Discretization error for the maximum of a Gaussian field

Malika Chassan, Jean-Marc Azaïs

To cite this version:

Malika Chassan, Jean-Marc Azaïs. Discretization error for the maximum of a Gaussian field. 2017. hal-01513724v1

HAL Id: hal-01513724
https://hal.science/hal-01513724v1
Preprint submitted on 27 Apr 2017 (v1), last revised 2 Jun 2017 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Discretization error for the maximum of a Gaussian field

Chassan Malika and Jean-Marc Azaïs
Institut de Mathématiques de Toulouse, UMR5219

Abstract

A Gaussian field X defined on a square S of \mathbb{R}^{2} is considered. We assume that this field is only observed at some points of a regular grid with spacing $\frac{1}{n}$. We are interested in the normalized discretization error $n^{2}\left(M-M_{n}\right)$, with M the global maximum of X over S and M_{n} the maximum of X over the observation grid. The density of the location of the maximum is given using Rice formulas and its regularity is studied. Joint densities with the value of the field and the value of the second derivative are also given. Then, a kind of Slepian model is used to study the field behavior around the unique point where the maximum is attained, called t^{*}. We show that the normalized discretization error can be bounded by a quantity that converges in distribution to a uniform variable. The set where this uniform variable lies principally depends on the second derivative of the field at t^{*}. The bound is a function of this quantity which is approached by finite differences in practice. The bound is applied both on simulated and real data. Real data are used in positioning by satellite systems quality assessment.

1 Introduction

The maximum of a random field is an important variable that has been extensively studied, see [Adler and Taylor, 2007], [Azaïs and Wschebor, 2009] and references therein. It plays an important role in spatial statistics see, for example, [Worsley et al., 1996] [Cressie, 2015].

In most of the cases, instead of the true maximum, we observe the maximum on a grid. There are very few results that permit to evaluate the difference between these two quantities. When we consider a stochastic process defined on an interval $[0, T]$ with T tending to infinity, the papers [Hüsler, 2004], [Piterbarg, 2004] compare the extremal behavior of the maximum on the whole segment and on a grid that can be more or less dense.

In this paper we consider a random field in dimension 2 (for simplicity) defined on a fixed set S. Our asymptotic results are obtained as the mesh of the grid tends to zero, see Th. 2 and Th. 3. Our tools are the following.

First, we study the density of the location of the maximum and in particular the regularity of the density. For that goal, we use Rice formulas and we obtain, under stronger hypotheses, results that go beyond the results of [Samorodnitsky and Shen, 2013], see Th. 1. Note that [Rychlik and Sjö, 2002] studies the joint distribution of maximum position and value in dimension 1. Note also the result of [Pimentel, 2014] that concerns the Brownian motion.

Second, we use a kind of Slepian model: a Taylor expansion at a random point. Our situation is simpler than in the classical Slepian situation [Slepian, 1963], [Leadbetter et al., 1983] since we consider the unique point where the maximum is attained and we don't have to consider a crossing or a maximum "chosen at random" using Palm distribution as it is the case in the classical studies.

The organization the paper is the following: in Section 2 we introduce preliminary results; Section 3 is devoted to the study of the density of the location of the maximum, stating our first main result; Section 4 stated our mains results on discretization error; Section 5 is devoted to numerical applications, after a Monte-Carlo experiment, we describe a true case on positioning by satellite error where a specification is given in terms of the maximal error on a geographical zone while measurements are performed on a grid; some extra proofs are given in the appendix.

1.1 Hypotheses and notation

In all the paper $X(\cdot)$ is a stationary Gaussian random field defined on \mathbb{R}^{2}. We aim at comparing the maximum M of $X(\cdot)$ on S with its maximum on a grid with mesh tending to zero. By a time and space scaling, and without loss of generality, we can assume that $S=[0,1]^{2}, \mathbb{E}(X(t))=0$ and $\operatorname{Var}(\mathrm{X}(\mathrm{t}))=1$. We define the partition $S=S_{2} \cup S_{1} \cup S_{0} . S_{0}$ is the union of the four vertices, S_{1} is the union of the four edges and S_{2} is the interior of S. We use the following notation:

- $\Gamma(h)=\operatorname{Cov}(\mathrm{X}(\mathrm{s}), \mathrm{X}(\mathrm{s}+\mathrm{h}))$, the covariance function of $X(\cdot)$
- $p_{X(t)}$, the probability density function of $X(t)$
- $G_{n}=\frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2}$, the grid with mesh $\frac{1}{n}$
- $t^{*}=\underset{t \in S}{\operatorname{argmax}} X(t)$, the point where $X(\cdot)$ achieves its maximum over S
- $t_{n}^{*}=\underset{t \in G_{n}}{\operatorname{argmax}} X(t)$, the point where $X(\cdot)$ achieves its maximum over G_{n}
- $M=\max _{t \in S} X(t)$, the maximum of $X(\cdot)$ over S
- $M_{n}=\max _{t \in G_{n}} X(t)$, the maximum of $X(\cdot)$ over G_{n}

As a consequence the main goal of this paper is to give bounds to $M-M_{n}$.

- $X^{\prime}(t)=\left(\frac{\partial X(t)}{\partial t_{1}}, \frac{\partial X(t)}{\partial t_{2}}\right)^{\top}$
- $X^{\prime \prime}(t)=\left(\begin{array}{ll}X_{1,1}^{\prime \prime}(t) & X_{1,2}^{\prime \prime}(t) \\ X_{2,1}^{\prime \prime}(t) & X_{2,2}^{\prime \prime}(t)\end{array}\right)=\left(\begin{array}{cc}\frac{\partial^{2} X(t)}{\partial t_{1}^{2}} & \frac{\partial^{2} X(t)}{\partial t_{1} t t_{2}} \\ \frac{\partial^{2} X(t)}{\partial t_{1} \partial t_{2}} & \frac{\partial^{2} X(t)}{\partial t_{2}^{2}}\end{array}\right)$
- $X^{\prime \prime}$ stands for $X^{\prime \prime}\left(t^{*}\right)$
- $\|u\|_{X^{\prime \prime}}=\sqrt{u^{\top}\left(-X^{\prime \prime}\right) u}$, the norm associated to the matrix $-X^{\prime \prime}$
- $\|u\|$ is the usual Euclidean norm
- $t_{n, X^{\prime \prime}}=\underset{t \in G_{n}}{\operatorname{argmin}}\left\|t^{*}-t\right\|_{X^{\prime \prime}}$, the point of G_{n} closest to t^{*} for the norm $\|\cdot\| X^{\prime \prime}$
- $X_{S_{1}}^{\prime}$ and $X_{S_{1}}^{\prime \prime}$ are the tangential first and second derivatives on S_{1}
- \bar{t}_{n} is the point of $G_{n} \cap S_{1}$ closest to t^{*}
- $M \prec 0$ means that the matrix M is definite negative
- Λ is the variance-covariance matrix of $X^{\prime}(t)$ or equivalently the opposite matrix of the covariance between $X^{\prime \prime}(t)$ and $X(t)$. Remark that Λ is always definite positive: considering a stationary process on \mathbb{R} with positive variance, it is direct that the variance of its derivative cannot vanish. Applied to $X(\cdot)$ considered in one direction v, this implies that $v^{\top} \Lambda v>0$.

We assume the hypothesis (H) on the field $X(\cdot)$: almost surely, the sample paths of $X(\cdot)$ are of class \mathcal{C}^{2}, the covariance $\Gamma(h) \neq \pm 1$, for $h>0$ and for each $t \in S$, the distribution of $X^{\prime \prime}(t)$ is nondegenerate.

2 Preliminary results

The following lemmas ensure that t^{*} and $\|\cdot\|_{X^{\prime \prime}}$ are well defined.
Lemma 1. The maximum of $X(\cdot)$ over S is almost surely achieved at a single point.

Proof. The considered process is Gaussian and continuous on the considered compact set S. Because of (H)

$$
\text { for all } s \neq t, \mathbb{P}\{X(s)=X(t)\}=0
$$

Apply the result due to [Tsirelson, 1975] with a nice proof in [Lifshits, 1983], Theorem 3.

Lemma 2. Almost surely (a.s.), there exist no points in S_{2} such that $X^{\prime}(t)=0$ and $\operatorname{det}\left(X^{\prime \prime}(t)\right)=0$.
Almost surely, there exist no points in S_{1} such that $X_{S_{1}}^{\prime}(t)=0$ and $X_{S_{1}}^{\prime \prime}(t)=0$.
Proof. We give the proof of the first statement. The process $X^{\prime}(\cdot)$ that goes from S to \mathbb{R}^{2} has \mathcal{C}^{1} paths. In addition, for all $t, X(t)$ has a bounded density. By [Azaïs and Wschebor, 2009], Proposition 6.5 with condition b) satisfied by (H), there is almost surely no point $t \in S$ such that $X^{\prime}(t)=0$, $\operatorname{det}\left(X^{\prime \prime}(t)\right)=0$.

The proof of the second statement is similar.
Lemma 2 implies that $-X^{\prime \prime}=-X^{\prime \prime}\left(t^{*}\right)$ is a.s. a positive definite matrix.
Lemma 3. For $t \in S_{2}$ and $x \in \mathbb{R}$ the distribution of $X^{\prime \prime}(t)$ conditional to $\left\{X(t)=x, X^{\prime}(t)=0\right\}$ admits the following representation

$$
\begin{equation*}
X^{\prime \prime}(t)=R-\Lambda x \tag{1}
\end{equation*}
$$

where R is a centered Gaussian random matrix the distribution of which does not depend on x or t.

Proof. Remark that because of stationarity, $X^{\prime}(t)$ and $X^{\prime \prime}(t)$ are independent. So it suffices to compute the distribution of $X^{\prime \prime}(t)$ conditional to $X(t)=x$. This last distribution is given by classical regression formulas yielding (1).

3 Density of the argmax

We present now the first main result of the paper.
Theorem 1 (Density of the argmax). Let μ be the measure that is the sum of three components:

- the counting measure on S_{0},
- λ_{1}, the one-dimensional Lebesgue measure on S_{1},
- λ_{2}, the two-dimensional Lebesgue measure on S_{2}.

Then the random variable t^{*} admits a density with respect to μ expressed as:

$$
\begin{align*}
p_{t^{*}}(t) & =\mathbb{1}_{t \in S_{0}} \mathbb{P}(\forall s \in S, X(s) \leq X(t)) \\
& +\mathbb{1}_{t \in S_{1}} \mathbb{E}\left(\left|X_{S_{1}}^{\prime \prime}(t)\right| \mathbb{1}_{A_{X(t), S}} \mid X_{S_{1}}^{\prime}(t)=0\right) \times p_{X_{S_{1}}^{\prime}(t)}(0) \tag{2}\\
& +\mathbb{1}_{t \in S_{2}} \mathbb{E}\left(\left|\operatorname{det}\left(X^{\prime \prime}(t)\right)\right| \mathbb{1}_{A_{X(t), S}} \mid X^{\prime}(t)=0\right) \times p_{X^{\prime}(t)}(0)
\end{align*}
$$

where $A_{x, S}=\{\forall s \in S: X(s) \leq x\}$ and $X_{S_{1}}^{\prime}(t), X_{S_{1}}^{\prime \prime}(t)$ are respectively the first and second derivatives along S_{1}.
This density is continuous on S_{1} and S_{2}. The densities restricted to S_{1} or S_{2} can be prolonged continuously on $\bar{S}_{1}, \bar{S}_{2}=S$ respectively.

Remarks:

- A by-product of Theorem 1 is that it permits to compute $\mathbb{P}\left(t^{*} \in S_{i}\right)$ for $i=0,1,2$.
- This theorem has been stated in our restricted framework for coherence with the rest of the paper but it can be extended, at a cost of heavy notation, to higher dimension on more general parameter sets, as stratified manifolds of [Adler and Taylor, 2007].
- The WAFO Matlab toolbox ([Brodtkorb et al., 2000] and [WAFO-group, 2000]) furnishes some heuristic expressions for application to wave analysis, like the computation of the joint distribution of crest height and position. These expressions are similar to those of (2).

Proof of Theorem 1.

(1) Existence of the density

We consider three cases depending on the location of t^{*}.
The event $\left\{t^{*} \in S_{0}\right\}$ is clearly the union of four events that are almost surely disjoints $\{\forall s \in S ; X(s) \leq X(t)\}$, for $t \in S_{0}$. This gives the first term in (2).

Let now consider the case $t^{*} \in S_{2}$. Let B be a compact set of S_{2}. Let $M(B)$ be the number of global maxima of $X(\cdot)$ in B. More precisely,

$$
M(B)=\#\{t \in B ; \forall s \in S, X(s) \leq X(t)\}
$$

We have the equalities $\mathbb{P}\left(t^{*} \in B\right)=\mathbb{P}(M(B)=1)=\mathbb{E}(M(B))$. This last quantity can be computed by a Rice formula exactly as in Theorem 7.2 of [Azaïs and Wschebor, 2009]. See Appendix A for more details.
$\mathbb{E}(M(B))=\int_{t \in B} \mathbb{E}\left(\left|\operatorname{det}\left(X^{\prime \prime}(t)\right)\right| \mathbb{1}_{X(s)-X(t) \leq 0, \forall s \in S} \mid X^{\prime}(t)=0\right) \times p_{X^{\prime}(t)}(0) d t$,
Since B is arbitrary, this gives the result.
The case $t^{*} \in S_{1}$ can be divided into four sub-cases depending on the considered edge. The proof follows the same line as the case $t^{*} \in S_{2}$.
(2) Continuity of the density Let consider the case $t^{*} \in S_{2}$. The stationarity of $X(\cdot)$ allows to apply a translation by t :

$$
p_{t^{*}}(t)=\mathbb{E}\left(\left|\operatorname{det}\left(X^{\prime \prime}(0)\right)\right| \mathbb{1}_{A_{X(0), S-t}} \mid X^{\prime}(0)=0\right) \times p_{X^{\prime}(0)}(0)
$$

Note that this function is defined on S.
Let $\left\{t_{n}, n \in \mathbb{N}\right\} \subset S_{2}^{\mathbb{N}}$ be such that $t_{n} \rightarrow t_{\infty} \in \bar{S}_{2}$. Set $A_{n}=p_{t^{*}}\left(t_{n}\right)-$ $p_{t^{*}}\left(t_{\infty}\right)$. We have to prove that $A_{n} \rightarrow 0$. Using Cauchy-Schwarz inequality and conditioning by $X(0)$ we have:

$$
\begin{aligned}
A_{n}^{2} & \leq \int_{x \in \mathbb{R}} \mathbb{E}\left(\operatorname{det}^{2}\left(X^{\prime \prime}(0)\right) \mid X(0)=x, X^{\prime}(0)=0\right) \times p_{X(0), X^{\prime}(0)}(x, 0) d x \\
& \times \int_{x \in \mathbb{R}} \mathbb{E}\left(\left(\mathbb{1}_{A_{x, S-t_{n}}}-\mathbb{1}_{A_{x, S-t_{\infty}}}\right)^{2} \mid X(0)=x, X^{\prime}(0)=0\right) \times p_{X(0), X^{\prime}(0)}(x, 0) d x
\end{aligned}
$$

$p_{X(0), X^{\prime}(0)}$ being the joint density of $X(0)$ and $X^{\prime}(0)$.
The first term is obviously bounded as the expectation of a polynomial of a Gaussian variable (Lemma 3). For the second integral, the Ylvisaker Theorem (see [Ylvisaker, 1968]) and its extension Theorem 1.22 in [Azaïs and Wschebor, 2009] proves that, under our conditions, the distribution of $M_{S-t_{\infty}}=\max _{t \in S-t_{\infty}}(X(t))$ has no atom. As a consequence, a.s. $M_{S-t_{\infty}} \neq x$ and the continuity of the paths implies that

$$
\mathbb{1}_{A_{x, S-t_{n}}} \rightarrow \mathbb{1}_{A_{x, S-t_{\infty}}}
$$

A dominated convergence argument implies that the integral tends to zero.
In the case $t^{*} \in S_{1}$, the continuity of the density can be proved exactly in the same fashion.

Theorem 1 can be extended by considering the joint density of t^{*} and $X\left(t^{*}\right)$. The proof is essentially the same as for Theorem 1 and is omitted.

Corollary 1. With respect to the product measure $\mu \otimes \lambda$, with λ the Lebesgue measure on \mathbb{R}, the joint distribution of $\left(t^{*}, X\left(t^{*}\right)\right)$ is:

$$
\begin{aligned}
p_{t^{*}, X\left(t^{*}\right)}(t, x) & =\mathbb{1}_{t \in S_{0}} \mathbb{P}(\forall s \in S, X(s) \leq X(t) \mid X(t)=x) \times p_{X(t)}(x) \\
& +\mathbb{1}_{t \in S_{1}} \mathbb{E}\left(\left|X_{S_{1}}^{\prime \prime}(t)\right| \mathbb{1}_{A_{x, S}} \mid X(t)=x, X_{S_{1}}^{\prime}(t)=0\right) \times p_{X(t), X_{S_{1}}^{\prime}(t)}(x, 0) \\
& +\mathbb{1}_{t \in S_{2}} \mathbb{E}\left(\left|\operatorname{det}\left(X^{\prime \prime}(t)\right)\right| \mathbb{1}_{A_{x, S}} \mid X(t)=x, X^{\prime}(t)=0\right) \times p_{X(t), X^{\prime}(t)}(x, 0),
\end{aligned}
$$

$p_{X(t), X^{\prime}(t)}$ being the joint density of $X(t)$ and $X^{\prime}(t)$.
In the next section we will need to study the joint distribution of t^{*} and $X^{\prime \prime}$. Let us introduce further notation. The space of symmetric 2×2 matrices will be identified to \mathbb{R}^{3} using for example the parametrization $\left(M_{1,1}, M_{1,2}, M_{2,2}\right)$. Let $p_{X^{\prime \prime}(0)}$ be the Gaussian density of $X^{\prime \prime}(0)$ using this basis. By similar tools, see Appendix B for a proof, we have

Corollary 2. Under the hypotheses of Theorem 1 the joint density of $\left(t^{*}, X^{\prime \prime}\right)$ is given by

$$
\begin{align*}
p_{t^{*}, X^{\prime \prime}}\left(t, x^{\prime \prime}\right) & =\mathbb{1}_{t \in S_{1}} p_{X_{S_{1}}^{\prime \prime}(t)}\left(x^{\prime \prime}\right)\left|x^{\prime \prime}\right| \mathbb{1}_{x^{\prime \prime}<0} \mathbb{E}\left(\mathbb{1}_{A_{X(t), S}} \mid X_{S_{1}}^{\prime}(t)=0, X_{S_{1}}^{\prime \prime}(t)=x^{\prime \prime}\right) p_{X_{S_{1}}^{\prime}(t)}(0) \\
& +\mathbb{1}_{t \in S_{2}} p_{X^{\prime \prime}(t)}\left(x^{\prime \prime}\right)\left|\operatorname{det}\left(x^{\prime \prime}\right)\right| \mathbb{1}_{x^{\prime \prime} \prec 0} \mathbb{E}\left(\mathbb{1}_{A_{X(t), S}} \mid X^{\prime}(t)=0, X^{\prime \prime}(t)=x^{\prime \prime}\right) p_{X^{\prime}(t)}(0) \tag{3}
\end{align*}
$$

4 Normalized discretization error

This section is dedicated to results concerning the observation grid and then, the normalized discretization error $n^{2}\left(M-M_{n}\right)$. Before stating the second main result, Theorem 2, we begin with some preliminary lemmas. Their proofs are given in Appendices C and D.

Lemma 4. As $n \rightarrow \infty$, we have the almost sure convergences: $t_{n}^{*} \rightarrow t^{*}$, and $\quad t_{n, X^{\prime \prime}} \rightarrow t^{*}$.

Lemma 5. Conditionally to $\left\{t^{*} \in S_{2}\right\}$ and to $X^{\prime \prime}$, as $n \rightarrow \infty$, we get:

$$
n\left(t^{*}-t_{n, X^{\prime \prime}}\right) \xrightarrow{\mathcal{D}} \mathcal{U}(\mathcal{V}(0)) .
$$

where the \mathcal{D} superscript denotes the convergence in distribution and $\mathcal{U}(\mathcal{V}(0))$ the uniform distribution on the Voronoï cell around 0 in \mathbb{Z}^{2}, for the norm $\|\cdot\| X^{\prime \prime}$.

We state now the second main result of the paper.
Theorem 2. Under our hypotheses, as $n \rightarrow \infty$ the discretization error $n^{2}\left(M-M_{n}\right)$ is bounded by a quantity which converges in distribution to a mixture of three components:

- with probability $\mathbb{P}\left(t^{*} \in S_{0}\right)$, it is zero
- with probability $\mathbb{P}\left(t^{*} \in S_{1}\right)$, it is $\frac{1}{2}\|\mathcal{U}([-1 / 2,1 / 2])\|^{2}$
- with probability $\mathbb{P}\left(t^{*} \in S_{2}\right)$, it is $\frac{1}{2}\|\mathcal{U}(\mathcal{V}(0))\|^{2}$.

Remarks:

- In the case $t^{*} \in S_{2}$, there is no need to bound the discretization error since we can directly prove the convergence toward $\frac{1}{2}\|\mathcal{U}(\mathcal{V}(0))\|^{2}$. In the case $t^{*} \in S_{1}$, is more delicate since $t^{*} \in S_{1}$ does not imply $t_{n}^{*} \in S_{1}$. We use a third point, \bar{t}_{n}, which belongs to S_{1}. This point allows to obtain a convergence result for the quantity $M-X\left(\bar{t}_{n}\right)$, which is greater than the discretization error.
- As in this theorem, the following theorem (Theorem 3) demands an estimation of the second derivative matrix $X^{\prime \prime}$. As it is explained in applications (Section 5) it is rather easy to approach it by finite differences as defined in Equation (8).

Proof of Theorem 2.

The proof for $t^{*} \in S_{0}$ is trivial.
We begin with the proof for the case $t^{*} \in S_{2}$. In this case we directly obtain the convergence of the discretization error.

The sample paths of $X(\cdot)$ are of class \mathcal{C}^{2} so the Taylor expansion of X at t^{*} is given by

$$
X\left(t^{*}+h\right)=X\left(t^{*}\right)-\frac{1}{2} h^{\top}\left(-X^{\prime \prime}\left(t^{*}\right)\right) h+o\left(\|h\|^{2}\right)
$$

By Lemma $4, t_{n}^{*} \rightarrow t^{*}$ and $t_{n, X^{\prime \prime}} \rightarrow t^{*}$, thus

$$
\begin{equation*}
X\left(t^{*}\right)-X\left(t_{n}^{*}\right) \simeq \frac{1}{2}\left\|t^{*}-t_{n}^{*}\right\|_{X^{\prime \prime}}^{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
X\left(t^{*}\right)-X\left(t_{n, X^{\prime \prime}}\right) \simeq \frac{1}{2}\left\|t^{*}-t_{n, X^{\prime \prime}}\right\|_{X^{\prime \prime}}^{2} \tag{5}
\end{equation*}
$$

By definition of $t_{n}^{*}, X\left(t^{*}\right)-X\left(t_{n}^{*}\right)$ is a minimum on the grid G_{n}, thus

$$
\begin{equation*}
X\left(t^{*}\right)-X\left(t_{n}^{*}\right) \leq X\left(t^{*}\right)-X\left(t_{n, X^{\prime \prime}}\right) \tag{6}
\end{equation*}
$$

By definition of $t_{n, X^{\prime \prime}},\left\|t^{*}-t_{n, X^{\prime \prime}}\right\|_{X^{\prime \prime}}^{2}$ is a minimum on G_{n}, thus

$$
\begin{equation*}
\left\|t^{*}-t_{n, X^{\prime \prime}}\right\|_{X^{\prime \prime}}^{2} \leq\left\|t^{*}-t_{n}^{*}\right\|_{X^{\prime \prime}}^{2} \tag{7}
\end{equation*}
$$

Putting together these four equations we see that the four terms involved are equivalent. The proof is finished with Lemma 5.

If $t^{*} \in S_{1}$, consider \bar{t}_{n}, the closest point of t^{*} in $G_{n} \cap S_{1}$. Then $M-M_{n} \leq$ $M-X\left(\bar{t}_{n},\right)$. The convergence of this last quantity can be proved using the same approach, in dimension one.

The expression in Theorem 2 is uneasy to use in practical applications. For example, we never know where t^{*} lies (the three cases $t^{*} \in S_{0}, S_{1}$ or S_{2} cannot be differentiated from observations). The following theorem gives an explicit bound for the discretization error, it is based on a worst case approach.

Theorem 3. Under our hypotheses, the quantity given in Theorem 2 is bounded by

$$
-\frac{1}{8} \frac{X_{1,1}^{\prime \prime} X_{2,2}^{\prime \prime}\left(X_{1,1}^{\prime \prime}+X_{2,2}^{\prime \prime}+2 X_{1,2}^{\prime \prime}\right)}{X_{1,1}^{\prime \prime} X_{2,2}^{\prime \prime}-X_{1,2}^{\prime \prime 2}}
$$

Proof of Theorem 3 can be found in appendix E.

5 Applications

5.1 Numerical simulations

Isotropic Gaussian random fields are generated using the R-package RandomFields [Schlather et al., 2015a] and [Schlather et al., 2015b]. We use normalized random fields with Gaussian covariance function $\Gamma(h)=\exp \left(-\|h\|^{2}\right)$. Fields are simulated on the square $[0,5]^{2}$.

Figure 1: Example of simulated field with grid G_{n} for $n=20$ (diamonds).
As said before, in practice t^{*} and $X^{\prime \prime}\left(t^{*}\right)$ are unknown and Theorem 3 can not be applied directly. Since $X(\cdot)$ paths are $\mathcal{C}^{2}, X^{\prime \prime}\left(t^{*}\right)$ can be approached by $X^{\prime \prime}\left(t_{n}^{*}\right)$. This matrix is estimated using finite differences by:

$$
\begin{align*}
X_{1,1}^{\prime \prime} \simeq n^{2} & {\left[X\left(t_{n}^{*}-(1 / n, 0)\right)-2 X\left(t_{n}^{*}\right)+X\left(t_{n}^{*}+(1 / n, 0)\right)\right], } \\
X_{2,2}^{\prime \prime} \simeq n^{2} & {\left[X\left(t_{n}^{*}-(0,1 / n)\right)-2 X\left(t_{n}^{*}\right)+X\left(t_{n}^{*}+(0,1 / n)\right)\right], } \\
X_{1,2}^{\prime \prime} \simeq n^{2} & {\left[X\left(t_{n}^{*}+(1 / n, 1 / n)\right)+X\left(t_{n}^{*}-(1 / n, 1 / n)\right)\right.} \tag{8}\\
& \left.-X\left(t_{n}^{*}+(-1 / n, 1 / n)\right)-X\left(t_{n}^{*}+(1 / n,-1 / n)\right)\right] .
\end{align*}
$$

This estimator exists only if the 8 points of G_{n} around t_{n}^{*} belongs to S. If it is not the case, the bound is not computed and a missing value is returned. In the following section, we present an application to real data and we set up an ad hod area of study in order to minimize the number of missing values returned. Figure 2 shows an example of simulation results for two different grid meshes.

Figure 2: Computed bound versus true discretization error for simulated data. Results for 300 fields for $n=10$ (left) and $n=5$ (right). Red lines correspond to the set $\{y=x\}$.

5.2 Application to positioning by satellite data

The discretization question addressed in this paper is encountered in positioning by satellite augmentation system (SBAS) like EGNOS for the European Union or WAAS for USA [sit, a] [sit, b]. Such systems complement positioning systems (like Galileo or GPS) to improve some of their specifications by using additional data to compute positioning corrections or quality information. Here we are interested in two of these specifications: the positioning accuracy and the integrity. Integrity is, roughly speaking, the system ability to furnish confidence interval or threshold for the correction provided and to alert the user in a given time when these corrections are corrupted.

Our bound is applied to a data used in EGNOS to evaluate his performances, called GIVDe (Grid Ionospheric Vertical Delay error). It is the error of estimation for the vertical positioning error, i.e. the difference between the vertical error estimation furnished by EGNOS and a vertical error reference furnished by IGS (International GNSS Service). It is available on some points of a virtual grid located at 350 km of altitude. An example of available data is depicted in Figure 3. To compute correction data for his position, the user has to perform several interpolations from data of this grid. Then, the estimation error behavior within a grid cell is important to asses the integrity feature of the system. The bound presented in this paper is developed for this purpose.

The monitored/not monitored status of a point may vary over time. We set a restricted area of study in order to consider points with high observation rate over time and with a neighborhood also frequently observed (necessary for the finite differences approximation, Eq. (8)). The great circle distance between points is used instead of grid mesh $1 / n$. Figure 4 presents the example of the days 60 and 100 of 2013. Missing points correspond to missing data or issues in the second derivative matrix estimation (missing neighbor point or incoherent result).

Figure 3: Projection of points where data are available for a given day (diamonds) and restricted area of study (red rectangle). Latitude and longitude in degrees (equirectangular projection).

Figure 4: Observed maximum (black) and observed maximum plus computed bound (blue stars) over time for real data. Days 60 and 100 of 2013 is presented.

6 Appendix

A Details on proof of Theorem 1

Proof. Using notation of Theorem 6.4 of [Azaïs and Wschebor, 2009], the weighted Rice Formula is applied as follow:

- $Z=X^{\prime}$ on S_{2}. Lemma 2 ensures that Z satisfies the hypotheses for $U=S_{2}, d=2$ and $u=0$.
- for each $t \in S_{2}$, set $W=S$ and $Y^{t}: W \rightarrow \mathbb{R}$ defined by:

$$
Y^{t}(w):=X(w)-X(t)
$$

Y^{t} verifies the a) and b) conditions for $n=1$.

- For $k=1,2, \ldots$, and for f a continuous function from W to \mathbb{R}, set:

$$
g_{k}(t, f)=\left(1-\mathcal{F}_{k}\left(\sup _{w \in W} f(w)\right)\right)
$$

where, for $x \geq 0, \mathcal{F}_{k}(x):=\mathcal{F}(k x), \mathcal{F}(x)=0$ if $0 \leq x \leq 1 / 2, \mathcal{F}(x)=1$ if $x \geq 1$ and \mathcal{F} is continue, monotonous and non decreasing (Figure $5)$.

Figure 5: $\mathcal{F}_{k}(x)$
Finally, we obtain:
$\mathbb{E}\left(\sum_{t \in B, X^{\prime}(t)=0} g_{k}\left(t, Y^{t}\right)\right)=\int_{B} \mathbb{E}\left(\left|\operatorname{det}\left(X^{\prime \prime}(t)\right)\right| g_{k}\left(t, Y^{t}\right) \mid X^{\prime}(t)=0\right) p_{X^{\prime}(t)}(0) d t$.
Concerning the limit of the left hand term, when $k \rightarrow+\infty$,

$$
g_{k}\left(t, Y^{t}\right) \downarrow \mathbb{1}_{X(s)-X(t) \leq 0, \forall s \in S}
$$

By Lemma 2, we know that almost surely a critical point of X is non degenerated. Then using the inverse function theorem, we know that the critical points of X are isolated. Since B is compact, there is an almost surely finite number of points $t \in B$ such as $X^{\prime}(t)=0$. By monotone convergence, the left hand term tends to $\mathbb{E}(M(B))$.

B Details on proof of Corollary 2

Let N_{2} be a compact of the set of 2×2 symmetric matrices. Let N_{1} be a compact set of S_{2}. By a Rice formula as in the proof of Theorem 1

$$
\begin{aligned}
& \mathbb{P}\left\{t^{*} \in N_{1}, X^{\prime \prime} \in N_{2}\right\} \\
& =\int_{N_{1}} \mathbb{E}\left(\left|\operatorname{det}\left(X^{\prime \prime}(s)\right)\right| \mathbb{1}_{A_{X(s), S}} \mathbb{1}_{X^{\prime \prime}(s) \in N_{2}} \mid X^{\prime}(s)=0\right) p_{X^{\prime}(t)}(0) d s \\
& =\int_{N_{1}} d t \int_{N_{2}} d y^{\prime \prime}\left|\operatorname{det}\left(y^{\prime \prime}\right)\right| \mathbb{E}\left(\mathbb{1}_{A_{X(t), S}} \mid X^{\prime}(t)=0, X^{\prime \prime}(t)=y^{\prime \prime}\right) p_{X^{\prime}(t), X^{\prime \prime}(t)}\left(0, y^{\prime \prime}\right) \\
& \int_{N_{1}} d t \int_{N_{2}} d y^{\prime \prime} p_{X^{\prime \prime}(t)}\left(y^{\prime \prime}\right)\left|\operatorname{det}\left(y^{\prime \prime}\right)\right| \mathbb{1}_{y^{\prime \prime} \prec 0} \mathbb{E}\left(\mathbb{1}_{A_{X(t), S}} \mid X^{\prime}(t)=0, X^{\prime \prime}(t)=x^{\prime \prime}\right) p_{X^{\prime}(t)}(0),
\end{aligned}
$$

since $X^{\prime}(t)$ and $X^{\prime \prime}(t)$ are independent. Note that the term $\mathbb{1}_{y^{\prime \prime} \prec 0}$ can be omitted since, if $x^{\prime \prime}$ is not definite negative, $\mathbb{E}\left(\mathbb{1}_{A_{X(t), S}} \mid X^{\prime}(t)=0, X^{\prime \prime}(t)=y^{\prime \prime}\right)$ vanishes.

C Proof of Lemma 4

Proof of Lemma 4. The result is obvious for $t_{n, X^{\prime \prime}}$. We consider now the case of t_{n}^{*}. Let V be a neighborhood of t^{*}.

Almost surely t^{*} is unique so there exists $\eta>0$ such as for all $t \notin V$, $X(t) \leq X\left(t^{*}\right)-\eta$. By definition of t_{n}^{*}, we get that $\forall n \in \mathbb{N}^{*}, X\left(t_{n}^{*}\right) \geq$ $X\left(t_{n, X^{\prime \prime}}\right)$ and $0 \leq X\left(t^{*}\right)-X\left(t_{n}^{*}\right) \leq X\left(t^{*}\right)-X\left(t_{n, X^{\prime \prime}}\right)$. Since simple paths of X are continuous, $X\left(t^{*}\right)-X\left(t_{n, X^{\prime \prime}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$ and $X\left(t^{*}\right)-X\left(t_{n}^{*}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. This implies that $t_{n}^{*} \in V$. Since V is arbitrary, we have finished the proof.

D Proof of Lemma 5

Proof of Lemma 5. In all the the proof we assume to be conditional to $\left\{X^{\prime \prime}=x^{\prime \prime} \prec 0\right\}$ and to $\left\{t^{*} \in S_{2}\right\}$. By Corollary 2 we know that the conditional density $p_{t^{*} \mid x^{\prime \prime}}$ of t^{*} is proportional to

$$
\mathbb{E}\left(\mathbb{1}_{A_{X(0), S-t}} \mid X^{\prime}(0)=0, X^{\prime \prime}(0)=x^{\prime \prime}\right)
$$

which is continuous by the same proof that the proof of the continuity of the density in Theorem 1. Let B a Borel set included in $\mathcal{V}(0)$. A key point is that, because of the shift invariance of \mathbb{Z}, the sets $\{B+k, k \in \mathbb{Z}\}$ are disjoints and

$$
\left\{n\left(t^{*}-t_{n, X^{\prime \prime}}\right) \in B\right\}=\bigcup_{t \in G_{n}}\left\{n\left(t^{*}-t\right) \in B\right\}
$$

As a consequence

$$
\mathbb{P}\left(n\left(t^{*}-t_{n, X^{\prime \prime}}\right) \in B\right)=\sum_{t \in G_{n}} \int_{B / n+t} p_{t^{*} \mid x x^{\prime \prime}}(s) d s=\int_{B / n} \sum_{t \in G_{n}} p_{t^{*} \mid x^{\prime \prime}}(s+t) d s
$$

The conditional density of t^{*} is continuous on S compact and thus uniformly continuous with continuity modulus $\omega(\varepsilon)$. Since the cardinality of G_{n} is $(n+1)^{2}$,

$$
Q_{n}(s)=\frac{1}{n^{2}} \sum_{t \in G_{n}} p_{t^{*} \mid x^{\prime \prime}}(s+t)
$$

is also uniformly continuous with continuity modulus bounded by $4 \omega(\varepsilon)$. As a consequence

$$
\mathbb{P}\left(n\left(t^{*}-t_{n, X^{\prime \prime}}\right) \in B\right)=\int_{B} Q_{n}(s / n) d s \rightarrow Q_{\infty}(0) \lambda_{2}(B) .
$$

Giving the result.
An analogous result can be obtained in dimension one for the vector $n\left(t^{*}-\bar{t}_{n}\right)$.

E Proof of Theorem 3

Proof. We first treat the case $t^{*} \in S_{2} . \quad-X^{\prime \prime}\left(t^{*}\right)$ is positive-definite and symmetric so there exists a square root matrix Z which is also symmetric positive-definite. For all $t \in S_{2}$ set $z=Z t$.

$$
\begin{equation*}
\left\|t^{*}-t_{n, X^{\prime \prime}}\right\|_{X^{\prime \prime}}=\min _{t_{i} \in G_{n}}\left\|t^{*}-t_{i}\right\|_{X^{\prime \prime}}=\min _{z_{i} \in Z\left(G_{n}\right)}\left\|Z t^{*}-z_{i}\right\| \tag{9}
\end{equation*}
$$

So, maximum size of the Voronoï cell around 0 , in the Voronoï diagram of the oblique net $Z\left(G_{n}\right)$ for the usual Euclidean norm furnishes an upper bound for the norm $\left\|t^{*}-t_{n, X^{\prime \prime}}\right\|_{X^{\prime \prime}}$.

For a given value of $X^{\prime \prime}$, the linear application induced by Z can be geometrically characterized by three quantities: lengths L and ℓ and angle θ defined below and depicted in Figure 6. Note that in the figure we have made a rotation that makes $O z_{3}$ parallel to the y-axis. This does not affect distances. L and ℓ and θ are related to $X^{\prime \prime}$ by:

- $L^{2}=\left\|O z_{0}\right\|^{2}=\left\|(1,0)^{\top}\right\|_{X^{\prime \prime}}^{2}=-X_{1,1}^{\prime \prime}$
- $l^{2}=\left\|O z_{3}\right\|^{2}=\left\|(0,1)^{\top}\right\|_{X^{\prime \prime}}^{2}=-X_{2,2}^{\prime \prime}$
- $\left.\left\|z_{3} z_{0}\right\|^{2}=\left\|(-1,1)^{\top}\right\|_{X^{\prime \prime}}^{2}=-\left(X_{1,1}^{\prime \prime}+X_{2,2}^{\prime \prime}\right)+2 X_{1,2}^{\prime \prime}\right)$
and using law of cosine $\sin (\theta)=\frac{L^{2}+\ell^{2}-\left\|z_{3} z_{0}\right\|^{2}}{2 \ell L}=\frac{-X_{1,2}^{\prime \prime}}{\sqrt{X_{1,1}^{\prime} X_{2,2}^{\prime \prime}}}$

The set of points z_{i} used in the computation of the Voronoï cell depends on the values of L, ℓ and θ. The description of all types of configuration is complex so we chose to give a bound valid for every configuration and sharp enough. First the figure is invariant by a central symmetry that changes θ into $-\theta$. Second we can, without changing the problem reverse the x axis, for example, before applying Z. This change $O z_{0}$ into $-O z_{0}$ and θ into $\pi-\theta$. In conclusion it is sufficient to consider the cases $\theta \in\left[0, \frac{\pi}{2}\right)$ that corresponds to Figure 6.

Figure 6: Example of the Voronoï cell of 0 in $Z\left(G_{n}\right)$ for $\|\cdot\|$ (hatched area), and corresponding bounding area (bold parallelogram). The numbering of points z_{i} is arbitrary except for z_{0} and z_{3}.

The Voronoï cell is always included in the parallelogram formed by \mathcal{D}_{1} the perpendicular bisector of $O z_{0}, \mathcal{D}_{2}$ the perpendicular bisector of $O z_{3}$ and their respective central inversions. The maximum length of a vector starting at O is the distance $O K$. Polar equations of lines \mathcal{D}_{1} and \mathcal{D}_{2} are used to determine coordinates of K :

$$
\left(\frac{L+\ell \sin (\theta)}{2 \cos (\theta)},-\frac{\ell}{2}\right) .
$$

Indeed, the point P indicated in the figure has for coordinates: $(L / 2 \cos (\theta), L / 2 \sin (\theta))$. Let x be the length of the segment $P K$, then the ordinate of K is $L / 2 \sin (\theta)-$ $x \cos (\theta)$ but it is also $-\ell / 2$ from which it can be deduced that

$$
x \cos (\theta)=L / 2 \sin (\theta)+\ell / 2 .
$$

This implies in turn that the abscissa of K is

$$
L / 2 \cos (\theta)+x \sin (\theta)=\frac{L+\ell \sin (\theta)}{2 \cos (\theta)} .
$$

The maximum usual Euclidean norm of a vector in the Voronoï cell around 0 in the Voronoï diagram $Z\left(G_{n}\right)$ is then

$$
\sqrt{\left(\frac{L+\ell \sin (\theta)}{2 \cos (\theta)}\right)^{2}+\ell^{2} / 4}=\frac{1}{2} \sqrt{\frac{-X_{1,1}^{\prime \prime} X_{2,2}^{\prime \prime}\left(X_{1,1}^{\prime \prime}+X_{2,2}^{\prime \prime}+2 X_{1,2}^{\prime \prime}\right)}{X_{1,1}^{\prime \prime} X_{2,2}^{\prime \prime}-X_{1,2}^{\prime 2}}} .
$$

Equation (9) implies that this maximum distance is equal to the maximum distance in $\mathcal{V}(0)$ for $\|\cdot\|_{X^{\prime \prime}}$.
Let now examine the case $t^{*} \in S_{1}$. This does not imply $t_{n}^{*} \in S_{1}$ but we have the inequality $X\left(t^{*}\right)-X\left(t_{n}^{*}\right) \leq X\left(t^{*}\right)-X\left(\bar{t}_{n}\right)$. The maximum value of $\left\|t^{*}-\bar{t}_{n}\right\|_{X_{S_{1}}^{\prime \prime}}$ is $\frac{1}{2} \sqrt{-X_{1,1}^{\prime \prime}\left(t^{*}\right)}$ or $\frac{1}{2} \sqrt{-X_{2,2}^{\prime \prime}\left(t^{*}\right)}$ depending on which edge t^{*} lies. It is easy to see that

$$
\frac{1}{2} \max \left(\sqrt{-X_{1,1}^{\prime \prime}}, \sqrt{-X_{2,2}^{\prime \prime}}\right) \leq \frac{1}{2} \sqrt{\frac{-X_{1,1}^{\prime \prime} X_{2,2}^{\prime \prime}\left(X_{1,1}^{\prime \prime}+X_{2,2}^{\prime \prime}+2 X_{1,2}^{\prime \prime}\right)}{X_{1,1}^{\prime \prime} X_{2,2}^{\prime \prime}-X_{1,2}^{\prime \prime 2}}} .
$$

References

[sit, a] https://www.egnos-portal.eu/.
[sit, b] https://www.faa.gov/.
[Adler and Taylor, 2007] Adler, R. J. and Taylor, J. E. (2007). Random fields and geometry. Springer monographs in mathematics. Springer, New York.
[Azaïs and Wschebor, 2009] Azaïs, J. and Wschebor, M. (2009). Level Sets and Extrema of random Processes and Fields. Wiley.
[Brodtkorb et al., 2000] Brodtkorb, P., Johannesson, P., Lindgren, G., Rychlik, I., Rydén, J., and Sjö, E. (2000). WAFO - a Matlab toolbox for the analysis of random waves and loads. In Proc. 10° th Int. Offshore and Polar Eng. Conf., ISOPE, Seattle, USA, volume 3, pages 343-350.
[Cressie, 2015] Cressie, N. A. C. (2015). Statistics for Spatial Data. John Wiley \& Sons, Inc.
[Hüsler, 2004] Hüsler, J. (2004). Dependence between extreme values of discrete and continuous time locally stationary gaussian processes. Extremes, 7(2):179-190.
[Leadbetter et al., 1983] Leadbetter, M., Lindgren, G., and Rootzen, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics. Springer Verlag.
[Lifshits, 1983] Lifshits, M. (1983). On the absolute continuity of distributions of functionals of random processes. Theory of Probability 83 Its Applications, 27(3):600-607.
[Pimentel, 2014] Pimentel, L. (2014). On the location of the maximum of a continuous stochastic process. J. Appl. Probability, 51(1):152-161.
[Piterbarg, 2004] Piterbarg, V. I. (2004). Discrete and continuous time extremes of gaussian processes. Extremes, 7(2):161-177.
[Rychlik and Sjö, 2002] Rychlik, I. and Sjö, E. (2002). Position and height of the global maximum of a twice differentiable stochastic process. Methodology and computing in applied probability, 4:291-307.
[Samorodnitsky and Shen, 2013] Samorodnitsky, G. and Shen, Y. (2013). Is the location of the supremum of a stationary process nearly uniformly distributed? Annals of Probability, 41(5):3494-3517.
[Schlather et al., 2015a] Schlather, M., Malinowski, A., Oesting, M., D., B., K., S., S., E., J., M., F., B., P. J., M., S., G., U., O., Katharina., B., J., M., P., R., R., S., B., P., and R Core Team (2015a). RandomFields: Simulation and Analysis of Random Fields. R package version 3.0.62.
[Schlather et al., 2015b] Schlather, M., Malinowski, A., P. J., M., M., O., and K., S. (2015b). Analysis, simulation and prediction of multivariate random fields with package RandomFields. Journal of Statistical Software, 63(8):1-25.
[Slepian, 1963] Slepian, D. (1963). On the zeros of gaussian noise. Time Series Analysis, pages 104-115.
[Tsirelson, 1975] Tsirelson, B. S. (1975). Density of the distribution of the maximum of a Gaussian process. Teor. Verojatnost. i Primenen., 20(4):865-873.
[WAFO-group, 2000] WAFO-group (2000). WAFO - A Matlab Toolbox for Analysis of Random Waves and Loads - A Tutorial. Math. Stat., Center for Math. Sci., Lund Univ., Lund, Sweden.
[Worsley et al., 1996] Worsley, K. J., Marrett, S., Neelin, P., and Evans, A. (1996). A unified statistical approach for determining significant signals in location and scale space images of cerebral activation. Human Brain Mapping, 4:58-73.
[Ylvisaker, 1968] Ylvisaker, D. (1968). A note on the absence of tangencies in gaussian sample paths. Ann. Math. Statist., 39(1):261-262.

