1 2 + 1 p s -1 = ζ(s) ( 1 
)
where s ∈ C, and p ∈ P.

We can observe the perfect zeta function, valid on the whole complex plane, with a convergent series represented by the following polar. We can also define the Riemann zeta function in many different ways. Proof.

∞ k=1 s 2 (p k -1) = ζ(s) = ∞ n=0 1 2 p n (-1)s ( 2 
)
where p k denotes the k n-th prime.

It is specially true for all cases for which the Riemann zeta function appear to be an infinite holographic function. Indeed, we assume, under suitable conditions

∞ p ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 2 + 1 p ⎛ ⎜ ⎝ 1 2 + 1 p z -1 ⎞ ⎟ ⎠ -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ζ(s) ( 3 
)
where

s = 1 2 + 1 p z -1 , z = 1 2 + 1 p z1 -1 and z n = 1 2 + 1 p zn+1 -1 .
We can illustrate the situation by the following plot : 

THE NEXT PRIME

If p > 3 is prime then there exists x and O integers such that

2 p -2 x ≡0 (mod 2) = O (4)
and p divides O.

SOWING THE SEEDS OF PRIMES

To build an infinite tree of primes we need to consider the following sequence for any given integer n = pq and α as any factor of n such that

2α 2 = prime (5)
where β ≡ 5 (mod 10) corresponds to the gear. We can also replace n by any prime and α by 1 such that for p = 3 we have

3 2 + 5 2 2 = 17 (6)
For example with n = 551 we have the following constellation of primes Which means that every prime number has its own satellite which is also prime. Likewise the distribution of the prime numbers depends on the last digit. We can illustrate the situation as follows:

THE DNA OF PRIMES

As we saw it previously, the distribution of the primes depends on the last digit. Then, there exists four classical basis as well as for the DNA. We can illustrate the situation as follows:

Indeed, there exists a special zeta function for which the distribution of the primes follows only some specifics values. The special zeta function is on the form:

sf = p + ( 7 
)
where f = 5 6 corresponds to the constant of the light and p is prime. This function is an elegant proof of the Einstein's theory on the light bends. The modular distribution of the primes can be expressed as follows:

If the last digit of the prime is 1 then = 2 3 and so on... The first gates of primes can be illustrate as follows:

FACTORING IN O (log (n))

The RSA set n = pq can be expressed as follows: 6 Searching p and q for the large numbers, it's like looking for a needle in a haystack but, for the crafty mathematicians, the situation is not all doom and gloom. In the other hand, we know that the sinews of war is about cryptography.

Exercice 1

n = x 2 + x -2xy 6 (8) 
and

p = n + p (y -1) 2 x (9) Algorithm 3. Code Mathematica # " ! n=RSA-220 FindInstance[\[Sqrt]((n + (p (y -1))) / (2ˆ363)) == p && y > 2ˆ728 && Mod[y, 2] == 0 && y < n && n == p q && p > 2ˆ365 && p < 2ˆ375 && Element[p,Primes] && Element[q,Primes], {p, q, y}, Integers, 1] Exercice 2 n -1 2 ± 2 a -2 b c = p (10)
c < 2 α and 1 < α < 11. 

n -z q = 2 x (11) Algorithm 5. Code Mathematica # " ! n=RSA-220 FindInstance[((n -(z)) / q) == 2ˆ98 && Mod[z, q] == 0 && n == p q && Element[q,Primes] && Element[p,Primes] && q > 0 && z > 0 && z < n, {p, q, z}, Integers, 1] Exercice 4 q (x -q -20) n = 2 3 (12) 
and 

q (x -20) -2 3 n = q (13) Algorithm 6. Code Mathematica n=RSA-1024 FindInstance[((q (x -q -20) )/ n) == 2 3 && n == p q && Element[q,Primes] && Element[p,Primes] && x > 0 && x < n && q > 0, {p, q, x}, Integers, 1] Exercice 5 n 2 x q = 9 16 - y 2 x (

FACTORING AND THE ZETA FUNCTION

If n = pq then there exists a complex number s on the form:

n 2 x p + n 2 x q = y 2 x-2 = √ s ( 16 
)
which means that the simplest expression of the Riemann zeta function is: 

Theorem 2. ∞ √ s = ζ(s). ( 17 

RIEMANN AND THE MODERN PHYSICS

The most important contribution of the Riemann Hypothesis to the Modern Physics may be thought as the deep connections between the Riemann zeta function and the complex structure of a Black Hole. We can illustrate the situation as follows: 

Algorithm 1 .

 1 Code MathematicaPolarPlot[{{Cos[(tˆt + 1) / (2 tˆt -2)]}, Sin[(tˆt + 1) / (2 tˆt -2)]}, {t, -2π, 2π}, PlotStyle->{Red,Directive[Dashed,Green,Orange]}, PlotRange-> All]

  ((n -1) / 2) -(2ˆa -2ˆb)) / c == p && c > -20 && c < 20 && n == p q && Element[p,Primes] && Element[q,Primes] && a >= 0 && a <= 700 && b >= 0 && b <= 700, {p, q, a, b, c}, Integers, 1] Exercice 3

  2n+2)ˆ((nˆ2+1)/4),{n,1,Infinity}]

Algorithm 8 .

 8 Code Mathematica © SphericalPlot3D[1+Cos[φˆφ] / (2 φˆφ -2),{θ,0,π},{φ,0,2π}, PlotStyle-> Directive[Black,Opacity[0.7], Specularity[White,10]], Mesh->None, PlotPoints->30] 10 π DECODED? There are finitely many primes a, b, c, d and e satisfying
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