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Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs
Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 

1 University Station C0200, Austin, TX 78712-0027, United States

The concept of isogeometric analysis is proposed. Basis functions generated from NURBS (Non-Uniform Rational 
B-Splines) are employed to construct an exact geometric model. For purposes of analysis, the basis is refined and/or its 
order elevated without changing the geometry or its parameterization. Analogues of finite element h- and p-refinement 
schemes are presented and a new, more efficient, higher-order concept, k-refinement, is introduced. Refinements are eas-
ily implemented and exact geometry is maintained at all levels without the necessity of subsequent communication with 
a CAD (Computer Aided Design) description. In the context of structural mechanics, it is established that the basis 
functions are complete with respect to affine transformations, meaning that all rigid body motions and constant strain 
states are exactly represented. Standard patch tests are likewise satisfied. Numerical examples exhibit optimal rates of 
convergence for linear elasticity problems and convergence to thin elastic shell solutions. A k-refinement strategy is 
shown to converge toward monotone solutions for advection–diffusion processes with sharp internal and boundary lay-
ers, a very surprising result. It is argued that isogeometric analysis is a viable alternative to standard, polynomial-based, 
finite element analysis and possesses several advantages.

Keywords: NURBS; Finite element analysis; CAD; Structural analysis; Fluid dynamics; Mesh refinement; Convergence; Boundary

layers; Internal layers; Geometry; Shells; h-refinement; p-refinement; k-refinement

1. Introduction

In this paper we introduce a new method for the analysis of problems governed by partial differential

equations such as, for example, solids, structures and fluids. The method has many features in common
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with the finite element method and some features in common with meshless methods. However, it is more

geometrically based and takes inspiration from Computer Aided Design (CAD). A primary goal is to be

geometrically exact no matter how coarse the discretization. Another goal is to simplify mesh refinement

by eliminating the need for communication with the CAD geometry once the initial mesh is constructed.

Yet another goal is to more tightly weave the mesh generation process within CAD. In this work we intro-
duce ideas in pursuit of these goals.

It is interesting to note that finite element analysis in engineering had its origins in the 1950s and 1960s.

Aerospace engineering was the focal point of activity during this time. By the late 1960s the first commercial

computer programs (ASKA, NASTRAN, Stardyne, etc.) appeared. Subsequently, the finite element

method spread to other engineering and scientific disciplines, and now its use is widespread and many com-

mercial programs are available. Despite the fact that geometry is the underpinning of analysis, CAD, as we

know it today, had its origins later, in the 1970s and 1980s. A highly-recommended introductory book, with

historical insights, is Rogers [1]. This perhaps explains why the geometric representations in finite element
analysis and CAD are so different. Major finite element programs were technically mature long before mod-

ern CAD was widely adopted. Presently, CAD is a much bigger industry than analysis. Analysis is usually

referred to as Computer Aided Engineering (CAE) in market research. It is difficult to precisely quantify the

size of the CAE and CAD industries but current estimates are that CAE is in the $1–$2 billion range and

CAD is in the $5–$10 billion range. The typical situation in engineering practice is that designs are encap-

sulated in CAD systems and meshes are generated from CAD data. This amounts to adopting a totally dif-

ferent geometric description for analysis and one that is only approximate. In some instances mesh

generation can be done automatically but in most circumstances it can be done at best semi-automatically.
There are still situations in major industries in which drawings are made of CAD designs and meshes are

built from them. It is estimated that about 80% of overall analysis time is devoted to mesh generation in the

automotive, aerospace, and ship building industries. In the automotive industry, a mesh for an entire vehi-

cle takes about four months to create. Design changes are made on a daily basis, limiting the utility of ana-

lysis in design if new meshes cannot be generated within that time frame. Once a mesh is constructed,

refinement requires communication with the CAD system during each refinement iteration. This link is

often unavailable, which perhaps explains why adaptive refinement is still primarily an academic endeavor

rather than an industrial technology.
The geometric approximation inherent in themesh can lead to accuracy problems. One example of this is in

thin shell analysis, which is notoriously sensitive to geometric imperfections; see Fig. 1. The sensitivity to

imperfections is shown in Fig. 1b in which the buckling load of a geometrically perfect cylindrical shell is com-

paredwith shells inwhich geometric imperfections are introducedwithmagnitudes of 1%, 10%, and 50%of the

thickness. Asmay be seen, there is a very considerable reduction in buckling load with increased imperfection.

Sensitivity to geometry has also been noted in fluid mechanics. Spurious entropy layers about aerody-

namic shapes were the bane of compressible Euler solvers in the 1980s and 1990s. The problem and its solu-

tion were identified in the thesis of Barth [2]. Piecewise linear approximations of geometry were the root
cause. Smooth geometry completely eliminated the entropy layers even when the flow fields were approx-

imated by linear elements on the curved geometry; see Fig. 2. This result explains why methods which em-

ploy smooth geometric mappings are widely used in airfoil analysis (see [3]). It is also well known in

computational fluid dynamics that good quality boundary layer meshes significantly improve the accuracy

of computed wall quantities, such as pressure, friction coefficient, and heat flux; see Fig. 3.

The construction of finite element geometry (i.e., the mesh) is costly, time consuming and creates inac-

curacies. It is clear from the smaller size of the CAE industry compared with the CAD industry that the

most fruitful direction would be to attempt to change, or replace, finite element analysis with something
more CAD-like. This direction was taken in the development of the RASNA program Mechanica, in which

exact geometry in conjunction with a p-adaptive finite element procedure was utilized. However, the lack of

satisfaction of the isoparametric concept led to theoretical questions which were addressed in later versions
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of the code by abandoning the exact geometry in favor of high-order polynomial approximations [7]. The

use of a fixed polynomial approximation to geometry has been shown by Szabó et al. [8] to be limiting. As

solution polynomial order is increased, the error plateaus at some level and cannot be further reduced (see

Fig. 4). The seriousness of this result is compounded by the fact that computed quantities defined on

boundaries are usually the most important ones in engineering applications, and this is where geometric
errors are most harmful. Furthermore, most finite element analyses are still performed with low-order

elements for which geometric errors are largest. The success of RASNA, which was later acquired by

Parametric Technology Corporation (PTC), a CAD company, was due to its tight linkage with CAD

Fig. 1. Thin shell structures exhibit significant imperfection sensitivity: (a) faceted geometry of typical finite element meshes introduces

geometric imperfections [4] and (b) buckling of cylindrical shell with random geometric imperfections [5].

(a) (b)

Fig. 2. Isodensity contours of GLS discretization of Ringleb flow. (a) Isoparametric linear Lagrange element approximation: both

solution space and geometry space are represented by piecewise linear functions. (b) Super-isoparametric element approximation:

solution space is piecewise linear, while geometry is piecewise quadratic. Smooth geometry avoids spurious entropy layers associated

with piecewise-linear geometric approximations (from [6]).
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geometry and, perhaps more importantly, its consequent ability to provide adaptive p-refinement and thus
more reliable results. The present methodology is similarly inspired, but attempts to more faithfully adhere

to CAD geometry and eliminate the finite element polynomial description entirely. (The p-method is de-

scribed in Szabó and Babuška [9] and Szabó et al. [8].)

The approach we have developed is based on NURBS (Non-Uniform Rational B-Splines), a standard

technology employed in CAD systems. We propose to match the exact CAD geometry by NURBS sur-

faces, then construct a coarse mesh of ‘‘NURBS elements’’. These would be solid elements in three-dimen-

sions that exactly represent the geometry. 1 This is obviously not a trivial task and one that deserves much

study but when it can be accomplished it opens a door to powerful applications. Subsequent refinement
does not require any further communication with the CAD system and is so simple that it may facilitate

more widespread adoption of this technology in industry. There are analogues of h-, p-, and hp-refinement
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Fig. 4. Convergence study of the Scordelis–Lo roof problem: pg represents the polynomial degree of geometry representation, p

corresponds to the polynomial degree of the approximation space (from [10]).

1 We assume that unnecessary features, such as the rivets on an airplane wing, are removed from the geometry prior to mesh

generation for analysis. Feature removal is a necessary but complex process.

Fig. 3. Quality boundary layer meshes significantly improve accuracy (from [3]).
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strategies, and a new, higher-order methodology emerges, k-refinement, which seems to have advantages of

efficiency and robustness over traditional p-refinement. All subsequent meshes retain exact geometry.

Throughout, the isoparametric philosophy is invoked, that is, the solution space for dependent variables

is represented in terms of the same functions which represent the geometry. For this reason, we have

dubbed the methodology isogeometric analysis.
NURBS are not a requisite ingredient in isogeometric analysis. We might envision developing isogeo-

metric procedures based on ‘‘A-patches’’ (see [11–16]) or ‘‘subdivision surfaces’’ (see [17–19]). However,

NURBS seem to be the most thoroughly developed CAD technology and the one in most widespread use.

The body of this paper begins with a tutorial on B-splines (B-splines are the progenitors of NURBS), fol-

lowed by one on NURBS. We then describe an analysis framework based on NURBS. This is followed by

sample applications in linear solid and structural mechanics and some introductory calculations in fluids,

namely, ones involving classical test cases for the advection–diffusion equation. Various refinement strategies

are studied and, in cases for which exact elasticity solutions are available, optimal rates of convergence are
attained. The structural problems include some applications to thin shells modeled as solids. The approach

is seen to handle these situations remarkably well. In the fluid calculations, we employ the SUPG formulation

and consider difficult test cases involving internal and boundary layers. We observe that, by employing high-

order, k-refinement strategies, convergence toward monotone solutions is obtained. This surprising result

seems to contradict numerical analysis intuitions and suggests the possibility of linear difference methods that

are simultaneously robust and highly accurate. We close with conclusions and suggestions for future work.

2. B-splines and NURBS

2.1. Knot vectors

NURBS are built from B-splines. The B-spline parametric space is local to ‘‘patches’’ rather than ele-

ments. Patches play the role of subdomains within which element types and material models are assumed

to be uniform. A knot vector in one dimension is a set of coordinates in the parametric space, written

N = {n1,n2, . . . ,nn+p+1}, where ni 2 R is the ith it knot, i is the knot index, i = 1,2, . . . ,n + p + 1, p is the poly-
nomial order, and n is the number of basis functions which comprise the B-spline.

Remark. The conventionwe will adopt is that the order p = 0,1,2,3, etc., refers to constant, linear, quadratic,

cubic, etc., piecewise polynomials, respectively. This is the usual terminology in the finite element literature.

What we refer to as ‘‘order’’ is usually referred to as ‘‘degree’’ in the computational geometry literature.
If knots are equally-spaced in the parametric space, they are said to be uniform. If they are unequally

spaced, they are non-uniform. More than one knot can be located at the same coordinate in the parametric

space. These are referred to as repeated knots. A knot vector is said to be open if its first and last knots

appear p + 1 times. Open knot vectors are standard in the CAD literature. In one dimension, basis

functions formed from open knot vectors are interpolatory at the ends of the parametric space interval,

[n1,nn+p+1], and at the corners of patches in multiple dimensions but they are not, in general, interpolatory

at interior knots. This is a distinguishing feature between knots and ‘‘nodes’’ in finite element analysis.

2.2. Basis functions

B-spline basis functions are defined recursively starting with piecewise constants (p = 0)

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1;

0 otherwise:

�
ð1Þ
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For p = 1,2,3, . . ., they are defined by

Ni;pðnÞ ¼ n� ni
niþp � ni

N i;p�1ðnÞ þ
niþpþ1 � n

niþpþ1 � niþ1

Niþ1;p�1ðnÞ: ð2Þ

Derivatives with respect to spatial coordinates may be computed by way of standard techniques de-

scribed in Hughes [20, Chapter 3]. An initial example of the results of applying (1) and (2) to a uniform
knot vector is presented in Fig. 5. Note that, for p = 0 and 1, the basis functions are the same as for stan-

dard piecewise constant and linear finite element functions, respectively. However, for p P 2, they are dif-

ferent. Quadratic B-spline basis functions (and NURBS basis functions, as will be shown later) are identical

but shifted. This is in contrast with quadratic finite element functions which are different for internal and

end nodes. This ‘‘homogeneous’’ pattern continues as we go to higher-order B-splines and may result in

significant advantages in equation solving over finite element functions, which are quite ‘‘heterogeneous’’.

An example of quadratic basis functions for an open, non-uniform knot vector is presented in Fig. 6.

Note that the basis functions are interpolatory at the ends of the interval and also at n = 4, the location
of a repeated knot, where only C0-continuity is attained. Elsewhere, the functions are C1-continuous. In

general, basis functions of order p have p � 1 continuous derivatives. If a knot is repeated k times, then

the number of continuous derivatives decreases by k. When the multiplicity of a knot is exactly p, the basis

function is interpolatory.
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Fig. 5. Basis functions of order 0,1,2 for uniform knot vector N = {0,1,2,3,4, . . .}.
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Important properties of B-spline basis functions are:

(1) They constitute a partition of unity, that is, "n
Xn

i¼1

Ni;pðnÞ ¼ 1: ð3Þ

(2) The support of each Ni,p is compact and contained in the interval [ni,ni+p+1].
(3) Each basis function is non-negative, that is, Ni,p(n) P 0,"n. Consequently, all of the coefficients of a

mass matrix computed from a B-spline basis are greater than, or equal to, zero.

2.3. B-spline curves

B-spline curves in Rd are constructed by taking a linear combination of B-spline basis functions. The

coefficients of the basis functions are referred to as control points. These are somewhat analogous to nodal

coordinates in finite element analysis. Piecewise linear interpolation of the control points gives the so-called

control polygon. In general, control points are not interpolated by B-spline curves. Given n basis functions,

Ni,p, i = 1,2, . . . ,n, and corresponding control points Bi 2 Rd ; i ¼ 1; 2; . . . ; n, a piecewise-polynomial B-

spline curve is given by

CðnÞ ¼
Xn

i¼1

Ni;pðnÞBi: ð4Þ

An example is shown in Fig. 7 for the quadratic basis functions considered previously. Note that the

curve is interpolatory at the first and last control points, due to the fact that the knot vector is open,

and also at the sixth control point, due to the fact that the multiplicity of the knot n = 4 is equal to the

polynomial order. Note also that the curve is tangent to the control polygon at the first, last, and sixth con-

trol points. The curve is Cp�1 = C1-continuous everywhere except at the location of the repeated knot,

n = 4, where it is Cp�2 = C0-continuous.

Fig. 7. B-spline, piecewise quadratic curve in R2. Control point locations are denoted by •. Basis functions and knot vector as in Fig. 6.
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Important properties of B-spline curves are:

(1) They have continuous derivatives of order p � 1 in the absence of repeated knots or control points.

(2) Repeating a knot or control point k times decreases the number of continuous derivatives by k.

(3) An affine transformation of a B-spline curve is obtained by applying the transformation to the control
points. 2 We refer to this property as affine covariance.

2.4. h-refinement: knot insertion

The analogue of h-refinement is knot insertion. Knots may be inserted without changing a curve geomet-

rically or parametrically. Given a knot vector N = {n1,n2, . . . ,nn+p+1}, let �n 2 ½nk; nkþ1½ be a desired new knot.

The new n + 1 basis functions are formed recursively, using (1) and (2), with the new knot vector
N ¼ fn1; n2; . . . ; nk; �n; nkþ1; . . . ; nnþpþ1g. The new n + 1 control points, fB1;B2; . . . ;Bnþ1g, are formed from

the original control points, {B1,B2, . . . ,Bn}, by

Bi ¼ aiBi þ ð1� aiÞBi�1; ð5Þ
where

ai ¼
1; 1 6 i 6 k � p;
�n� ni

niþp � ni
; k � p þ 1 6 i 6 k;

0; k þ 1 6 i 6 nþ p þ 2:

8>>><
>>>:

ð6Þ

Knot values already present in the knot vector may be repeated as above but as described in Section 2.2,

the continuity of the basis will be reduced. Continuity of the curve is preserved by choosing the control

points as in (5) and (6). Each unique internal knot value may appear no more than p times or the curve

becomes discontinuous.

An example of knot insertion is presented in Fig. 8. The original curve consists of quadratic B-splines.

The knot vector is N = {0,0,0,1,1,1}. The curve is shown on the left with basis functions below. A new
knot is inserted at �n ¼ 0:5. The new curve, shown on the right, is geometrically and parametrically identical

to the original curve, but the basis functions, below the curve, and control points are changed. There is one

more of each. This process may be repeated to enrich the solution space by adding more basis functions of

the same order while leaving the curve unchanged. This subdivision strategy is seen to be analogous to the

classical h-refinement strategy in finite element analysis.

2.5. p-refinement: order elevation

The polynomial order of basis functions may be increased without changing the geometry or parameter-

ization. It is important to note that each unique knot value in Nmust be repeated to preserve discontinuities

in the pth derivative of the curve being elevated. The number of new control points depends on the multi-

plicities of existing knots. This strategy of order elevation is an analogue of p-refinement in finite element

analysis.

As is the case of h-refinement by way of knot insertion, the solution space spanned by the order ele-

vated basis functions contains the space spanned by the original functions. Thus, it is possible to order

elevate without changing the geometry of the B-spline curve. Less obviously, it can be done so as to leave

2 This turns out to be the essential property for satisfying so-called ‘‘patch tests’’. More about this later.
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the parameterization of the curve in tact. The process for doing this involves subdividing the curve into

many Bézier curves by knot insertion (see [1] or [21] for a discussion of Bézier curves), order elevating each

of these individual segments, and then removing the unnecessary knots to combine the segments into one,
order-elevated, B-spline curve. Several efficient algorithms exist which combine the steps so as to minimize

the computational cost of the process. We omit the details for the sake of brevity. For a thorough

treatment, see Piegl and Tiller [21]. (Note that the CAD community refers to this process as ‘‘degree

elevation’’.)

An example of order elevation is depicted in Fig. 9. The original curve and quadratic basis functions,

shown on the left, are the same as considered in the previous example. This time the multiplicity of the

knots is increased by one. The numbers of control points and basis functions each increase by one. The

locations of the control points change, but the elevated curve is geometrically and parametrically identical
to the original curve. There are now four cubic basis functions. The locations of control points for this ele-

vated curve are different than those in the previous example (cf. Fig. 8).

2.6. k-refinement

An alternative order elevation strategy takes advantage of the fact that the processes of knot insertion

and order elevation do not commute. If a unique knot value, �n, is inserted between two distinct knots in a

curve of order p, the number of continuous derivatives of the basis functions at �n is p � 1. As described
above, if we subsequently elevate the order to q, the multiplicity of every distinct knot value (including

the knot just inserted) is increased so that discontinuities in the pth derivative of the basis are preserved,

that is, the basis still has p � 1 continuous derivatives at �n. If instead we elevated the order of the original

curve to q and only then inserted a unique knot value, the basis would have q � 1 continuous derivatives at
�n. We refer to this latter procedure as k-refinement. It has no analogue in standard finite element analysis.
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We believe the concept of k-refinement is important and potentially a superior approach to high-preci-

sion analysis than p-refinement. In traditional p-refinement there is a very inhomogeneous structure to

arrays due to the different basis functions associated with surface, edge, vertex and interior nodes. In addi-

tion, there is a proliferation in the number of nodes because C0-continuity is maintained in the refinement
process. In k-refinement, there is a homogeneous structure within patches and growth in the number of con-

trol variables is limited. This will be made clear with an example but first we need a definition. Let us define

an ‘‘element’’ in one dimension as the span between two distinct knot values. The number of elements in a

curve will then be the number of non-zero knot spans in the knot vector (e.g., the domain associated with

the knot vector N = {0,0,0,1,2,3,3,4,4,4} consists of four elements). This definition anticipates our

NURBS-based finite element implementation, described in Section 3.

With this notion of an element, consider the refinement processes depicted in Fig. 10. Assume the initial

domain consists of one element and p + 1 basis functions (assuming an open knot vector), which we then h-
refine until we have n � p elements and n basis functions. We then perform order elevation by p-refinement,

maintaining continuity at the p � 1 level. This requires replicating each distinct knot value, adding a basis

function in each element and so increasing the total number of basis functions by n � p to 2n � p. After a

total of r order elevations of this type, we have (r + 1)n � rp basis functions, where p is still the order of our

original basis functions. This is seen to be a large number of functions when one considers that in most

cases of practical interest the number of elements will be quite a bit larger than the order of the basis.

By comparison, begin with the same one element domain and proceed by k-refinement. That is, order ele-

vate r times adding only one basis function at each refinement, then h-refine until we have n � p elements as
before. The final number of basis functions is n + r, each having r + p � 1 continuity. This amounts to an

enormous savings as n + r is considerably smaller than (r + 1)n � rp. Keep in mind too that in d dimensions

these numbers are raised to the d power. There may also be other advantages in that smoother derivatives

may lead to more accurate physical quantities, such as strains and stresses, and increased smoothness may,

surprisingly, lead to better capturing of thin layers. An example of this phenomenon is presented later

on. Of course, if the physical situation dictates a certain lower level of continuity at a knot value

Original curve with = {0, 0, 0, 1, 1, 1} Refined curve with = {0, 0, 0, 0, 1, 1, 1, 1}
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(e.g., the corners in the geometry, discontinuous material properties, etc.) this can always be incorporated

into the process by knot duplication, so no generality is lost.

2.7. B-spline surfaces

Given a control net {Bi,j}, i = 1,2, . . . ,n, j = 1,2, . . . ,m, and knot vectors N = {n1,n2, . . . ,nn+p+1}, and
H ¼ fg1; g2; . . . ; gmþqþ1g, a tensor product B-spline surface is defined by

Sðn; gÞ ¼
Xn

i¼1

Xm
j¼1

Ni;pðnÞMj;qðgÞBi;j; ð7Þ

where Ni,p and Mj,q are basis functions of B-spline curves. For purposes of numerically integrating arrays

constructed from B-splines, ‘‘elements’’ are taken to be knot spans, namely, [ni,ni+1] · [gj,gj+1]. See Fig. 11
for an illustration of a standard bi-unit parent element and its image in physical space. Integrals are pulled

back to the parent element by the classical change-of-variables formula and standard Gaussian quadrature

rules are employed; see [20, Chapter 3].

2.8. B-spline solids

Tensor product B-spline solids are defined in analogous fashion to B-spline surfaces. Given a control

net {Bi,j,k}, i = 1,2, . . . ,n, j = 1,2, . . . ,m, k = 1,2, . . . , l, and knot vectors N = {n1,n2, . . . ,nn+p+1}, H ¼
fg1; g2; . . . ; gmþqþ1g, and Z ¼ ff1; f2; . . . ; flþrþ1g, a B-spline solid is defined by

Sðn; g; fÞ ¼
Xn

i¼1

Xm
j¼1

Xl

k¼1

Ni;pðnÞMj;qðgÞLk;rðfÞBi;j;k: ð8Þ

2.9. Rational B-splines

Desired geometric entities in Rd can be obtained by projective transformations of B-spline entities in

Rdþ1. In particular, conic sections, such as circles and ellipses, can be exactly constructed by projective

transformations of piecewise quadratic curves. This is illustrated in Fig. 12 in which a circle in R2 is con-

structed from a piecewise quadratic B-spline curve in R3. The projective transformation of a B-spline curve

yields a rational polynomial of the form CR(n) = f(n)/g(n), where f and g are piecewise polynomials. The
construction of a rational B-spline curve in Rd proceeds as follows. Let fBw

i g be a set of control points

Fig. 11. Elements as knot spans.
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for a B-spline curve in Rdþ1 with knot vector N. These are referred to as the ‘‘projective’’ control points for

the desired NURBS curve in Rd . The control points in Rd are derived from the projective control points by

the following relations:

ðBiÞj ¼ ðBw
i Þj=wi; j ¼ 1; . . . ; d; ð9Þ

wi ¼ ðBw
i Þdþ1: ð10Þ

where (Bi)j is the jth component of the vector Bi, etc. and wi is referred to as the ith weight. In Fig. 12a, the

weights are the vertical coordinates of the control points defining the piecewise quadratic B-spline curve in

R3. The rational basis functions and NURBS curve are given by

Rp
i ðnÞ ¼

Ni;pðnÞwiPn
î¼1Nî;pðnÞwî

; ð11Þ

CðnÞ ¼
Xn

i¼1

Rp
i ðnÞBi: ð12Þ

Rational surfaces and solids are defined analogously in terms of the rational basis functions

Rp;q
i;j ðn; gÞ ¼

Ni;pðnÞMj;qðgÞwi;jPn
î¼1

Pm
ĵ¼1Nî;pðnÞMĵ;qðgÞwî;̂j

; ð13Þ

Rp;q;r
i;j;k ðn; g; fÞ ¼

Ni;pðnÞMj;qðgÞLk;rðfÞwi;j;kPn
î¼1

Pm
ĵ¼1

Pl
k̂¼1Nî;pðnÞMĵ;qðgÞLk̂;rðfÞwî;̂j;k̂

: ð14Þ

As an example, Fig. 13 shows a control net and the corresponding NURBS surface description of a

torus. The paraphernalia describing the constructions in Figs. 12 and 13 are provided in Appendices A.1

and A.2, respectively.

Important properties of NURBS are:

(1) NURBS basis functions form a partition of unity.

(2) The continuity and support of NURBS basis functions are the same as for B-splines.

(3) Affine transformations in physical space are obtained by applying the transformation to the control

points, that is, NURBS possess the property of affine covariance.

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3

0

0.5

1

1.5

2

2.5

3

B
i

w
i

B
i
w

origin

(a)

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3

0

0.5

1

1.5

2

2.5

3

Cw(ξ)

C(ξ)

(b)

Fig. 12. Circle in R2 constructed by projective transformation of piecewise quadratic B-spline in R3. (a) Projective transformation of

‘‘projective control points’’ yields control points. Weight wi is the z-component of Bw
i . (b) Projective transformation of B-spline curve

Cw(n) yields NURBS curve C(n). See Appendix A.1 for details.
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(4) If weights are equal, NURBS become B-splines (i.e., piecewise polynomials).

(5) NURBS surfaces and solids are the projective transformations of tensor product, piecewise polynomial

entities.

3. NURBS as a basis for analysis

An analysis framework based on NURBS consists of the following items and features:

(1) A mesh for a NURBS patch is defined by the product of knot vectors. For example, in three dimen-

sions, a mesh is given by N�H�Z.

(2) Knot spans subdivide the domain into ‘‘elements’’.

(3) The support of each basis function consists of a small number of ‘‘elements’’.

(4) The control points associated with the basis functions define the geometry.

(5) The isoparametric concept is invoked, that is, the fields in question (e.g., displacement, velocity, tem-
perature, etc.) are represented in terms of the same basis functions as the geometry. The coefficients

of the basis functions are the degrees-of-freedom, or control variables.

(6) Mesh refinement strategies are developed from a combination of knot insertion and order elevation

techniques. These enable analogues of classical h-refinement and p-refinement methods, and the new

possibility of k-refinement.

(7) Arrays constructed from isoparametric NURBS patches can be assembled into global arrays in the

same way as finite elements; see Hughes [20, Chapter 2]. Compatibility of NURBS patches is attained

by employing the same NURBS edge and surface representations on both sides of patch interfaces; see
Fig. 14a. This gives rise to a standard continuous Galerkin method. Refinement necessarily propagates

from patch to patch. There are two alternatives corresponding to Fig. 14b. One is the discontinuous

Galerkin method, which can be employed at the patch level. Compatibility is enforced weakly by the

variational formulation. The other is to utilize constraint equations for the control points and control

variables to attain pointwise compatibility at patch interfaces. See Kagan et al. [22] for a procedure

of this kind in the context of B-splines. Local refinement is an important and challenging research topic.

(8) The easiest way to set Dirichlet boundary conditions is to apply them to the control variables. In the

case of homogeneous Dirichlet conditions, this results in exact, pointwise satisfaction. In the case of
inhomogeneous Dirichlet conditions, the boundary values must be approximated by functions lying

within the NURBS space. This amounts to ‘‘strong’’ but approximate satisfaction of the boundary con-

Fig. 13. (a) Control net for toroidal surface and (b) toroidal surface. See Appendix A.2 for details.
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ditions. Constraint equations can also be written to ensure ‘‘strong’’ exact, interpolated, or least-

squares best-fit satisfaction of boundary conditions. An alternative formulation of Dirichlet conditions

can be based on ‘‘weak’’ satisfaction, a standard feature of the discontinuous Galerkin method. Given

the variety of possibilities, Dirichlet boundary conditions need to be researched more thoroughly to

determine optimal strategies. Neumann boundary conditions are satisfied naturally, in precisely the

same way as in standard finite element formulations; see Hughes [20, Chapters 1 and 2].

Remark. It is well known that typical finite element interpolation functions oscillate in attempting to fit

discontinuous data. An example is illustrated in Fig. 15a where Lagrange polynomials of orders three, five,
and seven interpolate a discontinuity represented by eight data points in R2. Note that as the order is

increased, the amplitude of the oscillations increases. This is sometimes referred to as Gibbs phenomena.

NURBS behave very differently when the data are viewed as control points. In Fig. 15b the NURBS curves

are monotone, illustrating the variation diminishing property of NURBS (see [1, Chapter 3]). This property

has advantages in representing sharp layers. An example illustrating this will be presented later.

(a) (b)

Fig. 14. (a) Global refinement employing the continuous Galerkin method and (b) local refinement employing the discontinuous

Galerkin method or constraint equations at the patch level.
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Fig. 15. (a) Lagrange interpolation oscillates when faced with discontinuous data and (b) NURBS exhibit the variation diminishing

property for the same data.
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A summary of similar and dissimilar finite element and isogeometric analysis concepts is presented in

Table 1. A salient feature of isogeometric analysis, shared by meshless methods, is the non-interpolatory

nature of the basis. Other shared features are the partition of unity property and compact support. For

a state-of-the-art summary of meshless methods, see [23–40].

4. Isogeometric structural analysis

Isoparametric NURBS patches represent all rigid body motions and constant strain states exactly. This

follows from the properties of NURBS with respect to affine transformations. Structures assembled from

compatible NURBS patches pass standard ‘‘patch tests’’. (Patch tests are described in Chapters 3 and 4 of

Hughes [20]. They are considered by engineers to be practical ways of assessing whether or not finite ele-

ments are convergent and whether or not they have been programmed correctly.) We have verified this

assertion in numerous test cases (not shown). In what follows, we present numerical solutions for linear

elastic solids and structures. The Galerkin formulation of linear elasticity is employed (see [20, Chapter

2]). The first example is two-dimensional and the remainder are three-dimensional. Several of the calcula-
tions involve thin shells. These are modeled as NURBS solids and no shell assumptions are employed.

Gaussian quadrature is used on elements. The rule of thumb that we typically employed is to use the low-

est-order rule that would exactly integrate the integrand assuming the NURBS are B-splines of the same

polynomial order and the Jacobian determinants are constants. This represents an approximation in the

case of NURBS. To assess its validity, we performed tests in which we systematically increase the number

of quadrature points. For sufficiently fine meshes no differences in results were discernible. However, coarse

meshes required more integration points due to large variations in the geometrical mapping. More research

needs to be done to determine a robust strategy covering all situations.

Remark. We employed both direct and iterative linear algebraic equation solvers. The direct solver had a

profile architecture and was typically more efficient for shell structures than the iterative, diagonally

preconditioned, conjugate gradient solver. However, this was not the case for NURBS solids. The code

we developed was restricted to a single processor and many of the finer-mesh cases could not be solved
with the direct solver because they exceeded available memory. The aspect ratios of elements in some

cases were quite large and the number of equations approached a quarter of a million. Nevertheless, in all

Table 1

Comparison of finite element analysis and isogeometric analysis based on NURBS

Finite element analysis Isogeometric analysis

Nodal points Control points

Nodal variables Control variables

Mesh Knots

Basis interpolates nodal points and variables Basis does not interpolate control

points and variables

Approximate geometry Exact geometry

Polynomial basis NURBS basis

Gibbs phenomena Variation diminishing

Subdomains Patches

Compact support

Partition of unity

Isoparametric concept

Affine covariance

Patch tests satisfied
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cases the iterative procedure converged without difficulty. We did not test the corresponding finite

element cases but we would have been surprised if iteration behaved this reliably in those cases too.

Consequently, we conjecture that the NURBS cases may be better conditioned than the corresponding

finite element cases. The evidence we have for this is rather skimpy but we think it warrants further

investigation.

4.1. Infinite plate with circular hole under constant in-plane tension in the x-direction

In this two-dimensional example, we present in some detail the NURBS analysis of a problem in solid
mechanics having an exact solution. We also systematically explore h- and k-refinement. The infinite plate is

modeled by a finite quarter plate. The exact solution [41, pp. 120–123], evaluated at the boundary of the

finite quarter plate, is applied as a Neumann boundary condition and is given here for reference:

rrrðr; hÞ ¼ T x

2
1� R2

r2

� �
þ T x

2
1� 4

R2

r2
þ 3

R4

r4

� �
cos 2h; ð15Þ

rhhðr; hÞ ¼ T x

2
1þ R2

r2

� �
� T x

2
1þ 3

R4

r4

� �
cos 2h; ð16Þ

rrhðr; hÞ ¼ � T x

2
1þ 2

R2

r2
� 3

R4

r4

� �
sin 2h; ð17Þ

where Tx is the magnitude of the applied stress for the infinite plate case. The setup is illustrated in Fig. 16.

R is the radius of the hole, L is the length of the finite quarter plate, E is Young�s modulus, and m is Pois-
son�s ratio. A rational quadratic basis is the minimum order capable of representing a circular hole. The

coarsest mesh, N�H, is defined by the knot vectors

N ¼ f0; 0; 0; 0:5; 1; 1; 1g; ð18Þ

H ¼ f0; 0; 0; 1; 1; 1g: ð19Þ

Exact traction

σ · n = 0

E
xa

ct
tr

ac
tio

n

Sy
m

m
et

ry

Symmetry

R = 1
L = 4
E =105

ν = 0 .3

x

Tx

r

θ

R

Fig. 16. Elastic plate with a circular hole: problem definition.
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(a) (b)

Fig. 17. Mesh and control net for the elastic plate with circular hole. Two control points at same location create the upper-left corner.

Knot values define ‘‘elements’’, not the control net: (a) coarse mesh and (b) control net.

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

η1

η2

η3

η4

η5

η6

(a)

ξ1 = ξ2 = ξ3 = 0 ξ4 = 0.5 ξ5 = ξ6 = ξ7 = 1

η1 = η2 = η3 = 0

η4 = η5 = η6 = 1

(b)

(-4,4) (0,4)

(0,1)

(-1,0)(-4,0)

(c)

Fig. 18. Different views of the coarsest mesh and support of two of the basis functions. The support of rational quadratic basis

functions consists of 3 · 3 knot spans. Open knot vectors require that knot spans near the boundary have zero measure: (a) Index

space; (b) parameter space and (c) physical space.
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The exact geometry is represented with only two elements, as shown in Fig. 17a. The corresponding con-

trol net is shown in Fig. 17b. A summary of the geometric data is given in Appendix A.3. A repeated con-

trol point is responsible for the upper-left hand corner. Fig. 18 depicts three different views of the mesh and

support of two of the basis functions. These are the index space, parameter space, and physical space views.

The index space illustrates how only parts of the basis functions are supported by the physical space, iden-

tified by the dark-bordered rectangle (i.e., [n3,n5] · [g3,g4]) in Fig. 18a. This is due to the open knot vectors.

Consequently, knot spans near the boundary have zero measure and may be ignored in the element forma-
tion phase.

Contour plots of the same two basis functions are shown in Fig. 19. The first six meshes used in the ana-

lysis are shown in Fig. 20. The scheme used to select knots for insertion is described in Appendix B.

Contour plots of results obtained on meshes 1, 4, and 7 are presented in Fig. 21. The applied stress is

Tx = 10 and the contours show that the stress concentration of rxx = 30 at the edge of the hole (i.e., at

r = R, h = 3/2p) is obtained as the mesh is refined.

Convergence results in the L2-norm of stresses are shown in Fig. 22. The cubic and quartic NURBS are

obtained by order elevation of the quadratic NURBS on the coarsest mesh. Since the parameterization of

Fig. 19. Basis function contours: (a) The first basis function has support in one element and takes on the value 1 at x = �1, y = 0 and

(b) the second basis function has support in both elements. The maximum amplitude of this function is approximately 0.4.

Mesh 1 Mesh 2 Mesh 3

Mesh 4 Mesh 5 Mesh 6

Fig. 20. Elastic plate with circular hole. Meshes produced by h-refinement (knot insertion).
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the geometrical mapping does not change, the h-refinement algorithm generates identical meshes for all

polynomial orders. As a result, the continuity of the basis is Cp�1 everywhere, except along the line which

joins the center of the circular edge with the upper left-hand corner of the domain (see Fig. 17a). There it is

C1 as is dictated by the coarsest mesh employing rational quadratic parameterization. The mesh parameter,

hmax, is defined as the maximum distance, in physical space, between diagonally opposite knot locations. As

Fig. 21. Contour plots of rxx obtained with quadratic NURBS. The applied stress is Tx = 10 and the stress concentration is rxx = 30 at

r = R, h = 3/2p.

Fig. 22. Error measured in the L2-norm of stress vs. mesh parameter.
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can be seen, the L2-convergence rates of stress for quadratic, cubic, and quartic NURBS are approximately

2, 3, and 4, respectively. This is the best one could reasonably hope for.
The convergence of the standard deviation of weights for rational quadratic elements is depicted in Fig.

23. As may be seen, the standard deviation converges to zero, meaning the weights converge to a constant

within each element and the NURBS approach polynomial B-splines. The geometric way to see this is to

note that the mesh in physical space (i.e., R2) can be ‘‘lifted’’ to projective space (i.e., R3). As the elements in

projective space shrink in size, the projective control points move closer together. As the weights are just

the third component of the projective control points, within an element they necessarily converge to a

constant value. This geometric argument suggests the rate of convergence should be O(hmax), as observed

in Fig. 23.

4.2. Solid circular cylinder subjected to internal pressure loading

The problem specification is shown in Fig. 24. Plane strain conditions are assumed to hold in the axial

direction. It is a simple matter to obtain an exact solution to this problem, assuming the pressure varies at

most circumferentially (see [41, 117–119]). We provide the exact solution for the case with constant pressure

as a reference:

Fig. 23. Standard deviation of weights for rational quadratic elements vs. mesh parameter.

Fig. 24. Thick cylinder pressurized internally.
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i Þ
: ð22Þ

Meshes developed from h-refinement are shown in Fig. 25. The NURBS paraphernalia for the coarsest

mesh is given in Appendix A.4.

Results for the constant pressure case, employing quadratic NURBS, are presented in Fig. 26. In Fig.

26a the axisymmetric deformation of the cylinder is clearly apparent for Mesh 4. Axisymmetric response

is attained for all meshes. Errors in radial displacement are plotted in Fig. 26b. For the first (coarsest) mesh,

the maximum error through the wall thickness is approximately 1%. For the second mesh it is approxi-

mately 0.1% and for the third 0.01%. Order elevated solutions employing cubic and quartic NURBS
are, for all practical purposes, exact on all meshes. Hence, results for these cases are not presented.

Fig. 25. Solid circular cylinder meshes produced by h-refinement (knot insertion).
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In order to determine convergence rates, a somewhat more complex loading was considered in which the

internal pressure was assumed to vary as cos 2h. Quadratic, cubic, and quartic NURBS were considered.

The cubic and quartic cases were obtained from the quadratic case by k-refinement, in which case the de-

gree of continuity was increased to C2 and C3, respectively. The rates of convergence of the error measured

in the energy norm are presented in Fig. 27. As in the example of the plate with a circular hole, the rates of

convergence for quadratic, cubic, and quartic NURBS elements are 2, 3, and 4, respectively.

4.3. Solid ‘‘horseshoe’’ subjected to equal and opposite in-plane flat edge displacements

The problem setup is presented in Fig. 28a. The top surfaces are displaced in the directions shown. This

introduces an asymmetry to the loading that is visible in the stress contours. Meshes 1, 3, and 5 are depicted

Fig. 26. Solid circular cylinder subjected to constant internal pressure: (a) radial displacement contours and (b) convergence of radial

displacement.
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Fig. 27. Solid circular cylinder with varying internal pressure. Convergence of the error in the energy norm for quadratic, cubic, and

quartic NURBS discretizations.
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in Figs. 28b and 29. The standard h-refinement procedure, as described in Appendix B, is employed to ob-

tain finer meshes. It is clear for this case that good quality, refined meshes can be simply generated, once an

exact parameterized geometry is constructed in the form of the first mesh. Fig. 30 shows sample plots

of stress contours for a quadratic NURBS solution on Mesh 5. Note the smoothness of the stress

contours.

4.4. Thin cylindrical shell with fixed ends subjected to constant internal pressure

The problem setup and a radial displacement profile are shown in Fig. 31. Note that the fixed ends create

boundary layers which are difficult to accurately capture with low order finite element methods. The exact

shell theory solution is given in Timoshenko and Woinowsky-Krieger [42, pp. 476–477], for plane stress and

is provided as a reference below

Fig. 28. Solid ‘‘horseshoe’’ subjected to equal and opposite in-plane flat edge displacements: (a) problem geometry and (b) coarsest

mesh.

Fig. 29. Other meshes for the solid ‘‘horseshoe’’.
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uðxÞ ¼ � PR2

Et
ð1� C1 sin bx sinh bx� C2 cos bx cosh bxÞ x 2 ð�L=2; L=2Þ; ð23Þ

C1 ¼ sin a cosh a� cos a sinh a
sinh a cosh aþ sin a cos a

; ð24Þ

C2 ¼ cos a sinh aþ sin a cosh a
sinh a cosh aþ sin a cos a

; ð25Þ

b ¼ Et

4R2D

� �1=4

; a ¼ bL
2
; D ¼ Et3

12ð1� m3Þ : ð26Þ

Fig. 30. Solid ‘‘horseshoe’’. Contour plots of stress components.

Fig. 31. Thin cylindrical shell. Problem statement and displacement profile.
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The Young�s modulus and Poisson�s ratio in this solution need to be replaced by E
1�m2 and

m
1�m, respectively,

to account for the fixed-end conditions assumed here. The geometry of the shell is shown in Fig. 32. Note

that the radius to thickness ratio is 100. The meshes are depicted in Figs. 33 and 34. The first four surface

meshes are shown in Fig. 33. Note the added refinement in the region of the boundary layer. We wish to

emphasize that, despite the shell being very thin, we are modeling it with solid elements. (For an excellent

comprehensive review of approaches to shell modeling, see Bischoff et al. [43].)
The through-thickness mesh resolution for Mesh 1 is shown in Fig. 34. Note that there are two elements

in the radial direction and four in the circumferential direction. As the surface mesh is refined, the number

of elements in the circumferential direction increases accordingly. However, the number of elements in the

radial direction is fixed at two throughout the refinement process. The functions employed for this problem

are quadratic NURBS. Their appearance in the radial, or through-thickness, direction is presented in Fig.

34a. Radial displacement contours are presented in Fig. 35 for Meshes 2–5. Note that, for all meshes, per-

fectly axisymmetric response is obtained. Note also the appearance of boundary layers. The convergence of

the radial displacement profile is shown on Fig. 36. Mesh 1 is too coarse to represent both the boundary
layers and the plateau between. Mesh 3 picks up the plateau but the boundary layers are still not accurately

Fig. 32. Thin cylindrical shell geometry.

Fig. 33. Thin cylindrical shell surface meshes. Meshes 1–4.
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Fig. 35. Thin cylindrical shell. Meshes 2–5. Radial displacement contour plots.
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Fig. 36. Thin cylindrical shell. Convergence of radial displacement to exact shell theory solution. Mesh 5 solution indistinguishable

from exact. NURBS are capable of accurately resolving shell boundary layers: (a) global radial displacement and (b) detail of the

boundary layer.
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Fig. 34. Thin cylindrical shell: (a) quadratic basis functions through the thickness and (b) end view of the coarse mesh.
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captured. The Mesh 5 solution is indistinguishable from the exact shell theory solution. In the detail on the

right, the exact shell solution and Mesh 5 solution are seen to overlap in the boundary layer region.

4.5. Shell obstacle course

The so-called shell obstacle course consists of three problems, the Scordelis–Lo roof, the pinched hemi-

sphere, and the pinched cylinder. These problems, and their relevance to the assessment of shell analysis

procedures, have been discussed extensively in the literature. The problem descriptions presented in Figs.

37–39, are adapted from Felippa [44] and Belytschko et al. [45]. As in the previous example, two quadratic

Fig. 37. Shell obstacle course. Scordelis–Lo roof problem description and data.

Fig. 38. Shell obstacle course. Pinched hemisphere problem description and data.
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NURBS elements are employed in the through-thickness direction (see Fig. 34), whereas h-refinement and

k-refinement are utilized for surface meshing. Quadratic through quintic surface NURBS are employed in

the convergence analysis of all cases. In one case, the pinched hemisphere, a one-element surface solution,
starting with rational quadratics, the lowest-order NURBS capable of exactly representing spherical geo-

metry, and culminating with 10th-order NURBS, is used to assess convergence. This analysis has the flavor

of what are usually referred to as ‘‘spectral methods,’’ which are accurate and efficient procedures, typically

utilized for performing detailed studies of geometrically simple but physically complex phenomena, such

as turbulence (see [46,47] for detailed descriptions and applications of spectral methods). Convergence is

assessed by comparing the displacement of certain points in the shell with benchmark solutions presented

in Belytschko et al. [45]. Sample contour plots of the solutions for quadratic elements and the finest meshes

studied are presented in Figs. 40–42. Note that in each case the contours are very smooth.

4.5.1. Scordelis–Lo roof

The Scordelis–Lo roof is subjected to gravity loading. The ends are supported by fixed diaphragms and

the side edges are free (see Fig. 37). The vertical displacement of the midpoint of the side edge is the quan-

tity used to assess convergence. The second, fourth, and sixth meshes used in the study are shown in Fig. 43.

These meshes have 2, 8, and 32 surface elements per side, respectively. Due to symmetry, only one quadrant

Fig. 39. Shell obstacle course. Pinched cylinder problem description and data.

Fig. 40. Shell obstacle course. Scordelis–Lo roof in deformed configuration (scaling factor of 200 used). Contours of displacement in

the direction of the gravity load.
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is meshed. Convergence of the displacement to the benchmark value is shown in Fig. 44. In all cases,

convergence is quite rapid. For the higher-order cases, namely, quartic and quintic, even one element pro-

vides a very accurate solution.

Fig. 42. Shell obstacle course. Pinched cylinder in deformed configuration (scaling factor of 3 · 106 used). Contours of displacement in

the direction of the point load. Notice the highly localized displacement in the vicinity of the load.

Fig. 41. Shell obstacle course. Pinched hemisphere in deformed configuration (scaling factor of 33.3 used). Contours of displacement

in the direction of inward directed point load.

Fig. 43. Shell obstacle course. Scordelis–Lo roof meshes.
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4.5.2. Pinched hemisphere

In the pinched hemisphere, equal and opposite concentrated forces are applied at antipodal points of the

equator. The equator is otherwise considered to be free (see Fig. 38). The second, fourth, and sixth meshes

are shown in Fig. 45. Due to symmetry, only one quadrant is meshed. Convergence of the displacement

under the inward directed load is presented in Fig. 46. The quadratic case converges very slowly, which

is not surprising as quadratic, fully-integrated, solid finite elements are known to ‘‘lock’’ in shell analysis.
Cubic solid finite elements also exhibit locking in similar circumstances but in the present case cubic

NURBS behave reasonably well. Fig. 47 presents convergence of the displacement for one surface element

meshes. Notice that the lowest-order meshes lock but eventually accurate results are obtained. One 10th-

order NURBS surface element is seen to provide an essentially exact result. To assess whether there is

any tendency to oscillate, displacement in the direction of the inward directed point load is plotted for

the single 10th-order NURBS surface element case in Fig. 48. As is evident, the displacements are very

smooth and monotone.

4.5.3. Pinched cylinder

The pinched cylinder is subjected to equal and opposite concentrated forces at its midspan (see Fig. 39).

The ends are supported by rigid diaphragms. This constraint results in highly localized deformation under

the loads (see Fig. 42). Only one octant of the cylinder is used in the calculation due to symmetry. The sec-

ond, fourth, and sixth meshes are shown in Fig. 49. Convergence of the displacement under the load is
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Fig. 44. Shell obstacle course. Scordelis–Lo roof displacement convergence.

Fig. 45. Shell obstacle course. Pinched hemisphere meshes.
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Fig. 46. Shell obstacle course. Pinched hemisphere displacement convergence.
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Fig. 47. Shell obstacle course. Pinched hemisphere displacement convergence for one NURBS surface element.

Fig. 48. Shell obstacle course. Pinched hemisphere displacement in the direction of the inward directed point load for one surface

element with p = 10.
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presented in Fig. 50. The NURBS elements converge to a very slightly softer solution than the benchmark

solution. This may be due to transverse shear effects. It is well known that, as long as the characteristic sur-

face element dimension is large compared with the thickness, formulations which permit transverse shear

deformations typically closely approximate formulations which satisfy the Kirchhoff constraint (i.e., zero

transverse shear). When this trend reverses, that is as the surface element dimension approaches zero, hold-

ing the thickness constant, the displacement under a concentrated load grows, and converges to infinity (see

[48] for elaboration).

Remark. We believe that two quadratic NURBS through the thickness are unnecessary for typical thin

shell analysis. We performed some tests with one quadratic NURBS through the thickness and the results

were indistinguishable when compared with the two-quadratic-NURBS case. However, when we reduced to

linear variation through the thickness, convergence to correct solutions was not obtained. Classic shell

theory hypotheses, such as invoking the plane stress condition in the through-thickness direction, may be
sufficient to correct the deficiency of linear through-thickness displacement variation. Such a formulation

would certainly be competitive with traditional shell element formulations which employ displacement and

rotation degrees of freedom at a reference surface. Using only displacement degrees of freedom (i.e., control

variables) in the NURBS case considerably simplifies shell analysis, especially in non-linear analysis

Fig. 49. Shell obstacle course. Pinched cylinder meshes.
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Fig. 50. Shell obstacle course. Pinched cylinder displacement convergence.

33



wherein rotations are no longer vectorial and additive, but require a multiplicative group structure. A

further simplification might be just to use a NURBS surface and employ ‘‘rotationless’’ formulations, such

as the one for plates described in Engel et al. [49]. In this reference a discontinuous Galerkin formulation is

proposed but all interface discontinuity (i.e., ‘‘jump’’) terms in it disappear if C1, or higher, continuity is

satisfied. This is simply attained with NURBS but very difficult to achieve in finite element analysis.
Rotationless shell elements have recently gained popularity in computational mechanics (see [17–19,49–

53]). The formulation of Engel et al. [49] has also been proposed as being an appropriate basis for so-called

‘‘strain gradient theories’’. These theories also require C1-continuity, and NURBS would appear to be

naturally suited to them.

4.6. Hemispherical shell with a stiffener

We consider the hemispherical shell with stiffener presented in Rank et al. [10] who solved the problem

using a finite element method and p-refinement strategy. The geometry and data are depicted in Fig. 51. The

structure is subjected to gravity loading and external pressure, and vertical displacements are set to zero on

the bottom surface of the stiffener. Only a quarter of the domain is modeled due to symmetry. The initial

mesh is constructed using rational quadratic NURBS and is shown in Fig. 52. Isotropic p-refinement was
performed to assess convergence. Polynomial orders 2–6 were employed. Figs. 53 and 54 show the vertical

displacement and von Mises stress on the deformed configuration. The von Misses stress is given by

Fig. 51. Hemispherical shell with stiffener. Problem description from Rank et al. [10].
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rvm ¼ 3

2
r0
ijr

0
ij

� �1
2

; r0
ij ¼ rij � 1

3
rkkdij; ð27Þ

where rvm is the von Mises stress, rij is the stress tensor and r0
ij is the deviatoric stress. The results in Figs. 53

and 54 came from a quadratic NURBS simulation. There is qualitative agreement with the results given in

Rank et al. [10]. The Euclidean norm of the displacement and the von Mises stress were calculated at points

A–D, identified in Fig. 51. Since points A–D are located on the boundary of the computational domain,

values of rij imposed by the boundary conditions were used in (27), where applicable, as opposed to the

computed quantities. Results for p = 2 to p = 6 are plotted in Figs. 55–62 along with results from Rank

et al. [10] for their finest simulation, that is, p = 8, which we take as a reference. Good agreement in the

converged displacements is observed. Figs. 56 and 57 indicate that at points B and C, the displacements
for the NURBS discretization converge from the ‘‘stiff’’ side (consistent with the results of the previous sec-

tion). Agreement in converged values of the von Mises stress is also apparent.

Fig. 52. Hemispherical shell with a stiffener: (a) coarse mesh and (b) detail of the stiffener.

Fig. 53. Hemispherical shell with a stiffener. Vertical displacement contours on the deformed configuration for refined, p = 2, solution

(scaling factor of 500 used).
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Fig. 54. Hemispherical shell with a stiffener. von Mises stress contours on the deformed configuration for refined, p = 2, solution

(scaling factor of 500 used).
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Fig. 55. Hemispherical shell with a stiffener. Convergence of the Euclidean norm of the displacement at point A.
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Fig. 56. Hemispherical shell with a stiffener. Convergence of the Euclidean norm of the displacement at point B.
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Fig. 57. Hemispherical shell with a stiffener. Convergence of the Euclidean norm of the displacement at point C.
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Fig. 58. Hemispherical shell with a stiffener. Convergence of the Euclidean norm of the displacement at point D.
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Fig. 59. Hemispherical shell with a stiffener. Convergence of the von Mises stress at point A.
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Fig. 60. Hemispherical shell with a stiffener. Convergence of the von Mises stress at point B.
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Fig. 61. Hemispherical shell with a stiffener. Convergence of the von Mises stress at point C.
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Fig. 62. Hemispherical shell with a stiffener. Convergence of the von Mises stress at point D.
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5. Isogeometric fluids analysis

We wish to perform preliminary assessments of isogeometric analysis in fluids. The fluid equations are

fundamentally different than the structural equations in that advection dominated flow phenomena are

characterized by essentially skew-symmetric differential operators, the antithesis of the symmetric, definite
operators which characterize typical structural analysis models. Another complicated flow feature is sharp

layers involving very strong gradients. Within these layers, diffusive behavior prevails and the equations

transition to being predominantly symmetric-definite. As a result, successful fluid analysis formulations

need to automatically account for the local competition between advective and diffusive effects, and adjust

the discretization accordingly. The standard Galerkin formulation optimally treats symmetric-definite oper-

ators but produces unstable discretizations of skew-symmetric operators. This is well known in finite ele-

ment analysis and, unfortunately, carries over to the NURBS-based approach. The first finite element

methodology exhibiting uniform stability and convergence behavior across the full range of advective
and diffusive phenomena was SUPG, a ‘‘stabilized method’’ which had its origins in the late 1970s and early

1980s. (A good summary of the very early literature is contained in Brooks and Hughes [54]. Recent, state-

of-the-art literature on stabilized methods is presented in [55–66].) SUPG is a residual-based modification

of the Galerkin method which increases stability without degrading accuracy. It is sufficient for most flow

phenomena but it is not a monotone technology because its higher-order accuracy normally precludes

monotone behavior except in sufficiently resolved cases. There is a well known ‘‘barrier theorem’’ that as-

serts that the class of higher-order accurate, linear difference methods cannot be monotone, and SUPG falls

into that class. Consequently, SUPG by itself is not a sufficiently robust technology for shock wave phe-
nomena in fluids but in combination with so-called ‘‘discontinuity-capturing’’ operators has proved to

be an industrial-strength technology for applications with shocks (see [67]). SUPG possesses a rich math-

ematical theory and there is an extensive literature on its mathematical properties beginning with Johnson

et al. [68]; see Hughes et al. [69] and references therein for a review of the literature. The identification of

stabilized methods as multiscale methods was made in Hughes [70] and Hughes et al. [71]. These works also

explored the link between stabilized methods and subgrid-scale modeling [69], an important direction in

current research.

In this section we investigate the ability of the isogeometric approach, in conjunction with SUPG, to
solve challenging test cases for the advection–diffusion equation. Isogeometric analysis is fundamentally

a higher-order approach and one would not expect good behavior in situations with unresolved interior

and boundary layers. In fact, the Gibbs phenomena noted for polynomial-based finite element methods

tends to become more pronounced as polynomial order is increased. This is the reason that most practical

fluids formulations employ lower-order, typically constant and linear, interpolation of flow variables. How-

ever, the variation diminishing property of Dirichlet boundary condition specification, plus the notion of k-

refinement, leads to some remarkable results in the case of NURBS. This is illustrated by the first example.

5.1. Advection skew to the mesh with outflow Dirichlet boundary conditions

The problem setup is described in Fig. 63. Here, a is the advective velocity magnitude, j is the diffusivity,

and L is the side length of the domain. The Peclet number, Pe = aL/j = 106. When this number is greater

than one, advection dominates and diffusion is only important in very small layers. In the present case, dif-

fusion is important in a region of thickness O(Pe�1lnPe) in the outflow boundary layers and O(Pe�1/2lnPe)

in the internal layer (see [72, p. 468]). In all calculations the mesh is uniform, consisting of a 20 · 20 grid of

square elements, with element side length h = 1/20 = 0.05. Refinement is performed by the k-method, and
solutions from p = 1 to p = 12 are calculated. In all cases, the standard SUPG formulation is used with

s = ha/2a, where ha is the element length in the direction of the flow velocity which, in the present case,

is simply, ha = h/max{cosh, sinh}.
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Fig. 63. Advection skew to mesh. Problem description and data.
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Fig. 64. The y-coordinate of the control points along the left edge of the domain: (a) odd polynomial orders and (b) even polynomial

orders.
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Fig. 65. Dirichlet boundary conditions along the left edge of the domain: (a) odd polynomial orders and (b) even polynomial orders.
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Fig. 66. Advection skew to the mesh, h = 45�. Top to bottom: results for p = 1 to p = 4. Left: plot with 100 · 100 points, Phong shaded.

Right: plot with 21 · 21 points.
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Fig. 67. Advection skew to the mesh, h = 45�. Top to bottom: results for p = 5 to p = 8. Left: plot with 100 · 100 points, Phong shaded.

Right: plot with 21 · 21 points.
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Fig. 68. Advection skew to the mesh, h = 45�. Top to bottom: results for p = 9 to p = 12. Left: plot with 100 · 100 points, Phong

shaded. Right: plot with 21 · 21 points.
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The boundary condition is set by specifying the control variables. On the top and right edges of the do-

main, all control variables are set to 0 and the boundary condition is exactly satisfied along these edges. On

the bottom, the control variable corresponding to the lower right-hand corner is set to 0 and the remainder

are set to 1. The result is that the boundary value is identically 1 up to the last element in which it smoothly

decreases to 0 at the corner. The left-hand-side boundary is more interesting. If we think of our control vari-
ables as control points in R3 defining the surface plot of the solution, where the x and y coordinates have

been fixed by the two-dimensional geometrical mapping and are no longer to be chosen by the user, then

what we have done along the left side of our domain is to set the z-component (our actual control variable)

equal to 1 for each control point that falls in the interval [0, 0.2[, and equal to 0 if it falls in [0.2,1]. The loca-

tions of the control points are shown in Fig. 64. Note the clustering of points near the open knots. The result-

ing boundary conditions are shown in Fig. 65. For p = 1, the boundary condition is interpolated, whereas for

p > 1 it is fit to the control variables in monotone fashion as the variation diminishing property of B-splines

prevents the curve from over- and under-shooting. We wish to emphasize that k-refinement produces non-
nested solution spaces, which prevents us from having the exact same boundary condition at each stage of

the refinement process. As a result of this technique, the discontinuity ‘‘smears’’ about the location 0.2. For

odd polynomial orders with p 6 9, a control point falls directly on 0.2, whereas for even polynomial orders

one does not (see Fig. 64). For this reason we have plotted the even and odd cases separately. When p is lar-

ger than 9, the ‘‘fringing’’ due to the open knot vectors disrupts this pattern. Clearly, a better scheme for

setting the boundary control variables is required. One possibility is to obtain the desired boundary condi-

tion by setting up a projection problem over the boundary, for which a suitable norm needs to be chosen.

Our next computational example will demonstrate that technique. Nevertheless, the main point of the pres-
ent study is to assess the ability of NURBS (in this case, B-splines because of the simplicity of the domain) to

deal with unresolved boundary and interior layers. We first consider the case in which h = 45�. The results for
p = 1 to p = 12 are presented in Figs. 66–68. Two views are presented for each p, one in which the plotting

routine sampled the solution with a 100 · 100 grid of uniformly distributed points and one in which it is sam-

pled with a 21 · 21 uniform grid. In the former case the plot is Phong shaded and in the latter, it is repre-

sented by bilinear interpolation on each element and the element edges are drawn. The philosophy behind

the dual views is that the 100 · 100 grid plots are a more faithful rendering of the higher-order cases, whereas

the 21 · 21 point piecewise bilinear interpolates are the type of plots that have appeared in numerous re-
search articles over the years and these may be more easily visually compared with results in the literature.

The p = 1, h = 45�, case is unusual in that the selection of s, the SUPG parameter, is the tuned value that

captures the boundary layer very well. In general, the boundary layer is very poorly captured with p = 1
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Fig. 69. Advection skew to the mesh, h = 45�. Control variables for p = 8.
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Fig. 70. Advection skew to the mesh, h � 63.4�. Top to bottom: results for p = 1 to p = 4. Left: plot with 100 · 100 points, Phong

shaded. Right: plot with 21 · 21 points.
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Fig. 71. Advection skew to the mesh, h � 63.4�. Top to bottom: results for p = 5 to p = 8. Left: plot with 100 · 100 points, Phong

shaded. Right: plot with 21 · 21 points.
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Fig. 72. Advection skew to the mesh, h � 63.4�. Top to bottom: results for p = 9 to p = 12. Left: plot with 100 · 100 points, Phong

shaded. Right: plot with 21 · 21 points.
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unless s takes on a specific value. As one examines the results, it is clear that they improve as p increases and

are converging toward monotone results with quite sharp layers. One would perhaps expect that oscillations

would increase with increasing p but this is not the case. This is certainly due in part to the smearing of the

boundary condition but we suspect that the high continuity of the basis obtained through k-refinement plays

a part in this as well. Further studies need to be undertaken to clarify these issues.
It is interesting to view the control variables (see Fig. 69). The solution for p = 8 is nearly monotone,

whereas the corresponding control variables are quite oscillatory. It is not clear what physical information

is provided by the control variables. However, as the mesh is h-refined, the control net will approach the

solution surface, that is, the basis becomes interpolatory in the limit as h ! 0. The 20 · 20 mesh is obviously

far from this limit.

The h = tan�1 (2) case (i.e., h � 63.4�) is presented in Figs. 70–72. This problem represents possibly the

most severe standard test for the advection–diffusion equation. Refinement is performed by the k-method,

and solutions from p = 1 to p = 12 are calculated. This time, for p = 1, the overshoot in the outflow bound-
ary layer is approximately 45% but, as the order is elevated by k-refinement, convergence toward monotone

results occurs. This angle of flow seems to be somewhat more difficult than the h = 45� case. Nevertheless,

the same conclusion may be drawn: Sufficiently high-order k-refinement produces extraordinary results in

dealing with sharp internal and boundary layers. The maximum percentage overshoot vs. polynomial order

for both cases is plotted in Fig. 73. The convergence toward monotone solutions is apparent in both cases.
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Fig. 73. Maximum solution over-shoot (%) vs. polynomial order: (a) odd polynomial orders and (b) even polynomial orders.

Fig. 74. Advection of a sine hill. Problem description and data.
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5.2. Advection of a sine hill in a rotating flow field

The problem statement is shown in Fig. 74. The flow is circular about the center of a square domain

[�1,1] · [�1,1] with velocity components given by a1 = �x2 and a2 = x1. Diffusivity is taken to be 10�6,
which makes the problem advection-dominated. Homogeneous essential boundary conditions are imposed

around the perimeter of the domain, while the u = �sin (2px) condition is imposed on the ‘‘slit,’’ as shown in

Fig. 74. Since the B-spline space does not contain trigonometric functions, H 1
0-minimization was used to set

the control point values on the ‘‘slit’’. Computations were done on a 30 · 30 uniform mesh with p = 2 and

p = 6. Continuity was maintained at the C1 and C5 levels, respectively, everywhere in the domain except

along the lines x = 0 and y = 0 where C0 continuity was maintained. This choice was made to facilitate impo-

sition of boundary conditions. Results are presented in Fig. 75. The exact solution is essentially a pure advec-

tion of the boundary condition along the circular streamlines. Both p = 2 and p = 6 produce excellent results.

6. Conclusions

We have introduced a new analysis framework, called isogeometric analysis, which is based on NURBS.

It has many similarities with finite element analysis, but also important differences. A key feature is to rep-

resent geometry exactly by NURBS elements and then invoke the isoparametric concept to define field vari-

ables, such as displacement, temperature, etc. The coarsest mesh encapsulates the exact geometry. This

Fig. 75. Advection of a sine hill. Top to bottom: results for p = 2 and p = 6. Left: plot with 100 · 100 points, Phong shaded. Right: plot

with 31 · 31 points.
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means that mesh refinement is simply accomplished by reindexing the parametric space. The refinement

process can proceed without interaction with the CAD system, a distinct advantage over finite element pro-

cedures. The fact that finite element mesh refinement strategies require interaction with the CAD system at

each stage may be the reason that adaptive mesh refinement, despite its benefits, is still primarily an aca-

demic activity and one that has not significantly penetrated the industrial sector. There are NURBS ana-
logues of finite element h-refinement and p-refinement, and there is also a variant of p-refinement, which we

call k-refinement, in which the continuity of functions is systematically increased. This seems to have no

analogue in traditional finite element analysis but is a feature shared by some meshless methods. The ap-

proach is fundamentally higher-order. For example, in order to represent circles, cylinders and spheres, ra-

tional polynomials of at least quadratic order are necessary. The generation of refined NURBS bases of all

orders is facilitated by simple recursion relationships. The versatility and power of recursive NURBS basis

representations are truly remarkable. Equation systems generated by NURBS tend to be more homoge-

neous than those generated by higher-order finite elements and this may have some benefit in equation solv-
ing strategies. NURBS satisfy a ‘‘variation diminishing’’ property. For example, they give monotone fits to

discontinuous control data and become smoother as order is increased, unlike Lagrange interpolatory poly-

nomials which oscillate more violently as order is increased. NURBS of all orders are non-negative point-

wise. This means that every entry of the NURBS mass matrix is non-negative. These properties are not

attained in finite element analysis. On the other hand, NURBS are not interpolatory. They are fit to nets

of control points and control variables. This aspect is less transparent to deal with than the corresponding

finite element concepts of interpolated nodal points and nodal variables but somewhat similar to the situ-

ation for meshless methods.
We performed initiatory calculations with isogeometric analysis procedures on some linear structural

and fluids problems. h-, p-, and k-refinement strategies were investigated. In the structural applications,

convergence to exact solutions was shown to occur at optimal rates for two- and three-dimensional solids.

We performed shell analysis with three-dimensional solid NURBS elements. Convergence to thin shell solu-

tions and benchmark results occurred in all cases. The ability to accurately resolve shell boundary layers

appears to be particularly noteworthy.

We applied a stabilized SUPG formulation of isogeometric analysis to standard test cases involving the

advection–diffusion equation in order to assess its potential for fluid dynamics. A stringent two-dimensional
test case, advection skew to a mesh with outflow Dirichlet boundary conditions, was studied on a fixed

mesh using k-refinement. As order was increased, solutions improved and converged toward monotone re-

sults with sharp layers. This surprising result seems to contradict numerical analysis preconceptions about

high-order accurate methods.

There seem to be numerous opportunities for research in isogeometric analysis. Some areas of particular

interest are: (1) integrating isogeometric analysis with CAD systems; (2) developing isogeometric mesh gen-

erators based on state-of-the-art technologies such as CUBIT (see [73]); (3) developing triangular and tet-

rahedral isogeometric elements and associated unstructured meshing techniques (see [74]); (4) developing
procedures which account for trimmed surface description (this is a significant challenge, the approach

of Höllig [75] may be useful, see Fig. 76); (5) developing isogeometric surface elements for traditional

and rotationless shell analysis [17–19,49–53] and boundary integral formulations, and combining isogeo-

metric surface descriptions with meshless methods (exact surface descriptions would seem to be particularly

easy to generate from CAD descriptions); (6) applying isogeometric technology to thin plate and shell the-

ories, strain-gradient theories, and other higher-order theories; (7) developing hierarchical isogeometric

bases for multiscale analysis; (8) applying isogeometric analysis to fluid mechanics and, in particular,

boundary layer turbulence (the pioneering studies [76–79] should be mentioned in this regard); (9) applying
isogeometric elements to problems of engineering interest; (10) developing a mathematical theory of con-

vergence and error analysis (we have already made some headway on this topic and out initial results will be

reported upon in a forthcoming publication); (11) applying isogeometric analysis to contact problems and,
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in particular, frictional contact and sliding (see Fig. 77); (12) developing isogeometric dynamic analysis,

including time-harmonic and explicit, implicit, and space–time time-stepping approaches (see Fig. 78);

(13) applying isogeometric analysis to shape optimization (see Fig. 79); (14) generalizing to other important

application areas, such as, for example, acoustics and electromagnetics; (15) various non-linear applica-

tions, etc.

In conclusion, we believe the isogeometric approach has considerable potential in practical problem solv-

ing and is a promising alternative to current analysis procedures.

Fig. 76. Höllig [75] has developed finite element methods incorporating a B-spline basis on a rectangular grid. The object�s actual

geometry is introduced through so-called weighting functions. The idea may be useful in dealing directly with trimmed surfaces.

Nodes Knots

(a) (b)

Fig. 77. (a) Faceted polynomial finite elements create problems in sliding contact (see [80,81]). (b) NURBS geometries can attain

smoothness of real bodies.

Fig. 78. D-NURBS (Dynamic NURBS) have been proposed by Qin and Terzopoulos [82] for animating objects defined by NURBS

surfaces.
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Appendix A. Control data for NURBS objects

A.1. Circular curve

A circular curve can be described in many different ways using NURBS. The approach shown in Fig. 12,

utilizing four rational quadratic segments, is one of the simplest. Given the knot vector

N ¼ f0; 0; 0; 1; 1; 2; 2; 3; 3; 4; 4; 4g ðA:1Þ
we use (1) and (2) to generate the B-spline basis functions (with p = 2) shown in Table A.1. The curve itself

is then generated using (11) and (12) together with the control points and weights given in Table A.2. Note

Fig. 79. Isogeometric shape optimization. Left: the finite element geometric description is inconvenient for shape optimization. Right:

NURBS present a more concise parameterization of design variables. Optimized NURBS descriptions can be returned to CAD systems

for manufacturing, a distinct advantage over finite elements.

Table A.1

One-dimensional quadratic basis functions for creating circular NURBS curve

Function [0,1] [1,2] [2,3] [3,4]

N1,2(n) (1 � n)2 0 0 0

N2,2(n) 2n(1 � n) 0 0 0

N3,2(n) n2 (2 � n)2 0 0

N4,2(n) 0 2(n � 1)(2 � n) 0 0

N5,2(n) 0 (n � 1)2 (3 � n)2 0

N6,2(n) 0 0 2(n � 2)(3 � n) 0

N7,2(n) 0 0 (n � 2)2 (4 � n)2

N8,2(n) 0 0 0 2(n � 3)(4 � n)
N9,2(n) 0 0 0 (n � 3)2
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that scaling all of the weights by a constant factor does not change the final curve. In Fig. 12a, the weights

(and, correspondingly, the projective control points) have all been scaled by 3 for visual clarity.

A.2. Toroidal surface

The toroidal surface shown in Fig. 13b is created by sweeping a circular NURBS curve of radius 1, as

defined in the previous section, around a circular path of radius 5, also defined by a NURBS curve. In this

instance, the g coordinate describes our initial circular curve and the n coordinate traverses the path along

which we sweep. The basis is rational quadratic in each of the two directions, with knot vectors given by

N ¼ f0; 0; 0; 1; 1; 2; 2; 3; 3; 4; 4; 4g ðA:2Þ
and

H ¼ f0; 0; 0; 1; 1; 2; 2; 3; 3; 4; 4; 4g: ðA:3Þ
As N is the same as in our previous example, the set of functions, {Ni,2(n)}, are the same as in Table A.1.

As N ¼ H, the set {Mj,2(g)} have the same form, but with independent variable g rather than n.
The control net for the torus may be thought of as given by ‘‘sweeping’’ the control polygon for a circle

of radius 1 about the control polygon for a circle of radius 5. See Fig. 13a. The resulting set of control

points is given in Table A.3, with weights in Table A.4. The rational surface basis functions are formed
from the one-dimensional basis functions and weights using (13).

Table A.3

Control points for toroidal surface

i Bi,1 Bi,2 Bi,3 Bi,4 Bi,5 Bi,6 Bi,7 Bi,8 Bi,9

1 (5,0,�1) (6,0,�1) (6,0,0) (6,0,1) (5,0,1) (4,0,1) (4,0,0) (4,0,�1) (5,0,�1)

2 (5,5,�1) (6,6,�1) (6,6,0) (6,6,1) (5,5,1) (4,4,1) (4,4,0) (4,4,�1) (5,5,�1)

3 (0,5,�1) (0,6,�1) (0,6,0) (0,6,1) (0,5,1) (0,4,1) (0,4,0) (0,4,�1) (0,5,�1)

4 (�5,5,�1) (�6,6,�1) (�6,6,0) (�6,6,1) (�5,5,1) (�4,4,1) (�4,4,0) (�4,4,�1) (�5,5,�1)

5 (�5,0,�1) (�6,0,�1) (�6,0,0) (�6,0,1) (�5,0,1) (�4,0,1) (�4,0,0) (�4,0,�1) (�5,0,�1)

6 (�5,�5,�1) (�6,�6,�1) (�6,�6,0) (�6,�6,1) (�5,�5,1) (�4,�4,1) (�4,�4,0) (�4,�4,�1) (�5,�5,�1)

7 (0,�5,�1) (0,�6,�1) (0,�6,0) (0,�6,1) (0,�5,1) (0,�4,1) (0,�4,0) (0,�4,�1) (0,�5,�1)

8 (5,�5,�1) (6,�6,�1) (6,�6,0) (6,�6,1) (5,�5,1) (4,�4,1) (4,�4,0) (4,�4,�1) (5,�5,�1)

9 (5,0,�1) (6,0,�1) (6,0,0) (6,0,1) (5,0,1) (4,0,1) (4,0,0) (4,0,�1) (5,0,�1)

Table A.2

Control points and weights for a circle of radius 1

i Bi wi

1 (1,0) 1

2 (1,1) 1=
ffiffiffi
2

p
3 (0,1) 1

4 (�1,1) 1=
ffiffiffi
2

p
5 (�1,0) 1

6 (�1,�1) 1=
ffiffiffi
2

p
7 (0,�1) 1

8 (1,�1) 1=
ffiffiffi
2

p
9 (1,0) 1
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A.3. Plate with circular hole

The two-element coarse mesh shown in Fig. 17a and defined by the control net in Fig. 17b has an inter-

esting feature. The circle requires using a rational quadratic basis, but this in turn necessitates introducing a

discontinuity in the first derivative to create the opposite corner. This could be done either by repeating

knots and thus creating a basis that is only C0 along the line between the initial two elements, or by placing

two control points at the same location in physical space. We chose the latter option in order to ensure that

our basis had C1 continuity throughout the interior of the domain. The only place where the basis is not C1

is on the boundary itself, at the location of the repeated control points. As stated previously, this mesh uses

knot vectors

N ¼ f0; 0; 0; 0:5; 1; 1; 1g ðA:4Þ

Table A.5

Quadratic basis functions in n-direction for the quarter plate with circular hole

Function [0,0.5] [0.5,1]

N1,2(n) (2n � 1)2 0

N2,2(n) 2n(2�3n) 2(n � 1)2

N3,2(n) 2n2 2(3n � 1)(1 � n)
N4,2(n) 0 (2n � 1)2

Table A.6

Quadratic basis functions in g-direction for the quarter plate with circular hole

Function [0,1]

M1,2(g) (1 � g)2

M2,2(g) 2g(1 � g)
M3,2(g) g2

Table A.4

Weights for toroidal surface

i wi,1 wi,2 wi,3 wi,4 wi,5 wi,6 wi,7 wi,8 wi,9

1 1 1=
ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1

2 1=
ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
3 1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1

4 1=
ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
5 1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1

6 1=
ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
7 1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1

8 1=
ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
1/2 1=

ffiffiffi
2

p
9 1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1 1=

ffiffiffi
2

p
1

Table A.7

Control net for the plate with a circular hole

i Bi,1 Bi,2 Bi,3

1 (�1,0) (�2.5,0) (�4,0)

2 ð�1;
ffiffiffi
2

p � 1Þ (�2.5,0.75) (�4,4)

3 ð1� ffiffiffi
2

p
; 1Þ (�0.75,2.5) (�4,4)

4 (0,1) (0,2.5) (0,4)
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Table A.8

Weights for the plate with a circular hole

i wi,1 wi,2 wi,3

1 1 1 1

2 ð1þ 1=
ffiffiffi
2

p Þ=2 1 1

3 ð1þ 1=
ffiffiffi
2

p Þ=2 1 1

4 1 1 1

Table A.9

Control points and weights for cylindrical solid

i j Bi,j,1 Bi,j,2 Bi,j,3 wi,j,1 wi,j,2 wi,j,3

1 1 (1,0,0) (1,0,2.5) (1,0,5) 1 1 1

1 2 (4/3,0,0) (4/3,0,2.5) (4/3,0,5) 1 1 1

1 3 (5/3,0,0) (5/3,0,2.5) (5/3,0,5) 1 1 1

1 4 (2,0,0) (2,0,2.5) (2,0,5) 1 1 1

2 1 (1,1,0) (1,1,2.5) (1,1,5) 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
2 2 (4/3,4/3,0) (4/3,4/3,2.5) (4/3,4/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
2 3 (5/3,5/3,0) (5/3,5/3,2.5) (5/3,5/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
2 4 (2,2,0) (2,2,2.5) (2,2,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

3 1 (0,1,0) (0,1,2.5) (0,1,5) 1 1 1

3 2 (0,4/3,0) (0,4/3,2.5) (0,4/3,5) 1 1 1

3 3 (0,5/3,0) (0,5/3,2.5) (0,5/3,5) 1 1 1

3 4 (0,2,0) (0,2,2.5) (0,2,5) 1 1 1

4 1 (�1,1,0) (�1,1,2.5) (�1,1,5) 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
4 2 (�4/3,4/3,0) (�4/3,4/3,2.5) (�4/3,4/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
4 3 (�5/3,5/3,0) (�5/3,5/3,2.5) (�5/3,5/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
4 4 (�2,2,0) (�2,2,2.5) (�2,2,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

5 1 (�1,0,0) (�1,0,2.5) (�1,0,5) 1 1 1

5 2 (�4/3,0,0) (�4/3,0,2.5) (�4/3,0,5) 1 1 1

5 3 (�5/3,0,0) (�5/3,0,2.5) (�5/3,0,5) 1 1 1

5 4 (�2,0,0) (�2,0,2.5) (�2,0,5) 1 1 1

6 1 (�1,�1,0) (�1,�1,2.5) (�1,�1,5) 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
6 2 (�4/3,�4/3,0) (�4/3,�4/3,2.5) (�4/3,�4/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
6 3 (�5/3,�5/3,0) (�5/3,�5/3,2.5) (�5/3,�5/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
6 4 (�2,�2,0) (�2,�2,2.5) (�2,�2,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

7 1 (0,�1,0) (0,�1,2.5) (0,�1,5) 1 1 1

7 2 (0,�4/3,0) (0,�4/3,2.5) (0,�4/3,5) 1 1 1

7 3 (0,�5/3,0) (0,�5/3,2.5) (0,�5/3,5) 1 1 1

7 4 (0,�2,0) (0,�2,2.5) (0,�2,5) 1 1 1

8 1 (1,�1,0) (1,�1,2.5) (1,�1,5) 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
8 2 (4/3,�4/3,0) (4/3,�4/3,2.5) (4/3,�4/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
8 3 (5/3,�5/3,0) (5/3,�5/3,2.5) (5/3,�5/3,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
8 4 (2,�2,0) (2,�2,2.5) (2,�2,5) 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

9 1 (1,0,0) (1,0,2.5) (1,0,5) 1 1 1

9 2 (4/3,0,0) (4/3,0,2.5) (4/3,0,5) 1 1 1

9 3 (5/3,0,0) (5/3,0,2.5) (5/3,0,5) 1 1 1

9 4 (2,0,0) (2,0,2.5) (2,0,5) 1 1 1
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and

H ¼ f0; 0; 0; 1; 1; 1g: ðA:5Þ
The corresponding one-dimensional basis functions are given in Tables A.5 and A.6. The control net and

weights are given in Tables A.7 and A.8, respectively.

A.4. Cylindrical solid

The cylinder shown in Fig. 25 has an inner radius of rin = 1, and an outer radius of rout = 2. The length of

the cylinder is L = 5. The coarse mesh uses quadratic basis functions in all three parametric directions. The

n coordinate traverses the circumferential direction, the g coordinate traverses the thickness, and the f coor-
dinate traverses the length.

The knot vectors are

N ¼ f0; 0; 0; 1; 1; 2; 2; 3; 3; 4; 4; 4g; ðA:6Þ

H ¼ f0; 0; 0; 0:5; 1; 1; 1g ðA:7Þ
and

Z ¼ f0; 0; 0; 1; 1; 1g: ðA:8Þ
As each of these knot vectors have appeared in a previous example, analytic expressions for the corre-

sponding one-dimensional basis functions may be found in the above tables. The control net and weights

are given in Table A.9. Rational solid basis functions are defined by combining the weights and one-dimen-

sional basis functions using (14).

A hollow cylindrical solid can be developed with a single NURBS patch by mapping opposite faces of
the parametric domain to the same physical location in the obvious way. For open knot vectors, the control

points describing the two faces are coincident. This leads to a C0-continuous solution across the interface.

Appendix B. Knot selection during h-refinement

The difficulty encountered in h-refinement is how to determine where to insert knots. Knot locations may

always be chosen by the user to increase the resolution in the vicinity of specific features but an automated
global refinement strategy is desired. The parameterization of a NURBS patch in physical space is depen-

dent not only on the locations of control points and the polynomial order of the basis functions but also on

the weights. In practice, placing a new knot in the middle of an existing knot span, thus splitting the element

into two equal parts in the parametric domain, often does not even come close to splitting the element in

half in physical space. Complicating matters further is the fact that knot insertion is inherently a global

process. For example, consider a mesh in R2 defined by N�H. Inserting a knot �n 2 ½ni; niþ1� into N
may split the image of the element edge [ni,ni+1] · g1 in physical space in half, but fail to split the image

of [ni,ni+1] · gm+q+1 in half, and so no unique knot value will exactly halve every element in the row. Still,
in meshes described by one patch, refinement requires selecting one value. The approach we have developed

has worked well in the examples we have considered, and is described below for the two-dimensional case.

When inserting a knot into [ni,ni+1], perform the following steps:

(1) Find the physical coordinates corresponding to (ni,g1) and (ni+1,g1), and calculate the midpoint of the

chord connecting them; call this point P1. Likewise, find P2, the midpoint of the chord from (ni,gm+q+1)

and (ni+1,gm+q+1). See Fig. B.1.
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(2) Perform point inversion to find �n1 and �n2, the n coordinates minimizing the distance between P1 and P2

and points on the images of [ni,ni+1] · g1 and [ni,ni+1] · gm+q+1, respectively. See Fig. B.1. This is done

using a Newton iteration; for details, see Piegl and Tiller [21].

(3) Take the weighted average of �n1 and �n2 to get �n. Weight by the magnitude of the parametric derivative,

k dx
dn k, where x is the position in physical space and kÆk denotes the Euclidean norm. That is, the new

knot is given by

�n ¼

dx

dn

����
ð�n1;g1Þ

�����
������n1 þ

dx

dn

����
ð�n2;gmþqþ1Þ

�����
������n2

dx

dn

����
ð�n1;g1Þ

�����
�����þ dx

dn

����
ð�n2;gmþqþ1Þ

�����
�����

ðB:1Þ

This weighted average produces a better splitting of an edge where the physical position changes rap-

idly with variation in the parameter. Most notably, this yields a better splitting of longer edges. Inde-

pendent of different edge lengths, if �n1 ¼ �n2, then �n will be set to that value as well. In this way no

accuracy is lost in the ‘‘easy’’ cases.

Fig. B.2 compares this approach to knot selection with uniform splitting of the element in the parametric

domain. Both methods are applied to the original two-element mesh shown in Fig. 17a. Note that uniform

splitting in the parametric space translates to uniform splitting of the short edge (i.e., the circle) but quite

non-uniform splitting of the longer edges opposite to it. The advocated scheme behaves in opposite fashion.

The former approach produces a better mesh near the circular hole whereas the latter approach produces a

somewhat more balanced mesh globally. Both approaches should be useful. The amount of time taken for

the advocated refinement process is negligible in comparison with analysis.

ξi

ξi

ξ2

ξi+1

ξi+1

↓

P1

P2

η=η1

η=ηm

S(ξ,η)
ξ1

Fig. B.1. Knot selection during h-refinement. Approximate the midpoint of the element edge by P1, the midpoint of the chord

connecting the corners of the element. Perform point inversion to find �n1, the parameter of the point on the curve that is closest to P1 in

the Euclidean norm. Repeat the process on the opposite side of the domain to find �n2. The knot to be inserted is a weighted average of
�n1 and �n2.
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[18] F. Cirak, M. Ortiz, P. Schröder, Subdivision surfaces: a new paradigm for thin shell analysis, Int. J. Numer. Methods Engrg. 47

(2000) 2039–2072.
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