
HAL Id: hal-01513490
https://hal.science/hal-01513490

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metalibm: A Mathematical Functions Code Generator
Olga Kupriianova, Christoph Lauter

To cite this version:
Olga Kupriianova, Christoph Lauter. Metalibm: A Mathematical Functions Code Generator. 4th In-
ternational Congress on Mathematical Software (ICMS 2004), Aug 2014, Seoul, South Korea. pp.713-
717, �10.1007/978-3-662-44199-2_106�. �hal-01513490�

https://hal.science/hal-01513490
https://hal.archives-ouvertes.fr


Metalibm: a Mathematical Functions Code
Generator

Olga Kupriianova and Christoph Lauter

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005 Paris, France
{olga.kupriianova, christoph.lauter}@lip6.fr,

http://www.kupriianova.info/, http://www.christoph-lauter.org/

Abstract. There are several different libraries with code for mathemat-
ical functions such as exp, log, sin, cos, etc. They provide only one im-
plementation for each function. As there is a link between accuracy and
performance, that approach is not optimal. Sometimes there is a need
to rewrite a function’s implementation with the respect to a particular
specification.
In this paper we present a code generator for parametrized implementa-
tions of mathematical functions. We discuss the benefits of code gener-
ation for mathematical libraries and present how to implement mathe-
matical functions. We also explain how the mathematical functions are
usually implemented and generalize this idea for the case of arbitrary
function with implementation parameters.
Our code generator produces C code for parametrized functions within a
known scheme: range reduction (domain splitting), polynomial approxi-
mation and reconstruction. This approach can be expanded to generate
code for black-box functions, e.g. defined only by differential equations.

Keywords: code generation, elementary functions, mathematical libraries

1 Introduction

Each time we evaluate mathematical functions in some programming language
a corresponding function from a mathematical library (libm) is called. There
are several examples of existing libms: glibc libm [1], crlibm by ENS-Lyon [2],
libmcr by Sun1, libultim by IBM2, etc. They differ not only by the developer
company or supported language but also by final accuracy. The common fact for
all the versions is that they provide only one manually coded implementation of
each supported function and precision. As the codes for elementary functions are
used in various applications, the implementations are done for the widest pos-
sible domain, for maximum possible accuracy, etc. However, such generalization
complicates the algorithms and leads to poor performance: for some particular
tasks there is no need to compute a precise result. For example, most physi-
cal measurements have only small number of digits after the decimal point, so

1 http://www.math.utah.edu/cgi-bin/man2html.cgi?/usr/local/man/man3/libmcr.3
2 http://www.math.utah.edu/cgi-bin/man2html.cgi?/usr/local/man/man3/libultim.3



2 Kupriianova-Lauter

MetalibmMetmfmgf;g

Metalibm

implementation.c

polynomial coefficients
constants
table(s)
rangeReduction(...)
subdomainsApprox(...)
reconstruction(...)

problemdef.sollya

function
domain
target accuracy
max poly degree
min subdomain width
table size

Fig. 1. Metalibm scheme

computation of the result with 53 mantissa bits (about 15 decimal digits) is a
waste of time. Another example is a small domain known beforehand, which
means that that the result is a finite number (no overflows/underflows are pos-
sible). In this case, handling the special values like NaNs (Not-A-Number [3])
or infinities in the beginning of the implementation can be skipped, hence the
implementation gets faster.

There is also a link between speed and accuracy, so when we process big
amounts of data and the needed accuracy is only about several bits, there is no
reason to compute a precise result [4].

So, there is a growing need to provide several different versions (flavors) for
each libms function. Manual implementation of different function flavors is al-
most impossible due to the quantity of all the possible parameters and coding
time. Thus, we propose to write a code generator that produces parametrized
implementations. The name of this prototype is Metalibm3. Besides producing
different versions of standard libm functions, Metalibm generates implementa-
tions for composite functions as well.

The paper is organized as following: in Section 2 we explain in general the
generation of “black-box” parametrized functions, Section 3 explains the work-
flow of the generator, in Section 4 we show how to detect a known type of
function, and finally Section 5 shows the importance of the Metalibm, future
work on the project and its possible application.

2 A Black-box Function Generator

The Metalibm code is a collection of scripts written in Sollya4, a software tool
for safe floating-point (FP) development with plenty of rigorous numerical algo-
rithms [5].

Among the existing versions of mathematical libraries we are mostly inter-
ested in improvement of the current glibc libm. It runs on all *nix-powered
machines (from supercomputers to mobile phones), so tends to be the most used
one. Thus, Metalibm generates implementations in C. For each input set of pa-
rameters Metalibm generates the C code within the same scheme. On Fig. 1
there is an illustration of Metalibm routine. Metalibm computes and stores the

3 http://lipforge.ens-lyon.fr/www/metalibm/
4 http://sollya.gforge.inria.fr/



Metalibm 3

constants with the needed accuracy, and as we use table-driven methods [4],
it computes and stores the tables. Then Metalibm generates the code for range
reduction (domain splitting), polynomial approximation on each of the small do-
mains, and the final reconstruction procedure. The purpose of these procedures
is explained later in the paper.

As all the computations for the code generation are done in Sollya, a function
to be implemented can be considered as black-box. On the step of range reduc-
tion we need to evaluate the function in some values. Sollya provides elementary
functions and theirs combinations. The generation of code for some “exotic func-
tions” like functions purely defined by differential equations (e.g. Dickman’s) gets
possible as soon as we have a corresponding Sollya implementation, even if it is
bound to Sollya only dynamically [6].

Precision of all the constants and accuracy of the interim computations are
specially selected in order to obtain the final result of the specified accuracy
(target accuracy parameter). Besides the generated code, Metalibm verifies the
final results accuracy and generates a Gappa proof [7].

A simple example of the parametrization file is provided in Listing 1.1. The
sense of all the parameters will be explained later with the implementation details
of Metalibm.

1 f = exp(x); // we want to get the code for exp(x)
2 dom = [−70, 70]; // on domain [−70, 70]

3 target = 2−42; // the final error has to be not more that 2−42

4 maxDegree = 5; // degree of approximating polynomials is not more than 5
5 minWidth = (sup(dom) − inf(dom)) ∗ 1/4096; // minimal size of the subdomain
6 tableIndexWidth = 5; // the size of table index is 5 bits, so 32 entries in table

Listing 1.1. Example of the parametrization file

3 Function Generation Workflow

In order to implement a mathematical function on a given domain we have to
care first about special cases (NaNs and infinities). So, the first or even pre-
computing step is always filtering the special inputs, handling exceptions, too
large or too small inputs unless the domain is so small that these special cases
cannot occur.

When designing algorithms for mathematical functions evaluation we usually
start with writing the inputs and output in a form of floating-point (FP) numbers
2Em and trying to separate all the factors into two groups: a power of two n = 2E

that represents the results exponential part and one non-integer number with
values in a small range to represent significand. This technique of emphasizing a
non-integer part with a small range (results significand) is usually called range
reduction [8]. The next step is building an approximation. There are different
approximation techniques, but we only consider polynomial ones. The larger the
range of argument is, the higher polynomial degrees are required. This means
that the computation time will be high and the error analysis becomes more



4 Kupriianova-Lauter

difficult with the growing number of FP operations. This is the main reason why
we need argument reduction. In Metalibm, we use a parameter maxDegree to
limit the maximal degree of constructed approximations. These polynomials are
computed with Remez algorithm that is implemented in Sollya [6], [9].

All the transformations on the first step fully depend on mathematical prop-
erties of the implemented function, i.e. ea+b = eaeb [10]. It can happen that it is
impossible to reduce the range using only mathematical properties. In this situa-
tion the required domain for the implementation is divided into subdomains. On
each of the subdomains the argument range is small and the degree of the ap-
proximating polynomial gets lower. In this case, one has to build approximations
for each of the subdomains and then the reconstruction step gets more complex.
In Metalibm we bound minimal size of subdomain by a parameter minWidth.

Once the generation process is launched, Metalibm checks whether it is pos-
sible to build a polynomial for the specified function, domain and other param-
eters. If it is not possible, it tries to reduce argument for the set of known func-
tions (exponential, logarithm, periodic). Then there is symmetry detection and
expression decomposition for composite functions. When it is still not possible
to build a polynomial approximation for the reduced domain, domain splitting
is performed. Metalibm adapts computational precision [11] in order to get the
needed accuracy, so in some cases it uses double-double or triple-double arith-
metic [12], [13].

4 Some Technical Details

As it was already mentioned, Metalibm tries to detect some known properties of
the function to perform range reduction. For example, let us have a look on how
Metalibm tests hypothesis that the function is exponential and finds its base.

In order to detect the exponential function and to perform the appropriate
argument reduction we accept the hypothesis that the function has a form of
f(x) = bx on the implementation domain I with the unknown base b. It means
that we can determine the base from the following:

b = exp

(
ln f(x)

x

)
= const ∀x ∈ I.

The base b can be computed in Sollya without any information about the func-
tion f(x). Sollya will provide the needed value for the function. This is why we
were talking about “black-box” functions: we do not know what code are we
generating, but we have a mean to evaluate some function values.

As we have accepted the function type as f(x) = bx, it means that for
another argument x1 from the implementation domain the function value is
f(x1) = bx1 . Of course the base b stays the same if the hypothesis was correct
and we know that we can perform the exponential argument reduction now. If

the value ε̃ =
∥∥∥ bx

f(x) − 1
∥∥∥I
∞

is sufficiently small we accept the initial hypothesis.

The detection of other types of functions is done in the analogous way.



Metalibm 5

5 Conclusions

The Metalibm code generator is still under development, but it already produces
code for basic functions. The next goals are an optimized domain splitting pro-
cedure, producing vectorizable implementations and addition of range reduction
for other functions.

As it was told, the generated code tends to improve and expand current glibc
libm. So, we will try to provide generated code on the whole code generator to
the GNU community for integration with the glibc libm.

References

1. S. Loosemore, R. M. Stallman et al., The GNU C Library Reference Manual for
version 2.19, Free Software Foundation, Inc.

2. C. Daramy-Loirat, D. Defour, F. de Dinechin et al. CR-LIBM. A library of correctly
rounded elementary functions in double-precision, user’s manual, 2013.

3. IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, IEEE Stan-
dard 754-2008, August 2008.

4. J.-M. Muller, Elementary Functions: Algorithms and Implementation, Birkhauser
Boston, Inc., 1997, Secaucus, NJ, USA.

5. S. Chevillard and M. Joldeş and C. Lauter, Sollya: An Environment for the Devel-
opment of Numerical Codes, Mathematical Software - ICMS 2010.

6. S. Chevillard, Ch. Lauter, M, Joldeş, Users manual for the Sollya tool, Release 4.0,
May 2013.

7. F. de Dinechin, Ch. Lauter and G. Melquiond, Certifying the Floating-Point Imple-
mentation of an Elementary Function Using Gappa, IEEE Transactions on Com-
puters, IEEE Computer Society, 2011, 60, 242-253.

8. J.-M. Muller, N. Brisebarre, F. de Dinechin et al., Handbook of Floating-Point Arith-
metic, Birkhäuser, 2010.

9. S. Chevillard, Évaluation efficace de fonctions numériques. Outils et exemples, PhD
Thesis, ENS de Lyon, 2009.

10. P. T. P. Tang, Table-driven implementation of the exponential function in
IEEE floating-point arithmetic, ACM Transactions on Mathematical Software,
18(2):211222, june 1989.

11. Ch. Lauter, Arrondi correct de fonctions mathématiques, PhD Thesis, ENS de
Lyon, 2008.

12. J. R. Schewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates, Discrete & Computational Geometry, 1997.

13. F. de Dinechin, D. Defour, Ch. Lauter, Fast correct rounding of elementary func-
tions in double precision using double-extended arithmetic, Research report, ENS de
Lyon, 2004.


