
Hemisplere freshwater crayfisWe show that, in addition textracting the full
mitogenomesor each species, it is also possiblegoover the complete 188NA,
28S rRNA‘and histone (H3luclear gene sequences frormaction of a MiSeq run
(approximately 800 Mbp outputhll three of these nuclear genes are considered
especially useful for establishing deeper level relationships as demonstrated by a
number of studies on crustaceans, including freshwater crapiiabkenGrissom et
al. 2014 Bybee etal. 2011 Toon et al. 201Q)that utilsed information from these
genes using/PCRase methods.

While freshwater crayfish have been subject to a number of molecular genetic
studies that useonventional PCRased approaches, there are still outstanding issues
concerning-phylogenetic relationships among major groupsvatth superfamily
(Braband et al. 20Q@rackenGrissom et al. 20%34Toon et al. 2010). One of the
persistent issues in freshwater crayfish systematit® ignresolved phylogenetic
placement of the Asian freshwatgnusCambaroides. Though this genus
taxonomically placed in the family Cambaridéas often recovered as sister to
species of Astacidaar in a basal positioratheras sister tmther members of
Cambaridae fromNorth America. While several studibave usednolecular data to
study.relationships among Northeredisphere crayfisbpecis, these often have
limitations'with respect to taxon sampling (either limited or unbalanced) and number
of molecular'character®hn et al. 2006Braband et al. 20Q0@rackenGrissom et al.
2014),.sometimes producimgnflicting resultsin this study,we assembléhe
complete'mitochondrial genomes fraemspecies of Europeahlorth Americarand
Asian crayfishand one lobster specid&/ealsouse genome skimming to recover
complete omearcomplete sequences$ nuclear 18S and 28S RNA genes and the
histone 8 gene from these samplglsisdata from 11 additional species of crayfish

and lobstersOur phylogenetic analyses show that the mitochondrial and nuclear trees

This article is protected by copyright. All rights reserved
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are fully congruent and the combined datgproduces trees with consistently high
nodal supporthat indicateshe polyphyly of the Cambarida@/e also demonstrate
thatourgenome skimming approach recoverssamethreenuclear genesom
samples of amumber of major animal groups.¢. MammaliaTeleostei, Aves,
Mollusca;Arthropoda), suggesting this approachviide utility for animal
molecularsystematics.

Material and Methods

Sampling.and sequencing

For thisstudy,tenNorthern Hemisphergzeshwater crayfish samples
belongingto the superfamily Astacoideand one lobstesample in the superfamily
Nephropoideahatdo not have mitogenomepresentativeequences on NCBlere
acquired from various geographical locations (marked with *’ in Supplementary
Datal),.identified based on morphology and further validated with nucleotide
similarity searchsagainst publicly availabl€OI, 16S and 12S rRNA gene fragments
for the corresponding species (Supplementary Dafaa?)Cambaroides similis,
whose mitegenome is already availableN®BI, a new additional sample of the
samespeciewas collectd from Korea (9% identityfrom a 810 blignmentto the
C. similiscox1 gene from NC_016925.1) fartherscan for nuclear gendsor the
Astacus species, due to low mitogenome content in the muscle tissue, additional
isolates of each species were further enriched for mitochof@hsendjean et al.

1997) and sequenced to recover the complete mitogenome. samalles,
purification of ethancbreserved tissues and partial whole gensegencing on the
lllumina.MiSéq (2x 250 bp or 2 x 150 bpyas carried out as describedGan et al.
(2014)atthe'Monash University Malaysia Genomics Facility

Several species from other superfamilies, Parastacoidea (Southern Hemisphere
crayfish)and Nephropoidea (lobsters), were also included in this study for
comparative purposes or as outgroup species to the Northern Hemisphere crayfish
group.Forthese taxa, nuclear gene sequences or raw sequence read datasets were
recovered from various sources — existimgogenome and nuclear sequences for

some species were obtained from NCBI (accession numbers cBegpphementary

This article is protected by copyright. All rights reserved
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231 Datal), whereasaw sequene reads for other species were available from previous
232 mitogenome studies by our group (studies also cited in Supplemé&ateay).

233

234  Genome skimming for mitochondrial and nuclear sequences

235

236 Genome skimming was performed according to the workilloxstrated in

237 Fig. 1. Sequences generated from the partial genome sequencing of each sample were
238 initiallygpre-processed using TrimmomafiBolger et al. 2014) to remove adapters
239 and low.quality sequencellgmina clip 2:30:10, sliding window 4:20, leading: 3,

240 trailing 3, minlength 100). The resultingyuality-filtered reads were then assemdl

241 using:1)IDBA-UD (Peng et al. 2012#n iterativede novo assembler for data with

242 uneven seduencing coverage2) MITObim (Hahn et al. 2013pr challenging

243 assemblies through the provisionbafit sequence® recruit reads for more localised
244  assemblies ahe mitogenome pecificnucleargenes.

245 Target sequencesere identifiedrom these assemblies througgquence type
246 specificanethod (e.g. mitochondrial, nuclear protein-coding genes, nuclear ribosomal
247 RNA genes)Complete mitochondrial sequences were recovirethost samples

248 fromeitherde novo (IDBA-UD) or baited (MITObim) assemikand annotated with
249 MITOS (Bernt et al. 2013)Any recalcitrantgaps(i.e. more than one contiglere

250 gap-clogdthrough PCR using gap-bridgipgimersand Sanger segncing Nuclear

251 ribosomal RNAs were predicted with RNAmn{géagesen et al. 2007) and the

252 nuclear potein-coding gene (histone H®)asrecoveredhrough a BLASTn garch

253 (Altschul et al. 1990against existing H3 sequenc&dgelated speciesFor hstone

254  H3, the start and stop coordinates were further refined with ORF Finder

255  (http://maww.ncbi.nlm.nih.gov/gorf/gorf.html) and translated with titagseq

256 component provided by EMBOSRIce et al. 2000) to obtain the amino acid

257 sequence:

258 Thessame genome skimming workflow was tested on reads sequenced from
259 speciegepresenting diversity of animal phylaincluding represeatives of the

260 MammaliaArthropoda, Aved.eleosteiand Mollwscato evaluate the general

261 applicability of our methods across different animal groups and tissue types.

262 Specifically, sequence reads were obtained from nine other sequencing projects in our
263 laboratory and three projects on NCBI's SRA database for sdeaiesa variety of

264 animal Phyla and Classes and tissue sources (e.g. fin clips, liver, muscle, whole

This article is protected by copyright. All rights reserved
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organism).These sequence datasets were inspected for the presence of reads for the
same three nuclear genes (18S, 28S, H3) recovered from this study of crayfish and

lobster species.

Phylogeneticanal yses

The construction of phylogenetic trees was carried out on seven different
alignments ([AtasetA to G, Table 1), consisting of various combinations of genes,
sequence types (amino acid, esnhucleotide, nt) and lengtha.analyses that utilise
only mitochondrial gene sequences (13 protein-coding genes, 2 rRNASs), a total of 33
samples from the families Astacidae (7), Cambaridae (16), Parastacidae (6) and
Nephropidae (4) wenacluded. Datasets that incled the nuclear genes (18S rRNA,
28S rRNA and histone H3ampled fewetaxa(24), subject tahe availability of
these gene sequenaesNCBI for species thatere notsequencein our laboratory
(e.g.Procambarus alleni, Procambarus fallax).

Amine acidsequences of proteitoding genes (mitochondrial, Has well as
nucleotide sequences of non-coding rRNAs (12S, 16S, 18S, 28S) were aligned with
MARET (mafft-lins) (Katoh & Standley 2013nd trimmed with trimAl
(automatedl) (CapellaGutiérrez et al. 2009). I¢leotide sequences of proteiading
genes were aligned with TranslatofXbascal et al. 20)Qwhich carries out
nucleotide sequence alignment guided by amino acid translations followed by
alignment trimming with GblockgQastresana 200@mplemented internally by the
sameprogram.

For phylogenetic analysedignments were concatenatt each of the seven
datasets (Tablg) and suppliedsapartitioned alignments to {DREE (Nguyen et al.
2014) for. model testing and maximume-likelihood analysish node suppost
obtainedwithrithe Utrafast bootstrapption (Minh et al. 2013)The same partitioned
alignmens:wereusedfor Bayesian inference usirttxaBayeqAberer et al. 2014
Four independent chains were rundaminimum of 5 milliongenerationgach with
25% of intial samples as busim, andconvergence of chains was determined when
the average standard deviation of split freques) @sdsf) fell below 1% indicating

good convergence.

Topology testing

This article is protected by copyright. All rights reserved
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299

300 Topology testing was carried out using TREE (Nguyen et al. 2014p evaluate the
301 likelihood of alternate topologies (e.g. a monophyletic Cambaridae). The fojowi
302 tree topolog tess were performedising Datasef (Tablel), comprised of 18 genes
303 (13 mitochondriaPCGs 12S, 16S, 18S, 28S rRNA3):

304

305 I: ((Astacidae, CambaridagA), CambaridaéAsia), outgroups)

306 II: (Astacidae, (CambaridaedA, CambaridaéAsia)), outgroups)

307 llI: ((Astacidae, Cambaridagsia), Cambarida®A, outgroups)
308
309 Thetree topology testmcludethe Shimodairddasegawa tegBhimodaira &

310 Hasegawa 199%arried out using the RELL approximation (Kishino et al. 1990)
311 based on 1,000 replicates and the approximatdyased (AU) teqiShimodaira

312  2002).
313

314 Results
315

316 Gename skimming effectively recovers the mitogenome sequence and high copy

317 number nuelear genes

318

319 An average of approximately 739.4 Mbpraw sequence data per sample was
320 generated from the freshwater crayfish and lob#traries(Supplementarpatal).
321 Mitogenomesequences assemblied these speciegaryin size from14,895 bp to

322 20,677 bpwith AT content ranging from 67.9% to 73.1%. The typical 13

323 mitochondrial proteircoding genes22 transfer RNA geneand 2 ribosomal RNA
324 genes(12S,16%efoundin all Northern Hemisphere crayfish and lobster

325 mitogenomes recovered in this stydyarked with ** in Supplementarypatal). The
326 organization'of these genes in the mitogenomes déetildorthern Hemisphere

327 crayfishtaxa we assemblad identical to the first sequenced speciscambarus

328 clarkii, whigh itself shows largedeparture from the ground pancrustacean pattern
329 (as represented lyrosophila, Penaeus monodon and the outgroup specidsomarus
330 americanus). The gene order fdhe lobsteiMetanephrops sibogae is also aberrant
331 compared tdd. americanus, a result of multiple tramscated proteircoding and

332 tRNA genesMost notably M. sibogae possesses two control regions, each

This article is protected by copyright. All rights reserved
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approximately 2 kbp in length, resulting in a much longer mitochondrial genome size
of 20,677 bp. The lengths of the 12S an® BNA genes areggenerallyshorter in the
Northern Hemisphere crayfish compat to the Southernétnisphere crayfish

Details such as coding regions, Adntent and intergeniengths for each

mitogenome are available in Supplementary Data 3.

Complete or neacomplete sequences were recovered for the three nuclear
gene8STRNA ¢,144 - 5,391 bp), 18S rRNA (1,869 - 1,885 bp) and H3 (all 411
bp) from the same partial genome sca@heir degresof similarity to available
sequences,on NCBI for the same spearesdetailedn Supplemerary Datad. Out of
the totalnuclear sequences contributadough this study38 gene sequences from 13
species'are ‘novel (i.e. do not have any representation on NCid)réfnaiimg 28
genesequenceare highly similato sequences hetwth NCBIbased on local
alignment, with average percent identities of 98.7% (28S), 99.4% (18S) and 98.9%
(H3) for matching specie3helengths of the8S rRNA sequences recovered in this
study are comparable to those already available on public datdbemeh PCR-
based metheds. However, the other nuclear sequences (28S, H3) obtained from
genome,skimming are much longer in length than those deposited on NCBI for
crayfish and lobster specidgotably, e 28S rRNA gene sequences contributed in
this study.are almost double the length of their sapesies counterpart available on
NCBI. Also, the full lengthaminoacid sequencef the histone H3 gene (411 bp)
complete with start and stop codons wesoveredas opposed to the currently
available partial H3equences #t are mostly 333 bp or shorter. All recovered
mitochondrial and nucleaequences are available on NCBI at accession numbers

listed inSupplementarypatal.

Phyl ogenetic.analyses and topology tests point to a polyphyletic Cambaridae

Thenucleotidebasedphylogenetidreewas generateffom the longest
alignment (16,211 bp, DatasetHg. 2 with representative species from
Parastacoidea (Southern Hemisphere crayfish) and Nephropoidea (lolssters) a
outgroups. The focus of this studlge superfamilyAstacoidea, is represented by
species from two families, Astacidée species) and Cambaridae (9 spegies
Maximal support is observed for most nodes in this clade of interest, except for the

weakerML support for the sister relationship between astamnmsNorth American

This article is protected by copyright. All rights reserved
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cambaridqultrafast bootstrap: 86, PP: 1.00). Both ML and BI trees inferred from this
dataset imply a monophyletic Astacidae and a polyphyletic Cambaridae, with the spli
occurring between thidorth American cambarid$?f ocambarus, Cambar us,

Orconectes) and the Asian cambarid€dmbaroides). Further topology testing (Fig.

3) shews Topology (North American cambarids as sister taxa to astacids) as most
likely, followed by Topologyll (Asian cambarids as sister taxa to astaci@isjh
Topology I'and Topologyll support a polyphyletic Cambaridae. Topoldgy

containing a monophyletic Cambaridae, is rejected (P-value <dr.@®e tests in

Fig. 3.

Neverthelesdree topologiesirevariable depending on the dataset and the
method used to infer phylogenkig. 4A-G). While the most common topology is
consistent with the tree in Fig. 2, other observed topologies mostly differ in the
relationshipstamong groupstbie North American cambarids (DatasBtand Q.
Thetreegenerated from Datasét which consists of onlghe nuclear 18S, 28S and
H3 gene sequencé€4,205 aligned sitesdeviatedrom the other topologiedts
Bayesiartreedoes show a monophyletic Cambaridae but with adgksupport (PP:
0.61), and.is'incongruent with the ML tree generated from the same alignment, which
is similarto the other analyses and also fails to recover a monophyletic Cambaridae
Detailed Mk and BI phylogenetic trees inferred from all datasets arkalbleaas
Supplementary Data 5.

Generality of genome skimming for nuclear genes for animals

Out of thetwelve tested animals, the 18S gene sequence was rectroened
all specieswhereasequences from both 28gartial or completeand H3 were
recoveredrom tenout oftwelve speciesSimilarly, genome skimming successfully
recoveedsubstantiallyjonger 28S (approximately 4 kbp) and H3 (411 bp) gene
sequences:in most casEsnpared to sequencagailable on NCB[(28S: 1.5 - 4 kbp,
H3: 333=411 bp; Supplementary Data®)e 18S,28S and H3 sequees recovered

for these'speciesre available as Supplementary Déta

Discussion

Crayfish mitogenomes

This article is protected by copyright. All rights reserved
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This studyincreaseshe number ofequencedlorthern Hemisghere crayfish
mitogenomes frorsix to sixteen substantiallyexpanding the available resources for
thefamily CambaridaeRrocambarus, Cambar oides, Cambarus, Orconectes) and
Astacidaefstacus, Pacifastacus, Austropotamobius). In addition a newmitogerome
for the lobsterMetanephrops sibogae, reveals an aberrant gene order for this group,
but one'identical to that recently describedMmtanephrops thomsoni (Ahn et al.
2016).Thisis a surprising findig given that previous studigglicated that marine
lobsters(Homar us americanus and Enoplometopus) possess aonserved mitogenome
orderthatis. eommonacross the arthropods and is con®deeflective of the
primitive pancrutacean patter(Boore et al. 19955hen et al. 2013).

Another equally surprising finding is the lack of mitogenome variation among
Northern Hemisphere species, githe high frequency of novel mitogenome gene
orders among Southern Hemispherayfish No mitogenome gene rearrangements
are apparenof theten new mitogenomes provided from this study #maksix from
previous.studies, all of which contributes to taxonomic sampling cayatfi families
and the\full geographic range of the superfanilyis is in starkcontrast to the
number and scale of mitogenome gene ore@mrangemen@mong Southern
Hemisphererayfishwith most genera studied having distinct gene orders, including
interspecific differences within the genisgaeus (Lee et al. 2016Tan et al. 2015).

The frequency of mitogenome rearrangements is not simply a function of
divergence times. Based on the dated phylogeByadkenGrissom et al. (2014}he
Engaeus group of crayfish and its close relatives, containing significant
rearrangements, diverged more recently (145.4 mya) than the Northern Hemisphere
crayfish as a group (161.2 mya), which have none. ConveBegtacus and
Cheraxj\which last shared a common ancestor approximately 200 mya have identical
mitogeneme gene orders. Thus, crayfish exhibit both extreme conservation and
extremeslability of mitochondrial gene ordérat is not a simple fiction of
divergence timean observation that invites further investigation on the dynamics and
evolutionary.drivers of mitogenome evolution in this groiipert et al. 2012;

Okajima & Kumazawa 20%@oulsen et al. 2013).

Phylogenetic results and the status of the family Cambaridae
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435 This study contributes to growing evidence suggeshagthefamily

436 Cambaridae is nemonophyletic, butontradicts suggestions that the genus

437 Cambaroides should be included within the family Astacidae. Sevstadiesusing a
438 variety of morphologal andmolecular datsetsfrom a range of genes and varying
439 taxonemie'sampling concur thabMh American cambarid species and Asian

440 cambarid specie@enusCambaroides) do not share a common ancesidinn et al.

441 2006 Braband et al. 200@rackenGrissom et al. 20148racken et al. 2009

442 Breinhelt et al. 2009Crandall et al. 20Q@Porter et al. 2005Rrode & Babcock 2003).
443 The phylogenetic position of Asian cambarid speciestlagidtaxonomic treatment

444  within the superfamily Astacoidea remains controversial.

445 While:most studies have supported the Asian cambarid lineage as the most
446 Dbasal within'the Astacoi@deBrackenGrissom et al. (2014) found the Asian

447 cambaridsandthe astacidso be monophyletic (using a combination of morphological
448 characters, three mitochondrial and three nuclear gene fragments and baged on
449 samples oCambaroides japonicus, single sampleof Astacus astacus and

450  Austropetamebius torrentium, and four samples éfacifastacus). They suggested that
451 the coneept.of the Astacidae should be expanded to inClamdbaroides. Instead,

452  our datasestrongly supports th€ambaroides lineage to be basadbased on owtata

453 from five astacid specige$wo Procambarus, two Orconectes, oneCambarus and four
454  Cambaroides species consisting of both nuclear and mitochondrial genes.

455 A basalposition for the Asian cambarimheagerequires a revaluation or re
456 intempretation of morphological and reproductigrated characters as either ancestral
457  or convergent withirthe lineages as recovered in this st¢éllgn et al. 2006Braband
458 et al. 2006)We suggest a familievel revision of the taxonomic classification of

459 Northern Hemisphere crayfisthat might consideplacing he Asian cambarid

460 crayfishin.anewfamily, or placingall NorthernHemisphere crayfisim a single

461 family,similar to thetreatment of all Southerndthisphere crayfish as members of
462 theParastacidae.

463

464  The utility‘of,genome skimming for animal phylogenetics

465

466 This study demonstrates the utility of partial genome sequencing, also known

467 as genome skimming, using the MiSeq NGS platform as a rapid and inexpensive

468 approacho assemid substantiatlatasets to support phylogenestudiesWe used
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our crayfish dataetto construct an alignment of 12,006 nucleotides from the
mitochondrial genomes, which is now becoming a routine procedure for animal
phylogenetic studies using NGS (Gan et al. 2@hen et al. 2023 an et al. 2015).

Less common is the use of sequerfoa® nuclear genes that can also be
recoveredframn the same partial genome scan used to assevhile mitogenome
sequences dp locatemicrosatellite marker®r population genetic applicationS4n
et al. 2014Thai et al. 2016). Supplementddata 7summariseshe only fourrecent
studiesywe could find on anats that have reported nuclear gerezoveredrom
NGS-based,genome sca(Besnard et al. 201&ocher et al. 201,%Kocher et al.

2014 Richter et al. 2015). énhes and regions assoeidtwith the nuclear ribosomal
clusterare the most common targetd these studiésgether with our data indicate
that complete or almost complete gene sequences can be routinely reéovtred

18S and 28S gen&®m various animal groups includiragnelids,crustaceans,
molluscs (Bivalviaand Gastropodaandchordates (Aves, Chondritiyes,
Actinopterygii, Mammalia)Further, high copy numb@roteincodinggenes can also
be recovered. Owtudy is the first to report recoverythie histone H3 genégr

which the full amino acid sequence was reteiéfor all our lobster and crayfish
samples and teof twelve species irour supplementary nocrustaceailataset
(Table2).lt:-was alscencouraging that other protein-coding genes can potentially be
recoveredrom shogun sequencindataset¢Besnard eal. 2016) especially as the
phylogenetic utility of ribosomal nuclear genes has been called into question by some
authors (Tsang et al. 2008).

We foresee excitingmesahead for the discovery and recovery of an
increasing number of nuclear genes for phylogenetic analyses, given increasing use of
NGS for partial genome sequencing for maniyreah samples plus the increasing
number.of whole genome sequences becoming available for a diversity of animal
speciesFurther, we anticipate that animal systematics isngrdenew eran which
evenmererebustdatasets can be assembl@a@ximising both taxon and gene
samplingwhile minimising expensdo an extenhitherto inpossible Richter et al.

2015 Straub.et al. 2012).
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774 Figurelegends

775

776 Fig. 1. Genome skimming workflow used to recover the mitogenome and high copy
777 number nuclear genes from partial genome scans.

778

779 Fig. 2. Phylogenetic relationships among Northern Hemisphere freshwater crayfish
780 inferred based on nucleotide alignmehDatasef (Tablel) comprising of 13

781 mitochendrial PCG, 12S, 16S, 18S, 28S and H3 (16,211 sites). Topology shown was
782 obtained from Bayesian infereneath Ultrafast bootstrap values (from Maximum
783 likelihood analysis) and posterior probabilities indicated as support values at each
784 node. Square brackets ‘[ ] indicate conflict in topology inferred by the two

785 phylogenetic methods.

786

787 Fig. 3. Evaluation of alternate tree topologies through topology testing based on
788 Datase€ (13mt-pcg (nt) + 12S + 16S + 18S + 28S + H3).

789

790 Fig. 4. An ‘overview of evolutionary relationships within Astacoidea (outgroups:

791 Parastacoidea and Nephropoidea). Tree topologies were constructed from each of the
792 sevendatasets (Tablg) and numbers at the upper left corner of each treeatali

793 dataset used for phylogenetic inference. Ultrafast bootstrap and/or posterior

794  probabhility values are used to show support at each node while coloured branches

795 highlight differences in topology between Mleft) and Bl(right) trees

This article is protected by copyright. All rights reserved



1 | Frederic Grandjean

Table 1. Datasets used to construct alignments used in phylogenetic analyses. Trees inferred

from these datasets are available in Supplementary Data 5.

Dataset #Taxa # Genes Genesincluded Alignment
length (sites)
A 33 13 mt-pcg (aa) 3,657
B 33 15 mt-pcg (aa) + 12S + 16S 5,254
C 24 18 mt-pcg (aa) + 12S + 16S + 18S + 28S + H 9,459
D 33 13 mt-pcg (nt) 10,449
E 33 15 mt-pcg (nt) + 12S + 16S 12,006
F 24 18 mt-pcg (nt) + 12S + 16S + 18S + 28S + H. 16,211
G 24 3 18S +28S + H3 4,205
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Table 2. Demonstration of the recovery of 28S rRNA, 18S rRNA and histone H3 sequences
from performing genome skimming on sequence reads of animals from various taxonomic
groups and tissue isolation sources. Gene sequences recovered for these animals are available in

Supplementary Data 6.

Tissue  Sequence Recovered gene length (bp)

Phylum Class Species

source data 28S 18S H3
Chordata Actinopterygii Gadopsis marmoratlis finclip 459 Mb 4492 1840 411
Oryzias latipe SRA 1Gb 4720 1842 411
Aves Corvus splendefis liver 813 Mb - 1822 411
Chondrichthyes  Pastinachus atrfis muscle 3.45 Gb 2699 1796 411
Mammalia Gallus gallus SRA 2Gb 2065 1822 411
Rattus norvegictis SRA 2Gb 4803 1871 411
Mollusca Bivalvia Lutraria rhynchaerfa muscle 623 Mb 4201 1839 411
Tridacna squamo$a muscle 203 Mb 4314 1870 411
Gastropoda Babylonia areolata muscle 61 Mb 4394 1828 411

Arthropoda Branchiopoda Triops australiensis whole 920 Mb 3988 1810 -
Maxillopoda Lepas anserifera whole 425 Mb 4125 1870 411

Pandarus rhincodonicdus whole 480 Mb - 1814 -

Raw reads were'obtained from various internal projects and databases: a. Gan et al. (2016c); b. ERR110365 (SRA); c. Krze(@Bk&p et al.
d. Austin etali(2016a);e. SRR2131206 (SRA); f. ERR316506 (SRA); g. Gan2ildig( h. Gan et al. (2016a) Gan et al. (2016b); j. Austin
et al. (2016b).
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