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Abstract

This work concerns the stabilization of general Piecewise Affine (PWA) systems without common 
equilibrium; the main objective consists in proposing a characterization of periodic solutions, by 
determining the critical parameters values of the cyclic behaviors. The proposed approach is based on the 
expansion of previous results on practical stabilization by switching. Due to the non-convex nature of 
general PWA synthesis problems, we primarily present a BMI formulation of the practical stabilization that 
is used to generate periodic solutions. More precisely, we characterize ω-limit sets as periodic trajectories of 
the global PWA system in terms of special invariant sets of the practical stabilization method. This will 
avoid a posteriori subset inclusion checking, since the underlying set belongs to the admissible state space 
part. This approach generalizes previous results to obtain invariance conditions and the set ω-limit points. 
A methodology and algorithms to compute periodic trajectories parameters are provided. Two illustrative 
examples are used for simulation, in particular the third order of Goodwin oscillator model is investigated 
as a non-uniform oscillatory complex system.

Keywords: Invariant Sets; LMI; Periodic Solutions; PWA Systems; Practical Switching Stabilization; ω-Limits points

1. Introduction

The Piecewise Affine (PWA) systems modeling framework is the most appropriate
representation of general hybrid systems that results from diverse engineering fields. PWA
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systems are characterized by a collection of different affine dynamics, each one is activated in a
continuous state space region. These systems have received growing interest [1–6] in the last
decades since they can approximate most nonlinear behaviors with high accuracy and they are
advanced in practice with the development of many various tools (PWA identification for
example). Many analysis techniques and/or design methods proposed in the general context of
hybrid and switched systems theory may be exploited in the investigation of PWA systems [7,8].
However, most developed ideas do not deal with the general case of PWA systems without (or
not common) equilibrium. Indeed, due to the affine term, the absence of common equilibrium is a
natural characteristic of PWA systems, and as a consequence, the working point must be chosen
among the equilibrium points of the average systems. As this equilibrium point is only virtual,
asymptotic stabilization is no longer possible, but only practical stabilization. Consequently, the
control is designed so that the trajectory of the closed-loop system can be derived to a small
prescribed area enclosing the target point [9–15]. The practical stabilization has been widely
investigated, and many important results have been reported for the practical stabilization of low
dimensional systems whose attractors are not an equilibrium [9]. For PWA systems, the only
available results of specific practical switching stabilization methods are reported in [12,13]. The
first approach is an old method of Zhai and Michel that has been recently applied to PWA
systems in [14]. It is based on the conservative notion of dwell time. The second approach in [13]
uses another very conservative condition by requiring a nil average affine term. As a
consequence, this can be seen as an extension of the approach in [3,4], with state regions
association without removing the revealed principal conservative constraint. Considering a cyclic
steady state of PWA systems, another kind of practical switching stabilization method is
developed by Reidinger and co-worker in [15]. Independently, the recent proposed approach in
[10] is promising due to its simplicity and the absence of any conservative assumption.
Moreover, this approach provides the exact distance (error) between the convergence point and
the desired working one. A first attempt to complete the above method with multi-estimation
technique for bimodal PWA systems was successfully applied to all bimodal DC/DC converters
topologies in [11].
Indeed, the design approach in [10,11] is a global asymptotic practical stabilization method for

general PWA systems that covers an important class of dynamical systems, with saturation and
constraints. More precisely, the main idea consists in finding a suitable state space partition and a
state dependent switching law to ensure the overall objective. It is distinguished from the
conventional PWA systems stabilization approaches, since it does not assume the existence of
common equilibrium and there is not any dwell-time condition on the switching law. Moreover,
it is particularly attractive from its closeness to invariance principle, concept that has an
important role in asymptotic behaviors of dynamical systems. A positively invariant set is a
subset of the state space with the property that, if the system state is at some time in this set, then
it remains inside forever [16]. Therefore, the practical stabilization of a system is a sufficient
condition for positive invariance since it encloses all reachable states and expresses trajectories
boundaries. An important application of this result is in the proof of LaSalle’s invariance
principle. As a useful tool in the investigation of asymptotic behaviors, various invariance
principles and/or extensions of LaSalle’s one have been proposed for hybrid and switched
systems [16–19]. Furthermore, for linear and/or affine systems, positive invariant sets represent
domains of attraction and are generally of simple shapes. However, the switching law may
enormously complicate their characterization. In fact, since both continuous and discrete
dynamics have to be taken into account for switched systems, an increasing computational effort
is required to obtain exact invariants. The boundaries of these templates are characterized by
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919
exiting sets side and entering ones according to the directions of the flow at these points, so that
several invariance based approaches exploit the so-called flow condition.

The concept of invariance is also related to safety property that is generally specified jointly
with the formal stability condition. Safety specifications expresses conditions that a system
trajectory do not enter a declared unsafe and/or undesired state subset. Its verification is usually
translated into a reachability analysis problem that is considered as one of the main addressed
problems in the context of hybrid systems. The domain of application is varied, ranging from
engineering design to air traffic management systems and biology. Understanding the practical
relevance of the problem, lots of research efforts for reachability analysis and verification of
hybrid systems have been devoted to the development of implementable systematic procedures.
All these developed algorithms should at least approximate the reachable set with safety
specifications. Various techniques and methods have emerged to address this problem [19,20]. It
is possible to compute explicitly the reachable region and to determine whether the system
reaches the unsafe one. However, directly computing the reachable sets is often intractable and
requires the system differential equation to be solved. In fact, the efficient computation of
reachable sets remains a difficult and open problem. An alternative approach, is to synthesize an
invariant for the system i.e. a space region that encloses all reachable states, and then verify the
exclusion of the unsafe sets.

Controller design and verification based on invariant sets have been widely investigated
particularly in the context of hybrid systems. For state representation, the emphasis is placed on
convex approaches where reachable states are usually represented by unions of convex sets
(simple shapes).The choice of the representation has great influence on the computation of the
underlying sets and on the efficiency of the required operations.

For PWA systems, the need for quadratic invariant was addressed several decades ago [21 and
references therein] with ellipsoidal, Cones and Paraboloids templates. Afterward, numerous
techniques to synthesize appropriate quadratic templates using SDP solvers and Lyapunov
functions are proposed. In spite of the revealed interest of the positive invariance of the
individual subsystems in hybrid systems [22], the problem tackled in the present work has for
objective to determinate an unique overall positive invariant set for the global PWA system, for
which a practical stabilization switching law has been a priori synthesized [10,11]. This approach
allows to determine invariant as imposed by the stabilization process and not the converse. One
of the objectives of this paper is also to characterize the trajectories ω-limit sets of the global
PWA system, in terms of special invariant sets. In other words, subset inclusion tests will not be
required anymore, since the underlying set belong to the admissible part of the state space. Due
to the importance of the existence of sustained oscillations in the PWA systems design operation,
many approaches are devoted to ω-limit set points and their cyclic behaviors. But, nowadays,
there is no efficient tool to characterize global stability around limit cycles for PWA systems. The
available results in [23] are based on the impact map notion and the newly surfaces Lyapunov
functions idea to parameterize switching and to locally study the limit cycles. After some
mathematical background and the problem formalization in section II, the main contribution of
this paper will be detailed in section III. The proper work will start by determining the ω-limit set
points of the positive invariant sets, confirming their periodic and cyclic behaviors. New
definitions and mathematical developments will be presented in order to investigate periodic
solutions, and the proofs will be based on invariance principle. Section IV presents an extensive
simulation results to illustrate the theoretical results.
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920
2. Background

2.1. Problem formulation

In this paper, the following PWA models are considered:

_x tð Þ ¼ asx tð Þ þ bs; tϵRþ: ð1Þ
In which xðtÞARn is the state and s is a piecewise constant switching signal:

s xð Þ: Rn-I¼ 1;…:;mf g with m the finite number of modes in Eq. (1). For state-dependent
switching, the system mode activation only depends on the state x, and the target working point
xe satisfies the following convex combination [2,10]:Xm

i ¼ 1

αi aixe þ bið Þ ¼ 0; 0rαir1 and
Xm
i ¼ 1

αi ¼ 1: ð2Þ

In the following, the time variable t is omitted for clarity.

Considering the problem at the origin of (1) and the change of variable z¼ x

1

� �
, a complete

synthesis operation was performed in [10,11], where a state space partition and a stabilizing

switching law were formulated as a tractable BMI for the augmented following system:

_z ¼Ai z with zARnþ1; Ai ¼
ai Bi

0 0

� �
; Bi ¼ aixe þ bi and iAI: ð3Þ

Let _ViðzÞ be the time derivative of the common Lyapunov function V(z) of system (1) along
the trajectory of the i-th subsystem, then using the switching law in Eq. (4), the problem has been

reduced to the stabilization of system (3) at point: z� ¼ 0 ⋯ 0 1
� �t

.

sðzÞ ¼ arg miniϵI _ViðzÞ
� �

: ð4Þ
where sðzÞ ¼ i specifies the mode to be activated.
The idea was based on the following definition [10]: The system (1) is globally asymptotically

practically stabilizable by switching at a point xeARn, if for every εpZεpmin40, there exists εα
with 0oεαrεp and a switching law that steers the system trajectory from any starting point
x0ARn to the ball Bðxe; εαÞ and maintains it inside Bðxe; εpÞ for all future time. ∎
The control objectives are then to find the scalars εpmin; εα and εp.
The design operations for system (3) have been carried out on the following state space subset:

X ¼ zARnþ1=znþ1 ¼ 1
� �

: ð5Þ
The proposed works in [10,11] gave BMI conditions to find a practical stabilizing switching

law for the PWA system and the corresponding suitable state space partition, so that all
trajectories of the closed-loop system converge to the same domain D̆ �X . The invariance of
this domain still needs to be proven. In the following subsection, the main mathematical concepts
are recalled.

2.2. Preliminaries

A quadratic practical stabilization of the augmented system (3) relative to a domain D̆ �X
can be guaranteed, if there exist a scalar function VðzÞ, positive scalar γ and regions X i so that
z�ϵ D̆ and
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921
1) V zð Þ40 for all zϵ X�D̆
n o

:

2) _Vi zð Þr�γztz for all zϵX i; iAI:

3) [X i ¼ ðX�D̆Þ; iAI:

where _Vi zð Þ is the time derivative of V zð Þ along the trajectory of the i-th subsystem.
In these approaches, the state space is partitioned in quadratic regions Σi, with

[Σi ¼ Rnþ1,iAI, defined as follows:

Σi ¼ zARnþ1 zt QizZ0
�� �

; Qi ¼
qi αqi
αtqi βqi

" #
AR nþ1ð Þ�ðnþ1Þ and qiARn�n:

(
ð6Þ

Two versions of practical stabilization approach have been applied to the system (3).
For a positive symmetric matrix pϵRn�n and a positive scalar εp, the practical stabilization was

first demonstrated for the domain: D̆ ¼ zA X zt
p 0

0 0

� �
zoεp

����
	
; z�AD̆



after that some

refinements of this domain have been made.

� According to Lyapunov theory, the first version in [10] used the following function V1 zð Þ as
energy function for system (3), it is nil at the target point z�. i.e. V1 z�ð Þ ¼ 0.

V1 zð Þ ¼ ztP1z with P1 ¼
2p αp
αtp 0

" #
AR nþ1ð Þ� nþ1ð Þ and pARn�n: ð7Þ

A value of εα ¼ εpmin ¼ αtpp� 1αp
4 and a convergence domain Dα1 can be found, according to

what is proposed in [10].
More precisely, the used energy function (7) is not positive inside all interior of D̆:, so that the

domain of convergence has been enlarged to Dα1 ¼ zAX zt
p 0

0 0

� �
zrαtpp�1αp

����
	
:



� In the practical stabilization approach developed in [11], the main idea is based on the fact that

the energy of a physical system cannot be nil at an equilibrium point of the average system.
According to this principle, the following energy function has been used for system (3).

V2 zð Þ ¼ ztP2z with P2 ¼
p αp
αtp εp

" #
; iAI; P2AR nþ1ð Þ� nþ1ð Þ and pARn�n: ð8Þ

With V2 z�ð Þa0. For this strategy, the value of εα ¼ εpmin ¼ αtpp�1αp and a convergence
domain Dα can be calculated.

These two results provide two domains of convergence, their associated constraints and the
values for εpmin. These elements will be used to determinate the invariant sets, and the cyclic
nature of the closed-loop behaviors.

Note 1

If we note by P0 ¼
p 0

0 0

� �
, P1 ¼

2p αp

αtp 0

" #
and P2 ¼

p αp

αtp εp

" #
as used in [10,11], and for

εZ0, we observe that:
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� All sets defined by zAX ztP0z¼ εj gf for small positive number ε are concentric ellipses
centered on the average equilibrium ze and are related to the generic energy sets levels of the
original PWA system (1), examples are the domains �D; Dα; Dα1 ; D0 and the singleton ze
itself.

� All sets defined by zAX ztPz¼ εj g; P¼ P1 or P2f are concentric ellipses centered on z�� and
are related to the generic energy sets levels of the augmented system (3), examples are
V1 zð Þ ¼ 0; V2 zð Þ ¼ V2min zð Þ and z�� itself.

2.3. Practical switching control strategy

In these two approaches, the closed-loop switching law consists in stopping the switching as
soon as the trajectory reaches the inner domain Dα for the first approach in [10]), and to restart it
when the trajectory tries to get out of the outer domain D̆. This technique provides satisfaction
and good closed-loop behaviors, it is very useful for the stabilization of general PWA systems.
More precisely, it encodes a practical prevention against sliding motions which could occur, by
swinging between the two domains, so it reduces the switching frequency when approaching the
target point. In fact, the two approach versions rule out of sliding motions because the
investigation of such behaviors in the synthesis operation (stabilization by switching) is very
difficult see impossible since the regions have to be also found within the design operation.

2.4. Switched observer

Due to the state feedback nature of the developed approaches, a Luenberger like-observer has
also been proposed for bimodal PWA systems in [11]. The idea was based on the fact that the
active mode is indirectly known by the control approach and the studied systems do not present
jumps, and so the dynamic of the observer is given by:

_̂x ¼ aix̂ þ bi þ Li s� ŝð Þ:
ŝ ¼Cix̂:

(
ð9Þ

where x̂ϵRn, is the estimated states vector and Li are the observer gains.
As a result, the dynamic of the estimation error ~x ¼ x� x̂, is also defined by a switched system

in Eq. (10). Therefore, the convergence of the estimation error is guaranteed by the stabilization
of the corresponding switched system at the origin:

_~x ¼ _x� _̂x ¼ ai�LiCið Þ ~x; ~xAΩi ¼ ~xARnj ~xtqi ~xZ0
� �

: ð10Þ
Hence, by associating to each individual error a space region Ωi and using the single candidate

Lyapunov function: v ~xð Þ ¼ ~xtp ~x, p¼pt40; the stabilizing conditions of system (10) are
formulated as NMI (Nonlinear Matrix Inequality). With a change of variable and the help of
S-Procedure, the conditions are transformed to tractable BMI (Bilinear Matrix Inequality) and the
observer gains are calculated. With some synchronization process between switching instants
control and multi-observer states update, the method can easily be applied to the general PWA
systems with n modes. The results are exploited to compute the period of oscillations in the next
section.
Recall, an invariant is a property that holds at all reachable states from any initial state that

satisfies this property. Therefore, an interesting additional investigation consists in knowing
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whether the same domain of convergence is maintained when the observer pilots the system, and
when it starts from the same or different initials conditions of the system. This fact is explored by
the simulation results in Fig. 2. Where, the convergence is proved to be toward z** even if
starting from the target point z*, see Fig. 2-c.

3. PWA systems: invariant sets and limit set points

Invariant sets play an important role in systems control theory [16–22]; they are known as sets
containing all trajectories when starting inside, the simplest ones are the level sets of Lyapunov
functions. However, this notion cannot be directly extended to PWA systems for which a state
space partition and switching control strategy must be specified. Another important notion is the
ω-limits set points, which are defined as the convergence set points after an infinitely time
trajectory evolution. They also have to be readapted for switched systems. Indeed, for such
systems, the asymptotic behavior defined by some set points limits cannot be distinguished
without specifying the switching law for which the set is captured.

The stability notion for switched systems under arbitrary switching signal, is the only notion
that may lead to the uniformly invariance set property. However, this property is very
conservative and often unfeasible for real cases. For instance, we often need state space partition,
multiple Lyapunov functions or dwell-time property to stabilize or to prove the stability of
switched systems, but all these tools do not deal with uniformity. Here are some proposed
rearrangements of these definitions:

Definition 1. For a switched PWA system _x tð Þ ¼ aix tð Þ þ bi; tϵRþand iAI, a set M is said to be
an uniformly invariant set, if for all x0iAM; iAI and for any switching signal, the trajectory
xj tð ÞAM; jAI and then x tð ÞAM. ∎

Definition 2. For a switched PWA system _x tð Þ ¼ aix tð Þ þ bi; tϵRþand iAI, a set M is said to be
an invariant set with respect to a switching signal sðxÞ, if for all x0iAM; iAI and this
switching signal, the trajectory xj tð ÞAM; jAI and then x tð ÞAM. ∎

Based on the same ideas, asymptotic behaviors and sets ω-limit points may be defined as
follow:

Definition 3. For a switched PWA system _x tð Þ ¼ aix tð Þ þ bi; tϵRþand iAI; a set ω represents an
ω-limit set points with respect to a switching signal sðxÞ, if for all initial condition x0i; iAI

and this switching signal, the trajectory x tð Þ approaches ω as t-þ1. ∎

As the analyses depend on the switching law, the following section will be based on the two
stabilizing strategies developed in [10,11].

3.1. Main results

The �D domain, obtained during the stabilization is as invariant subset, centered on z�.
Therefore, this outer convergence domain may be considered as a starting point for our
investigation. The inner convergence domains Dα1 in [10] and Dα in [11] will be used to
determine the associated ω-limit set points for the switched augmented system (3). However,
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these domains are results of enlargements and adjustments, hence they are not directly related to
theirs corresponding ω-limit set points. Instead of the direct use of these domains, the results will
be based on theirs corresponding εmin and VðzÞmin.
Let us consider the problem at the origin, then the reference point ze becomes

z� ¼ ð0…01ÞtA �D, this implies that the invariant subset �D contains at least one average
equilibrium point. More precisely, an ω-limit set points cannot be empty inside an invariant
subset and cannot be reduced to a singleton since there is no common equilibrium. On the other
hand, for the two proposed approaches, it was shown that all trajectories try to converge toward
z�� and are maintained around by switching which makes oscillations appear. Finally, unproven
statements of several works attest that these systems can exhibit cyclic behaviors around the
average equilibrium. We propose here to exhibit the conditions under which these cyclic
behaviors occur.

Theorem 1. Let us consider a PWA system _x tð Þ ¼ aix tð Þ þ bi without common equilibrium

iAIm; xðtÞARn and tARþ. For an energetic function V zð Þ; z¼ x

1

� �
and for some

stabilizing switching control sðxÞ, let M be a positive invariant subset with respect to sðxÞ, that
contains at least one point ze ¼

xe
1

� �
with xe average equilibrium point of the PWA system, then

8pAM, the set ω-limit points verifies:

) ω(p) is a non-empty set that cannot be reduced to a singleton.

And one of the two following assertions is true:

an
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) ω(p) is a stable quasi-periodic orbit around z��aze with z�� ¼ argzAMðVminðzÞÞ and d z��; zeð Þ
very small calculable error.

) ω(p) is a stable periodic orbit around ze ¼
xe

1

� �
. ∎

3.2. Detailed mathematical proof of theorem 1

Let us note Eαω �Dα and Eα1ω �Dα1 respectively the two ω-limit set points in [10,11]. The
proof is accomplished when these sets are accurately designed as closed and non-empty
connected subsets, the periodicity and stability of the infinite time trajectories evolution (limit
cycles) is established, and the associated critical parameters calculated.ce

pte
d m
c

3.2.1. Design of ω-limit sets points

� For the second approach version [11], no restriction for the trajectory to reach z�� but with
some quantity of energy and the corresponding ω-limit set points may reduce to one point that
is z��. Nevertheless, the trajectory cannot be maintained at this point for two reasons:

i. Because z�� is not a common equilibrium and enforced switching is needed to move toward it.
ii. If reached, this is done with a not nil energy i.e. V2min zð Þ ¼V z��ð Þ ¼ εp�αtpp�1αpa0 for z��

¼ x��

1

� �
with x�� ¼ �p�1αp: In this case, the corresponding ω-limit set points are given by

A
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the closure of the following set:

ℇαω ¼ zAX jzt
p αp
αtp εp

" #
zrεp�αtpp

�1αp

( )
¼ zAX jzt

p αp
αtp αtpp�1αp

" #
zr0

( )

This represents a reduction of an ellipsoid to one point; while the enforced switching tries to
maintain the trajectory at this point, the results are oscillations around z��.

For the above reasons, the existence of oscillations is guaranteed. However, to make their
appearance more clearly, we must eliminate the possibility of the reduction of the ellipsoid
closure that represents the ω-limit set points as follow:

Since εpZαtpp�1αp40 , we have for any zAX

zt
p αp
αtp εp

" #
zrεp�αtpp

�1αp⟹zt
p αp
αtp εp

" #
zrεp�δαtpp

�1αp;δr1

⟹zt
p αp
αtp δαtpp�1αp

" #
zr0

In order that the last term represents a non-empty ellipsoid, δ must be strictly less than 1.
In fact, the introduction of the parameter δ allows ingeniously depriving the energy function

V zð Þ to reach its minimum V2min zð Þ ¼V z��ð Þ ¼ εp�αtpp�1αp and stop the convergence at
slightly higher value ~V2min zð Þ ¼ εp�δαtpp�1αp.

For accuracy reason, δ must be positive and very near the unity say 0{δo1 and it may be
used as a free parameter.

The new ω-limit set points for the second method is given by the closure of the following
ellipsoid:

~ℇαω ¼ zAX jzt
p αp
αtp δαtpp�1αp

" #
zr0

( )
ð11Þ

Notice this ellipsoid representation is homogenous; the multiplication of the inner matrix by
any positive factor does not affect the ellipsoid. In order to make appear the center, and since the
nþ 1ð Þ� th element composing X is constant (equal to 1) then this description may be identified
to the following representation in Rn:

~ℇαω ¼ xARn x�xcð ÞtN�1 x�xcð Þr1
� �

; Nt ¼N40 ð12Þ

That can be rewritten in X as follow:

~ℇαω ¼ zAX jzt
N�1 �N�1xc

�xtcN
�1 xtcN

�1xc�1

" #
zr0

( )
ð13Þ

We deduce by identification:

N ¼ p�1

xc ¼ �p�1αp
and xtcN

�1xc�1¼ δαtpp
�1αp

(
ð14Þ
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From the last equation, we obtain: 1�δð Þαtpp�1αp ¼ 1, this condition can be used to scale the
ellipsoid equation leading to:

~ℇαω ¼ zAX jzt
p αp
αtp αtpp�1αp�1

" #
zr0

( )
ð15Þ

This ellipsoid is still centered on z�� ¼ x��

1

� �
¼ xc

1

� �
with x�� ¼ xc ¼ �p�1αp where the

lengths of its semi- axis are given by the square roots of the scaled matrix, e.g. the maximum
semi-axis length is:

dgαM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αtpp�1αpð1�δÞλmax p�1ð Þ

q
ð16Þ

Using δ as a user-made parameter with 0{δo1, we have the following result:

λmax p�1
� �¼ dgαM

2

αtpp�1αp 1�δð Þ⟹
1

λmin pð Þ ¼
dgαM

2

αtpp�1αp 1�δð Þ

⟹λmin pð Þ ¼ αtpp�1αpð1�δÞ
dgαM

2

⟹p4
αtpp�1αpð1�δÞ

dgαM
2 ð17Þ

Since εpZαtpp�1αp which must be minimized in the LMI optimization of theorem 1 in [11],
then αtpp�1αp can be replaced by εp and the condition to be included in theorem 1 in [11] to
ensure an ω-limit set points as an ellipsoid with a prescribed maximum axis length dgαM is given
by:

p4
ð1�δÞεp
dgαM

2 ð18Þ

� In the first version [10], the ω-limit set points is described by V1ðzÞ ¼ zt
2p αp
αtp 0

" #
z¼ 0,

since the trajectory can’t continue (converges) to z�� because the used energy function is not
positive inside see Section 2.2 for more detail. So that, the ω-limit points are directly given by
the closure of the following ellipsoid:

ℇα1ω ¼ zAX jzt
2p αp
αtp 0

" #
zr0

( )
ð19Þ

As before, this non-empty ellipsoid is centered on z�� ¼ x��

1

� �
with x�� ¼ � p� 1αp

2 and a
maximum semi-axis length (from scaled matrix):

dgα1M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαtpp�1αpÞλmax p�1ð Þ

q
2

ð20Þ
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Then the condition to be included in the theorem1 in [10] of the first approach version is given
by:

p4
εp

4dgαM
2 : ð21Þ

Note 2
Since ℇαω zð Þ is just a representation of ℇαω xð Þ in the augmented space with a constant (equal to

1) of the nþ 1ð Þth dimension of z, we do not distinguish ℇαω zð Þ from ℇαω xð Þ when speaking about
the ω-limit set points ℇαω.

3.2.2. Periodicity of the infinite time trajectories evolution
It is demonstrated that for the stated practical stabilizing conditions and when starting from

any initial point, all trajectories of system (3) approach the closed and non-empty connected
subset ℇαω (or ℇα1ωÞ which is also a path-connected subset. Furthermore, this ω-limit set points
does not contain any equilibrium and no trajectory can enter this domain from outside coming,
and reciprocally no trajectories can escape it when starting inside (see Fig. 3). In that case, it is
not difficult to find a translation number τ(ϵ) for any positive real number ϵ so that:

x tþ τðϵÞð Þ�xðtÞ rϵ when x tð Þ approaches these ω� limit set points:
���� ð22Þ

These trajectories cannot be other than periodic or quasi-periodic evolution which is
characterized by the above propriety.

Recall, a trajectory x(t) will be called a limits cycle when its distance to the ω-limit set points
ℇαω vanishes for infinite time evolution i.e.

lim
t-þ1

d x tð Þ;ℇαωð Þ ¼ 0 ð23Þ

3.2.3. Trajectories stability
We have the following result:

Proposition 1. Under practical stabilizing conditions, all trajectories of system (3) end up by
stable periodic or quasi-periodic orbits. ∎

The proof is indirectly provided by the fact that our practical stabilization approaches are
demonstrated and validated for all trajectories and these periodic evolutions are simple
trajectories then these periodic or quasi-periodic orbits are certainly stables. Using an extension
of the small-gain theorem for general nonlinear systems, the robustness of the existence of
periodic trajectories has already been studied before in [24].

3.2.4. Periodic trajectories parameters calculation
In plus of the amplitude, the period of oscillations is a critical parameter that must be

calculated or approximated for periodic trajectories. In our case, many interesting informations
are available so that any numerical method based sampling time at switching instants may be
used to obtain the period [25,26]. A good approximation of this parameter suffices since it is not
used in the analysis nor for the synthesis, nevertheless, precise techniques can be used for
informative purpose.
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i. Period calculation
Fortunately, our approach is equipped with an efficient on-line general state estimation
technique. The subsystem (mode) to be activated is provided by the control approach at each
instant time. Then a time counter can suffice to determine the period of oscillations, moreover,
all switching instants may be identified. However, because of the global nature of the proved
stabilization approach, the trajectory may start far away and makes time to reach the ω-limit
set points ℇαω. So that, a judicious initialization of the time counter is necessary.
Let t̂0 be the first time the trajectory reaches exactly the closure of ℇαω, this will be detected by
the fulfillment of the following condition:

ℇαωðẑðt̂0ÞÞ ¼ 0 ð24Þ

Let t0Z t̂0 be the time at which the first switch on the closure of ℇαω occurs.

Let Mk, k¼ 1;…:;mf g be three columns matrices, Mk ¼ Tk
Mv

kuk
� �

with

Tk
M ¼

tk1
⋮
tknk

0
B@

1
CA; vk ¼

yk1
� �t

yk1
⋮

yknk

� �t
yknk

0
BBB@

1
CCCAand uk ¼

x̂k1
� �t

x̂k1
⋮

x̂knk

� �t
x̂knk

0
BBB@

1
CCCA.

� �nu
sc

rip
t

Let Rk , k¼ 1;…:;mf g be two columns matrices, Rk ¼ Tk
Rs

k with

Tk
R ¼

τk1
⋮
τknk

0
B@

1
CA; sk ¼

x̂k1
� �t

x̂k1
⋮

x̂knk

� �t
x̂knk

0
BBB@

1
CCCA.  m

a

With x̂ki is the estimated state during mode k at time tki , and yki ¼ x̂ki �xc. Notice that tk1Z t0 is

the first activation time of mode k on the closure of ℇαω and x̂k1 is the corresponding estimated

state. Whereas, tknk is the deactivation time of mode k on the closure of ℇαω, and x̂knk is the
corresponding estimated state. Obviously, the matrices Mk have different dimensions since the
activation period are not necessary equal, and same remark for Rk.
Without loss of generality, let us suppose that all modes are visited and in the numerical order
k¼ 1; k¼ 2;……k¼m then the state continuity of PWA systems leads to:

tknk ¼ tkþ1
1 ð25Þ

Taking t11 ¼ τ11 ¼ t0, this means that at time tm ¼ tmnm ¼ τmnmall modes are visited each once.
Henceforth, we stop updating the matrices Mk that must be stored and we keep updating the
matrices Rk without saving Rk�1. In other words, at time tm, another cycle of modes
succession starts. After each mode evolution the following vector can be computed:

wk ¼ sk�uk
� � ð26Þ
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If wk ¼ 0 then sk ¼ uk which means that:

x̂ki tið Þ� �t
x̂ki tið Þ ¼ x̂ki τið Þ� �t

x̂ki τið Þ; i¼ 1; nk and τiZ tm4ti

Since ℇαω is centered on x�� ¼ xc ¼ �p�1αpax� ¼
0

⋮
0

0
B@

1
CA; it can be shown that
xAℇαω ⇏�xAℇαω and we have the following result:

If wk ¼ 0 ) x̂ki tið Þ ¼ x̂ki τið Þ; i¼ 1; nk and τiZ tm4ti ð27Þ

Then the period of trajectory oscillations is given by:

Tp ¼ Tk
R ið Þ�Tk

M ið Þ ¼ τk1� tk1 ð28Þ
ii. Amplitude calculation

Even if the precious information is calculated i.e. the ellipsoid maximum axis length dgαM
which is related in temporal domain to the maximum amplitude of oscillation; it is also possible
to determine this parameter from the above numerical on-line algorithm as follow:

The maximum amplitude of oscillation can be computed directly from the stored matrices
since these data are collected after the trajectory arrival to the ω-limit set points (the cyclic part).
If we denote by amax this maximum amplitude, we have:

amax ¼ max
1rkrm

max
1r irnk

ðsqrtðvkðiÞÞÞ ð29Þ

This mathematical detail completes the proof of Theorem 1.
 m
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3.2.5. Computational complexities and remarks

1. The conditions in the three cited theorems are BMI, they could not be directly tackled by
classic software before a gridding up operation of unknown scalars variables, this give an extra
degrees of freedom in the computation. Moreover, the BMI conditions cover the
corresponding LMI ones as special cases, hence theirs results are guaranteed to be at least
as good as the LMI ones. Nevertheless, LMI Matlab toolbox is used to perform our simulations
on the transformed BMI. Besides this note, the same notation has been used for the two
approaches in [10,11] but after optimization p, αp and εp are not necessary the same.

2. Automatic calculation and simplification may be obtained in the second approach version by
setting the instrumental parameter δ¼0, but this will slightly affect the results accuracy by
increasing the diameter of the target ellipsoid.

3. It may be difficult to determine exactly the time instants t0 and tm, this is not crucial since t0
may be chosen as any one among the switching times on ℇαω and not necessary the first one,
whenever condition (24) is crucial. Similarly, tm may be equal to any one of switching times of
the second or other cycle but necessary at least one cycle after t0.

4. The condition (24) may not be satisfied or takes a very long evolution time to be verified, a
relaxation consist to use in place: ℇαωðẑðt̂0ÞÞ ¼ μ, with μ a very small positive number
according to the working machine precision, and similarly for wk ¼ 0:
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5. The number of visited modes is crucial to mark the end of cycle (tmnmorτ
m
nm). A preliminary

simulation test may be necessary to facilitate the determination of the number of visited modes
and theirs succession when ℇαω is reached.

Note 3
In the absence of common equilibrium for PWA systems, there is no strict convergence towards
the average equilibrium z*. However, the convergence toward z** is not proved as inherent
property of PWA systems, it may be just an effect of the working state space augmentation.

4. Persevering issues in the stabilization of PWA systems

In spite of the PWA functions versatility, ease of implementation and approximation of most
nonlinear behaviors, PWA system with fixed parameters might not provide a good model of a
real system. Since in practice, there are important and inevitable factors that are often neglected
in performance analysis and control synthesis, leading to significant discrepancies between the
real behavior of the system and what are expected from simulations. For examples, parametric
uncertainty and time delay are of great importance in real situations. Moreover, the time delay
may be variable and/or uncertain without known ranges [27,28]. Taking account these factors in
the design control of general PWA systems may considerably complicate the operation, where
parameter uncertainty and/or time delay have to be strictly specified for each subsystem. Since
theirs primarily role in instability and poor performances for controlled systems is currently well
recognized [27], then neglecting these factors or theirs effects is also not a good solution.
Moreover, the phenomena of time delay in PWA and switched systems may be very
complicated. In fact, there may also exist time delay between modes switching and control
process switching, this often occurs when the switching control process makes more time to act
on the real plant. Examples of these problems may be encountered in all networked control
systems communicating by channels. This will lead to asynchronous switching that may also
destabilize the controlled system [29]. Similarly, asynchronous switching can appear between
plant modes switching and the observer ones when multi-estimation technique is employed as the
one presented in this work, then destroyed estimation results are to be expected. Although,
switched systems with time delay have received great interest [27], few works are devoted to
PWA ones [30], and more recently, many researchers commence addressing asynchronous
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Fig. 1. Example 1: System states and their estimates, observer open loop test.
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Fig. 2. Example 1: Trajectories with high precision: (a) stabilization without observer, (b) stabilization based observer
with same IC and different ones in (c), Superposition of three executions in (d), Zoom meeting (b) and (c) in (e) and zoom
meeting (b) and (c) with (a) in (f).
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switching issues [31–33]. Most of these researches are time-domain based on Lyapunov–
Krasovskii Functional Method and Razumikhin theorem, they are generally performed for a
specific situation. Fortunately, several authors [34] affirm that for delay-free switched systems,
switching strategy may still functions for the delayed version if the time delay is small.
Moreover, some delay-dependent dwell time switching strategies to compensate asynchronous
switching have also been proposed recently in [35].

On the other parts, showing robustness under invariance principle or robustness of the
obtained invariant sets is not an easy task. Some results on the computation of robust invariant

A



Fig. 3. Example 1: System states and theirs estimates for an execution with less small bound on εp, the zoom part for an
execution starting near the reference.
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ipt

sets and/or viability verification that ensures robustness are proposed [36], but still much more
works have to be done.
From the above brief discussion, it is clear that addressing all these issues in one unified work

is fruitless. Particularly, designing a robust PWA state feedback control for a PWA time-delay
system and formulating it as a convex feasibility and/or optimization program is not yet
conceivable. In fact, the various promising methods that have emerged for the synthesis of PWA
systems are performed for the idealized cases and generally closing with a non-convex problem
formulation. An exception is the PWA slab systems subclass, where state feedback quadratic
stabilization is formulated as a convex optimization problem [37].
A persistent notice that worth being revealed, is the investigation of the time delay influence

on the oscillations occurrence, this may be recognized as a deficient task that may complete this
work. while, in the theory of dynamical systems, it is confirmed that varying time delay value can
facilitate controlling the system behavior and possibly suppress oscillations, at present, this
cannot be confirmed for switched and PWA systems.

5. Illustrative examples ed
 m
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us

cr
t

Example 1. Consider the following bimodal PWA system:

_x tð Þ ¼
0 ρ
�ρ �1

!
xþ 1�ρ

0

� �
; xAR2; ρA ð0; 1Þ

to be stabilized at an average equilibrium xe ¼
x1
x2

 !
¼ 2

�1

� �
: For the two approaches, the

system has been successfully stabilized from any initial conditions; the Fig. 1 shows the
simulation results for the second approach.
According to our idea, the trajectory converges necessary to a small ball around z��. However,

due to the small value of εp we cannot distinguish z�� from z� , so that it seems that we have a
stabilization around the average equilibrium desired reference z�. More precise results are
showed in Fig. 2. In fact, Fig. 2-a shows stabilization based on system states i.e. without
observer. Fig. 2-b represents trajectory when stabilization is based on observer output, the system
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Fig. 4. Example 2: a general feedback interconnection of a saturating system.

Fig. 5. Example 2: System states and theirs estimate for the stabilization at the origin, observer open loop test.
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and its states estimator start from the same initial conditions. Whereas in Fig. 2-c, the
stabilization based observer is performed when the system and observer start from different
initial conditions. A superposition of the three execution is presented in fig 2-d, where the second
execution is scarcely visible.

A confirmation that trajectories of all three executions converge to the same convergence ball
around z�� (propriety of invariance) is illustrated by Fig. 2-e and Fig. 2-f. Where trajectory 2-b
meets trajectory 2-c on the convergence ball in Fig. 2-e. The two resultant trajectories meet
trajectory 2-a on the same ball in Fig. 2-f.

When the optimization is performed for a less small bound value on εp, the switching effects
and the periodicity of the trajectory are more visible, see Fig. 3. As well, if starting in the vicinity
of the desired average equilibrium and the working precision is very small, the cyclic evolution is
provoked and the occurrence of limit cycle is clearly recognizable, see the zoom part in Fig. 3.
These oscillations are around the average equilibrium desired reference z� as stated in the
theorem 1.

Example 2. Saturating Systems

Consider a general feedback interconnection of an LTI siso system from [38] with a saturation
controller as depicted in Fig. 4. Recall, Symmetric and asymmetric saturation exists in different
parts of a system control, such as the actuator, the sensor and the controller. However, most
attention has been devoted to symmetric actuator saturation to which may be transformed also
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Fig. 6. Example 2: (a) trajectory for stabilization based on system states, (b) trajectory for stabilization based on estimated
states.

Fig. 7. Example 2: Limit cycles arising for a less precise execution.
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the asymmetric one [39]. Actuator saturation involves fundamental control problems such as
global stabilization, its effect is often related to physical-controlled systems with input magnitude
limitation and networked control systems [1,40].
Where the control signal obey to the following rule for constants u0; d40:

u tð Þ ¼
�u0 if y tð Þ4d

� u0
d y tð Þ if jy tð Þjrd

u0 if y tð Þo�d

8><
>:

We obtain a saturating system which belongs to a strongly nonlinear class of systems; these
systems can exhibit extremely complex behaviors. Some may be chaotic, others may have
several isolated equilibriums, others might have limit cycles, or even some combination of all
these behaviors.
As discussed in [23], this system is symmetric around the origin and has a unique solution for

any initial state. In the state space, the saturation controller introduces three regions each with its
own dynamic. These regions are separated by two switching surfaces consisting of hyperplanes
of dimension (n–1) : S1:2 ¼ xARnjCx¼7df g, they can be approximated by conic regions in our
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approach or directly calculated. We obtain the following corresponding PWA system:

_x ¼ Ax�Bu0; for xAΩ1

_x ¼ ðA� u0
d BCÞx; for xAΩ2

_x ¼ Axþ Bu0; for xAΩ3

with

Ω1 ¼ xARn Cx4df g
Ω2 ¼ xARnjj Cxjrdf g
Ω3 ¼ xARn Cxodf g

8><
>:

8><
>:

A deeper investigation of the system behavior is strongly related to the examination of the
eigenvalues of the matrix ðA� u0

d BCÞ. This allows deriving conditions and state space subsets
from which the system can converge asymptotically to the origin, to a limit cycle or even diverge
see [23] for more detail. Yet, most approaches fall to stabilize this system at the origin which
represents an average equilibrium. t

4.1. Numerical application: “third order Goodwin oscillator model”

This example is taken from [38] as a saturation system with

A¼
�0:5 0 0

0:5 �0:5 0

0 0:5 �0:5

0
B@

1
CA; u0 ¼

1
2
and d¼ 1

9

So that, we have the following PWA system:

A1 ¼
�0:5 0 0

0:5 �0:5 0

0 0:5 �0:5

0
B@

1
CA; b1 ¼

�1=2

0

0

0
B@

1
CA;

A2 ¼
�0:5 0 �9=2

0:5 �0:5 0

0 0:5 �0:5

0
B@

1
CA; b2 ¼

0

0

0

0
B@

1
CA;

A3 ¼
�0:5 0 0

0:5 �0:5 0

0 0:5 �0:5

0
B@

1
CA; b3 ¼

1=2

0

0

0
B@

1
CA;

x¼
x1

x2

x3

0
B@

1
CA, for the origin, we have: x1 ¼ x2 ¼ x3 ¼ 0.ep
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Unlike most available approaches, our complete methodology can easily be applied to stabilize

this PWA system at the origin x0 ¼
0

0

0

0
B@

1
CA. First, Fig. 5 and Fig. 6-a (left) show the impeccableAcc
result of the control approach to stabilize the system at the origin. The excellent quality of the
switched observer can be evaluated from the rapid convergence of the estimation errors in Fig. 5.
Finally, the irrefutable confirmation of the methodology when the stabilization is based on
observer outputs is shown by Fig. 6-b (right) that represents a closed loop test of the observer.

As stated before, all these stabilization are toward the convergence ball around z**. However,
under some conditions the system can oscillate around the average equilibrium z*. In the Fig. 7-a
(left), we have showed the occurrence of oscillations. By a diminution of the working precision,
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we can clearly visualize the direct passage to the periodic solution which is illustrated by Fig. 7-b
(right).
6. Conclusion

In this paper, a novel idea was proposed, to characterize periodic solutions and to determine
the critical parameters of the cyclic behaviors of PWA systems, under practical stabilizing
switching law. It has been demonstrated that the convergence domains of the general approach
are invariants and strongly related to the appearance of periodic solutions. Moreover, the
proposed approach has an advantage to deal with prescribed oscillation parameters values which
can be included directly in the design operation. The different theorems and propositions
proposed in this paper have been illustrated by various simulations. Effects of system
uncertainties and the influence of time delay during the switching are not considered in this
paper. Their impact on the invariant set robustness and the cyclic behaviors of limit points will be
a natural extension of this work.
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