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Abstract—Conversion between binary and decimal floating-
point representations is ubiquitous. Floating-point radix con-
version means converting both the exponent and the mantissa.
We develop an atomic operation for FP radix conversion with
simple straight-line algorithm, suitable for hardware design.
Exponent conversion is performed with a small multiplication and
a lookup table. It yields the correct result without error. Mantissa
conversion uses a few multiplications and a small lookup table
that is shared amongst all types of conversions. The accuracy
changes by adjusting the computing precision.

I. INTRODUCTION

Humans are used to operate decimals while almost all
the hardware is binary. According to IEEE754-2008 norm [1]
a floating point number is represented as βE · m, where
βp−1 ≤ m ≤ βp−1; p is precision, m ∈ N is mantissa, E ∈ Z
is exponent and β, the base or radix, is either two or ten. When
the base β = 2, we have binary floating point (FP) numbers,
when β = 10, the decimal one. However, most of hardware is
binary, so the decimal mantissas are actually coded in binary.
The formats for both radices differ by the length of stored
numbers. Standartization of decimal FP arithmetic brings new
challenges, e.g. supporting decimal transcendental functions
with essentially binary hardware [2]. In [2] in order to evaluate
decimal transcendental function the format conversion is used
twice. The IEEE standard requires [1] the implementation
of all the operations for different formats, but only for the
operands of the same radix. The format does not require any
mixed radix operations, i.e. one of the operands is binary,
the other is decimal. Mixed radix arithmetic is currently
being developed, although there are already some approaches
published [3], [4].

Floating point radix conversion (from binary to decimal and
vice versa) is a widespread operation, the simplest examples
are the scanf and printf functions. It could also exist as
an operation for financial applications or as a “precomputing
step” for mixed radix operations. The radix conversion is used
in number conversion operations, and implicitly in scanf and
printf operations.

The current implementations of scanf and printf are
correct only for one rounding mode and allocate a lot of
memory. In this paper we develop a unified atomic operation
for the conversion, so all the computations can be done in
integer with the precomputed memory consumption.

While radix conversion is a very common operation, it
comes in different variants that are mostly coded in ad-hoc
way in existing code. However, radix conversion always breaks
down into to elementary steps: determining an exponent of
the output radix and computing a mantissa in the output
radix. Section II describes the 2-steps approach of the radix
conversion, section III contains the algorithm for the exponent
computation, section IV presents a novel approach of raising
5 to an integer power used in the second step of the radix-
conversion that computes the mantissa. Section V contains
accuracy bounds for the algorithm of raising five to a huge
power, section VI describes some implementation tricks and
presents experimental results.

II. TWO-STEPS RADIX CONVERSION ALGORITHM

Conversion from a binary FP representation 2E ·m, where
E is the binary exponent and m is the mantissa, to a decimal
representation 10F ·n, requires two steps: determination of the
decimal exponent F and computation of the mantissa n. The
conversion back to binary is pretty similar except of an extra
step that will be explained later. Here and after consider the
normalized mantissas n and m: 10p10−1 ≤ n ≤ 10p10 − 1
and 2p2−1 ≤ m ≤ 2p2 − 1, where p10 and p2 are the decimal
and binary precisions respectively. The exponents F and E
are bounded by some values depending on the IEEE754-2008
format.

In order to enclose the converted decimal mantissa n into
one decade, for a certain output precision p10, the decimal
exponent F has to be computed [5] as follows:

F =
⌊
log10(2E ·m)

⌋
− p10 + 1. (1)

The most difficult thing here is the evaluation of the loga-
rithm: as the function is transcendental, the result is always
an approximation and function call is extremely expensive.
Present algorithm computes the exponent (1) for a new-radix
floating-point number only with a multiplication, binary shift,
a precomputed constant and a lookup table (see section III).

Once F is determined, the mantissa n is given as

n = ∗p10
(

2E ·m
10F

)
, (2)

where ∗p10 corresponds to the current rounding mode (to the
nearest, rounding down, or rounding up [1]). The conversions
are always done with some error ε, so the following relation is
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fulfilled: 10F ·n = 2E ·m · (1+ε). In order to design a unique
algorithm for all the rounding modes it is useful to compute
n∗, such that 10F · n∗ = 2E ·m. Thus, we get the following
expression for the decimal mantissa:

n∗ = 2E−F 5−Fm

As 2E−F is a simple binary shift and the multiplication by m
is small, the binary-to-decimal mantissa conversion reduces to
compute the leading bits of 5−F .

The proposed ideas apply with minor changes to decimal-
to-binary conversion: the base of the logarithm is 2 on the
exponent computation step and one additional step is needed;
for the mantissa computation the power 5F is required instead
of 5−F .

III. LOOP-LESS EXPONENT DETERMINATION

The current implementations of the logarithm function are
expensive and produce approximated values. However, some
earlier conversion approaches computed this approximation [6]
by Taylor series or using iterations [7], [8]. Here the exponent
for the both conversions is computed exactly neither with
libm function call nor any polynomial approximation.

After performing one transformation step, (1) can be rewrit-
ten as following:

F = bE log10(2) + blog10(m)c+ {log10(m)}c − p10 + 1,

where {x} = x− bxc, the fractional part of the number x.

As the binary mantissa m is normalized in one binade
2p2−1 ≤ m < 2p2 , we can assume that it lies entirely in
one decade. If it is not the case, we can always scale it a little
bit. The inclusion in one decade means that blog10(m)c stays
the same on the whole interval. So, for the given format one
can precompute and store this value as a constant. Thus, it is
possible to take the integer number blog10(m)c out of the floor
operation in the previous equation. After representing the first
summand as a sum of it’s integer and fractional parts, we have
the following expression under the floor operation:

bbE log10(2)c+ {E log10(2)}+ {log10(m)}c .

Here we add two fractional parts to an integer. We add
something that is strictly less than two, so under the floor
operation we have either an integer plus some small fraction
that will be thrown away, or an integer plus one plus small
fraction. Thus, we can take the fractional parts out of the floor
brackets adding a correction γ:

bE log10(2)c+ γ, γ ∈ {0, 1}.

This correction γ equals to 1 when the sum of two fractional
parts from the previous expression exceeds 1, or mathemati-
cally:

E log10(2)− bE log10(2)c+ log10(m)− blog10(m)c ≥ 1.

Due to the logarithm function the expression on the left is
strictly monotonous (increasing). This means that we need
only one threshold value m∗(E), such that ∀m ≥ m∗(E) the
correction γ = 1. As we know the range for the exponents
E beforehand, we can store the critical values m∗(E) =
101−(E log10 2−bE log10 2c)+blog10(m)c in a table.

There is a technique proposed in [9] to compute
bE log10(2)c with a multiplication, binary shift and the use of
a precomputed constant. So, finally the value of the decimal
exponent can be obtained as

F =
⌊
E
⌊
log10(2) · 2λ

⌋
· 2−λ

⌋
+blog10(m)c−p10+1+γ (3)

The algorithm pseudocode is provided below.

input : E, m
F ← E · blog10(2) · 2λc; //multiply by a constant;1

F ← bF · 2−λc; //binary right shift;2
F ← F + blog10(m)c+ 1− p10; //add a constant;3
if m ≥ m∗(E) then4

F ← F + 1;5
end6

Algorithm 1: The exponent computation in the conver-
sion from binary to decimal floating-point number

The decimal-to-binary conversion algorithm is the same
with a small additional remark. We want to convert decimal
FP numbers to binary, so the input mantissas are in the range
10p10−1 ≤ n < 10p10 . As we mentioned, on this step the
base of the logarithm is 2, and the problem here is that
blog2(10)c = 3, so it seems that we need three tables, but once
we represent the decimal mantissa n as a binary FP number
n = 2Êm̂ in some precision κ, it suffices just one table. For all
the possible values m̂ the following holds blog2(m̂)c = κ−1.
This mantissa representation can be made exact: we’ll have to
shift the decimal n to the left. Thus, the precision of this new
number is κ = dlog2(10p10 − 1)e.

So, the proposed algorithm works for both conversion
directions. However, one can notice, that for binary-to-decimal
conversion the table size can be even reduced by the fac-
tor of two. We have used the mantissas from one binade:
2p2−1 ≤ m < 2p2 . The whole reasoning stays the same
if we scale these bounds in order to have 1 ≤ m < 2,
the table entries quantity stays the same. Now it is clear
that blog10(m)c = 0 for all these mantissas. However, it
still stays zero if we slightly modify the mantissa’s bounds:
∀m′ : 1 ≤ m′ < 4, log10(m′) = 0. Thus, we get a new
binary representation of the input: 2E

′
m′ = 2Em, where

E′ = E − (E mod 2) and m′ = m · 2E mod 2. So, we
see that for the new mantissas interval we do not take into
account the last exponent bit. So, the table entries quantity for
the values m∗(E) reduces twice. The corresponding interval
for mantissas is [1, 4), because in this case we need to find
the remainders of two, that is just a binary shift. The interval
[1, 8) is larger, so it could reduce the table size even more, but
requires computation of the remainders of three.

The table sizes for some particular formats are small
enough to be integrated in hardware. However, these tables
are quite multipurpose, they are shared between all I/O and
arithmetic decimal-binary FP conversions, so, once they are
coded, they could be used in all the mixed radix operations.
The corresponding table sizes for different formats are listed
in table I.
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Initial Format Table size
binary32 554 bytes
binary64 8392 bytes
binary128 263024 bytes
decimal32 792 bytes
decimal64 6294 bytes
decimal128 19713 bytes

Table I. TABLE SIZE FOR EXPONENT COMPUTATION STEP

IV. COMPUTING THE MANTISSA WITH THE RIGHT
ACCURACY

As it was mentioned, the problem on the second step is
the computation of the value 5B with some bounded exponent
B ∈ N. If the initial range for the exponent of five contains
negative values, we compute 5B+B̄ , where B̄ is chosen in
order to make the range for the exponents nonnegative. In this
case we store the leading bits of 5−B̄ as a constant and after
computing 5B+B̄ with the proposed algorithm, we multiply
the result by the constant.

In this section we propose an algorithm for raising five to
a huge natural power without rational arithmetic or divisions.
The range for these natural exponents B is determined by the
input format, e.g. for the conversion from binary64 the range
is about six hundred.

We propose to perform several Euclidean divisions in order
to represent the number B the following way:

B = 2nk · qk + 2nk−1qk−1 + . . .+ 2n1q1 + q0, (4)

where 0 ≤ q0 ≤ 2n1 − 1, nk ≥ nk−1, k ≥ 1. The mentioned
divisions are just a chain of binary shifts. All the quotients are
in the same range and we assume that the range for q0 is the
largest one, so we have qi ∈ [0; 2n1 − 1], 0 ≤ i ≤ k. Once the
exponent is represented as (4), computation 5B is done with
the respect to the following expression:

5B = (5qk)2nk · (5qk−1)2nk−1 · . . . · (5q1)2n1 · 5q0 (5)

Let us analyze how the proposed formula can simplify the
algorithm of raising five to the power B. We mentioned that
all the quotients qi are bounded. By selecting the parameters
k and ni we can make these quotients small, so the values 5qi

can be stored in a table. Then, each factor in (5) is a table
value raised to the power 2ni which is the same as a table
value squared ni times.

So, the algorithm is the following: represent B as (4)
and get the values qi, then for each qi get the table value
5qi and perform ni squarings, and finally multiply all the
squared values beginning from the largest one. The scheme
can be found on Fig. 1, the pseudocode for squarings is in
algorithm 2 and for the final multiplication step in algorithm 3.
All these steps are done in order to convert the FP numbers,
so we simulate usual floating-point computations in integer.
The exponent B is huge, the value 5B is also huge, so we
can store only the leading bits. Thus, on each multiplication
step (squarings are also multiplications) we throw away the
last λ bits. Of course these manipulations yield to an error, in
section V there are details and proofs for the error analysis.

input: nj , vj = 5qj

σj ← 0;1
for i← 1 to nj do2

vj ← bv2
j · 2−λc;3

shiftNeeded ← 1− bvj · 21−pc //get the first bit;4
vj ← vj � shiftNeeded;5
σj ← 2 · σj+shiftNeeded;6

end7

result ← vj · 2−σj · 2(2nj−1)λ;8

Algorithm 2: Squaring with shifting λ last bits

m← 1;1
for i← k to 1 do2

m←
⌊
(m · vi) · 2−λ

⌋
;3

end4

m←
⌊
(m · 5q0) · 2−λ

⌋
;5

m← m · 2((2nk−1)+(2nk−1−1)+···+(2n1−1)+k)λ−
∑1

i=k σi ;6
s←7 ∑1
i=k (ni(blog2(5qi)c − p+ 1)) + blog2(5q0)c − p+ 1;

result ← m · 2s;8

Algorithm 3: Final multiplication step

There is still one detail in algorithm 2 that was not
explained: the correction σj . The mantissa of the input number
is represented as a binary number bounded by one binade (for
both, binary and decimal formats). Assume that we operate the
numbers in the range [2p−1, 2p). After each squaring we can
get a value less then infimum of this range. So, if the first bit
of the intermediate result after some squarings is 0, we shift
it to the left.

The described algorithm is applied k times to each factors
in (5). Then the last step is to multiply all the factors starting
from the largest power like in listing below.

The whole algorithm schema is presented on Fig. 1. De-
pending on the range of B one can represent it in different
manner, but for our conversion tasks the ranges for B were
not that large, so the numbers nj were not more than 10 and
the loops for squarings can be easily unrolled. For instance,
for the conversions from binary32, binary64, decimal32 and
decimal64 one can use the expansion of B of the following
form:

B = 28 · q2 + 24 · q1 + q0

V. ERROR ANALYSIS

In order to compute the mantissa we use integer arithmetic
but on each squaring/multiplication step we throw away a
certain quantity of bits. So the final error is due to these right
shiftings on each multiplication step.

We have errors only due to the multiplications, and as we
do a lot of them, we need to define N as the number of all
the multiplications (squaring is just a particular case of mul-
tiplication). For each i-th factor (1 ≤ i ≤ N ) in (5) we need
to perform ni squarings, thus it gives us ni multiplications.
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Decompose to

2nkqk + 2nk−1qk−1 + · · ·+ 2n1q1 + q0

get 5qk get 5qk−1 get 5q1 get 5q0· · ·

square
nk times

square
nk−1 times

square
n1 times· · ·

multiply

multiply

multiply

· · ·

result

B

Figure 1. Raising 5 to a huge power

In order to get the final result we have to perform k more
multiplications, so the final expression for the N constant is

N =
k∑
i=1

ni + k.

So, the result is a product of N factors and on each step we
have some relative error εi. This means, that if we define y as
the exact product without errors, then what we really compute
in our algorithm can be represented as following:

ŷ = y
N∏
i=1

(1 + εi).

Thus, the relative error of the computations is

ε =
ŷ

y
− 1 =

N∏
i=1

(1 + εi)− 1

Let us prove a lemma that will help us to find the bounds
for the relative error of the result.

Lemma 1. Let N ≥ 3, 0 ≤ ε̄ < 1 and |εi| ≤ ε̄ for all
i ∈ [1, N ]. Then the following holds:∣∣∣∣∣

N∏
i=1

(1 + εi)− 1

∣∣∣∣∣ ≤ (1 + ε̄)N − 1.

Proof: This inequality is equivalent to the following:

−(1 + ε̄)N + 1 ≤
N∏
i=1

(1 + εi)− 1 ≤ (1 + ε̄)N − 1

The proof of the right side is trivial. From the lemma
condition we have −ε̄ ≤ εi ≤ ε̄, which is the same as
1 − ε̄ ≤ εi + 1 ≤ ε̄ + 1 for arbitrary i from the interval
[1, N ]. Taking into account the borders for ε̄, we get that
0 < (1 + εi) < 2 for all i ∈ [1, N ]. This means that we
can multiply the inequalities 1 + εi ≤ ε̄ + 1 by 1 + εj with

j 6= i. After performing N −1 such multiplications and taking
into account that 1 + εi ≤ ε̄+ 1, we get the following:

N∏
i=1

(εi + 1) ≤ (ε̄+ 1)N .

So, the right side is proved.

The same reasoning applies for the left bounds from the
lemma condition, and the family of inequalities 1− ε̄ ≤ εi+ 1
leads to the condition:

(1− ε̄)N − 1 ≤
N∏
i=1

(1 + εi)− 1.

So, in order to prove the lemma we have to prove now that

−(1 + ε̄)N + 1 ≤ (1− ε̄)N − 1.

After regrouping the summands we get the following expres-
sion to prove:

2 ≤ (1 + ε̄)N + (1− ε̄)N .
Using the binomial coefficients this trasforms to

2 ≤ 1 +

N∑
i=1

(
N

i

)
ε̄i + 1 +

N∑
i=1

(
N

i

)
(−ε̄)i

On the right side of this inequality we always have the sum of
2 and some nonnegative terms. So, the lemma is proven.

The error ε̄ is determined by the basic multiplication
algorithm. It takes two input numbers (each of them is bounded
between 2p−1 and 2p), multiplies them and cuts λ last bits, see
line 3 of algorithms 2 and 3. Thus, instead of v2

j on each step
we get v2

j 2−λ + δ, where −1 < δ ≤ 0. So, the relative error
of the multiplication is bounded by |ε̄| ≤ 2−2p+2+λ.

VI. IMPLEMENTATION DETAILS

While the implementation of the first step is relatively
simple, we need to specify some parameters and techniques
that we used to implement raising 5 to an integer power.

The used computational precision p was equal to 128 bits.
The standard C integer types give us either 32 or 64 bits, so
for the implementation we used the uint128_t type from
GCC that is realised with two 64-bit numbers. As a shifting
parameter λ we took 64, so getting most or least 64 bits
out of uint128_t number is easy and fast. Squarings and
multiplications can be easily implemented using typecastings
and appropriate shifts. Here, for instance, we put the code of
squaring the 64-bit integer. The function returns two 64-bit
integers, so the high and the low word of the 128-bit number.

1 void square64(uint64 t ∗ rh,
2 uint64 t ∗ rl,
3 uint64 t a) {
4 uint128 t r;
5

6 r = ((uint128 t) a) ∗ ((uint128 t) a);
7

8 ∗rl = (uint64 t) r;
9 r >>= 64;

10 ∗rh = (uint64 t) r;
11 }

Listing 1. Example. C code sample for squaring a 64-bit number.
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Figure 2. Accuracy as a function of precision and table index size

The other functions were implemented in the same manner.

We have implemented an run parametrized algorithm for
computation of 5B , as the parameter we took the table index
size (for entries 5qi ) and the working precision p. We see
(Fig. 2) that the accuracy depends almost linearly on the
precision.

VII. CONCLUSIONS

A novel algorithm for conversion between binary and
decimal floating-point representations has been presented. All
the computations are done in integer arithmetic, so no FP flags
or modes can be influenced. This means that the corresponding
code can be made reentrant. The exponent determination is
exact and can be done with several basic arithmetic opera-
tions, stored constants and a table. The mantissa computation
algorithm uses a small exact table. The error analysis is given
and it corresponds to the experimental results. The accuracy
of the result depends on the computing precision and the
table size. The conversions are often used and the tables are
multipurpose, so they can be reused by dozens of algorithms.
As this conversion scheme is used everywhere and the tables
are not large, they might be integrated in hardware. The
implementation of the proposed algorithm can be done without
loops, so it reduces the instructions that control the loop,
optimizes and therefore accelerates the code. The described
conversion approach was used in the implementation of the
scanf analogue in libieee754 library [10].
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