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Discretization error for the maximum of a

Gaussian �eld

Chassan Malika and Jean-Marc Azaïs

Institut de Mathématiques de Toulouse, UMR5219

Abstract

A Gaussian �eld X de�ned on a square S of R2 is considered. We

assume that this �eld is only observed at some points of a regular grid

with spacing 1
n . We are interested in the normalized discretization

error n2(M − Mn), with M the global maximum of X over S and

Mn the maximum of X over the observation grid. The density of the

location of the maximum is given using Rice formulas and its regularity

is studied. Joint densities with the value of the �eld and the value of

the second derivative are also given. Then, a kind of Slepian model

is used to study the �eld behavior around the unique point where

the maximum is attained, called t∗. We show that the normalized

discretization error can be bounded by a quantity that converges in

distribution to a uniform variable. The set where this uniform variable

lies principally depends on the second derivative of the �eld at t∗.
The bound is a function of this quantity which is approached by �nite

di�erences in practice. The bound is applied both on simulated and

real data. Real data are used in positioning by satellite systems quality

assessment.

1 Introduction

The maximum of a random �eld is an important variable that has been ex-
tensively studied, see [Adler and Taylor, 2007], [Azaïs and Wschebor, 2009]
and references therein. It plays an important role in spatial statistics see,
for example, [Worsley et al., 1996] [Cressie, 2015].

In most of the cases, instead of the true maximum, we observe the max-
imum on a grid. There are very few results that permit to evaluate the
di�erence between these two quantities. When we consider a stochastic
process de�ned on an interval [0, T ] with T tending to in�nity, the papers
[Hüsler, 2004], [Piterbarg, 2004] compare the extremal behavior of the max-
imum on the whole segment and on a grid that can be more or less dense.

In this paper we consider a random �eld in dimension 2 (for simplicity)
de�ned on a �xed set S. Our asymptotic results are obtained as the mesh
of the grid tends to zero, see Th. 2 and Th. 3. Our tools are the following.
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First, we study the density of the location of the maximum and in par-
ticular the regularity of the density. For that goal, we use Rice formulas and
we obtain, under stronger hypotheses, results that go beyond the results of
[Samorodnitsky and Shen, 2013], see Th. 1. Note that [Rychlik and Sjö, 2002]
studies the joint distribution of maximum position and value in dimension 1.
Note also the result of [Pimentel, 2014] that concerns the Brownian motion.

Second, we use a kind of Slepian model: a Taylor expansion at a ran-
dom point. Our situation is simpler than in the classical Slepian situation
[Slepian, 1963], [Leadbetter et al., 1983] since we consider the unique point
where the maximum is attained and we don't have to consider a crossing or
a maximum "chosen at random" using Palm distribution as it is the case in
the classical studies.

The organization the paper is the following: in Section 2 we introduce
preliminary results; Section 3 is devoted to the study of the density of the
location of the maximum, stating our �rst main result; Section 4 stated
our mains results on discretization error; Section 5 is devoted to numerical
applications, after a Monte-Carlo experiment, we describe a true case on
positioning by satellite error where a speci�cation is given in terms of the
maximal error on a geographical zone while measurements are performed on
a grid; some extra proofs are given in the appendix.

1.1 Hypotheses and notation

In all the paper X(·) is a stationary Gaussian random �eld de�ned on R2.
We aim at comparing the maximum M of X(·) on S with its maximum
on a grid with mesh tending to zero. By a time and space scaling, and
without loss of generality, we can assume that S = [0, 1]2, E(X(t)) = 0 and
Var(X(t)) = 1. We de�ne the partition S = S2 ∪ S1 ∪ S0. S0 is the union of
the four vertices, S1 is the union of the four edges and S2 is the interior of
S. We use the following notation:

� Γ(h) = Cov(X(s),X(s + h)), the covariance function of X(·)

� pX(t), the probability density function of X(t)

� Gn = 1
nZ

2 ∩ [0, 1]2, the grid with mesh 1
n

� t∗ = argmax
t∈S

X(t), the point where X(·) achieves its maximum over S

� t∗n = argmax
t∈Gn

X(t), the point where X(·) achieves its maximum over

Gn

� M = max
t∈S

X(t), the maximum of X(·) over S

� Mn = max
t∈Gn

X(t), the maximum of X(·) over Gn
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As a consequence the main goal of this paper is to give bounds to M −Mn.

� X ′(t) =
(
∂X(t)
∂t1

, ∂X(t)
∂t2

)>
� X ′′(t) =

(
X ′′1,1(t) X ′′1,2(t)

X ′′2,1(t) X ′′2,2(t)

)
=

 ∂2X(t)
∂t21

∂2X(t)
∂t1∂t2

∂2X(t)
∂t1∂t2

∂2X(t)
∂t22


� X ′′ stands for X ′′(t∗)

� ||u||X′′ =
√
u>(−X ′′)u, the norm associated to the matrix −X ′′

� ||u|| is the usual Euclidean norm

� tn,X′′ = argmin
t∈Gn

||t∗ − t||X′′ , the point of Gn closest to t∗ for the norm

|| · ||X′′

� X ′S1
and X ′′S1

are the tangential �rst and second derivatives on S1

� t̄n is the point of Gn ∩ S1 closest to t∗

� M ≺ 0 means that the matrix M is de�nite negative

� Λ is the variance-covariance matrix of X ′(t) or equivalently the oppo-
site matrix of the covariance between X ′′(t) and X(t). Remark that Λ
is always de�nite positive: considering a stationary process on R with
positive variance, it is direct that the variance of its derivative cannot
vanish. Applied to X(·) considered in one direction v, this implies that
v>Λv > 0.

We assume the hypothesis (H) on the �eldX(·): almost surely, the sample
paths of X(·) are of class C2, the covariance Γ(h) 6= ±1, for h > 0 and for
each t ∈ S, the distribution of X ′′(t) is nondegenerate.

2 Preliminary results

The following lemmas ensure that t∗ and || · ||X′′ are well de�ned.

Lemma 1. The maximum of X(·) over S is almost surely achieved at a

single point.

Proof. The considered process is Gaussian and continuous on the considered
compact set S . Because of (H)

for all s 6= t, P{X(s) = X(t)} = 0.

Apply the result due to [Tsirelson, 1975] with a nice proof in [Lifshits, 1983],
Theorem 3.
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Lemma 2. Almost surely (a.s.), there exist no points in S2 such that X
′(t) = 0

and det(X ′′(t)) = 0.
Almost surely, there exist no points in S1 such that X

′
S1

(t) = 0 and X ′′S1
(t) = 0.

Proof. We give the proof of the �rst statement. The process X ′(·) that goes
from S to R2 has C1 paths. In addition, for all t, X(t) has a bounded
density. By [Azaïs and Wschebor, 2009], Proposition 6.5 with condition b)
satis�ed by (H), there is almost surely no point t ∈ S such that X ′(t) = 0,
det(X ′′(t)) = 0.

The proof of the second statement is similar.

Lemma 2 implies that −X ′′ = −X ′′(t∗) is a.s. a positive de�nite matrix.

Lemma 3. For t ∈ S2 and x ∈ R the distribution of X ′′(t) conditional to

{X(t) = x,X ′(t) = 0} admits the following representation

X ′′(t) = R− Λx, (1)

where R is a centered Gaussian random matrix the distribution of which does

not depend on x or t.

Proof. Remark that because of stationarity, X ′(t) and X ′′(t) are indepen-
dent. So it su�ces to compute the distribution of X ′′(t) conditional to
X(t) = x. This last distribution is given by classical regression formulas
yielding (1).

3 Density of the argmax

We present now the �rst main result of the paper.

Theorem 1 (Density of the argmax). Let µ be the measure that is the sum

of three components:

- the counting measure on S0,

- λ1, the one-dimensional Lebesgue measure on S1,

- λ2, the two-dimensional Lebesgue measure on S2.

Then the random variable t∗ admits a density with respect to µ expressed as:

pt∗(t) = 1t∈S0P(∀s ∈ S,X(s) ≤ X(t))

+ 1t∈S1E
(
|X ′′S1

(t)|1AX(t),S

∣∣∣X ′S1
(t) = 0

)
× pX′S1

(t)(0)

+ 1t∈S2E
(
| det(X ′′(t))|1AX(t),S

∣∣∣X ′(t) = 0
)
× pX′(t)(0),

(2)

where Ax,S = {∀s ∈ S : X(s) ≤ x} and X ′S1
(t), X ′′S1

(t) are respectively the

�rst and second derivatives along S1.
This density is continuous on S1 and S2. The densities restricted to S1 or

S2 can be prolonged continuously on S̄1, S̄2 = S respectively.
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Remarks:

� A by-product of Theorem 1 is that it permits to compute
P(t∗ ∈ Si) for i = 0, 1, 2.

� This theorem has been stated in our restricted framework for coher-
ence with the rest of the paper but it can be extended, at a cost of
heavy notation, to higher dimension on more general parameter sets,
as strati�ed manifolds of [Adler and Taylor, 2007].

� TheWAFOMatlab toolbox ([Brodtkorb et al., 2000] and [WAFO-group, 2000])
furnishes some heuristic expressions for application to wave analysis,
like the computation of the joint distribution of crest height and posi-
tion. These expressions are similar to those of (2).

Proof of Theorem 1.

(1) Existence of the density

We consider three cases depending on the location of t∗.
The event {t∗ ∈ S0} is clearly the union of four events that are almost surely
disjoints {∀s ∈ S;X(s) ≤ X(t)}, for t ∈ S0. This gives the �rst term in (2).

Let now consider the case t∗ ∈ S2. Let B be a compact set of S2. Let
M(B) be the number of global maxima of X(·) in B. More precisely,

M(B) = #{t ∈ B;∀s ∈ S,X(s) ≤ X(t)}.

We have the equalities P(t∗ ∈ B) = P(M(B) = 1) = E(M(B)). This last
quantity can be computed by a Rice formula exactly as in Theorem 7.2 of
[Azaïs and Wschebor, 2009]. See Appendix A for more details.

E(M(B)) =

∫
t∈B

E
(
|det(X ′′(t))|1X(s)−X(t)≤0,∀s∈S

∣∣∣X ′(t) = 0
)
×pX′(t)(0)dt,

Since B is arbitrary, this gives the result.
The case t∗ ∈ S1 can be divided into four sub-cases depending on the

considered edge. The proof follows the same line as the case t∗ ∈ S2.

(2) Continuity of the density Let consider the case t∗ ∈ S2. The station-
arity of X(·) allows to apply a translation by t:

pt∗(t) = E
(
|det(X ′′(0))|1AX(0),S−t

∣∣∣X ′(0) = 0
)
× pX′(0)(0).

Note that this function is de�ned on S.
Let {tn, n ∈ N} ⊂ SN2 be such that tn → t∞ ∈ S̄2. Set An = pt∗(tn) −

pt∗(t∞). We have to prove that An → 0. Using Cauchy-Schwarz inequality
and conditioning by X(0) we have:

A2
n ≤

∫
x∈RE

(
det2(X ′′(0))

∣∣∣X(0) = x,X ′(0) = 0
)
× pX(0),X′(0)(x, 0) dx

×
∫
x∈RE

(
(1Ax,S−tn

− 1Ax,S−t∞ )2
∣∣∣X(0) = x,X ′(0) = 0

)
× pX(0),X′(0)(x, 0) dx,
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pX(0),X′(0) being the joint density of X(0) and X ′(0).
The �rst term is obviously bounded as the expectation of a polynomial of

a Gaussian variable (Lemma 3). For the second integral, the Ylvisaker Theo-
rem (see [Ylvisaker, 1968]) and its extension Theorem 1.22 in [Azaïs and Wschebor, 2009]
proves that, under our conditions, the distribution ofMS−t∞ = max

t∈S−t∞
(X(t))

has no atom. As a consequence, a.s. MS−t∞ 6= x and the continuity of the
paths implies that

1Ax,S−tn
→ 1Ax,S−t∞ .

A dominated convergence argument implies that the integral tends to zero.
In the case t∗ ∈ S1, the continuity of the density can be proved exactly

in the same fashion.

Theorem 1 can be extended by considering the joint density of t∗ and
X(t∗). The proof is essentially the same as for Theorem 1 and is omitted.

Corollary 1. With respect to the product measure µ⊗λ, with λ the Lebesgue

measure on R, the joint distribution of (t∗, X(t∗)) is:

pt∗,X(t∗)(t, x) = 1t∈S0P(∀s ∈ S,X(s) ≤ X(t)|X(t) = x)× pX(t)(x)

+ 1t∈S1E
(
|X ′′S1

(t)|1Ax,S

∣∣∣X(t) = x,X ′S1
(t) = 0

)
× pX(t),X′S1

(t)(x, 0)

+ 1t∈S2E
(
|det(X ′′(t))|1Ax,S

∣∣∣X(t) = x,X ′(t) = 0
)
× pX(t),X′(t)(x, 0),

pX(t),X′(t) being the joint density of X(t) and X ′(t).

In the next section we will need to study the joint distribution of t∗

and X ′′. Let us introduce further notation. The space of symmetric 2× 2
matrices will be identi�ed to R3 using for example the parametrization
(M1,1,M1,2,M2,2). Let pX′′(0) be the Gaussian density of X ′′(0) using this
basis. By similar tools, see Appendix B for a proof, we have

Corollary 2. Under the hypotheses of Theorem 1 the joint density of (t∗, X ′′)
is given by

pt∗,X′′(t, x
′′) = 1t∈S1 pX′′S1

(t)(x
′′)|x′′|1x′′<0E

(
1AX(t),S

∣∣∣X ′S1
(t) = 0, X ′′S1

(t) = x′′
)
pX′S1

(t)(0)

+ 1t∈S2 pX′′(t)(x
′′)|det(x′′)|1x′′≺0E

(
1AX(t),S

∣∣∣X ′(t) = 0, X ′′(t) = x′′
)
pX′(t)(0),

(3)

4 Normalized discretization error

This section is dedicated to results concerning the observation grid and then,
the normalized discretization error n2(M −Mn). Before stating the second
main result, Theorem 2, we begin with some preliminary lemmas. Their
proofs are given in Appendices C and D.
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Lemma 4. As n→∞, we have the almost sure convergences:

t∗n → t∗, and tn,X′′ → t∗.

Lemma 5. Conditionally to {t∗ ∈ S2} and to X ′′ , as n→∞, we get:

n(t∗ − tn,X′′)
D−→ U (V(0)) .

where the D superscript denotes the convergence in distribution and U(V(0))
the uniform distribution on the Voronoï cell around 0 in Z2, for the norm

|| · ||X′′ .

We state now the second main result of the paper.

Theorem 2. Under our hypotheses, as n → ∞ the discretization error

n2(M − Mn) is bounded by a quantity which converges in distribution to

a mixture of three components:

- with probability P(t∗ ∈ S0), it is zero

- with probability P(t∗ ∈ S1), it is 1
2 ||U

(
[−1/2, 1/2]

)
||2

- with probability P(t∗ ∈ S2), it is 1
2 ||U(V(0))||2.

Remarks:

� In the case t∗ ∈ S2, there is no need to bound the discretization error
since we can directly prove the convergence toward 1

2 ||U(V(0))||2. In
the case t∗ ∈ S1, is more delicate since t∗ ∈ S1 does not imply t∗n ∈ S1.
We use a third point, t̄n, which belongs to S1. This point allows to
obtain a convergence result for the quantityM−X(t̄n), which is greater
than the discretization error.

� As in this theorem, the following theorem (Theorem 3) demands an
estimation of the second derivative matrix X ′′. As it is explained
in applications (Section 5) it is rather easy to approach it by �nite
di�erences as de�ned in Equation (8).

Proof of Theorem 2.

The proof for t∗ ∈ S0 is trivial.
We begin with the proof for the case t∗ ∈ S2. In this case we directly obtain
the convergence of the discretization error.

The sample paths of X(·) are of class C2 so the Taylor expansion of X
at t∗ is given by

X(t∗ + h) = X(t∗)− 1

2
h>(−X ′′(t∗))h+ o(||h||2).

By Lemma 4, t∗n → t∗ and tn,X′′ → t∗, thus

X(t∗)−X(t∗n) ' 1

2
||t∗ − t∗n||2X′′ , (4)
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X(t∗)−X(tn,X′′) '
1

2
||t∗ − tn,X′′ ||2X′′ . (5)

By de�nition of t∗n, X(t∗)−X(t∗n) is a minimum on the grid Gn, thus

X(t∗)−X(t∗n) ≤ X(t∗)−X(tn,X′′). (6)

By de�nition of tn,X′′ , ||t∗ − tn,X′′ ||2X′′ is a minimum on Gn, thus

||t∗ − tn,X′′ ||2X′′ ≤ ||t∗ − t∗n||2X′′ . (7)

Putting together these four equations we see that the four terms involved
are equivalent. The proof is �nished with Lemma 5.

If t∗ ∈ S1, consider t̄n,, the closest point of t∗ in Gn∩S1 . ThenM−Mn ≤
M −X(t̄n,). The convergence of this last quantity can be proved using the
same approach, in dimension one.

The expression in Theorem 2 is uneasy to use in practical applications.
For example, we never know where t∗ lies (the three cases t∗ ∈ S0, S1 or
S2 cannot be di�erentiated from observations). The following theorem gives
an explicit bound for the discretization error, it is based on a worst case
approach.

Theorem 3. Under our hypotheses, the quantity given in Theorem 2 is

bounded by

−1

8

X ′′1,1X
′′
2,2

(
X ′′1,1 +X ′′2,2 + 2X ′′1,2

)
X ′′1,1X

′′
2,2 −X ′′21,2

Proof of Theorem 3 can be found in appendix E.

5 Applications

5.1 Numerical simulations

Isotropic Gaussian random �elds are generated using the R-package Random-
Fields [Schlather et al., 2015a] and [Schlather et al., 2015b]. We use normal-
ized random �elds with Gaussian covariance function Γ(h) = exp(−||h||2).
Fields are simulated on the square [0, 5]2.
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Figure 1: Example of simulated �eld with grid Gn for n = 20 (diamonds).

As said before, in practice t∗ andX ′′(t∗) are unknown and Theorem 3 can
not be applied directly. Since X(·) paths are C2, X ′′(t∗) can be approached
by X ′′(t∗n). This matrix is estimated using �nite di�erences by:

X ′′1,1 ' n2 [X(t∗n − (1/n, 0))− 2X(t∗n) +X(t∗n + (1/n, 0))] ,

X ′′2,2 ' n2 [X(t∗n − (0, 1/n))− 2X(t∗n) +X(t∗n + (0, 1/n))] ,

X ′′1,2 ' n2 [X(t∗n + (1/n, 1/n)) +X(t∗n − (1/n, 1/n))

−X(t∗n + (−1/n, 1/n))−X(t∗n + (1/n,−1/n))] .

(8)

This estimator exists only if the 8 points of Gn around t∗n belongs to S. If it
is not the case, the bound is not computed and a missing value is returned.
In the following section, we present an application to real data and we set up
an ad hod area of study in order to minimize the number of missing values
returned. Figure 2 shows an example of simulation results for two di�erent
grid meshes.

Figure 2: Computed bound versus true discretization error for simulated
data. Results for 300 �elds for n = 10 (left) and n = 5 (right). Red lines
correspond to the set {y = x}.
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5.2 Application to positioning by satellite data

The discretization question addressed in this paper is encountered in posi-
tioning by satellite augmentation system (SBAS) like EGNOS for the Eu-
ropean Union or WAAS for USA [sit, a] [sit, b]. Such systems complement
positioning systems (like Galileo or GPS) to improve some of their speci�ca-
tions by using additional data to compute positioning corrections or quality
information. Here we are interested in two of these speci�cations: the posi-
tioning accuracy and the integrity. Integrity is, roughly speaking, the system
ability to furnish con�dence interval or threshold for the correction provided
and to alert the user in a given time when these corrections are corrupted.

Our bound is applied to a data used in EGNOS to evaluate his perfor-
mances, called GIVDe (Grid Ionospheric Vertical Delay error). It is the error
of estimation for the vertical positioning error, i.e. the di�erence between
the vertical error estimation furnished by EGNOS and a vertical error refer-
ence furnished by IGS (International GNSS Service). It is available on some
points of a virtual grid located at 350km of altitude. An example of available
data is depicted in Figure 3. To compute correction data for his position, the
user has to perform several interpolations from data of this grid. Then, the
estimation error behavior within a grid cell is important to asses the integrity
feature of the system. The bound presented in this paper is developed for
this purpose.

The monitored/not monitored status of a point may vary over time. We
set a restricted area of study in order to consider points with high observation
rate over time and with a neighborhood also frequently observed (necessary
for the �nite di�erences approximation, Eq. (8)). The great circle distance
between points is used instead of grid mesh 1/n. Figure 4 presents the
example of the days 60 and 100 of 2013. Missing points correspond to missing
data or issues in the second derivative matrix estimation (missing neighbor
point or incoherent result).

10



Figure 3: Projection of points where data are available for a given day (dia-
monds) and restricted area of study (red rectangle). Latitude and longitude
in degrees (equirectangular projection).
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Figure 4: Observed maximum (black) and observed maximum plus computed
bound (blue stars) over time for real data. Days 60 and 100 of 2013 is
presented.
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6 Appendix

A Details on proof of Theorem 1

Proof. Using notation of Theorem 6.4 of [Azaïs and Wschebor, 2009], the
weighted Rice Formula is applied as follow:

� Z = X ′ on S2. Lemma 2 ensures that Z satis�es the hypotheses for
U = S2, d = 2 and u = 0.

� for each t ∈ S2, set W = S and Y t : W → R de�ned by:

Y t(w) := X(w)−X(t).

Y t veri�es the a) and b) conditions for n = 1.

� For k = 1, 2, ..., and for f a continuous function from W to R, set:

gk(t, f) =

(
1−Fk( sup

w∈W
f(w))

)
,

where, for x ≥ 0, Fk(x) := F(kx), F(x) = 0 if 0 ≤ x ≤ 1/2, F(x) = 1
if x ≥ 1 and F is continue, monotonous and non decreasing (Figure
5).

Figure 5: Fk(x)

Finally, we obtain:

E

 ∑
t∈B,X′(t)=0

gk(t, Y
t)

 =

∫
B
E
(
|det(X ′′(t))|gk(t, Y t)

∣∣∣X ′(t) = 0
)
pX′(t)(0)dt.

Concerning the limit of the left hand term, when k → +∞,

gk(t, Y
t) ↓ 1X(s)−X(t)≤0,∀s∈S .

By Lemma 2, we know that almost surely a critical point of X is non degen-
erated. Then using the inverse function theorem, we know that the critical
points of X are isolated. Since B is compact, there is an almost surely �nite
number of points t ∈ B such as X ′(t) = 0. By monotone convergence, the
left hand term tends to E(M(B)).
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B Details on proof of Corollary 2

Let N2 be a compact of the set of 2 × 2 symmetric matrices. Let N1 be a
compact set of S2. By a Rice formula as in the proof of Theorem 1

P{t∗ ∈ N1, X
′′ ∈ N2}

=

∫
N1

E
(
| det(X ′′(s))|1AX(s),S

1X′′(s)∈N2

∣∣∣X ′(s) = 0
)
pX′(t)(0)ds

=

∫
N1

dt

∫
N2

dy′′|det(y′′)|E
(
1AX(t),S

∣∣∣X ′(t) = 0, X ′′(t) = y′′
)
pX′(t),X′′(t)(0, y

′′)∫
N1

dt

∫
N2

dy′′pX′′(t)(y
′′)|det(y′′)|1y′′≺0E

(
1AX(t),S

∣∣∣X ′(t) = 0, X ′′(t) = x′′
)
pX′(t)(0),

since X ′(t) and X ′′(t) are independent. Note that the term 1y′′≺0 can be

omitted since, if x′′ is not de�nite negative, E
(
1AX(t),S

∣∣∣X ′(t) = 0, X ′′(t) = y′′
)

vanishes.

C Proof of Lemma 4

Proof of Lemma 4. The result is obvious for tn,X′′ . We consider now the
case of t∗n. Let V be a neighborhood of t∗.

Almost surely t∗ is unique so there exists η > 0 such as for all t /∈ V ,
X(t) ≤ X(t∗) − η. By de�nition of t∗n, we get that ∀n ∈ N∗, X(t∗n) ≥
X(tn,X′′) and 0 ≤ X(t∗)−X(t∗n) ≤ X(t∗)−X(tn,X′′). Since simple paths of
X are continuous, X(t∗)−X(tn,X′′) −→

n→∞
0 and X(t∗)−X(t∗n) −→

n→∞
0. This

implies that t∗n ∈ V . Since V is arbitrary, we have �nished the proof.

D Proof of Lemma 5

Proof of Lemma 5. In all the the proof we assume to be conditional to
{X ′′ = x′′ ≺ 0} and to {t∗ ∈ S2}. By Corollary 2 we know that the
conditional density pt∗|x′′ of t

∗ is proportional to

E
(
1AX(0),S−t

∣∣∣X ′(0) = 0, X ′′(0) = x′′
)
,

which is continuous by the same proof that the proof of the continuity of
the density in Theorem 1. Let B a Borel set included in V(0). A key point
is that, because of the shift invariance of Z, the sets {B + k, k ∈ Z} are
disjoints and

{n(t∗ − tn,X′′) ∈ B} =
⋃
t∈Gn

{n(t∗ − t) ∈ B}.
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As a consequence

P(n(t∗ − tn,X′′) ∈ B) =
∑
t∈Gn

∫
B/n+t

pt∗|x′′(s)ds =

∫
B/n

∑
t∈Gn

pt∗|x′′(s+ t)ds.

The conditional density of t∗ is continuous on S compact and thus uniformly
continuous with continuity modulus ω(ε). Since the cardinality of Gn is
(n+ 1)2,

Qn(s) =
1

n2

∑
t∈Gn

pt∗|x′′(s+ t),

is also uniformly continuous with continuity modulus bounded by 4ω(ε). As
a consequence

P(n(t∗ − tn,X′′) ∈ B) =

∫
B
Qn(s/n)ds→ Q∞(0)λ2(B).

Giving the result.
An analogous result can be obtained in dimension one for the vector

n(t∗ − t̄n).

E Proof of Theorem 3

Proof. We �rst treat the case t∗ ∈ S2. −X ′′(t∗) is positive-de�nite and
symmetric so there exists a square root matrix Z which is also symmetric
positive-de�nite. For all t ∈ S2 set z = Zt.

||t∗ − tn,X′′ ||X′′ = min
ti∈Gn

||t∗ − ti||X′′ = min
zi∈Z(Gn)

||Zt∗ − zi|| (9)

So, maximum size of the Voronoï cell around 0, in the Voronoï diagram of the
oblique net Z(Gn) for the usual Euclidean norm furnishes an upper bound
for the norm ||t∗ − tn,X′′ ||X′′ .

For a given value of X ′′, the linear application induced by Z can be
geometrically characterized by three quantities: lengths L and ` and angle
θ de�ned below and depicted in Figure 6. Note that in the �gure we have
made a rotation that makes Oz3 parallel to the y-axis. This does not a�ect
distances. L and ` and θ are related to X ′′ by:

� L2 = ||Oz0||2 = ||(1, 0)>||2X′′ = −X ′′1,1

� l2 = ||Oz3||2 = ||(0, 1)>||2X′′ = −X ′′2,2

� ||z3z0||2 = ||(−1, 1)>||2X′′ = −(X ′′1,1 +X ′′2,2) + 2X ′′1,2)

and using law of cosine sin(θ) = L2+`2−||z3z0||2
2`L =

−X′′1,2√
X′′1,1X

′′
2,2
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The set of points zi used in the computation of the Voronoï cell depends
on the values of L, ` and θ. The description of all types of con�guration is
complex so we chose to give a bound valid for every con�guration and sharp
enough. First the �gure is invariant by a central symmetry that changes θ
into −θ. Second we can, without changing the problem reverse the x axis, for
example, before applying Z. This change Oz0 into −Oz0 and θ into π − θ .
In conclusion it is su�cient to consider the cases θ ∈ [0, π2 ) that corresponds
to Figure 6.

Figure 6: Example of the Voronoï cell of 0 in Z(Gn) for || · || (hatched area),
and corresponding bounding area (bold parallelogram). The numbering of
points zi is arbitrary except for z0 and z3.

The Voronoï cell is always included in the parallelogram formed by D1

the perpendicular bisector of Oz0, D2 the perpendicular bisector of Oz3 and
their respective central inversions. The maximum length of a vector starting
at O is the distance OK. Polar equations of lines D1 and D2 are used to
determine coordinates of K:

(
L+ ` sin(θ)

2 cos(θ)
,− `

2
).
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Indeed, the point P indicated in the �gure has for coordinates: (L/2 cos(θ), L/2 sin(θ)).
Let x be the length of the segment PK, then the ordinate ofK is L/2 sin(θ)−
x cos(θ) but it is also −`/2 from which it can be deduced that

x cos(θ) = L/2 sin(θ) + `/2.

This implies in turn that the abscissa of K is

L/2 cos(θ) + x sin(θ) =
L+ ` sin(θ)

2 cos(θ)
.

The maximum usual Euclidean norm of a vector in the Voronoï cell
around 0 in the Voronoï diagram Z(Gn) is then√(L+ ` sin(θ)

2 cos(θ)

)2
+ `2/4 =

1

2

√
−X ′′1,1X ′′2,2(X ′′1,1 +X ′′2,2 + 2X ′′1,2)

X ′′1,1X
′′
2,2 −X ′′21,2

.

Equation (9) implies that this maximum distance is equal to the maximum
distance in V(0) for || · ||X′′ .
Let now examine the case t∗ ∈ S1. This does not imply t∗n ∈ S1 but we
have the inequality X(t∗)−X(t∗n) ≤ X(t∗)−X(t̄n). The maximum value of

||t∗ − t̄n||X′′S1
is 1

2

√
−X ′′1,1(t∗) or 1

2

√
−X ′′2,2(t∗) depending on which edge t∗

lies. It is easy to see that

1

2
max

(√
−X ′′1,1,

√
−X ′′2,2

)
≤ 1

2

√
−X ′′1,1X ′′2,2(X ′′1,1 +X ′′2,2 + 2X ′′1,2)

X ′′1,1X
′′
2,2 −X ′′21,2

.
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