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Abstract

This paper investigates the capabilities of the Ant Colony Optimiza-
tion (ACO) meta-heuristic for solving the maximum clique problem, the
goal of which is to find a largest set of pairwise adjacent vertices in a graph.
We propose and compare two different instantiations of a generic ACO
algorithm for this problem. Basically, the generic ACO algorithm succes-
sively generates maximal cliques through the repeated addition of vertices
into partial cliques, and uses “pheromone trails” as a greedy heuristic to
choose, at each step, the next vertex to enter the clique. The two instan-
tiations differ in the way pheromone trails are laid and exploited, i.e., on
edges or on vertices of the graph.

We illustrate the behavior of the two ACO instantiations on a repre-
sentative benchmark instance and we study the impact of pheromone on
the solution process. We consider two measures —the re-sampling and
the dispersion ratio— for providing an insight into the performance at
run time. We also study the benefit of integrating a local search proce-
dure within the proposed ACO algorithm, and we show that this improves
the solution process. Finally, we compare ACO performance with that of
three other representative heuristic approaches, showing that the former
obtains competitive results.

1 Introduction

The maximum clique problem is a classical combinatorial optimization problem
that has important applications in different domains such as coding theory, fault
diagnosis, or computer vision. Moreover, many important problems —such as
constraint satisfaction, subgraph isomorphism, or vertex covering problems—
are easily reducible to this maximum clique problem.

Given a non-directed graph G = (V, E), such that V is a set of vertices, and
E ⊆ V × V is a set of edges, a clique is a set of vertices C ⊆ V such that every
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pair of distinct vertices of C is connected with an edge in G, i.e., the subgraph
induced by C is complete. A clique is partial if it is strictly included in another
clique; otherwise it is maximal. The goal of the maximum clique problem is to
find a clique of maximum cardinality.

The maximum clique problem is very closely related to the maximum in-
dependent (or stable) set problem, the goal of which is to find the maximum
subset of V such that no two vertices of the subset are pairwise adjacent: a
maximum clique of a graph G = (V, E) is a maximum independent set of the
complement graph G′ = (V, V × V − E) of G.

The clique problem —that consists in finding a clique of size k in a graph—
is one of the first problems shown to be NP-complete in [1]. More generally,
the problem of finding a maximum clique is NP-hard, and does not admit
polynomial-time approximation algorithms (unless P=NP) [2]. Hence, exact
approaches —usually based on branch-and-bound— become intractable when
the number of vertices increases, and much effort has recently been directed on
heuristic approaches.

Heuristic approaches for the maximum clique problem

Heuristic approaches leave out exhaustivity and use heuristics to guide the
search towards promising areas of the search space. They run in polynomial
time and quickly find “rather good” solutions, that may be optimal, but opti-
mality is not guaranteed.

Many heuristic approaches are based on sequential greedy heuristics [3, 4,
5, 6, 7, 8]. The idea is to build maximal cliques, starting from an empty clique,
and iterating through the repeated addition of vertices. To decide which vertex
is added, one uses a greedy heuristic such as, e.g., choosing the vertex that
has the highest degree among candidate vertices. To avoid usual greedy traps,
greedy heuristics can be improved by injecting a mild amount of randomization
combined with multiple restarts. Also, weights used by the greedy heuristic may
be adapted from restart to restart as proposed, e.g., in [7, 8].

To improve the quality of a constructed clique, local search can be used
to explore its neighborhood, i.e., the set of cliques that can be obtained by
removing and/or adding a given number of vertices: local search iteratively
moves in the search space composed of all cliques, from a clique to one of its
(best) neighbors. To avoid being trapped in local optima, where all neighbors
are cliques of smaller sizes, local search may be combined with some advanced
meta-heuristics. For example in [9, 10], Simulated Annealing is used to jump
out of local optima by allowing moves towards smaller cliques with a probability
proportional to a decreasing temperature parameter. In [11, 12, 13], Tabu Search
is used to prevent local search from cycling through a small set of good but
suboptimal cliques by keeping track, in a tabu list, of forbidden moves between
cliques. In [6], Reactive Search enhances Tabu Search by reactively adapting
the size of the tabu list with respect to the need of diversification. In [14], local
search is combined with a Genetic Algorithm that allows one to escape from
local maxima by applying crossover and mutation operators to a population of
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maximal cliques.

The Ant Colony Optimization meta-heuristic

In this paper, we investigate the capabilities of another meta-heuristic —Ant
Colony Optimization (ACO) [15, 16]— for solving the maximum clique problem.
The basic idea of ACO is to model the problem to solve as the search for a
minimum cost path in a graph, and to use artificial ants to search for best
paths.

The behavior of artificial ants is inspired from real ants: artificial ants lay
pheromone trails on components of the graph and choose their path with respect
to probabilities that depend on pheromone trails that have been previously laid;
these pheromone trails progressively decrease by evaporation. Intuitively, this
indirect stigmergic communication means aims at giving information about the
quality of path components in order to attract ants, in the following iterations,
towards the corresponding areas of the search space. Indeed, for many com-
binatorial problems, a study of the search space landscape shows a correlation
between solution quality and the distance to optimal solutions [17, 18, 19].

The first ant algorithm to be applied to a discrete optimization problem has
been proposed by Dorigo in [20]. The problem chosen for the first experiments
was the Traveling Salesman Problem and, since then, this problem has been
widely used to investigate the solving capabilities of ants [21, 22]. The ACO
meta-heuristic, described in [15, 16], is a generalization of these first ant based
algorithms, and it has been successfully applied to different hard combinatorial
optimization problems such as quadratic assignment problems [23, 24], vehicle
routing problems [25, 26], and constraint satisfaction problems [27, 28].

We have proposed in [29] a first ACO algorithm for the maximum clique
problem. The contribution of this paper with respect to this preliminary work
mainly concerns (i) the definition of a variant of this first ACO algorithm,
that differs in the way pheromone is laid and exploited; (ii) an experimental
comparison of these two different ways of managing pheromone; (iii) the use of
diversity measures in order to provide an insight into the performance at run-
time; (iv) an investigation of the benefit of combining ACO with local search for
this problem; and (v) an experimental comparison with three state-of-the-art
heuristic approaches.

Another Ant algorithm for the maximum clique problem has been recently
proposed in [30]. This algorithm is rather different as ants are distributed, i.e.,
each ant only has local knowledge of the graph, so that the algorithm can be
implemented in a distributed system. As a counterpart, performance of this
algorithm by means of solutions’ quality are rather far from performance of the
ACO algorithm proposed in [29] and other non distributed algorithms.

Overview of the paper

Section 2 describes the generic ACO algorithm for the maximum clique problem
—called Ant-Clique— and its two different instantiations —called Vertex-AC
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and Edge-AC. Basically, Ant-Clique uses pheromone trails as a greedy heuristic
for choosing, at each step, the next vertex to enter the clique. However, in
Vertex-AC, pheromone trails are laid on vertices, and the choice of vertices
directly depends on the quantity of pheromone laying on them, whereas in
Edge-AC, pheromone trails are laid on edges, and the choice of vertices depends
on pheromone trails laying on edges connecting candidate vertices with the
vertices of the clique under construction.

In Section 3, we illustrate and compare the behavior of Vertex-AC and
Edge-AC on a representative benchmark instance. We consider two measures
in order to provide a deeper insight into their behavior at run-time: the re-
sampling ratio is used to measure how often the search space is re-sampled,
whereas the dispersion ratio is used to quantify the differences between the
cliques successively computed during the solution process.

In Section 4, we show how local search can be combined with Ant-Clique,
and we study on a representative benchmark instance the influence of local
search on the solution process.

Section 5 experimentally compares the four different ACO instantiations
(Vertex-AC and Edge-AC, with and without local search) on a set of benchmark
graphs. We show that Edge-AC usually finds better solutions than Vertex-AC,
but is more time consuming. We also show that the integration of local search
improves solutions’ quality on a majority of instances.

Finally, Section 6 compares our approach with other heuristic approaches.
We have more particularly chosen for this comparison three recent and represen-
tative algorithms within different classes of heuristic approaches: RLS [6], which
uses reactive local search and obtains the best known results on most bench-
mark instances, DAGS [8], which combines an adaptive greedy approach with
swap local moves and obtains the best known results on some other instances,
and GLS [14], which combines a genetic approach with local search.

2 ACO for the maximum clique problem

In ACO algorithms, ants lay pheromone trails on components of the best con-
structed solutions in order to attract other ants towards the corresponding area
of the search space. To solve a new problem with ACO, one mainly has to
define the pheromone laying procedure —i.e., decide on which components of
constructed solutions ants should lay pheromone trails— and define the solu-
tion construction procedure —i.e., decide how to exploit these pheromone trails
when constructing new solutions.

Hence, to solve the maximum clique problem with ACO, the key point is to
decide which components of the constructed cliques should be rewarded, and
how to exploit these rewards when constructing new cliques. Indeed, given a
maximal clique Ci, one can lay pheromone trails either on the vertices of Ci, or
on the edges connecting every pair of different vertices of Ci:

• when laying pheromone on the vertices of Ci, the idea is to increase the
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Search of an approximate maximum clique in a graph G = (V, E):
Initialize pheromone trails to τmax

repeat the following cycle:

for each ant k in 1..nbAnts , construct a maximal clique Ck as follows:

Randomly choose a first vertex vi ∈ V

Ck ← {vi}

Candidates ← {vj ∈ V | (vi, vj) ∈ E}

while Candidates 6= ∅ do

Choose a vertex vi∈Candidates with probability p(vi)

Ck ← Ck ∪ {vi}

Candidates ← Candidates ∩ {vj | (vi, vj) ∈ E}

end while

end for

Update pheromone trails w.r.t. {C1, . . . , CnbAnts}

if a pheromone trail is lower than τmin then set it to τmin

if a pheromone trail is greater than τmax then set it to τmax

until maximum number of cycles reached or optimal solution found

return the largest constructed clique since the beginning

Figure 1: Generic algorithmic scheme of Ant-Clique

desirability of each vertex of Ci so that, when constructing a new clique,
these vertices will be more likely to be selected;

• when laying pheromone on the edges of Ci, the idea is to increase the desir-
ability of choosing together two vertices of Ci so that, when constructing
a new clique Ck, the vertices of Ci will be more likely to be selected if
Ck already contains some vertices of Ci. More precisely, the more Ck will
contain vertices of Ci, the more the other vertices of Ci will be attractive.

A goal of this paper is to compare these two different ways of using pheromone.
Therefore, we introduce a generic ACO algorithm called Ant-Clique, and two
different instantiations of it: Vertex-AC, where pheromone is laid on vertices,
and Edge-AC, where pheromone is laid on edges.

In this section, we first describe the generic algorithmic scheme that is com-
mon to the two instantiations. Then, we describe the three points on which
they differ, i.e., the definition of pheromonal components, the exploitation of
pheromone trails when constructing cliques, and the pheromone updating pro-
cess. Finally, we compare their time complexities.

2.1 Generic algorithmic scheme of Ant-Clique

Figure 1 displays the generic ACO algorithmic scheme for solving the maxi-
mum clique problem. At each cycle of this algorithm, every ant constructs a
maximal clique. It first randomly chooses an initial vertex to enter the clique,
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and then iteratively adds vertices that are chosen within a set Candidates that
contains all the vertices that are connected to every vertex of the partial clique
under construction. This choice is performed randomly with respect to proba-
bilities that are defined in Section 2.3. Once each ant has constructed a clique,
pheromone trails are updated, as described in Section 2.4. The algorithm stops
either when an ant has found a maximum clique (when the optimal bound is
known), or when a maximum number of cycles has been performed.

This algorithm more particularly borrows features from the MAX −MIN
Ant System [19]: it explicitly imposes lower and upper bounds τmin and τmax

on pheromone trails (with 0 < τmin < τmax), and pheromone trails are set to
τmax at the beginning of the search.

2.2 Definition of pheromonal components

Pheromone trails are laid by ants on components of the graph G = (V, E) in
which they are looking for a maximum clique.

• In Vertex-AC, ants lay pheromone trails on the vertices V of the graph.
The quantity of pheromone on a vertex vi ∈ V is denoted τi. Intuitively,
this quantity represents the learned desirability to select vi when con-
structing a clique.

• In Edge-AC, ants lay pheromone trails on the edges E of the graph. The
quantity of pheromone on an edge (vi, vj) ∈ E is denoted τij . Intuitively,
this quantity represents the learned desirability to select vi when con-
structing a clique that already contains vj . Notice that since the graph is
not directed, τij = τji.

2.3 Exploitation of pheromone trails

Pheromone trails are used to choose vertices when constructing cliques: at each
step, a vertex vi is randomly chosen within the set Candidates with respect to
a probability p(vi). This probability is defined proportionally to pheromone
factors, i.e.,

p(vi) =
[τ fact(vi)]

α

∑
vj∈Candidates

[τ fact(vj)]α

where α is a parameter which weights pheromone factors, and τ fact(vi) is the
pheromone factor of vertex vi. This pheromone factor depends on the quantity
of pheromone laying on pheromonal components of the graph:

• in Vertex-AC, it depends on the quantity of pheromone laid on the can-
didate vertex, i.e.,

τ fact (vi) = τi

• in Edge-AC, it depends on the quantity of pheromone laid on edges con-
necting the vertices that already are in the partial clique and the candidate
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vertex: let Ck be the partial clique under construction, the pheromone fac-
tor of a candidate vertex vi is

τ fact(vi) =
∑

vj∈Ck

τij

Note that this pheromone factor can be computed in an incremental way:
once the first vertex vi has been randomly chosen, for each candidate ver-
tex vj that is adjacent to vi, the pheromone factor τ fact(vj) is initialized
to τij ; then, each time a new vertex vk is added to the clique, for each
candidate vertex vj that is adjacent to vk, the pheromone factor τ fact(vj)
is incremented by τkj .

One should remark that, for both Vertex-AC and Edge-AC, the probability of
choosing a vertex vi only depends on a pheromone factor and not on some other
heuristic factor that locally evaluates the quality of the candidate vertex, as
usually in ACO algorithms. Actually, we have experimented different heuristics,
and more particularly the greedy heuristic proposed, e.g., in [3, 6, 8]. The idea is
to favor vertices with largest degrees in the “residual graph”, i.e., the subgraph
induced by the set of candidate vertices that can extend the partial clique under
construction. The underlying motivation is that a larger degree implies a larger
number of candidates once the vertex has been added to the current clique.
When using no pheromone, or at the beginning of the search process when
all pheromone trails have the same value, this heuristic actually allows ants
to construct larger cliques with respect to a random choice. However, when
combining it with pheromone learning, we have noticed that after a hundred or
so cycles we obtain larger cliques without using the heuristic than when using
it.

To explain this rather counter-intuitive result, we have compared re-sampling
ratio (i.e., the percentage of solutions that are re-computed several times [31])
at run-time. We have noticed that when integrating the greedy heuristic to the
probability p(vi), this re-sampling ratio is significantly increased. This shows
that the search is trapped around a set of locally optimal cliques, and is not
diversified enough to be able to find larger cliques.

2.4 Updating pheromone trails

Once each ant has constructed a clique, the amount of pheromone laying on
pheromonal components is updated according to the ACO meta-heuristic. First,
all amounts are decreased in order to simulate evaporation. This is done by
multiplying the quantity of pheromone laying on each pheromonal component
by a pheromone persistence rate ρ such that 0 ≤ ρ ≤ 1. Then, the best ant of
the cycle deposits pheromone. More precisely, let Ck ∈ {C1, . . . , CnbAnts} be the
largest clique built during the cycle (if there are several largest cliques, ties are
randomly broken), and Cbest be the largest clique built since the beginning of
the run (including the current cycle). The quantity of pheromone laid by ant k
is inversely proportional to the gap of size between Ck and Cbest, i.e., it is equal
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to 1/(1+ | Cbest | − | Ck |). This quantity of pheromone is deposited on the
pheromonal components of Ck, i.e.,

• in Vertex-AC, it is deposited on each vertex of Ck,

• in Edge-AC, it is deposited on each edge connecting two different vertices
of Ck.

2.5 Time complexity of Vertex-AC and Edge-AC

Let nbMaxCycles and nbAnts respectively be the maximum number of cycles and
the number of ants. In the worst case (if an optimal solution is not found), both
Vertex-AC and Edge-AC will have to construct nbMaxCycles · nbAnts maximal
cliques, and to perform nbMaxCycles pheromone updating steps.

To construct a maximal clique, Vertex-AC and Edge-AC nearly perform the
same number of operations. Indeed, to construct a clique C, both instantiations
perform | C | −1 times the “while” loop of the algorithm of Figure 1. At
each iteration of this loop, they both have to: (i) compute probabilities for
all candidates, (ii) choose a vertex with respect to these probabilities, and (iii)
update the list of candidates. These three steps take a linear time with respect
to the number of candidate vertices1. At the first iteration, the number of
candidate vertices is equal to the degree of the initial vertex, and it decreases
at each iteration. Hence, in the worst case, the complexity of the construction
of a clique in a graph G, for both Vertex-AC and Edge-AC, is in O(ω(G) ·
maxd◦(G)), where ω(G) is the size of the maximum clique of G, and maxd◦(G)
is the maximum vertex degree in G. Note that both ω(G) and maxd◦(G) are
bounded by the number of vertices of G.

To update pheromone trails laying on pheromonal components of a graph
G = (V, E), Vertex-AC and Edge-AC perform a different number of operations:

• In Vertex-AC, the evaporation step requires O(| V |) operations and the
reward of a clique C requires O(| C |) operations. As | C |≤| V |, the whole
pheromone updating step requires O(| V |) operations.

• In Edge-AC, the evaporation step requires O(| E |) operations and the
reward of a clique C requires adding pheromone on each edge of C. As
the number of edges of a clique is smaller or equal to | E |, the whole
pheromone updating step requires O(| E |) operations.

Hence, the overall time complexity of Vertex-AC is in

O(nbMaxCycles(nbAnts · ω(G) · maxd◦(G)+ | V |))

whereas the overall time complexity of Edge-AC is in

O(nbMaxCycles(nbAnts · ω(G) · maxd◦(G)+ | E |))

1Remember that, as pointed out in 2.3, pheromone factors in Edge-AC are computed in an
incremental way, i.e., each time a new vertex is added to the clique, the pheromone factor of
each candidate vertex is updated by a simple addition.
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3 Diversification versus intensification of search

When solving a combinatorial optimization problem with a heuristic approach
such as evolutionary computation or ACO, one usually has to find a compro-
mise between two dual goals. On the one hand, one has to intensify the search
around the most “promising” areas, that are usually close to the best solutions
found so far [17, 18, 19]. On the other hand, one has to diversify the search
and favor exploration in order to discover new, and hopefully more successful,
areas of the search space. The behavior of ants with respect to this intensifi-
cation/diversification duality can be influenced by modifying parameter values
[32].

In this section, we first briefly discuss the settings of τmin, τmax, and nbAnts.
Then, we study the influence of α and ρ on the solution process on a represen-
tative benchmark instance. Finally, we provide an insight into the influence of
α and ρ on the intensification/diversification duality by means of two diversity
measures.

3.1 Bounding pheromone trails within [τmin, τmax]

As pointed out in [19], the goal of bounding pheromone trails within an interval
[τmin, τmax] is to avoid premature stagnation of search, i.e., a situation where all
ants construct the same solution over and over again so that no better solutions
can be found anymore. Indeed, by imposing explicit limits τmin and τmax on the
minimum and maximum pheromone trails, one ensures that relative differences
between pheromone trails cannot become too extreme. Therefore, the probabil-
ity of choosing a vertex cannot become too small and stagnation situations are
avoided. Furthermore, by initializing pheromone trails to τmax at the beginning
of the search, one ensures that during the first cycles the relative difference be-
tween pheromone trails is rather small (after i cycles, it is bounded by a ratio
of ρi). Hence, exploration is emphasized at the beginning of the search.

The effectiveness of bounding pheromone trails, and initializing them to the
upper bound, is demonstrated in [19] on the traveling salesman problem and
the quadratic assignment problem. Also, it has been shown to be effective on
constraint satisfaction problems [33].

To set appropriately τmin and τmax, we ran Ant-Clique on a “representa-
tive” subset of instances with different settings with τmax ∈ [4, 10] and τmin ∈
[0.001, 0.05]. On average, the best results have been obtained with τmin = 0.01
and τmax = 6. Note that this setting is consistent with [19], in which it is
shown that τmax should be set to an estimate of the asymptotically maximum
pheromone trail value, which is defined by δavg/(1−ρ) where δavg is the average
quantity of pheromone that is laid on pheromonal components at each cycle.
Indeed, in Ant-Clique, the quantity of pheromone laid at each cycle is equal to
1/(1+ | Cbest | − | Ck |), where Ck is the largest clique built during the cycle, and
Cbest the largest clique built since the beginning of the run: this quantity is equal
to 1 if Ck is the best clique found so far, and it is lower than 1 otherwise. This
quantity varies from one cycle to another (depending on the size of the cliques

9



computed during the cycle), but also from an instance to another. On the set
of DIMACS benchmark instances, the average gap of size beween Ck and Cbest

is close to 13, so that τmax should be set to a value around 1/((1+ 13) · (1− ρ))
which is equal to 7.1 when ρ = 0.99.

3.2 Varying the number of ants

To emphasize diversification and avoid premature stagnation, one can also in-
crease the number of ants so that more states are explored at each cycle. This
parameter has been set experimentally, by running Ant-Clique with different
values beween 10 and 50. On average, the best results have been obtained with
nbAnts = 30. With lower values, solution quality is often decreased as the best
clique constructed at each cycle usually is significantly smaller. With greater
values, running time often increases while solution quality is not significantly
improved as the best clique constructed at each cycle is not significantly better
than with 30 ants. Experimental results and a deeper analysis about the influ-
ence of the number of ants on the solution process of Edge-AC can be found in
[29].

3.3 Influence of α and ρ on the solution process

The two pheromonal parameters α and ρ have a great influence on the solution
process. Indeed, diversification can be emphasized either by decreasing the
value of the pheromone factor weight α —so that ants become less sensitive to
pheromone trails— or by increasing the value of the pheromone persistence rate
ρ —so that pheromone evaporates more slowly. When increasing the exploratory
ability of ants in this way, one usually finds better solutions, but as a counterpart
it takes longer time to find them. This is illustrated in Figure 2 on the C500.9

instance of the DIMACS benchmark. Note that this instance, which has 500
vertices and 112332 edges, is a rather difficult one, for which Ant-Clique has
difficulties in finding the maximum clique —which contains 57 vertices.

On this figure, one can first note that when α = 0 and ρ = 1, the best
constructed cliques are much smaller: in this case, pheromone is totally ignored
and the resulting search process performs as a random one so that after 500 or
so cycles, the size of the best clique nearly stops increasing, and hardly reaches
48 vertices. This shows that pheromone actually improves the solution process
with respect to a pure random algorithm.

For both Edge-AC and Vertex-AC, we remark that α and ρ influence the
solution process in a very similar way: when α increases or ρ decreases, ants are
able to find better solutions quicker. However, after a thousand or so cycles, both
versions find better solutions when α is set to 1 and ρ to 0.99 or 0.995 than when
α is set to 2 or ρ to 0.98. Hence, the setting of α and ρ let us balance between two
main tendencies. On the one hand, when limiting the influence of pheromone
with a low pheromone factor weight and a high pheromone persistence rate,
the quality of the final solution is better, but the time needed to converge on
this value is also higher. On the other hand, when increasing the influence
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Figure 2: Influence of pheromone on the solution process of Edge-AC (upper
curves) and Vertex-AC (lower curves) for the C500.9 graph: each curve plots
the evolution of the size of the best constructed clique (average over 50 runs),
when the number of cycles increases, for a given setting of α and ρ. The other
parameters have been set to nbAnts = 30, τmin = 0.01, and τmax = 6.
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of pheromone with a higher pheromone factor weight and a lower pheromone
persistence rate, ants find better solutions during the first cycles, but after 500
or so cycles, they are no longer able to find better solutions.

When comparing Edge-AC (upper curves) with Vertex-AC (lower curves),
one can note that after 2500 cycles, the best cliques found by Edge-AC are
slightly larger than the best ones found by Vertex-AC. For example, when set-
ting α to 1 and ρ to 0.99, the average size of the best constructed cliques is
equal to 55.6 for Edge-AC and to 55.2 for Vertex-AC. Moreover, three runs of
Edge-AC (over the fifty performed runs) have been able to find a clique of 57
vertices, whereas Vertex-AC only found cliques of 56 or less vertices.

However, if Edge-AC is able to find better cliques, it needs more cycles to
converge towards them. For example, when setting α to 1 and ρ to 0.99, the
average number of cycles needed to find the best clique is respectively equal to
923 for Edge-AC and 722 for Vertex-AC. Moreover, as discussed in Section 2.5,
each cycle of Edge-AC takes a longer time to perform than Vertex-AC: on this in-
stance, in one second of CPU time, Edge-AC and Vertex-AC respectively perform
104 and 188 cycles. Hence, to find their best cliques, Edge-AC and Vertex-AC

respectively need 8.9 and 3.8 seconds on average.
As a conclusion, on instance C500.9, the two algorithms behave in a rather

similar way at run time with respect to pheromone parameters, and a good
compromise between solution quality and CPU time is reached when α is set to
1 and ρ to 0.99. With such a parameter setting, Vertex-AC is more than twice
as fast as Edge-AC to find its best clique, but the best clique found by Edge-AC is
slightly better, on average, than the one found by Vertex-AC, and Edge-AC has
been able to find the best known solution for 6% of its runs, whereas Vertex-AC
never reached it.

This study on instance C500.9 allows us to determine a “good” parameter
setting to solve this particular instance. However, one can hardly assert that
the best parameters for C500.9 are also the best ones for other instances. In
particular, we have shown in [29] that the best parameters for another instance
(gen 400 P0.9 75) were different: indeed this instance is “easier” than C500.9

so that one has better choose parameters that favor a quick convergence such as
α = 3 and ρ = 0.985. In the rest of this paper, we have chosen to set parameters
to the same values for all instances. Another possibility would have been to use
an adaptive method, such as, e.g., the one described in [34]. This method
aims at defining an automatic procedure for finding good parameters through
statistically guided experimental evaluations. A racing method uses a pool of
initial parameters and, as computation proceeds, gather evidences allowing to
remove inferior candidates from the pool.

3.4 Measuring the diversity at run time

To provide an insight into Ant-Clique’s performance and to explicit the influ-
ence of pheromone on the capability of ants to explore the search space, we now
propose to measure the diversity of the computed solutions at run time. Many
diversity measures have been introduced for evolutionary approaches. Indeed,

12



Table 1: Evolution of the re-sampling ratio of Edge-AC and Vertex-AC for
graph C500.9. Each row successively displays the setting of α and ρ, and the
re-sampling ratio after 500, 1000, 1500, 2000, and 2500 cycles (average over
50 runs). The other parameters have been set to nbAnts = 30, τmin = 0.01,
τmax = 6.

Re-sampling ratio for Edge-AC
Number of cycles: 500 1000 1500 2000 2500
α = 1, ρ = 0.995 0.00 0.00 0.00 0.00 0.00
α = 1, ρ = 0.99 0.00 0.00 0.00 0.00 0.00
α = 2, ρ = 0.99 0.00 0.04 0.06 0.07 0.07
α = 2, ρ = 0.98 0.06 0.10 0.12 0.13 0.13

Re-sampling ratio for Vertex-AC
Number of cycles: 500 1000 1500 2000 2500
α = 1, ρ = 0.995 0.00 0.00 0.02 0.13 0.25
α = 1, ρ = 0.99 0.00 0.07 0.26 0.39 0.48
α = 2, ρ = 0.99 0.38 0.68 0.78 0.84 0.87
α = 2, ρ = 0.98 0.58 0.78 0.85 0.88 0.91

maintaining population diversity is a key point to prevent from premature con-
vergence and stagnation. Most commonly used diversity measures include the
number of different fitness values, the number of different structural individuals,
and distances between individuals [35].

To measure the diversification effort of Ant-Clique at run time, we propose
in this paper to compute the re-sampling and the diversification ratio.

3.4.1 Re-sampling ratio

This measure is used, e.g., in [31, 36], in order to get insight into how “effective”
algorithms are in sampling the search space: if we define nbDiff as the number
of unique candidate solutions generated by an algorithm over a whole run and
nbTot as the total number of generated candidate solutions, then the re-sampling
ratio is defined as (nbTot - nbDiff)/nbTot. Values close to 0 correspond to an
“effective” search, i.e., not many duplicate candidate solutions are generated,
whereas values close to 1 indicate a stagnation of the search process around a
small set of solutions.

Table 1 provides an insight into Ant-Clique’s performance by means of this
re-sampling ratio. This table shows that Vertex-AC is less “effective” than
Edge-AC in sampling the search space as it often generates cliques that have
already been previously generated. For example, when setting α to 1 and ρ
to 0.99, 7% of the cliques computed by Vertex-AC during the first thousand of
cycles had already been computed. This re-sampling ratio increases very quickly
and reaches 48% at cycle 2500, i.e., nearly half of the cliques computed during
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each run already had been computed before. As a comparison, with the same
parameter setting, Edge-AC nearly never computes twice a same clique during
a same run, so that it actually explores twice more states in the search space.

The re-sampling ratio allows one to quantify the size of the searched space,
and shows that Edge-AC has a higher search capability than Vertex-AC (for
the considered C500.9 instance). However, the re-sampling ratio gives no infor-
mation about the distribution of the computed cliques within the whole search
space. Actually, a pure random search (nearly) never re-samples twice a same
solution but, as it does not intensify the search around promising solutions, it
usually is not able to find good solutions. Hence, to provide a complementary
insight into Ant-Clique’s performance, we propose to compute a similarity ra-
tio which indicates how much the computed cliques are similar, i.e., how much
the search is intensified.

3.4.2 Similarity ratio

The similarity ratio corresponds to the pair-wise population diversity measure,
introduced for genetic approaches, e.g., in [37, 38]. More precisely, we define the
similarity ratio of a set of cliques S by the average number of vertices that are
shared by any pair of cliques in S, divided by the average size of the cliques of
S. Hence, this ratio is equal to one if all the cliques of S are identical, whereas
it is equal to zero if the intersection of every pair of cliques of S is empty. Note
that this ratio can be computed very quickly by maintaining an array freq such
that, for every vertex vi ∈ V , freq[i] is equal to the number of cliques of S
which have selected vertex vi. In this case, the similarity ratio of S is equal to

∑
vi∈V (freq[i] · (freq[i]− 1))

(| S | −1) ·
∑

Ck∈S | Ck |

and it can be easily computed in an incremental way while constructing cliques
(see [38] for more details).

Figure 3 plots the evolution of the similarity ratio of the cliques computed
every 50 cycles, for graph C500.9, thus giving an information about the distri-
bution of the set of cliques computed during these 50 cycles. For example, let
us consider the curve plotting the evolution of the similarity ratio for Edge-AC
when α is set to 1 and ρ to 0.99. The similarity increases from less than 10% at
the beginning of the solution process to 45% after a thousand or so cycles. This
shows that ants progressively focus on a sub-region of the search space, so that
two cliques constructed after cycle 1000 share nearly half of their vertices on
average. When considering this together with the fact that the re-sampling ratio
is null, one can conclude that in this case Edge-AC reaches a good compromise
between diversification —as it never re-computes twice a same solution— and
intensification —as the similarity of the computed solutions is increased.

Figure 3 also shows that, when α increases or ρ decreases, the similarity
ratio both increases sooner and rises more steeply. However, both for Edge-AC
and Vertex-AC, the similarity ratio of all runs converges towards a same value,
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Figure 3: Evolution of the similarity ratio for Edge-AC (upper curves) and
Vertex-AC (lower curves) for graph C500.9: each curve plots the similarity
ratio of the set of cliques constructed every 50 cycles (average over 50 runs), for
a given setting of α and ρ. The other parameters have been set to nbAnts = 30,
τmin = 0.01, τmax = 6.
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whatever the setting of α and ρ: after two thousand or so cycles, the cliques
computed by Edge-AC during every cycle share around 45% of their vertices
whereas those computed by Vertex-AC share around 90% of their vertices.

The difference of diversification between Edge-AC and Vertex-AC may be
explained by the choice made about their pheromonal components. Indeed, the
considered C500.9 instance has 500 vertices, so that in Vertex-AC ants may lay
pheromone on 500 components, whereas in Edge-AC they may lay pheromone
on 500 · 499/2 = 124750 components. Let us now consider the two cliques that
are rewarded at the end of the first two cycles of a run. For both Vertex-AC

and Edge-AC, these two cliques contain 44 vertices on average (see Fig. 2), and
their similarity ratio is lower than 10% (see Fig. 3) so that they share 4 vertices
on average. Under this hypothesis, after the first two cycles of Vertex-AC,
4 vertices —corresponding to 1% of the pheromonal components— have been
rewarded twice, and 80 vertices —corresponding to 16% of the pheromonal
components— have been rewarded once. As a comparison, under the same
hypothesis, after the first two cycles of Edge-AC, 6 edges —corresponding to less
than 0.005% of the pheromonal components— have been rewarded twice, and
940 edges —corresponding to less than 0.8% of the pheromonal components—
have been rewarded once. This explains why the search of Edge-AC is much
more diversified than the one of Vertex-AC, and therefore why Edge-AC needs
more time to converge, but as a counterpart it often finds better solutions with
respect to Vertex-AC.

4 Enhancing ACO with local search

Basically, local search searches for a locally optimal solution in the neighbor-
hood of a given constructed solution. Local search may be combined with the
ACO meta-heuristic in a very straightforward way: ants construct solutions
exploiting pheromone trails, and local search improves their quality by itera-
tively performing local moves. Actually, the best-performing ACO algorithms
for many combinatorial optimization problems are hybrid algorithms that com-
bine probabilistic solution construction by a colony of ants with local search
[22, 19, 28].

In this section, we study the benefit of integrating local search within Ant-

Clique. The hybrid algorithm is derived from the algorithm of Figure 1 as
follows: once each ant has constructed a clique, and before updating pheromone
trails, we apply a local search procedure on the largest clique of the cycle until
it becomes locally optimal2. Pheromone trails are then updated with respect to
this locally optimal clique.

Various local search procedures may be used to improve cliques, e.g., [5, 6,
14]. However, as pointed out in [39], when choosing the local search procedure
to use in a meta-heuristic such as evolutionary algorithms, iterated local search

2Local search could be applied to every computed clique (instead of applying it only to
the best clique of the cycle). However, experiments showed us that this does not significantly
improve solutions’ quality, whereas it is much more time consuming.
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or ACO, one has to find a trade-off between computation time and solution
quality. In other words, one has to choose between a fast but not-so-good local
search procedure or a slower but more drastic one.

For all experiments reported in this paper, we have considered the (2,1)-
exchange procedure used in GRASP [5]. Given a clique C, this local search pro-
cedure looks for three vertices vi, vj and vk such that:
- vi belongs to C,
- vj and vk do not belong to C,
- vj and vk are linked by an edge, and
- vj and vk are adjacent to every vertex of C−{vi}. Then, it replaces the vertex
vi by the two vertices vj and vk, thus increasing the clique size by one. This
local search procedure is iterated until it reaches a locally optimal state that
cannot be improved by such a (2,1)-exchange.

Figure 4 shows that this local search procedure actually enhances the perfor-
mance of Ant-Clique when solving instance C500.9. In particular, when α is
set to 0 and ρ to 1, i.e., when pheromone is not used, the local search procedure
roughly increases the size of the constructed cliques by four, and this improve-
ment in quality is constant during the whole run. When α is set to 1 and ρ
to 0.99, so that pheromone actually influences the solution process, local search
also improves the quality of the cliques constructed by Ant-Clique, but the
improvement in quality is not constant during the run. At the beginning of the
run, local search increases cliques by four vertices. However, after a thousand
or so cycles, the improvement in quality is much smaller. Finally, at the end
of the run the best clique found when combining Ant-Clique with local search
is slightly larger than when local search is not used. Note that local search
enhances the performances of the two variants of Ant-Clique in a very similar
way: for Edge-AC (resp. Vertex-AC) the integration of local search increases
the average quality of the best clique after 2500 cycles from 55.6 to 55.9 (resp.
55.2 to 55.4)

5 Experimental comparison of the four instan-

tiations of Ant-Clique

In this section, we experimentally evaluate and compare the four proposed in-
stantiations of Ant-Clique, i.e., Edge-AC, Vertex-AC, Edge-AC combined with
local search (referred to as Edge-AC+LS) and Vertex-AC combined with local
search (referred to as Vertex-AC+LS).

Experimental setup. All algorithms have been implemented in the C lan-
guage and ran on a 1.9 GHz Pentium 4 processor, under Linux operating system.

In all experiments, we have set the number of ants to 30, τmin to 0.01, τmax

to 6, α to 1, and ρ to 0.99, thus achieving a good compromise between solution
quality and CPU time as discussed in Section 3.

The maximum number of cycles has been set to 5000. Indeed, for many
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Figure 4: Evolution of the size of the best clique (average over 50 runs) for
graph C500.9 with local search (*-AC + LS) or without local search (*-AC),
and with pheromone (alpha=1, rho=0.99) or without pheromone (alpha=0,
rho=1.00), for graph C500.9. The other parameters have been set to nbAnts =
30, τmin = 0.01, and τmax = 6. Upper curves display results for Edge-AC and
lower curves for Vertex-AC.
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benchmark instances, all algorithms have converged to the best solutions within
the first three thousands of cycles. However, on larger instances —that have
more than one thousand of vertices— Edge-ACmay need more cycles to converge
so that we have fixed the maximum number of cycles to 5000 for all instances.

Test suite. We consider 36 benchmark graphs provided by the DIMACS chal-
lenge on clique coloring and satisfiability3.

• Cn.p and DSJCn.p graphs are randomly generated graphs with n vertices
and a density of 0.p, i.e., an edge is created between any pair of vertices
with probability 0.p.

• MANN a27 and MANN a45 graphs are clique formulations of set covering
formulations of Steiner Triple Problems and respectively have 378 and
1035 vertices, and a density of 0.99.

• brockn m graphs have n vertices and a density between 0.496 and 0.74.
These graphs contain large cliques hidden among a connected population
of significantly smaller cliques.

• genn p0.p m graphs have n vertices, a density of 0.p, and hidden cliques
of known size m.

• hammingn m graphs associate a vertex with each different n-bits word,
so that hamming8-4 and hamming10-4 respectively have 256 and 1024
vertices. In these graphs, an edge exists between two vertices if and only
if their words are at least distant of a Hamming distance m, so that the
density respectively is 0.639 and 0.829.

• Keller graphs are based on a representation of Keller’s conjecture on the
tiling of space using hypercubes. keller 4, 5 and 6 graphs respectively
have 171, 776 and 3361 vertices, and a density of 0.649, 0.751, and 0.818.

• p hatn m are random graphs having n vertices, and a density between
0.244 and 0.506. These graphs are tuned to have a wider vertex degree
spectrum.

We do not report results for the MANN a81 instance, which has 3321 ver-
tices and a maximum clique of 1098 vertices: for this instance, Vertex-AC and
Edge-AC respectively spend 8800 and 11600 seconds of CPU time to perform
5000 cycles. Note that this prohibitive time is mainly due to the size of the
computed cliques. Indeed, the keller6 graph, that has 3361 vertices but a
maximum clique of 59 vertices, is processed in a few minutes by both Vertex-AC

and Edge-AC.

3This benchmark is available at http://dimacs.rutgers.edu/.
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Table 2: Comparison of ACO algorithms by means of solutions’ quality. Each
row successively displays the instance name, the size of its maximum clique, and
the results obtained by Vertex-AC, Edge-AC, Vertex-AC+LS, and Edge-AC+LS

(best and average solution found over 50 runs; standard deviation in brackets).

Size of the best found clique
Vertex-AC Edge-AC Vertex-AC+LS Edge-AC+LS

Graph ω(G) Max Avg(Stdv) Max Avg(Stdv) Max Avg(Stdv) Max Avg(Stdv)

C125.9 34 34 34.0 (0.0) 34 34.0 (0.0) 34 34.0 (0.0) 34 34.0 (0.0)
C250.9 44 44 43.9 (0.3) 44 44.0 (0.0) 44 44.0 (0.1) 44 44.0 (0.0)
C500.9 ≥57 56 55.2 (0.8) 57 55.6 (0.8) 56 55.4 (0.8) 57 55.9 (0.6)
C1000.9 ≥68 67 65.3 (1.0) 67 66.0 (0.8) 67 65.7 (0.6) 68 66.2 (0.7)
C2000.9 ≥78 76 73.4 (1.1) 76 74.1 (1.3) 77 74.5 (1.1) 78 74.3 (1.4)

DSJC500.5 14 13 13.0 (0.0) 13 13.0 (0.0) 13 13.0 (0.0) 13 13.0 (0.0)
DSJC1000.5 15 15 14.1 (0.3) 15 14.1 (0.4) 15 14.2 (0.4) 15 14.3 (0.4)

C2000.5 ≥16 16 14.9 (0.4) 16 15.1 (0.3) 16 15.1 (0.3) 16 15.3 (0.5)
C4000.5 ≥18 17 15.9 (0.4) 16 15.8 (0.4) 17 16.2 (0.4) 18 16.8 (0.6)

MANN a27 126 126 125.5 (0.5) 126 126.0 (0.2) 126 125.8 (0.4) 126 126.0 (0.0)
MANN a45 345 344 342.8 (0.8) 344 343.3 (0.6) 344 342.6 (0.7) 344 342.9 (0.6)

brock200 2 12 12 11.9 (0.2) 12 12.0 (0.0) 12 11.9 (0.4) 12 12.0 (0.0)
brock200 4 17 17 16.1 (0.3) 17 16.8 (0.4) 17 16.1 (0.3) 17 16.8 (0.4)
brock400 2 29 25 24.5 (0.5) 29 25.0 (0.7) 25 24.7 (0.5) 25 24.8 (0.4)
brock400 4 33 25 24.0 (0.1) 33 25.1 (2.7) 25 24.2 (0.4) 33 27.1 (4.0)
brock800 2 24 21 20.0 (0.5) 21 19.8 (0.5) 21 20.4 (0.5) 24 20.1 (0.6)
brock800 4 26 21 19.8 (0.6) 26 19.9 (1.0) 21 20.2 (0.4) 26 20.0 (0.8)

gen200 p0.9 44 44 44 41.4 (1.9) 44 43.7 (1.1) 44 43.3 (1.5) 44 44.0 (0.0)
gen200 p0.9 55 55 55 55.0 (0.0) 55 55.0 (0.0) 55 55.0 (0.0) 55 55.0 (0.0)
gen400 p0.9 55 55 52 51.2 (0.5) 53 51.9 (0.5) 52 51.3 (0.5) 53 52.2 (0.4)
gen400 p0.9 65 65 65 65.0 (0.0) 65 65.0 (0.0) 65 65.0 (0.0) 65 65.0 (0.0)
gen400 p0.9 75 75 75 75.0 (0.0) 75 75.0 (0.0) 75 75.0 (0.0) 75 75.0 (0.0)

hamming8 4 16 16 16.0 (0.0) 16 16.0 (0.0) 16 16.0 (0.0) 16 16.0 (0.0)
hamming10 4 40 40 38.0 (1.5) 40 38.6 (1.2) 39 38.7 (0.6) 40 39.3 (0.9)

keller4 11 11 11.0 (0.0) 11 11.0 (0.0) 11 11.0 (0.0) 11 11.0 (0.0)
keller5 27 27 26.7 (0.5) 27 26.9 (0.2) 27 26.9 (0.3) 27 27.0 (0.0)
keller6 ≥59 55 50.8 (1.9) 59 53.1 (1.7) 55 51.5 (1.5) 57 55.1 (1.3)

p hat300 1 8 8 8.0 (0.0) 8 8.0 (0.0) 8 8.0 (0.0) 8 8.0 (0.0)
p hat300 2 25 25 25.0 (0.0) 25 25.0 (0.0) 25 25.0 (0.0) 25 25.0 (0.0)
p hat300 3 36 36 35.9 (0.5) 36 36.0 (0.1) 36 36.0 (0.3) 36 36.0 (0.0)
p hat700 1 11 11 10.8 (0.4) 11 11.0 (0.1) 11 10.9 (0.3) 11 11.0 (0.1)
p hat700 2 44 44 44.0 (0.0) 44 44.0 (0.0) 44 44.0 (0.0) 44 44.0 (0.0)
p hat700 3 ≥62 62 62.0 (0.0) 62 62.0 (0.0) 62 62.0 (0.0) 62 62.0 (0.0)
p hat1500 1 12 12 11.0 (0.2) 12 11.1 (0.3) 12 11.2 (0.4) 12 11.1 (0.2)
p hat1500 2 ≥65 65 64.9 (0.2) 65 64.9 (0.2) 65 65.0 (0.0) 65 65.0 (0.0)
p hat1500 3 ≥94 94 93.1 (0.2) 94 93.9 (0.4) 94 93.6 (0.5) 94 94.0 (0.0)
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Table 3: Comparison of ACO algorithms by means of CPU time. Each row
successively displays the number of cycles (average over 50 runs) and the CPU
time (average and standard deviation over 50 runs) for Vertex-AC, Edge-AC,
Vertex-AC+LS, and Edge-AC+LS.

Number of cycles and time to find the best clique
Vertex-AC Edge-AC Vertex-AC+LS Edge-AC+LS

Graph Cycles Time(Stdv) Cycles Time(Stdv) Cycles Time(Stdv) Cycles Time(Stdv)

C125.9 60 0.1 (0.0) 126 0.2 (0.1) 14 0.0 (0.0) 23 0.0 (0.0)
C250.9 359 0.8 (0.7) 473 1.7 (0.3) 172 0.5 (0.1) 239 1.0 (0.3)
C500.9 722 3.8 (1.9) 923 8.9 (4.0) 477 4.6 (2.7) 671 8.6 (4.7)
C1000.9 1219 13.2 (5.8) 2359 55.0 (21.9) 832 23.4 (8.5) 1242 49.8 (26.6)
C2000.9 1770 41.3 (11.0) 3278 214.4 (49.8) 1427 112.4 (16.8) 2067 238.7 (98.3)

DSJC500.5 588 0.5 (0.2) 832 2.6 (1.8) 249 0.7 (0.5) 285 1.4 (1.3)
DSJC1000.5 820 1.4 (1.0) 1017 9.6 (6.4) 561 3.8 (4.0) 567 7.8 (8.8)

C2000.5 957 3.3 (3.0) 1062 30.4 (16.8) 312 5.9 (5.7) 957 40.6 (56.0)
C4000.5 927 6.0 (5.1) 1116 108.3 (73.8) 445 22.4 (33.1) 1915 257.6 (190.2)

MANN a27 616 11.5 (3.5) 2274 61.7 (25.3) 574 11.1 (4.9) 1824 44.8 (19.3)
MANN a45 1771 271.3 (77.0) 4360 877.4 (69.1) 1498 239.2 (56.9) 3639 749.4 (132.5)

brock200 2 115 0.0 (0.0) 127 0.1 (0.1) 104 0.1 (0.1) 115 0.1 (0.1)
brock200 4 156 0.1 (0.0) 1627 1.3 (1.2) 69 0.1 (0.0) 1356 1.7 (1.9)
brock400 2 650 1.0 (0.6) 1004 3.5 (1.9) 424 1.4 (0.6) 720 3.8 (3.5)
brock400 4 498 0.8 (0.2) 977 3.4 (3.3) 254 0.8 (0.4) 1141 5.7 (6.3)
brock800 2 1145 2.6 (1.1) 1238 9.1 (6.1) 881 6.3 (3.6) 959 11.6 (10.5)
brock800 4 1173 2.7 (1.0) 1288 9.8 (7.1) 858 6.1 (2.5) 906 11.1 (10.7)

gen200 p0.9 44 297 0.6 (0.2) 338 0.9 (0.2) 136 0.3 (0.1) 165 0.5 (0.1)
gen200 p0.9 55 102 0.2 (0.0) 130 0.3 (0.1) 57 0.2 (0.0) 100 0.3 (0.1)
gen400 p0.9 55 475 2.0 (1.2) 1634 11.5 (6.4) 270 1.8 (0.6) 760 6.7 (3.7)
gen400 p0.9 65 337 1.4 (0.2) 391 2.7 (0.3) 206 1.5 (0.1) 255 2.3 (0.3)
gen400 p0.9 75 251 1.0 (0.1) 293 2.1 (0.2) 153 1.2 (0.1) 198 2.1 (0.2)

hamming8 4 34 0.0 (0.0) 42 0.1 (0.0) 49 0.1 (0.1) 42 0.1 (0.1)
hamming10 4 2308 13.7 (1.9) 1474 28.0 (10.5) 1204 26.2 (17.3) 865 29.3 (16.3)

keller4 2 0.0 (0.0) 2 0.0 (0.0) 0 0.0 (0.0) 0 0.0 (0.0)
keller5 1652 4.9 (1.2) 1136 10.8 (7.9) 979 9.4 (6.0) 830 12.3 (9.7)
keller6 2514 55.3 (15.2) 3034 308.8 (111.8) 1657 206.8 (145.3) 2617 549.2 (250.6)

p hat300 1 40 0.0 (0.0) 46 0.0 (0.0) 18 0.0 (0.0) 20 0.0 (0.0)
p hat300 2 113 0.1 (0.0) 206 0.3 (0.1) 26 0.1 (0.0) 54 0.2 (0.1)
p hat300 3 281 0.5 (0.5) 457 1.3 (0.3) 110 0.3 (0.1) 176 0.7 (0.2)
p hat700 1 379 0.2 (0.1) 624 2.6 (1.6) 253 0.7 (0.3) 391 2.4 (2.0)
p hat700 2 297 0.7 (0.1) 445 3.2 (0.6) 128 2.0 (0.6) 227 4.5 (1.0)
p hat700 3 575 3.0 (2.2) 878 9.8 (3.2) 220 3.8 (1.0) 333 7.8 (1.4)
p hat1500 1 391 0.4 (0.3) 662 10.5 (8.5) 318 3.0 (4.4) 438 9.7 (17.0)
p hat1500 2 499 3.3 (1.0) 801 20.1 (4.9) 238 17.3 (2.7) 379 35.2 (3.9)
p hat1500 3 581 8.6 (6.5) 2199 74.3 (41.6) 551 37.0 (34.4) 528 54.9 (8.8)
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Comparison of solutions’ quality. Table 2 compares the four proposed
ACO instantiations by means of solutions’ quality. On this table, one can first
note that Edge-AC outperforms Vertex-AC: when considering average results
over the 50 runs, Edge-AC has found larger cliques than Vertex-AC for 21 in-
stances, whereas it has found smaller cliques for 2 instances only. Moreover,
Edge-AC has been able to find the best known solution for 29 instances, whereas
Vertex-AC has found it for 24 instances.

This table also shows that local search improves the solution process of
both algorithms for many instances. For Vertex-AC, the integration of local
search improves average results for 22 instances, whereas it deteriorates them
for 1 instance, and for Edge-AC, the integration of local search improves average
results for 16 instances, whereas it deteriorates them for 2 instances. Note that
the benefit of integrating local search within Ant-Clique varies with respect to
the considered classes of instances. In particular, local search does not improve
solutions’ quality for MANN instances, whereas it significantly improves it on
hard random C*.* instances, so that Edge-AC+LS has been able to find the best
known solutions for all C*.* instances.

Hence, Edge-AC+LS is the best performing of the four proposed ACO in-
stantiations, for a majority of instances, and it has been able to find the best
known solution for 31 instances, over the 36 considered instances. However,
for 2 instances (brock400 2 and keller6), Edge-AC has found the best known
solution whereas Edge-AC+LS did not.

Finally, this comparison on a large set of instances has shown us that so-
lutions’ quality depends on the considered classes of instances. In particular,
the four considered ACO instantiations obtained very good average results on
gen* p* * and p hat* * instances, being able to find the best known solution
for nearly all the runs on most of these instances. On the other side, average re-
sults are rather far from optimality on brock* * instances. Actually, as pointed
out in [40], brock* * graphs were created using trap mechanisms destined to
fool greedy algorithms and guide them towards deceptively easy solutions while
bigger cliques remain hidden. As a consequence, if some runs have been able to
find these hidden cliques, most runs have been trapped in smaller cliques.

Comparison of CPU time. Table 3 compares the four proposed ACO in-
stantiations by means of CPU time. This table first shows that, for each consid-
ered ACO instantiation, the number of cycles —and therefore the CPU time—
needed to find the best solution mainly depends on the number of vertices and
the connectivity of the graph. For example, Edge-AC respectively performs, on
average, 473, 923, 2359, and 3278 cycles to solve instances C250.9, C500.9,
C1000.9, and C2000.9 that respectively have 250, 500, 1000 and 2000 vertices
and a connectivity close to 0.9, whereas it performs 1062 cycles to solve instance
C2000.5 that has 2000 vertices and a connectivity of 0.5.

Table 3 also shows that Vertex-AC nearly always performs less cycles than
Edge-AC and, on average for all instances, it needs 1.8 times less cycles to
converge towards its best solution. When considering CPU times, the difference
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Figure 5: Comparison of Edge-AC+LS, Vertex-AC+LS, and multi-start local
search on graph C500.9. Parameters have been set to α = 1, ρ = 0.99,
nbAnts = 30, τmin = 0.01, and τmax = 6 for Edge-AC+LS and Vertex-AC+LS.

becomes more important as Edge-AC needs more time to perform one cycle than
Vertex-AC. Hence, Vertex-AC is from 1.5 to 26 times as fast as Edge-AC, and
it is 5.7 times as fast on average for all instances.

Finally, one can remark that the integration of local search always decreases
the number of cycles: on average, both Vertex-AC+LS and Edge-AC+LS perform
1.8 times less cycles than Vertex-AC and Edge-AC respectively. However, as
local search is time consuming, CPU times are rather comparable.

Discussion. This comparison on 36 benchmark graphs showed us that inte-
grating local search within Ant-Clique nearly always improves solutions’ quality
without increasing CPU times, so that one clearly has better use Vertex-AC+LS
or Edge-AC+LS instead of Vertex-AC or Edge-AC.

However, to choose between Vertex-AC+LS and Edge-AC+LS, one has to
consider the CPU time available for the solution process. Indeed, Edge-AC+LS
usually finds better solutions than Vertex-AC+LS at the end of its solution pro-
cess, but it is also more time consuming. As a consequence, if one has to find a
solution within a short time limit, one has better use Vertex-AC+LS, whereas for
larger time limits, or when there is no time limit, one has better use Edge-AC+LS.
This is illustrated in Figure 5 on graph C500.9: for time limits smaller than 8
seconds, Vertex-AC+LS finds larger cliques than Edge-AC+LS, whereas for larger
time limits Edge-AC+LS finds larger cliques than Vertex-AC+LS.

Figure 5 also compares Vertex-AC+LS and Edge-AC+LS with a multi-start
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local search procedure called multi-start LS. This multi-start local search
procedure iterates on the two following steps:

1. randomly build a maximal clique,

2. apply the local search procedure described in Section 4 on this maximal
clique

Hence, multi-start LS corresponds to Ant-Clique+LSwhen pheromone is not
used and the number of ants is set to 1 (so that local search is applied to
every constructed clique). Figure 5 shows us that during the first second of
CPU time multi-start LS finds better solutions than Ant-Clique+LS. Indeed,
Ant-Clique+LS spends time to manage pheromone whereas this pheromone
starts influencing ants only after a few hundreds or so cycles. Hence, Vertex-
AC+LS (resp.Edge-AC+LS) finds better solutions than multi-start LS only after
one second (resp. five seconds) of CPU time.

6 Experimental comparison with other heuristic

approaches

We now compare Edge-AC+LS, which is our best performing ACO algorithm
by means of solution quality on a majority of instances, with three recent and
representative algorithms, i.e., RLS, DAGS, and GLS.

RLS (Reactive Local Search) [6] is based on a tabu local search heuristic.
Starting from an empty clique, RLS iteratively moves in the search space com-
posed of all cliques by adding/removing one vertex to/from the current clique.
A tabu list is used to memorize the T last moves and, at each step, RLS greedily
selects a move that is not prohibited by the tabu list. The key point is that the
length T of the tabu list is dynamically updated with respect to the need for
diversification. RLS appears to be the best heuristic algorithm for the maximum
clique problem we are aware of, for a majority of DIMACS benchmark instances.

Table 4 displays results reported in [6] for the “basic” version of RLS which
obtained the best results. CPU times have been multiplied by 0.027, corre-
sponding to the ratio of computers’ speed with respect to the Spec benchmark
on floating point units.

DAGS [8] is a two-phase procedure: in a first phase, a greedy procedure
combined with “swap” local moves is applied, starting from each node of the
graph; in a second phase, nodes are scored with respect to the number of times
they have been selected during the first phase, and an adaptive greedy algorithm
is repeatedly started to build cliques around the nodes with the least scores, in
order to diversify the search towards less explored areas.

Experiments reported in [8] show that the first phase is able to find best
known solutions for many instances. For harder instances, the second phase
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improves solutions’ quality in many cases. This improvement in quality is dra-
matic on the set of brock instances, that are known to be very difficult for
greedy approaches. For these instances, DAGS outperforms RLS performance.

Table 4 displays results reported in [8]. Note that the second phase of DAGS
has been performed only for the harder instances, that have not been solved
during the first phase. Hence, we specify in Table 4 if these results have been
obtained after the first or the second phase. We multiplied CPU times by
0.84, corresponding to the ratio of computers’ speed with respect to the Spec
benchmark on floating point units. Note also that CPU times reported for
DAGS correspond to the total time spent for the whole solving process, and
not the time spent to find the best solution like for the three other considered
algorithms.

GLS [14] combines a genetic algorithm with local search. We consider it for
comparison, though it does not outperform RLS nor DAGS, because it presents
some similarities with ACO: both approaches use a bio-inspired metaphor to in-
tensify the search towards the most “promising” areas with respect to previously
computed solutions. GLS generates successive populations of maximal cliques
from an initial one by repeatedly selecting two parent cliques from the current
population, recombining them to generate two children cliques, applying local
search on children to obtain maximal cliques, and adding to the new population
the best two cliques of parents and children. GLS can be instantiated to different
algorithms by modifying its parameters. In particular, [14] compares results
obtained by the three following instantiations of GLS: GENE performs genetic lo-
cal search; ITER performs iterated local search, starting from one random point;
and MULT performs multi-start local search, starting from a new random point
at each time.

Table 4 displays, for each considered instance, the results obtained by the GLS
algorithm (over GENE, ITER, and MULT) that obtained the best average results.
We multiplied CPU times by 0.037, corresponding to the ratio of computers’
speed with respect to the Spec benchmark on floating point units.

By means of solutions’ quality, the results of table 4 are summarized in
table 5. When considering the best found results, Edge-AC+LS is competitive
with both RLS and DAGS, being able to find better solutions than RLS on two
brock instances, and better solutions than DAGS on two C*.9 instances. How-
ever, when considering average results RLS outperforms Edge-AC+LS on 16 in-
stances. The comparison with DAGS on average results depends on the consid-
ered instances. In particular, DAGS outperforms Edge-AC+LS on brock instances,
whereas Edge-AC+LS outperforms DAGS on gen instances.

This table also shows that Edge-AC+LS outperforms GLS both with respect
to best and average results. Hence, for this problem ACO is better suited than
evolutionary computation for guiding the search towards promising areas.

When considering CPU times reported in Table 4, one can note that Edge-
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Table 4: Comparison of Edge-AC+LS with other heuristic approaches. Each row
successively displays the results obtained by Edge-AC+LS, RLS, DAGS (followed
by (1) or (2) if they have been obtained after the first or the second phase), and
GLS (followed by (G), (I), or (M) if they have been obtained by GENE, ITER, or
MULT). For each approach, the table reports the best and average solution found
(over 50 runs for Edge-AC+LS, 100 runs for RLS, 20 runs DAGS, and 10 runs for
GLS), and the estimated CPU time w.r.t. the Spec floating points benchmark.

Edge-AC+LS RLS DAGS GLS

Graph Max Avg Time Max Avg Time Max Avg Time Max Avg Time

C125.9 34 34.0 0.0 34 34.0 0.0 34 34.0 0.2 (1) 34 34.0 0.0 (I)
C250.9 44 44.0 1.0 44 44.0 0.0 44 44.0 0.7 (1) 44 43.0 0.1 (I)
C500.9 57 55.9 8.6 57 57.0 0.0 56 55.8 13.5 (2) 55 52.7 0.1 (I)
C1000.9 68 66.2 49.8 68 68.0 1.1 68 65.9 148.2 (2) 66 61.6 0.5 (G)
C2000.9 78 74.3 238.7 78 77.6 22.1 76 75.4 1824.0 (2) 70 68.7 0.9 (I)

DSJC500.5 13 13.0 1.4 13 13.0 0.0 - - - - 13 12.2 0.1 (G)
DSJC1000.5 15 14.3 7.8 15 15.0 0.2 - - - - 14 13.5 0.1 (I)

C2000.5 16 15.3 40.6 16 16.0 0.3 16 15.9 24.8 (1) 15 14.2 0.1 (I)
C4000.5 18 16.8 257.6 18 18.0 58.7 18 17.5 3229.0 (2) 16 15.6 0.6 (I)

MANN a27 126 126.0 44.8 126 126.0 0.1 126 126.0 6.1 (1) 126 126.0 0.6 (I)
MANN a45 344 342.9 749.4 345 343.6 10.7 344 343.9 1921.0 (2) 345 343.1 2.0 (I)

brock200 2 12 12.0 0.1 12 12.0 0.3 12 12.0 0.1 (2) 12 12.0 0.1 (M)
brock200 4 17 16.8 1.7 17 17.0 0.5 17 16.8 0.3 (2) 17 15.7 0.1 (M)
brock400 2 25 24.8 3.8 29 26.0 1.1 29 28.1 2.8 (2) 25 23.2 0.1 (I)
brock400 4 33 27.1 5.7 33 32.4 2.9 33 33.0 2.8 (2) 25 23.6 0.0 (G)
brock800 2 24 20.1 11.6 21 21.0 0.1 24 20.8 16.8 (2) 20 19.3 0.2 (G)
brock800 4 26 20.0 11.1 21 21.0 0.2 26 22.6 16.9 (2) 20 19.0 0.1 (I)

gen200 p0.9 44 44 44.0 0.5 44 44.0 0.0 44 41.1 0.9 (2) 44 39.7 0.1 (G)
gen200 p0.9 55 55 55.0 0.3 55 55.0 0.0 55 55.0 0.4 (1) 55 50.8 0.1 (G)
gen400 p0.9 55 53 52.2 6.7 55 55.0 0.0 53 51.8 7.2 (2) 55 49.7 0.1 (G)
gen400 p0.9 65 65 65.0 2.3 65 65.0 0.0 65 55.4 7.3 (2) 65 53.7 0.2 (G)
gen400 p0.9 75 75 75.0 2.1 75 75.0 0.0 75 55.2 7.8 (2) 75 62.7 0.2 (I)

hamming8 4 16 16.0 0.1 16 16.0 0.0 - - - - 16 16.0 0.0 (G)
hamming10 4 40 39.3 29.3 40 40.0 0.0 40 40.0 12.8 (1) 40 38.2 0.2 (I)

keller4 11 11.0 0.0 11 11.0 0.0 - - - - 11 11.0 0.0 (G)
keller5 27 27.0 12.3 27 27.0 0.0 27 27.0 4.3 (1) 27 26.3 0.2 (I)
keller6 57 55.1 549.2 59 59.0 5.1 57 56.4 12326.0 (2) 56 52.7 1.3 (I)

p hat300 1 8 8.0 0.0 8 8.0 0.0 8 8.0 0.1 (1) 8 8 0.0 (G)
p hat300 2 25 25.0 0.2 25 25.0 0.0 25 25.0 0.5 (1) 25 25.0 0.0 (I)
p hat300 3 36 36.0 0.7 36 36.0 0.0 36 36.0 0.8 (1) 36 35.1 0.1 (I)
p hat700 1 11 11.0 2.4 11 11.0 0.0 11 11.0 0.7 (1) 11 9.9 0.1 (I)
p hat700 2 44 44.0 4.5 44 44.0 0.0 44 44.0 5.5 (1) 44 43.6 0.0 (I)
p hat700 3 62 62.0 7.8 62 62.0 0.0 62 62.0 8.5 (1) 62 61.8 0.2 (I)
p hat1500 1 12 11.1 9.7 12 12.0 0.8 12 11.7 31.1 (2) 11 10.8 0.5 (G)
p hat1500 2 65 65.0 35.2 65 65.0 0.0 65 65.0 47.7 (1) 65 63.9 0.5 (I)
p hat1500 3 94 94.0 54.9 94 94.0 0.0 94 94.0 82.2 (1) 94 93.0 0.3 (I)
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Table 5: Number of times Edge-AC+LS has found larger (+), equal (=), and
smaller (−) cliques than RLS, DAGS and GLS.

Comparison of Edge-AC+LS with
RLS DAGS GLS

+ = − + = − + = −
Best clique 2 30 4 2 29 1 11 23 2
Average size 0 20 16 6 15 11 28 7 1

AC+LS is an order slower than RLS, which itself is an order slower than GLS.
However, Edge-AC+LS is rather comparable with DAGS: it is quicker than DAGS

for 24 instances, and it is slower for 8 instances.

7 Conclusion

We have described a generic ACO algorithm for searching for maximum cliques,
and two different instantiations for it. These two instantiations differ in the
choice of their pheromonal components. A main motivation was to answer the
following question: should we lay pheromone on the vertices or on the edges of
the graph?

Experiments have shown us that both algorithms are able to find optimal
solutions on many benchmark instances, showing that ACO is actually able to
guide the search towards promising areas. However, when comparing the diver-
sification capability of the two algorithms by means of re-sampling and similarity
ratio, we have noticed that the search is more diversified when pheromone is laid
on edges so that better solutions are found on a wide majority of benchmark
instances, but as a counterpart, more time is needed to converge. Also, exper-
iments have shown us that the integration of local search techniques improves
the solution process and makes ACO competitive with state-of-the-art heuristic
approaches, though it is more time consuming.

We believe that this comparison of two ACO models for the maximum clique
problem could be useful to solve other similar problems. Indeed, for many com-
binatorial optimization problems such as multi-dimensional knapsack problems
or generalized assignment problems, the goal is to find, given an initial set of
objects, the best subset with respect to some objective function. To solve this
kind of problems with ACO, one has to choose between laying pheromone on
the objects to choose, or on edges linking the objects to choose. In the first
case, one will increase the desirability of choosing each rewarded object inde-
pendently from the others, whereas in the second case, one will increase the
desirability of choosing together two objects. Hence, further work will concern
a generalization of this comparative study.

27



References

[1] R.M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, pages 85–104, 1972.

[2] I. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum
clique problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of
Combinatorial Optimization, volume 4, pages 1–74. Springer, 1999.

[3] D.S. Johnson. Approximation algorithms for combinatorial problems. Jour-
nal of Computer Science, 9:256–278, 1974.

[4] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research,
42:860–878, 1994.

[5] J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique prob-
lems in very large graphs. In J.M. Abello, editor, External Memory Algo-
rithms, volume 50 of DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, pages 119–130. American Mathematical Society,
Boston, MA, USA, 1999.

[6] R. Battiti and M. Protasi. Reactive local search for the maximum clique
problem. Algorithmica, 29(4):610–637, 2001.

[7] A. Jagota and L.A. Sanchis. Adaptive, restart, randomized greedy heuris-
tics for maximum clique. Journal of Heuristics, 7(6):565–585, 2001.

[8] A. Grosso, M. Locatelli, and F. Della Croce. Combining swaps and node
weights in an adaptive greedy approach for the maximum clique problem.
Journal of Heuristics, 10(2):135–152, 2004.

[9] E.H.L. Aarts and J.H.M. Korst. Simulated annealing and Boltzmann ma-
chines: a stochastic approach to combinatorial optimization and neural
computing. John Wiley & Sons, Chichester, U.K., 1989.

[10] S. Homer and M. Peinado. Experiments with polynomial-time clique ap-
proximation algorithms on very large graphs. In D.S. Johnson and M.A.
Trick, editors, Cliques, Coloring, and Satisfiability, volume 26 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages
147–168. American Mathematical Society, Boston, MA, USA, 1996.

[11] C. Friden, A. Hertz, and D. de Werra. STABULUS: A technique for finding
stable sets in large graphs with tabu search. Computing, 42(1):35–44, 1989.

[12] F. Glover and M. Laguna. Tabu search. In C.R. Reeves, editor, Modern
Heuristics Techniques for Combinatorial Problems, pages 70–141. Blackwell
Scientific Publishing, Oxford, UK, 1993.

28



[13] M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique
problem using a tabu search approach. Annals of Operations Research,
41(4):385–403, 1993.

[14] E. Marchiori. Genetic, iterated and multistart local search for the maximum
clique problem. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and
G.R. Raidl, editors, Applications of Evolutionary Computing, Proceedings
of EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTim, volume 2279 of
lncs, pages 112–121. Springer-Verlag, 2002.

[15] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,
pages 11–32. McGraw Hill, UK, 1999.

[16] M. Dorigo, G. Di Caro, and L.M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5(2):137–172, 1999.

[17] T. Jones and S. Forrest. Fitness distance correlation as a measure of prob-
lem difficulty for genetic algorithms. In L. Eshelman, editor, Proceedings of
the Sixth International Conference on Genetic Algorithms, pages 184–192,
San Francisco, CA, 1995. Morgan Kaufmann.

[18] P. Merz and B. Freisleben. Fitness landscapes and memetic algorithm
design. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in
Optimization, pages 245–260. McGraw Hill, UK, 1999.
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