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Abstract: Nowcasting systems are essential to prevent extreme events and reduce their socio-economic impacts. The 
major challenge of these systems is to capture high-risk situations in advance, with good accuracy, location and time. 
Uncertainties associated with the precipitation events have an impact on the hydrological forecasts, especially when 
it concerns localized flash flood events. Radar monitoring can help to detect the space-time evolution of rain fields, 
but nowcasting techniques are needed to go beyond the observation and provide scenarios of rainfall for the next 
hours of the event. In this study, we investigate a space-time geostatistical framework to generate multiple scenarios 
of future rainfall. The rainfall ensemble is generated based on space-time properties of precipitation fields given by 
radar measurements and rainfall data from rain gauges. The aim of this study is to investigate the potential of a 
framework that applies a geostatistical conditional simulation method to generate an ensemble nowcasting of rainfall 
fields. The Var region (south eastern France) and 14 events are used to validate the approach. Results show that the 
proposed method can be a solution to combine information from radar fields and rain gauges to generate nowcasting 
rainfall fields adapted for flash flood alert. 

 

1 Introduction 
Flash floods are responsible for economic and social 

losses around the world. Predicting these events is 
considered one of the hardest and most challenging 
situations faced by hydrologists and meteorologists [1]. In 
France, flash floods are also natural hazards of high socio-
economic impact [2]. The event of 3 October 2015, which 
took place in the south of France, caused several damages 
and a total of twenty casualties. The �Alpes-Maritime�� 
French �����	
���
� was one of the regions most affected 
area. For instance, in Cannes, an exceptional point rainfall 
intensity of 175 mm was observed in 2 hours ([3], [4]). 

The tools available to improve the anticipation of flash 
floods include the measurement and monitoring of rainfall 
events by weather radars with high spatial and time 
resolution (eg., [5]) and the development of high resolution 
numerical weather prediction models (eg., [6]; [7]). Beyond 
the diversity of approaches and applications, quantifying the 
meteorological and hydrological uncertainties for 
nowcasting is a challenge. Notably, uncertainties associated 
with the rainfall events have an important impact on the 
hydrological forecasts, especially when it concerns localized 
flash flood events.  

In hydrometeorological forecasting, ensemble 
prediction is an approach increasingly used to quantify 
predictive uncertainties and to improve the reliability of 
forecasts. An example of short-term prediction ensemble 
method is the STEPS (Short Term Prediction Systems) 
approach ([7]; [8]). Based on a combination of 
extrapolation, perturbation and cascading of nowcasting 
weather predictions, it allows the forecast of an event with a 
lead time of up to 6 hours ahead. Another example is the 
SBMcast method ([9]). Based on a Lagrangian extrapolation 
of the latest observed rainfall radar field, it generates rainfall 
scenarios that preserve the spatial and temporal structure of 
the observed fields.  

In France, ensemble weather forecasts have also been 
investigated for short-term flood forecasting (up to about 72 
hours), based on the ARPEGE (PEARP) meteorological 
model ([10]; [11]).  

In this study, we investigate a space-time geostatistical 
framework to generate multiple scenarios of future rainfall 
for the nowcasting of flash flood events. The geostatistical 
approach is based on a conditional simulation and an 
advection method applied within the Turning Bands Method 
(TBM). Ensemble rainfall nowcasts are generated based on 
space-time properties of precipitation fields given by radar 
measurements and precipitation data from rain gauges. The 
approach has been previously tested for the simulation of 
uncertainty in radar rainfall fields ([12]) and is here 
proposed for nowcasting. The method was applied in the 
Var region, south of France, using several flood events. 

This paper is organized as follows: section 2 describes 
the development of the method and the methodology of 
evaluation of the results; section 3 describes the study area 
and the data; section 4 presents the results, and section 5 
draws the conclusions. 

2 Method to generate ensembles 

2.1 The TBM method to generate 
precipitation ensembles 

The precipitation ensembles are generated using a 
geostatistical simulation method, the SAMPO Turning Band 
Method (TBM) developed at Irstea. The algorithm simulates 
rain in space (x, y) and time (z) using a space-time 
variogram model and an advection technique. The advection 
incorporates a velocity and is considered uniform and 
constant over the duration of an event. Further details about 
the generator can be found in [13] and references therein. 
We adapted the SAMPO TBM method to perform 
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conditional simulation, following the first tests reported in 
[14]. Basically, the framework consists of a non-conditional 
TBM simulation of random fields in space and time, 
followed by a conditioning step at rain gauge locations.  

At the points of conditioning, all simulated fields have 
the same value as the data. Conditioning is based on the 
residual substitution kriging approach and MCMC sampling 
(further details can be found in [12]). In summary, the 
parameters used by the generator are: the wind velocity and 
direction of the event, the space-time variogram model, the 
average percentage of zero rain, the direction and velocity of 
rain cells, the mean and standard deviation of the 
precipitation data, and the rain data at gauged locations for 
the conditioning.  

In nowcasting, the parameters of the generator are 
estimated considering the rainfall data available at the time 
of the start of the nowcasting. The process has to start after a 
minimum of hours after the start of an event. Here, we 
consider 4 hours for this initialization. The rainfall nowcasts 
are then issued for the next six hours, with a total of 30 
ensemble members generated at each hourly time step of the 
event. For the subsequent time steps, we used an increasing 
window approach: at each new start of a nowcast, we 
recalculate the parameters of the generator using all 
available data since the beginning of the event. This is 
repeated at each hourly time step and up to the end of the 
event. Figure 1 illustrates the schema adopted in this study.  

 

�� �

Figure 1. Schema adopted for the generation of ensemble rainfall 
nowcasts: the time step loop is repeated up to the end of the event. 

2.2 Evaluation  

We compared the rain fields generated with the 
SAMPO TBM method with an independent rainfall dataset 
provided by Météo-France, which is a merge of radar 
imagery and rain gauges measurements (ANTILOPE 
product). All events were considered together to calculate 
statistical scores over all the time steps available. The 
rainfall nowcasts were evaluated for each lead time, either 
considering each rain pixel of the study area (maps of 
scores) or areal rainfalls over selected catchments. 

The accuracy of the ensemble nowcasts was evaluated 
considering the ensemble mean and the Mean Absolute 
Error (MAE). ��� ������ 	���� �	�� � 
� � ��� �	�
negatively-oriented scores, i.e., lower values are better. We 
also computed the Critical Success Index (CSI), the 
Probability of detection (POD) and the Success Ratio (SR), 
for which we considered a probability threshold of at least 
20% of the ensemble members exceeding a precipitation 
threshold of 1 mm/h. For these criteria, the value of 1 
represents a "perfect prediction", where there are no false 
alarms or missed alerts [9]. Scores maps were generated for 
these criteria.  

We also calculated the Relative Operating 
Characteristic (ROC). It measures the ability of predictions 
to discriminate between events and non-events. It is widely 
used in the evaluation of probabilistic forecasts and is 
considered as a measure of potential usefulness. It is 
characterized by the graphical representation of the 
probability of detection (POD) against the probability of 
false detection (POFD), using different predictive 
probability thresholds (eg, at least 5%, 25%, 50%, etc. of 
ensemble members exceeding a given threshold). The area 
under the ROC (AUC) can be computed to  estimate the 
quality of the forecast datasets. A perfect prediction is 
represented by an AUC equal to 1, while an AUC  below 0.5 
indicates a prediction with no skill (not better than an 
aleatory forecast). The ROC was applied to evaluate rainfall 
nowcasts at the catchment scale. For this, a threshold was 
considered, which corresponds to the 70% quantile of areal 
rainfall, defined at each studied catchment. 

More details on the evaluation scores used in this study 
can be found in [15]. 

3 Case-study and data 
The methodology was applied to the Var 

�����	
����
� in the French Mediterranean region. It is 
indicated in Fig. 2, together with the rain gauge network and 
the studied catchments.  

The data used to generate precipitation ensembles come 
from 30 rain gauges and the PANTHERE weather radar 
data, which is the French operational radar data that 
provides quantitative precipitation fields in real time. It 
consists of 5-min precipitation fields with a 1 × 1 km² grid 
resolution. To evaluate the rainfall nowcasts, we compared 
them against the ANTILOPE radar data. This is a hybrid 
product, coming from the PANTHERE data and a rain 
gauge interpolation (kriging with external drift). All 
meteorological data were provided by the French 
meteorological service (Météo-France). In our study, these 
data were aggregated at the hourly time step. The data span 
from October 2009 to March 2013, with the presence of 
some missing data values at the rain gauge locations. 

A total of 22 catchments of different area sizes were 
selected for this study (Fig. 2). These catchments were used 
to calculate the catchment area rainfall (observed and 
nowcast rainfall).  From the data available, we selected  14 
events.  

Each event was considered to start (or to end) when at 
least one (or no) hourly radar pixel exceeded 5 mm/h 
anywhere in the study region. Only the most significant 
events in terms of rainfall accumulation and spatial 
extension were considered. The selected events have the 
following characteristics: 

�The duration of the events range from 8 to 34 hours. 
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�The maximum observed rainfall at a radar pixel varies 
between 13 mm/h and 92 mm/h. 

� The maximum accumulated rainfall value (over the 
total duration of the event), observed at a radar pixel, ranges 
from 53 mm to 414 mm. 

� The majority of the events occur during the fall and 
winter seasons, but one of the most intense events was 
observed in June, during summer 2010. This event lasted 31 
hours, with a total point rainfall of 357 mm and a maximum 
hourly rainfall of 92.4 mm at a radar pixel. 

� The majority of the events had higher intensities 
falling in the eastern part of the Var region. 

 

�

Figure 2. Location of the study area (Var region) in southeast 
France and its river network. Studied catchments are coloured in 
blue and rain gauges are indicated by dots. 

4 Results 

4.1 Parameters of the rainfall generator  

Parameters of the TBM algorithm were evaluated separately 
for each rain event and considering the last observed hourly 
time steps. They were used to generate the rainfall nowcasts. 
Hourly weather radar data were used to fit an exponential 
model to the hourly empirical space�time variograms.  The 
spatial and temporal variogram of the precipitation 
intermittency has a range between 21�77 km in space and 2�
5 h in time. The nonzero precipitation variograms present a 
spatial range between 13�89 km and a temporal range 
between 1�7 h. The average percentage of zero 
precipitation, varies between 5% and 51% among the 
studied events. For each event, the wind velocity and the 
direction were estimated. Values vary between 2.5 m/s and 
13 m/s, and the majority of the events show wind direction 
from southeast to northwest. Rain gauge data were used to 
parameterise the cumulative distribution function (CDF). 
The mean and the standard deviation of nonzero rain vary 
between 1�4.6 mm/h and 0.7�10 mm/h, respectively. 
 
 

 
 

4.2 Evaluation of the rainfall nowcasting with score 
maps 

The forecasts generated by the SAMPO TBM method 
(increasing window) were evaluated against observed 
rainfalls and score maps were obtained. Score maps were 
also computed for a nowcast consisting of a persistent 
rainfall, i.e., the last observed rainfall radar field is 
considered as the rainfall nowcast for the six hours ahead.  

Figure 3 presents the MAE maps obtained for lead 
times from one hour to four hours. MAE values were 
computed for each precipitation pixel (1 km²). We can see 
that the MAE values increase as lead time increases. There 
is an important difference between the MAE obtained using 
the SAMPO TBM method and the MAE from the 
persistence method. The latter can reach up to 5 mm/h, 
while the former has much lower values, mainly after the 
first hour ahead. We also observe that MAE values are 
higher in the eastern part of the study area. This is due to the 
fact that this is the rainiest area in the region, with several 
events in our dataset registering high rain values over this 
area. 

 

Figure 3. MAE  maps calculated considering the ensemble mean 
forecast generated using the SAMPO TBM method (left) and the 
persistence method (right). The red triangles represent the rain 
gauges. 

Figure 4 presents the CSI, POD and SR maps. We 
can see that the scores are better at the first hours ahead and 
the nowcasts tend to lose performance as lead time 
increases.  Also here, in general, the nowcasts obtained with 
the rainfall generator show better performance than the 
persistence method, notably after the first hour ahead. 

 

 

  

� SAMPO 
TBM 

 
 

Persistence 
mm/h 

 
 
 
 
 
 

1h ahead 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2h ahead 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

3h ahead 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4h ahead  

5 
 
 
 
 
 

4 
 
 
 
 
 
 
 
 
 

3 
 
 
 
 
 

2 
 
 
 
 
 
 
 
 
 

1 
 
 
 
 
 
 

0

 
 

         
 

 

 
DOI: 10.1051/, 6E3S Web of Conferences e3sconf/201

FLOODrisk 2016 - 3rd European Conference on Flood Risk Management 
7 071800118001 ( 2016)

3



Figure 4. CSI (left), POD (centre) and SR (right) maps for the SAMPO TBM method (SAMPO TBM) and the persistence method. The red 
triangles represent the rain gauges. 

�

4.3  Evaluation of the rainfall nowcasting over the 
studied catchment areas  

Figure 5 presents the ROC AUC obtained for the 
studied catchments and considering all the studied events. It 
can be observed that the AUC also decreases when lead time 
increases, as observed with the other evaluation scores. The 
AUC is below 0.5, meaning that the prediction has no skill. 
After 3 hours, its performance decreases significantly. This 
can be related to the ranges of correlation of the space-time 
variogram. The average of the time correlation range over 
the studied events is about three hours. The SAMPO TBM 
method can thus generate rain cells in places where actually 
there is no rain. The probability of false detection (POFD) 
will increase and, consequently, there is a reduction of the 
ROC AUC.  

�

Figure 5. Variation of the ROC AUC obtained at 22 catchments 
according to lead time. Rainfall nowcasts from the SAMPO TBM 
method (blue) is shown. The red line represents the 0.5 value, 
below which predictions have no skill. The boxplots represent the 
5%, 25%, 50%, 75% and 95% quantile.  

5 Conclusion 
In this paper, we investigated a geostatistical framework 

method to generate space-time rainfall ensembles for 
nowcasting, using both rainfall radar data and rain gauge 
data. The methodology was applied to 14 rain events 
observed in the Var region in France and evaluated over 22 
catchments.  

The results indicate that the approach set up in this 
study was able to simulate an ensemble of rainfall forecast 
fields with, in general, better performance for the next hours 
ahead than a persistence-based method. The ensemble 
nowcasting of rainfall fields can be used as input to a 
hydrological model and, ultimately, provide information on 
the probability of exceeding critical flood alert thresholds. 
Future work will explore these challenges. 
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