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Abstract. This paper proposes the use of the Spectral method to simulate diffusive mois-
ture transfer through porous materials, which can be strongly nonlinear and can signifi-
cantly affect sensible and latent heat transfer. An alternative way for computing solutions
by considering a separated representation is presented, which can be applied to both linear
and nonlinear diffusive problems, considering highly moisture–dependent properties. The
Spectral method is compared with the classical implicit Euler and Crank–Nicolson

schemes. The results show that the Spectral approach enables to accurately simulate the
field of interest. Furthermore, the numerical gains become particularly interesting for
nonlinear cases since the proposed method drastically can reduce the computer run time
by 99% when compared to the traditional Crank–Nicolson scheme.
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1. Introduction

Moisture transfer through porous structures is a matter of concern in many areas such as
building physics, food engineering, hydrology, agriculture, geophysics, environmental engi-
neering and energy systems, among others, where the transient evolution of moisture may
play a role of paramount importance. Particularly in the area of building physics, moisture
transfer process through the porous envelope, roofing systems, ground, and furniture may
strongly affect energy and hygrothermal performance of those elements at the same time
moisture may impact on indoor air quality and material deterioration.

Models for moisture transfer through porous building materials have been presented in
many building simulation tools since the 1990’s, in software such as Delphin [5], MATCH
[32], MOIST [8], WUFI [14] and UMIDUS [24, 27, 31]. Moisture models have also been
implemented in whole–building simulation tools and tested in the frame of the International
Energy Agency Annex 41, which reported on most of detailed models and their successful
applications for accurate assessment of hygrothermal transfer in buildings [37].

As building material properties are temperature– and moisture–dependent and the bound-
ary conditions are driven by weather variables, the models included in those tools are based
on numerical approaches using discrete representations of the continuous equations. To
compute the solution, standard discretisation and incremental techniques are applied such
as the Euler implicit scheme in [5, 14, 19, 20, 26, 33, 35] to solve large systems of equations
(of an order of 106 for 3−dimensional problems). Furthermore, when dealing with nonlin-
earities, hygrothermal properties of porous materials have to be updated as a function of
the temperature and moisture content fields at each iteration. The difficulties to compute
the solution increase, particularly when using implicit schemes that require sub-iterations
to treat those issues. In the literature, the important numerical costs of simulation tools
[2, 11, 12, 29] is also mentioned and it is a matter of concern due to the great scale of
buildings, where heat and moisture transfer phenomena have to be simulated. Thus, inno-
vative and efficient ways of numerical simulation are worth of further investigation. Model
reduction techniques are an alternative approach to deal with this problem.

Model reduction is related to the decrease of the model order and, thus, complexity.
Sometimes its definition is confused and the concepts are not very clear. In this paper, for
the sake of clarity, the term fidelity is used to denote the ability of a model to represent
the physical phenomenon [22]. Thus, the linear moisture model can be considered as a low
fidelity model, compared to a model that considers nonlinear transfer or even the coupled
heat and moisture nonlinear transfer phenomena into account. The term Reduced Order
Models (ROM) has the purpose of decreasing the degrees of freedom of a numerical model,
retaining the model ability to capture the essential physics. In other words, reduced order
models aim at providing accurate descriptions of the dynamics but with significantly lower
computational costs. Reduced order models intend to identify genuine degrees of freedom
and give low–dimensional approximations, preserving a satisfactory accuracy that saves
computational resources (CPU time and memory).
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Reduced order models can be classified as a priori or a posteriori methods. The a poste-
riori approaches need a preliminary computed (or even experimental) solution data of the
large original problem to build the reduced one. Whereas the a priori ones does not need
preliminary information on the studied problem. The reduced order model is unknown a
priori and is directly built. Since the 2000th, aiming to reduce the computational cost,
reduction model techniques started to take place in the context of heat and moisture trans-
fer for building physics applications, as an alternative for traditional methods. Different
kinds of approaches can be considered, such as the a posteriori Proper Orthogonal Decom-
position (POD), the Modal Basis Reduction (MBR) and the a priori Proper Generalized
Decomposition (PGD), which have shown relevant reduction of the computational cost for
successful applications in the building physics area [6].

Therefore, this paper aims at presenting an innovative approach, never applied in the
context of building physics, i.e., the a priori Spectral reduced order model technique
to compute the moisture transfer in porous materials. The manuscript is organized as
follows. First, the description of the physical phenomena is presented (Section 2). Then,
the explanation of the Spectral reduced order model techniques are described (Section 3).
In the sequence, an application of ROM techniques to three different cases are shown.
The first one considers linear transfer (Section 4.1) to validate the method. The second
one focuses on a weak nonlinear transfer (Section 4.2), in which some simplifications are
considered, while the last one presents a strongly nonlinear transfer case with moisture–
dependent material properties (Section 5).

2. Moisture transfer in porous materials

The physical problem involves one–dimensional moisture diffusion through a porous
material defined by the spatial domain Ωx = [ 0, L ]. The moisture transfer occurs
according to liquid and vapour diffusion processes. The physical problem can be formulated
as [1, 23]:

∂ρ l+v

∂t
=

∂

∂x

(

k l
∂P c

∂x
+ k v

∂P v

∂x

)

, (2.1)

where ρ l+v is the volumetric moisture content of the material and k v and k l , the vapour
and liquid permeabilities.

Eq. (2.1) can be written using the vapour pressure P v as the driving potential. For this,
we consider the physical relation, known as the Kelvin equation, between P v and P c :

P c = R v · T · ln
(

P v

P s(T )

)

,

∂P c

∂P v
=

R v T

P v
.
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Thus, we have:

∂P c

∂x
=

∂P c

∂P v
· ∂P v

∂x
+

∂P c

∂T
· ∂T
∂x

.

As we consider mass transfer under isothermal conditions, the second right–hand term
vanishes and we obtain:

∂P c

∂x
=

R v T

P v

· ∂P v

∂x
.

In addition, we have:

∂ρ l+v

∂t
=

∂ρ l+v

∂φ
· ∂φ

∂P v
· ∂P v

∂t
+

∂ρ l+v

∂T
· ∂T
∂t

≃ ∂ρ l+v

∂φ
· ∂φ

∂P v
· ∂P v

∂t
.

Considering the relation ρ l+v = f (φ) = f (P v , T ) , obtained from material properties
and from the relation between the vapour pressure P v and the relative humidity φ , we get:

∂ρ l+v

∂t
= f ′(P v) ·

1

P s

· ∂P v

∂t
.

Eq. (2.1) can be therefore rewritten as:

f ′(P v) ·
1

P s

· ∂P v

∂t
=

∂

∂x

[(

k l
R v T

P v

+ k v

)

· ∂P v

∂x

]

. (2.2)

The material properties f ′(P v) , k l and k v depend on the vapour pressure P v . There-

fore, we denote dm
def
:= k l ·

R v T

P v

+ k v as the global moisture transport coefficient and

cm
def
:= f ′(P v)

1

P s

, the moisture storage coefficient.

At the material bounding surfaces, Robin–type boundary conditions are considered:

(

k l
R v T

P v
+ k v

)

· ∂P v

∂x
= h v,L · (P v − P v,L ) − g l,L , x = 0 , (2.3)

−
(

k l
R v T

P v
+ k v

)

· ∂P v

∂x
= h v,R · (P v − P v,R ) − g l,R , x = L , (2.4)

where P v is the vapour pressure of the ambient air, g l , the liquid water flow (driving rain),
R and L stand for the right and left bounding surfaces.

We consider a uniform vapour pressure distribution as the initial condition:

P v = P i
v , t = 0 . (2.5)

It is important to obtain a unitless formulation of governing equations while performing
mathematical and numerical analysis of given practical problems, due to certain number
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of reasons already discussed in [16]. Therefore, we define the following dimensionless pa-
rameters:

u =
P v

P i
v

, uR =
P v,R

P i
v

, uL =
P v,L

P i
v

, x ⋆ =
x

L
,

t ⋆ =
t

t 0
, c ⋆

m =
cm · L2

d 0
m · t 0 , d ⋆

m =
dm

d 0
m

, Bi v, L =
h v,L · L
d 0
m

,

Bi v,R =
h v,R · L

d 0
m

, g ⋆
l,L =

g l,L · L
d 0
m · P i

v

, g ⋆
l,R =

g l,R · L
d 0
m · P i

v

.

In this way, the dimensionless governing equations can then be written as:

c ⋆
m

∂u

∂t ⋆
=

∂

∂x ⋆

(

d ⋆
m

∂u

∂x ⋆

)

, t ⋆ > 0 , x ⋆ ∈
[
0, 1

]
, (2.6a)

d ⋆
m

∂u

∂x ⋆
= Bi v,L · (u − uL ) − g ⋆

l,L , t ⋆ > 0 , x ⋆ = 0 , (2.6b)

− d ⋆
m

∂u

∂x ⋆
= Bi v,R · (u − uR ) − g ⋆

l,R , t ⋆ > 0 , x ⋆ = 1 , (2.6c)

u = 1 , t ⋆ = 0 , x ⋆ ∈
[
0, 1

]
. (2.6d)

Finally, this is the problem of interest considered here for the Spectral reduced order model
resolution. Now, the method procedure will be described to propose a reduce order model
for the solution of this problem.

3. Reduced Spectral method for linear transfer

While finite–difference and finite–element methods are based on local representation of
functions, using low–order approximations, Spectral methods consider a global represen-
tation of the solution, which yields beyond all orders approximations [7]. In the global
representation approach, the value of the derivative at a certain spatial location depends
on the solution on the entire domain and not only on its neighbours. Spectral method con-
siders a sum of Spectral modes that suits for the whole domain, almost like an analytical
solution, providing a global approximation with very few modes, as it will be demonstrated
below. For smooth solutions, its error decreases exponentially when the number of modes
is increases, O( e−cN ) . Thus, it is possible to have the same accuracy of other methods
but with a much lower number of collocation points, which makes this method memory
usage minimized, allowing to store and operate a lower number of degrees of freedom [36].

3.1. Method description

For the sake of simplicity and without loosing the generality, this method is first ex-

plained considering the dimensionless coefficients d ⋆
m and c ⋆

m as constants, noting ν
def
:=

d ⋆
m

c ⋆
m
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and thus, considering the linear diffusion equation:

∂u

∂t
= ν

∂ 2u

∂x 2
, (3.1)

for t > 0 and x ∈
[
− 1, 1

]
. A special attention must be given to the spatial domain,

because the Chebyshev Spectral method we use is described between the interval
[
−1, 1

]
.

Thus, if the dimensionless interval is not in this interval, a change of variables (domain
transformation) must be performed for the computational domain.

The boundary conditions are written as:

∂u

∂x
= Bi v, L ·

(

u− uL

(
t
))

, x = −1 , (3.2a)

− ∂u

∂x
= Bi v,R ·

(

u− uR

(
t
))

, x = 1 . (3.2b)

The Spectral method assumes that the unknown u(x, t) from Eq. (3.1) can be approxima-
tively represented as a finite sum [25, Chapter 6]:

u (x, t) ≈ un (x, t) =

n∑

i=0

a i (t)φ i (x) . (3.3)

Here, {φ i(x)}n
i=0 is a set of basis functions that remains constant in time, {a i(t)}n

i=0 are
the corresponding time–dependent Spectral coefficients, n represents the number of degrees
of freedom of the solution. Eq. (3.3) can be seen as a series truncation after N = n + 1
modes. The Chebyshev polynomials are chosen as the basis functions as they are optimal
in L∞ approximation norm [17]. It should be observed that other bases can be used, such
as the Fourier and Legendre polynomials. Therefore, we have:

φ i (x) ≡ T i (x) .

The first Chebyshev polynomials are:

T 0 (x) = 1 , T 1 (x) = x , T 2 (x) = 2 x 2 − 1 , T 3 (x) = 4 x 3 − 3x , . . .

and, higher order polynomials can be constructed using a recursive relation [30]:

T i+1 (x) = 2 xT i (x) − T i−1 (x) .

As we have chosen the basis functions, now we can write the derivatives:

∂un

∂x
=

n∑

i=0

a i (t)
∂T i

∂x
(x) =

n∑

i=0

ã i (t) T i (x) , (3.4a)

∂2un

∂x2
=

n∑

i=0

a i (t)
∂2T i

∂x2
(x) =

n∑

i=0

˜̃a i (t) T i (x) , (3.4b)

∂un

∂t
=

n∑

i=0

ȧ i (t) T i (x) , (3.4c)
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where the dot denotes ȧ i(t)
def
:=

da

dt
. Note that the derivatives are written in a such way

the Chebyshev polynomials remain the same. As a result, coefficients {ã i(t)} and {˜̃a i(t)}
must be re–expressed in terms of coefficients {a i(t)} . The connection is given explicitly
from the recurrence relation of the Chebyshev polynomial derivatives [30]:

ã i =
2

c i

n∑

p= i+1
p+i odd

p a p , i = 0, . . . , n− 1, (3.5a)

˜̃a i =
1

c i

n∑

p= i+2
p+i even

p (p2 − i2) a p , i = 0, . . . , n− 2, (3.5b)

with,

c i =

{

2 if i = 0 ,

1 if i > 0 .

Replacing the derivative Eq. (3.4a) into the boundary conditions Eq. (3.2), we get:

n∑

i=0

ã i(t) T i(−1) − Bi v,L

n∑

i=0

a i(t) T i(−1) + Bi v, L uL(t) = 0 , (3.6a)

−
n∑

i=0

ã i(t) T i(1) − Bi v,R

n∑

i=0

a i(t) T i(1) + Bi v,R uR(t) = 0 , (3.6b)

with T i(−1) = (−1)i and T i(1) ≡ 1 (see [30]). Proceeding with the substitutions, the
derivatives (3.4b) and (3.4c) are replaced in the diffusion equation (3.1), leading to the
residual:

R =

∥
∥
∥
∥
∥

n∑

i=0

[
ȧ i(t) − ν ˜̃a i(t)

]
T i(x)

∥
∥
∥
∥
∥
−→ min , (3.7)

which is considered a misfit of the approximate solution. By minimizing the residual defined
in Eq. (3.7) we require that Spectral coefficients of the residual vanish:

ȧ i(t) − ν ˜̃a i(t) = 0 , i = 0, 1, . . . , n− 2 ,

so that, when expanded and projected, it leads to a system of ordinary differential equations
(ODE), with N − 2 equations to be solved as a function of time. The two extra coefficients
are obtained from the boundary conditions, Eqs. (3.6a) and (3.6b), written in a explicit
way in terms of other coefficients.

Therefore, the original partial differential equation (3.1) is reduced to a system of ODE
plus two algebraic expressions. For linear problems, the ODE system is explicitly built with
the help of the software MapleR©. Moreover, the reduced system of ordinary differential
equations has the following form:

ȧ i(t) = A a i(t) + b (t) , i = 0, 1, . . . , n− 2 , (3.8)
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where, A ∈ Mat (n−2)×(n−2)(R) , with constant coefficients and with n ≃ O(10) . Besides,

b (t) ∈ R
(n−2) is a vector coming usually from boundary conditions.

Initial values of the coefficients {a i(t = 0)} are calculated by projecting the initial
condition [9]:

a i(0) =
2

π c i

ˆ 1

−1

u 0(x) T i(x)√
1 − x2

dx , i = 0, 1, . . . , n− 2 , (3.9)

where, u 0(x) is the dimensionless initial condition. After solving the reduced ODE system
(Eqs. 3.8 and 3.9), it is possible to compose the solution along with the Chebyshev

polynomial.

3.1.1 Reduced model usage

By using the Spectral–ROM approach to build the reduced order model, the time de-
pendent coefficients

(
a i(t)

)
are computed by solving the following system:
{

ȧ = A a + b (t) ,

a(0) = a 0 ,

remembering that A ∈ Mat s×s(R) as a constant coefficient matrix, b (t) ∈ R
s is a vector

coming from the boundary conditions and a 0 is the vector of initial coefficients. The main
advantage of a Spectral–ROM is that s ≪ p , where p is the number of degrees of freedom
needed to solve problem (3.2) by means of conventional methods such as finite-difference,
finite-volume or finite-element methods. We note that matrix A and vector b (t) might
depend on problem parameters, such as the diffusion coefficient ν :

A = A(t ; ν) , and b = b (t ; ν) .

where the symbol ; denotes the separation between the arguments and the parameters.
The advantage of the Spectral–ROM approach is that there are essentially two approxi-

mations: (i) the choice of the Spectral expansion and (ii) the truncation to the N modes.
Henceforth, the dependence on parameters is the most accurate within the chosen Spectral
framework. Let us consider a more general situation:

{

ȧ = A(ν) a + b (t , a(t) ; ν) ,

a(t 0) = a 0 ,
(3.10)

where b (t , a(t) ; ν) depends on the solution a (t) via nonlinear boundary conditions, or
it contains problem’s nonlinearities, if there are some. The general analytical solution to
problem (3.10) can be written as:

a (t ; ν) = e ( t − t 0 )A(ν)a 0 +

ˆ t

t 0

e (t − τ)A(ν) b
(
τ , a(τ) ; ν

)
dτ . (3.11)

The most straightforward way to use the Spectral–ROM from Eq. (3.10) is to apply a
numerical integration scheme, e.g. an adaptive Runge–Kutta method with moderate
accuracy, since Eq. (3.10) is just a ROM. So, with an embedded error control and not so
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stringent tolerances, it can be done very efficiently. The exponential matrix is defined as
the limit:

e tA = lim
n→∞

(

Id +
1

n
tA

)n

.

in which Id ∈ Mat (n−2)×(n−2)(R) is the identity matrix. However, this method is not
the best way to compute the exponential matrix. In some particular cases, the solution of
Eq. (3.10) can be simplified and thus better exploited [28].

Case I: If we have homogeneous boundary conditions, problem (3.10) becomes:
{

ȧ = A (ν) a ,

a (t 0) = a 0 ,

and it can be analytically solved as:

a (t ; ν) = e (t − t 0)A(ν) · a 0 .

Using modern methods, the exponential matrix can be computed using ∼ 48n3 floating
point operations per second (FLOPS) [3]. As an information to the reader, the previous
result was ∼ 538n3 FLOPS [21]. However, one can notice that we do not really need
to build the exponential matrix, but we want to compute its action on the initial state
vector a 0 . Nowadays, it can be directly done, without forming e (t − t 0)A(ν) , explicitly to a
prescribed accuracy that can be set significantly lower than the standard machine precision
∼ 10−16 [4]. If computing Eq. (3.10) by a Matlab solver, for example ODE45, the standard
tolerance is of order of ∼ 10−6 .

Case II: If we have inhomogeneous boundary conditions constant in time, the problem from
Eq. (3.10) becomes:

{

ȧ = A(ν) a + b (ν) ,

a(t 0) = a 0 ,

which can also be analytically solved:

a (t ; ν) = e ( t − t 0 )A(ν) a 0 + ( t− t 0 )
e ( t − t 0 )A(ν) − Id

( t − t 0 )A(ν)
b (ν) .

Case III: If we have inhomogeneous boundary conditions are linear in time, problem Eq. (3.10)
becomes:

{

ȧ = A(ν) a + b (ν) · t ,
a(t 0) = a 0 ,

the solution is given by:

a (t ; ν) = e ( t − t 0 )A(ν) a 0 + ( t − t 0 )
2 e ( t − t 0 )A(ν) − Id

( t − t 0 )A(ν)
b (ν) .
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Case IV: Boundary condition is polynomial in time:
{

ȧ = A(ν) a + b (ν) · tm−1 , m > 3 ,

a(t 0) = a 0 .

then, the solution is given by the following analytical formula:

a (t ; ν) = e ( t − t 0 )A(ν) a 0 + ( t − t 0 )
m ϕm

(

( t − t 0 )A(ν)
)

b (ν) .

Above we introduced the so–called matrix ϕ−functions:

ϕm( z ) =
ϕm(z) − 1

m!
z

, m > 0 with ϕ 0( z ) ≡ e z .

A few first functions are given below explicitly:

ϕ 0( z ) = e z = 1 + z +
1

2
z 2 +

1

3!
z 3 + . . .

ϕ 1( z ) =
e z − 1

z
= 1 +

1

2
z +

1

3!
z 2 +

1

4!
z 3 + . . .

ϕ 2( z ) =
e z − 1− z

z 2
=

1

2
+

1

3!
z +

1

4!
z 2 +

1

5!
z 3 + . . .

ϕ 3( z ) =
e z − 1− z − 1

2

z 3
=

1

3!
+

1

4!
z +

1

5!
z 2 +

1

6!
z 3 + . . .

The general power series representation of ϕ−functions is

ϕm( z ) ≡
∞∑

k = 0

z k

(m + k)!
.

The exponential definitions of ϕm( z ) should not be used for practical simulations, because
of severe cancellation errors for z ≪ 1. Efficient methods for computation of ϕ−functions
have been developed based on Padé–type expansions, to give an example, Matlab’s func-
tion expm() is based on such approximations [10].

Case V: For a general case of linear boundary conditions, the solution of problem Eq. (3.10)
is:

a (t ; ν) = e (t − t 0)A(ν)a 0 +

ˆ t

t 0

e (t − τ)A(ν) b (τ ; ν) dτ

︸ ︷︷ ︸

(I)

.

To exploit the last formula, one might employ a quadrature formula to discretize the
integral (I):

a (t ; ν) = e (t − t 0)A(ν)a 0 + ∆t

m∑

j = 1

e (t − t 0)A(ν) · b (τj ; ν) , ∆t : =
t − t 0

m
,

where we employed rectangle formula for simplicity. We note that the sequence {e∆tA(ν)}mj=1

can be entirely computed in an efficient manner [4].
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Case VI: Considering a general nonlinear case of boundary conditions from problem Eq. (3.10)
and the general solution Eq. (3.11). To exploit a better solution, we can develop the func-
tion τ 7→ b (τ , a(τ) ; ν) in Taylor expansion series and integrate it exactly:

a (t ; ν) = e (t − t 0)A(ν)a 0 +
∞∑

k = 1

(t − t 0)
k ϕk

(

(t − t 0)A(ν)
)

a k ,

where

a k
def
:=

d k− 1

dt k− 1
b
(

t , a(t) ; ν
)
∣
∣
∣
∣
t = t 0

.

Finally, the series solution can be exploited by truncating it at some finite order:

a (t ; ν) = e (t − t 0)A(ν)a 0 +
K∑

k = 1

(t − t 0)
k ϕ k

(

(t − t 0)A (ν)
)

a k .

In this study, we shall employ ODE solvers for simplicity, since we are interested in the
whole trajectory.

3.2. Validation of the numerical solution

To compare and validate the proposed method, the error between a solution u , obtained
by Spectral reduced order method or classical numerical methods, and the reference solu-
tion u ref , is computed as a function of x by the following formulation:

ε 2 (x)
def
:=

√
√
√
√

1

Nt

Nt∑

j=1

(
u num

j (x , t) − u ref
j (x , t)

)2
,

where Nt is the number of temporal steps. The global error ε∞ is given by the maximum
value of ε 2(x) :

ε∞

def
:= sup

x ∈

[
0 , L
]
ε 2 (x) .

The computation of the reference solution u ref (x , t) is detailed in Sections 4.1, 4.2 and 5.1.

4. Numerical application

4.1. Linear case

A first case of linear moisture transfer is considered. From a physical point of view,
the numerical values correspond to a material length of 0.1 m . The moisture transport
coefficient is dm = 1.97·10−10 s and the moisture storage is cm = 7.09·10−3 kg/m3/Pa [16].
The initial vapour pressure across the material is considered to be uniform as P i

v = 1.16·103
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Figure 1. Boundary conditions at the left side (x = 0m) and at the right side
(x = 0.1m) .

Pa , corresponding to a relative humidity of 50% . Simulations are performed for a total
time of 120h . The boundary conditions, represented by the relative humidity φ are given
in Figure 1. The sinusoidal variations oscillate between dry and moist states during the
total simulation time. The convective vapour transfer coefficients are set to h v,L = 2 ·10−7

s/m and h v,R = 3 ·10−8 s/m for the left and right boundaries, respectively. As the readers
may be interested in simulate the proposed case, dimensionless values are provided in
Appendix A.

The described case study is performed with the Spectral–ROM using N = 6 modes and
with two central finite–difference approximations schemes: (i) the Euler implicit and (ii)
the Crank–Nicolson. The reference solution is computed using the Matlab open source
toolbox Chebfun [13].

The reduced system of ODEs is implemented in Matlab and the Spectral coefficients
{an(t)} are calculated for any intermediate time instant by the solver ODE45. The solver is
set with an absolute and relative tolerance of tol = 10−4 . In this work, all integrations in
the time domain use an uniform discretization, although an adaptive approach can be used
to improve even more the usage of the Spectral method. Computations of the Spectral
solution are performed for the reference domain of [−1 , 1 ] and then transformed to the
interested one.

It can be seen that the physical phenomena is well represented, as illustrated in Fig-
ure 2(a) with the evolution of the vapour pressure at x = 0.04m . The variations follow
the ones of the left boundary conditions and with the diffusion process going towards
the periodic regime. It can be noted a good agreement between the Spectral–ROM and
the other methods. Furthermore, the vapour pressure profile is shown in Figure 2(b) for
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Figure 2. Evolution of the vapour pressure inside of the material, in x = 0.04

m (a) and vapour pressure profiles at different times, for t ∈ {8, 50, 120} h (b).

t = {8, 50, 120} h , enhancing the good accuracy of the solution to represent the physical
phenomena.

The absolute error ε 2 among the different methods and the reference is of the order of
O(10−4) , as illustrated in Figure 3. The solutions of the problem have been computed for
discretisation parameters ∆x ⋆ = 4 · 10−2 and ∆t ⋆ = 10−1 for both Spectral–ROM and
for the Crank–Nicolson methods, while for the Euler implicit scheme more refinement
was needed (∆x ⋆ = 1 · 10−2 and ∆t ⋆ = 10−2) to reach the same order of accuracy.

Figure 4(b) presents the absolute error ε 2 for the Spectral–ROM using different number
of modes. As we increase the number of modes, the solution of the Spectral–ROM gets
more accurate and the method solution converges within a few modes (less than 10). To
illustrate the convergence of the solution, the profile of the vapour pressure for the last time
of simulation is represented as a function of the number of modes in Figure 4(a). In this
case, if we compare the solution with 3 modes to the solution with 5 modes a significant
difference can be noticed. With 5 modes we already have a satisfactory solution of the
problem, with the absolute error of order of O( 10−3 ) , while the solution with 3 modes is
still oscillating. The number of modes of the Spectral method is predetermined in order to
build the ODE system. In this case, a number of six modes proved to be good enough.

Spectral coefficients an (t) are shown in Figures 5(a) and 5(b). It can be seen that the
first coefficients have the most significant values. For this reason, the Spectral method
needs few modes to converge to the solution (an order of 10) because its first modes have
the highest magnitudes. A brief comparison with an analytical solution, built on Fourier

decomposition [18], reveals that the eigenvalues of the Spectral method decreases faster,
as shown in Figure 6. Note that the eigenvalues of the analytical solution do not have to
coincide with the ones of the Spectral method since the eigenfunctions are not the same
for the Chebyshev polynomials and the trigonometric ones.
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Figure 3. Error ε 2 computed for the Crank–Nicolson method, for the
Euler implicit and for the Spectral with N = 6 modes.
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Figure 4. Vapour pressure profiles (at t = 2 h) (a) computed with different
numbers of Spectral modes and the error ε 2 (b).

The global absolute error ε∞ for all conventional numerical methods applied is calculated
as a function of spatial discretisation ∆x ⋆ . Fig. 7 shows that the Spectral–ROM has the
same accuracy for all values of ∆x ⋆ . It is due to the fact that the Spectral–ROM is based
on Chebyshev polynomials, which enables to calculate the solution in each spatial node
(the so–called collocation points in the Spectral approach), as the analytical solution. For
this reason, the error of the Spectral solution is almost a straight line, not depending
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Figure 5. Evolution of the first three Spectral coefficients an (a) and of the last
three coefficients (b).
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Figure 6. Eigenvalues of the Analytical and of the Spectral solution

corresponding to the first modes.

on the spatial discretisation. However, for the conventional methods, the solution gets
inaccurate when the value of ∆x ⋆ increases. It should be noted that the Spectral–ROM
can provide even more accurate results, by increasing the number of modes or by decreasing
the tolerance in the ODE Matlab solver to certain limits.
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Figure 8. Fourier power spectrum computed in the boundaries and in
the middle of the material x ⋆ ∈ {0, 0.5, 1} .

Figure 8 shows the Fourier power spectrum function of the signal frequency per unit of
time, generated by the fast Fourier transform. In this Figure, three peaks are observed
in the signal frequency, coming from the boundary conditions. They occur because the
relative humidity varies according to sinus functions.
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4.2. Weakly nonlinear case

This case is called weakly nonlinear because the boundary conditions remain linear and,
only the diffusion coefficient has a slight dependency on the moisture field. Thus, the
diffusion equation is written as:

∂u

∂t
= ν(u)

∂2u

∂x2
, (4.1)

where, ν (u) = ν 0 + ν 1 ·u . Since we have the diffusion coefficient depending on the field
ν (u) , the residual is written as:

R =
n∑

i=0

[
ȧ i(t) − ν 0 · ˜̃a i(t)

]
T i(x) − ν 1 ·

n∑

i=0

a i(t) T i(x) ·
n∑

k=0

˜̃a k(t) T k(x) .

Then, the residual is assumed orthogonal to the basis functions {T i(x)} , leading to the
following equation:

ȧ i(t) = ν 0 · ˜̃a i(t) + ν 1 ·
n∑

j=0

n∑

k=0

c i, j, k a j(t) ˜̃a k(t) , (4.2)

where,

c i, j, k =
2

π

ˆ 1

−1

T i(x) T j(x) T k(x)√
1 − x 2

dx .

Equation (4.2) is a closed system of ODE that is expanded by using the MapleR© software.
Coefficients c i, j, k are calculated at once, and coefficient ˜̃a i are related to a i though a linear

transformation ˜̃a = D 2 · a , in which D 2 ∈ Mat (n−2)×(n−2)(R) is a second order derivative
matrix.

4.2.1 Case study

This case considers that cm has a slight dependency on the moisture. The material piece
has a length of 0.1 m , with a relative humidity-dependent diffusion coefficient:

ν =
dm

cm
= 3.05 · 10−8 + 6.94 · 10−8 · φ .

The initial vapour pressure in the material is considered uniform P i
v = 1.16 · 103 Pa ,

corresponding to a relative humidity of 50% and to temperature of 20◦C . Simulations are
performed for a total time of 72 h, the equivalent of three days. The boundary conditions,
represented by the relative humidity φ are given in Figure 9. The relative humidity oscil-
lates sinusoidally between 50% and 75% on the left boundary and between 50% and 80%
on the right boundary. The convective vapour coefficients are set to h v,L = 3 · 10−8 s/m
and h v,R = 2 · 10−7 s/m for the left and right boundaries, respectively. The dimensionless
values of this case are also provided in Appendix A.
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Figure 9. Boundary conditions at the left side (x = 0m) and at the right side

(x = 0.1m) of the domain.

The Spectral reduced order model is composed by N = 6 modes and its coefficients
{an (t)} are obtained through the use of the solver ODE45, with a tolerance set to tol =
10−4 . The discretisations used to compute the Spectral solution are ∆x ⋆ = 10−2 and
∆t ⋆ = 10−1 .

The evolution of the vapour pressure in the middle of the material, at x = 0.05
m , is shown in Figure 10(a). The vapour pressure varies according to the sinusoidal
fluctuations from both boundary conditions. The vapour pressure profiles at different times
are illustrated in Figure 10(b) for t = {9, 38, 72} h , highlighting the good agreement of
the Spectral solution in representing the variations.

The absolute error ε 2 has been computed between the reference solution and the Spectral–
ROM for different number of modes, as illustrated in Figure 11. For N = 6 and N = 5
modes the absolute error is at the same order, O(10−3) , proving the accuracy of the solution
and showing 5 modes are good enough.

Figures 12(a) and 12(b) present the first three and the last coefficients an , respectively.
The magnitude of the coefficient, in the total contribution of the solution, decreases with
the order of the coefficient. The last coefficient determines the magnitude of the error,
implying that the error will never be lower than the magnitude of the last coefficient an.
It is due to the truncation in the number of terms in the separated representation of the
solution. Thus, the higher the number of modes, the higher the accuracy. For this case,
we can not have a more precise solution than sup

t ∈

[
0 , T
] |a 6| = 1.3 · 10−3. This happens

because of the truncation error in the number of terms.
Figure 13 indicates the Fourier power spectrum as a function of the signal frequency,

generated by the fast Fourier transform. For the left boundary, only one peak of the
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Figure 10. Evolution of the vapour pressure inside of the material, in x = 0.05
m (a) and vapour pressure profiles at different times, for t ∈ {9, 38, 72} h (b).
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Figure 11. Error ε 2 computed for the Spectral solution, varying the number of modes.

signal can be observed, indicating that there is no flux arriving from the other boundary.
The peaks in the middle of the material corresponds to the information arriving from both
boundaries. On the right side, more peaks appear than the two signals coming from the
boundaries, due to the low nonlinearity present in the diffusion process.
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Figure 12. Evolution of the first three Spectral coefficients an (a) and of the
last three coefficients (b).
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Figure 13. Fourier power spectrum computed in the boundaries and in the

middle of the material x ⋆ ∈ {0, 0.5, 1} .

4.3. Numerical cost
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4.3.1 Linear case

The number of operations for each approach can be estimated. We denote for Nx and Nt

the number of nodes according to the discretisation in both space and time domains. For ex-
plicit methods, it can be related by CFL type conditions. A standard approach based on the
Euler implicit scheme requires Nx ·Nt , operations while the Crank–Nicolson scheme
requires at least twice as many, as it is built on both implicit and explicit parts. Consid-
ering the discretisation parameters Nt = 1200 and Nx = 100 , the number of operations
scales with:

Euler implicit: O

(

Nx ·Nt

)

≃ O

(

1.2 · 105
)

,

Crank–Nicolson: O

(

2 ·Nx ·Nt

)

≃ O

(

2.4 · 105
)

.

For the Spectral–ROM, the number is related to the solution of the ODE system Eq. (3.8),
computed in this case with the Matlab solver ODE45. It is based on the iterative Runge–
Kutta method to approximate the solution. The number of operation depends on the
tolerance (tol) of the solver, which has a maximum tolerance of ∼ 10−5 for ODE45. Thus,
we have:

Nt ≃ T

∆T
≃ T

(tol) 1/5
,

where T is the total time of simulation. At each time step, the Runge–Kutta needs to
compute six times the right-hand side. For linear systems it is A×a (t s) , where s depends
on the degree of freedom N of the solution (s = N − 2). Thus, it leads to 6 ·s2 operations
to perform, knowing that s is of order of 10 . Consequently, the total number of operations
for the Spectral–ROM scales with approximately:

O

(
6 (N − 2) 2 T

(tol) 1/5

)

.

Considering the first case, knowing that the tolerance was set to 10−4 , with N = 6 modes
the number of operations performed by the Spectral–ROM is expressed by:

Spectral–ROM: O

(
6 (N − 2) 2 T

(10−4) 1/5

)

≃ O

(

35 · (6 − 2) 2 · 120
)

≃ O

(

6.7 · 10 4
)

.

Comparing the number of operations of this case, we can already see that the Spectral–
ROM is less costly than the other methods applied. Notice that the number of degrees
of freedom necessary to solve the diffusion problem by means of the Spectral method is
inferior to the ones necessary to solve the whole system of partial differential equations.
Using Euler or Crank–Nicolson methods, the order of the solution scales with p = Nx ,
whereas the one Spectral–ROM is s = (N − 2) . For this case, the numerical application
gives p ≡ 10 2 and s ≡ 4 . Moreover, we can note the reduction of the order of the solution,
using the Spectral approach. According to the previous results, the fidelity of the model
is not degraded but only the order of the solution.
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4.3.2 Weakly nonlinear case

The time spent on simulations is also related to the solver used to compute ODE system.
For the weakly nonlinear case, different solvers were employed with two different values of
tolerances. The values of the maximum absolute error and of the CPU time are reported
in Table 1. Considering the Spectral method with N = 6 modes, even if we increase the
precision of the solver, the error is limited by the magnitude of the last Spectral coefficient.
All solvers provided almost the same value for the absolute maximum error. In addition, for
the CPU time, the fastest solver was the ODE15s, but the difference from the other solvers
was not significant. When we increase the number of modes to N = 9, more distinct
the results are. As we have more modes, the last Spectral coefficient is even smaller, and
thus, the solution can be more accurate. By decreasing the tolerance of the solver, it was
possible to have more accurate results. Therefore, depending on the accuracy sought on
the results, several options are available. Although, the solver ODE15s showed to be the
most efficient, it combines also accuracy and rapidness.

The choice of the ODE solver is related to the problem nature. For example, if the
problem has two components which vary drastically on different time scales, then the
problem is stiff, or difficult in evaluation. The solvers are then classified according to the
problem type. For non-stiff problems, ODE45, ODE23 and ODE113 are the most appropriate,
but for stiff problems, the other ODE solvers are indicates. Further information can be
found in [34].

5. Treating general nonlinearities

Problem (2.6) has an important difficulty in dealing with the nonlinearities of the mois-
ture storage coefficient cm and of the diffusion coefficient dm, both depending on the
moisture content field. These coefficients are usually given by empirical functions from
experimental data. Due to those nonlinearities, some modifications in the way of using the
Spectral method have to be taken into account. For this reason, Eq. (2.6a) is recalled with
a simplified notation:

cm( u )
∂u

∂t
=

∂

∂x

[

dm( u )
∂u

∂x

]

. (5.1)

In order to apply better the Spectral method, Eq. (5.1) is rearranged as follows:

∂u

∂t
= ν ( u )

∂2u

∂x2
+ λ ( u )

∂u

∂x
, (5.2)

where,

ν
(
u
) def
:=

dm(u)

cm(u)
,

λ
(
u
) def
:=

1

cm(u)
· d(dm(u))

du
.
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Table 1. CPU time and maximum absolute error ε∞ computed with the
different ODE solvers.

N = 6 tol = 10−4
tol = 10−6

Solver ε∞ CPU time (s) ε∞ CPU time (s)

ODE45 1.38 · 10−3 6.50 · 10−1 1.38 · 10−3 3.97 · 10−1

ODE23 1.39 · 10−3 5.30 · 10−1 1.42 · 10−3 4.65 · 10−1

ODE113 1.39 · 10−3 3.69 · 10−1 1.38 · 10−3 4.43 · 10−1

ODE15s 1.39 · 10−3 2.31 · 10−1 1.43 · 10−3 1.93 · 10−1

ODE23s 1.39 · 10−3 1.90 1.42 · 10−3 6.39 · 10−1

ODE23t 1.39 · 10−3 3.90 · 10−1 1.39 · 10−3 2.91 · 10−1

ODE23tb 1.39 · 10−3 5.04 · 10−1 1.39 · 10−3 2.10 · 10−1

N = 9 tol = 10−4
tol = 10−6

Solver ε∞ CPU time (s) ε∞ CPU time (s)

ODE45 1.45 · 10−4 24.9 3.50 · 10−5 29.3

ODE23 3.50 · 10−4 16.3 3.52 · 10−5 23

ODE113 1.05 · 10−3 18.8 3.55 · 10−5 18

ODE15s 1.28 · 10−4 1 3.52 · 10−5 1

ODE23s 1.03 · 10−4 8.89 3.52 · 10−5 54.6

ODE23t 1.42 · 10−4 1.33 3.48 · 10−5 3.66

ODE23tb 1.63 · 10−4 1.8 3.46 · 10−5 7.17

By using Spectral methods the unknown u (x, t) is approximated by the finite sum (3.3)
and, the derivatives can be written in a way where the Chebyshev polynomials remain
the same, as in the linear case of Eq. (3.4). Thus, Eq. (5.2) becomes:

n∑

i=0

ȧ i(t) T i(x) = ν

(
n∑

i=0

ai(t) Ti(x)

)
n∑

i=0

˜̃a i(t) T i(x)

+ λ

(
n∑

i=0

a i(t) T i(x)

)
n∑

i=0

ã i(t) T i(x) .

By applying the Galerkin projection we have:

M · ȧ i(t) = G i, j

(

{a i}
)

· ˜̃a i(t) + Λ i, j

(

{a i}
)

· ã i(t) , (5.3)
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where,

G i, j

(

{a i}
)

=

ˆ 1

−1

ν (
∑

) T i( x ) T j( x )√
1 − x2

dx ,

Λ i, j

(

{a i}
)

=

ˆ 1

−1

λ (
∑

) T i( x ) T j( x )√
1 − x2

dx .

Using the Chebyshev–Gauss quadrature, the integrals are also approximated by a finite
sum:

G i, j

(

{a i}
)

≈ π

m

m∑

k=1

ν k T i(x k) T j(x k) ,

Λ i, j

(

{a i}
)

≈ π

m

m∑

k=1

λ k T i(x k) T j(x k) ,

where,

ν k
def
:= ν

(
n∑

i=0

a i(t) T i(x k)

)

,

λ k
def
:= ν

(
n∑

i=0

a i(t) T i(x k)

)

,

and x k are the Chebyshev nodes:

x k = cos

(

2 k − 1

2m
π

)

.

The value of m is determined according to numerical investigations and will be discussed
for the next case study.

In addition, we have the expressions of the nonlinear boundary conditions:

dm

(
n∑

i=0

ã i(t) (−1) i

)
n∑

i=0

ã i(t) (−1) i − Bi v,L

n∑

i=0

a i(t) (−1) i + Bi v,L · uL = 0 ,

(5.4a)

−dm

(
n∑

i=0

ã i(t)

)
n∑

i=0

ã i(t) − Bi v,R

n∑

i=0

a i(t) + Bi v,R · uR = 0 .

(5.4b)

Contrarily to the linear case, the boundary conditions cannot provide an explicit expres-
sion for the two last coefficients an (t) and an−1 (t) . Thus, it is not possible to compute
the solution in the same way. Although, with all elements listed before, it is possible to
set the system to be solved by composing an ODE system with two additional algebraic
expressions for the boundary conditions. It results in a system of Differential–Algebraic
Equations (DAEs) with the following form:

M ȧn(t) = A an(t) + b(t) , (5.5)
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Figure 14. Variation of the moisture storage cm (a) and diffusion dm (b) as a
function of the relative humidity φ .

where, M is a diagonal matrix containing the coefficients of the Chebyshev weighted
orthogonal system, b (t) is a vector containing the boundary conditions and, A · an (t) is
composed by the right member of equation (5.3). The initial condition is given by Eq. (3.9)
and the DAE system is solved by ODE15s or ODE23t from Matlab.

5.1. A highly nonlinear case

This case study considers moisture dependent coefficients cm and dm, illustrated in
Figures 14(a) and 14(b). Their variations are similar to the load bearing material from
[19]. The initial vapour pressure is uniform P i

v = 1.16 × 10 3 Pa . No moisture flow is
taken into account at the boundaries. The ambient vapour pressures at the boundaries are
illustrated in Figure 15. At the left boundary, it has a fast drop until the saturation state
and at the right boundary, it has a sinusoidal variation. The material is thus excited until
the capillary state. The convective vapour transfer coefficients are set to h v,L = 2 · 10−7

s/m and h v,R = 3 · 10−8 s/m for the left and right boundary, respectively. The final
simulation time is also fixed to 120 hours. As in the previous case study, the dimensionless
values can be found in Appendix A.

The Spectral method is composed by N = 9 modes with m = 7 . The ODE15s was used
to solved the System (5.5), with a tolerance of 10−4 . For this case, the Spectral method
was compared to the Crank–Nicolson [16] and to a reference solution computed using
the Chebfun Matlab package [13]. All solutions have been computed with the following
discretisation parameters: ∆t ⋆ = 10−1 and ∆x ⋆ = 10−2 .
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Figure 15. Boundary conditions at the left side (x = 0) and at the right side
(x = 0.1) .

Vapour pressure variations as boundary conditions are shown in Figure 16(a). The
vapour pressure at x = 0.1 m slowly oscillates according to the right boundary condition.
It also increases within the material according to the step imposed at the left boundary
x = 0 m . This increasing can also be observed on three profiles of vapour pressure
illustrated in Figure 16(b), in which the diffusion process is represented going from left to
right.

All methods have demonstrated good agreement to represent the physical phenomenon.
Again, the fidelity of the model does not deteriorate with the use of a Spectral approach.
Results of the error ε 2 in function of x are shown in Figure 17(a). The error of the Crank–
Nicolson scheme is proportional to O(∆t⋆ 2). The Spectral method with N = 9 modes is
one order more accurate than the Crank–Nicolson method, even considering the same
discretization parameters ∆t ⋆ and ∆x ⋆. Although, if we decrease the number of modes to
N = 6 and maintaining the same discretization parameters ∆t ⋆ and ∆x ⋆, we reach the
same order of accuracy of the Crank–Nicolson method, as observed in Figure 17(b).

The solution of the Spectral methods becomes more accurate with the increase of the the
number of modes, as shown in Figure 17(b). With 6 modes, we have satisfactory results,
with error of the order of O(10−3) . As we increase only the number of modes, without
changing other parameters, the error begins to stabilize, and with 8 and 9 modes the error
remains the same.

As already observed in the linear case, the Spectral method does not depend on the
number of spatial points, but on the order of the ODE solver tolerance and also on the
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Figure 16. Evolution of the vapour pressure at the boundaries, x ∈ {0, 0.1} m

(a) and vapour pressure profiles for t ∈ {13, 20, 30} h (b).
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Figure 17. Error ε 2 computed for the Crank–Nicolson method and for the

Spectral with N = 9 modes (a), and the error ε 2 computed for the Spectral
method with different number of modes (b).

number of modes. For the nonlinear case, the error also depends on the truncation of the
sum

∑m
k=1 . For this reason, the error ε∞ in function of m is shown in Table 2. The

optimal m number is approximated by numerical experimentation, and as can be seen in
the Table, the best value for m is the one equivalent to the number of modes.

Figures 18(a) and 18(b) represent the first and last three coefficients an of the Spectral–
ROM solution. The step in the left boundary can be also seen in these figures for the
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Table 2. Absolute error ε∞ for different number of modes N and different
truncations m .

N = 5 N = 6 N = 7 N = 8 N = 9

m = 2 7.0 · 10−2 — 2.90 · 10−1 — —

m = 3 2.8 · 10−3 2.02 · 10−2 1.94 · 10−2 — —

m = 4 2.7 · 10−3 1.43 · 10−3 3.06 · 10−3 2.46 · 10−2 2.89 · 10−1

m = 5 2.6 · 10−3 1.54 · 10−3 9.30 · 10−4 1.05 · 10−3 4.13 · 10−3

m = 6 2.6 · 10−3 1.39 · 10−3 7.07 · 10−4 3.40 · 10−4 4.41 · 10−4

m = 7 2.6 · 10−3 1.40 · 10−3 6.59 · 10−4 3.20 · 10−4 2.60 · 10−4

m = 8 2.6 · 10−3 1.39 · 10−3 6.70 · 10−4 3.20 · 10−4 1.90 · 10−4

m = 9 — — — 3.09 · 10−4 2.40 · 10−4

m = 10 — — — 3.09 · 10−4 2.40 · 10−4
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Figure 18. Evolution of the first three (a) and of the last three (b) Spectral
coefficients an .

first days, and after that the values tend to stabilize. It is possible to see the reduction
in the magnitude of the coefficient with the increase of the number of coefficients. As for
the previous cases, the last coefficients are always the smallest ones. Figure 19 indicates
the energy in function of the signal frequency per unit of time, obtained by performing a
Fourier transform. Only one peak in the signal frequency is observed, corresponding to
the step in the relative humidity occurring at the left boundary.

A parametric study is performed in order to verify the computational cost of the proposed
method. The discretisation parameters are set to ∆x ⋆ = 10−2 and ∆t ⋆ = 10−2 ,
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Figure 19. Fourier power spectrum computed in the boundaries and in the
middle of the material x ⋆ ∈ {0, 0.5, 1} .

while the number of modes N of the Spectral solution and the tolerance of the solver
vary. Figure 20(a) presents the maximum absolute error ε∞ in function of the number
of Spectral modes. As we increase the number of modes, the solution gets more accurate.
Although, after a certain number of modes, the solution converges to a minimum value,
that is related to the tolerance of the ODE solver. The time to perform each Spectral
simulation is presented in Figure 20(b). For this numerical application, the CPU time has
been evaluated using Matlab platform on a computer with Intel i7 CPU and 8GB of RAM.
The computational effort to perform the simulation increases linearly with the number of
modes. However, it remains extremely low. To better appreciate the computational cost of
each approach, Table 3 provides the CPU time to compute the solution using the Crank–
Nicolson scheme, the Chebfun package for the same discretisation parameters. The
Spectral solution has been computed with N = 9 modes. It is preferable to focus on the
ratio of computer run time rather than on absolute values, that are system-dependent. Even
with an average number of sub-iterations is O(NNL) = 1 of the Crank–Nicolson scheme,
the Spectral method is substantial faster then the other methods. It represents only 1% of
the CPU time needed using the Crank–Nicolson approach.

6. Conclusions

Most of the numerical methods applied to mathematical models used in building physics
are commonly based on implicit schemes to compute the solution of diffusion problems.
Its main advantage is due to the stability conditions for the choice of the time step ∆t ⋆ .
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Figure 20. Maximum absolute error as a function of the number of Spectral
modes (a) and their respective CPU simulation time (b).

Table 3. Computational time required for the numerical schemes perform the

nonlinear case (∆x ⋆ = 10−2 and ∆t ⋆ = 10−2).

Numerical Scheme CPU time (s) CPU time (%) Average number of iterations

Spectral N = 9 3 1 —

Chebfun 96 29 —

Crank–Nicolson 327 100 1

However, implicit schemes require important sub–iterations when treating nonlinear prob-
lems. This work was therefore devoted to explore the use of an innovative reduced order
approach based on the Spectral method. Spectral methods are well-known in other appli-
cations, such as meteorology and wave propagation, although it was not used before as a
reduction order model. Thus, in this work we showed that they can by applied in build-
ing physics problems to compute a reduced order model. Its application is not straight
forward as it requires a pre-treatment of the problem, but the results are very promising.
The first case study considered a linear diffusive moisture transfer through a porous ma-
terial. The Spectral–ROM was compared to the classical Euler implicit scheme, to the
Crank–Nicolson scheme and to a reference solution obtained using Chebyshev polyno-
mials. Results have shown the dynamics and amplitude of hygrothermal fields are perfectly
represented by the Spectral–ROM solution. The fidelity of the physical model is totally
conserved by the Spectral–ROM. Only the order of the solution is highly reduced. Using
standard approaches, the order of the solution rises with 10 2 whereas with the Spectral
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method, the order of the solution scales with 4 . In the second case, a weak nonlinear prob-
lem was treated, which has a field dependent diffusion coefficient. To build the reduced
ODE system, the same features of the linear case were used. Its reduced system was writ-
ten with an explicit formulation and then implemented in Matlab. In the highly nonlinear
case, the reduced system is numerically obtained as the ODE system can not be explicitly
expressed. The third case study focused on a such general highly nonlinear transfer model,
with material properties strongly dependent on the relative humidity field. To treat the
nonlinearities, the Chebyshev–Gauss quadrature was employed to solve the integrals.
Again, the accuracy of the approach has been demonstrated by representing accurately the
physical phenomenon, with an absolute error of the order of O( 10−4 ) comparing to the
reference solution. A parametric study on the number of modes and the tolerance of the
ODE solver has also been carried out. Moreover, when comparing the CPU time of the
different approaches, the Crank–Nicolson is one hundred times longer than the Spectral
method to compute the solution. These results are still encouraging for future work on the
integration of the Spectral method to 2D problems and to the highly nonlinear coupled
problem of heat and moisture transfer.

In addition, the Part 2 [15] of this work aims at comparing the Spectral approach to the
Proper Generalised Decomposition (PGD) method, recently applied in building physics [6].
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Nomenclature

Latin letters

cm moisture storage capacity [kg/m3/Pa]

dm moisture diffusion [s]

g liquid flux [kg/m2/s]

h v vapour convective transfer coefficient [s/m]

k permeability [s]

L length [m]

P c capillary pressure [Pa]

P s saturation pressure [Pa]

P v vapour pressure [Pa]

Rv water gas constant [J/kg/K]

T temperature [K]

Greek letters

φ relative humidity [−]

ρ specific mass [kg/m3]

Abbreviations

ODE Ordinary Differential Equation

ROM Reduced Order Model

A. Dimensionless values

A.1. Case from Section 4.1

Problem (2.6) is considered with g ⋆
l,L = g ⋆

l,R = 0 and the dimensionless properties of

the material are equal to d ⋆
m = 1 and c ⋆

m = 8.6 . The reference time is t 0 = 1 h, thus
the final simulation time is fixed to τ ⋆ = 120 . The Biot numbers are Bi v,L = 101.5 and
Bi v,R = 15.2 . The boundary conditions are expressed as:

uL(t
⋆) = 1 +

1

2
sin

(
2π t ⋆

24

)

+
1

2
sin

(
2π t ⋆

4

)

,

uR(t
⋆) = 1 +

4

5
sin

(
2π t ⋆

12

)

.
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A.2. Case from Section 4.2

Simplification of the problem (2.6) are carried out, g ⋆
l,L = g ⋆

l,R = 0 and ν(u) =
d ⋆
m(u)/c

⋆
m(u) . In this way, the dimensionless system is then written as:

∂u

∂t ⋆
= ν(u)

∂2u

∂x ⋆ 2
, t ⋆ > 0 , x ⋆ ∈

[
0, 1

]
, (A.1a)

∂u

∂x ⋆
= Bi v, L ·

(

u − uL ( t
⋆ )
)

, t ⋆ > 0 , x ⋆ = 0 , (A.1b)

− ∂u

∂x ⋆
= Bi v,R ·

(

u − uR ( t ⋆ )
)

, t ⋆ > 0 , x ⋆ = 1 , (A.1c)

u = 1 , t ⋆ = 0 , x ⋆ ∈
[
0, 1

]
. (A.1d)

The reference time is t 0 = 1 h , thus the final simulation time is fixed to τ ⋆ = 72 .
The Biot numbers are Bi v,L = 15.2 and Bi v,R = 101.5 . The boundary conditions are
expressed as:

uL(t
⋆) = 1 +

1

2
sin2

(
2π t ⋆

90

)

,

uR(t
⋆) = 1 +

3

5
sin2

(
2π t ⋆

48

)

.

and, the dimensionless property of the material is:

ν
(

u(x , t)
)

= 1.1 · 10−2 + 5 · 10−2 · u (x , t) .

A.3. Case from Section 5.1

Problem (2.6) is considered with g ⋆
l,L = g ⋆

l,R = 0 . In this way, the dimensionless
governing equations are then written as:

c ⋆
m(u)

∂u

∂t ⋆
=

∂

∂x ⋆

(

d ⋆
m(u)

∂u

∂x ⋆

)

, t ⋆ > 0 , x ⋆ ∈
[
0, 1

]
, (A.2a)

d ⋆
m(u)

∂u

∂x ⋆
= Bi v,L ·

(

u − uL ( t
⋆ )
)

, t ⋆ > 0 , x ⋆ = 0 , (A.2b)

−d ⋆
m(u)

∂u

∂x ⋆
= Bi v,R ·

(

u − uR ( t ⋆ )
)

, t ⋆ > 0 , x ⋆ = 1 , (A.2c)

u = 1 , t ⋆ = 0 , x ⋆ ∈
[
0, 1

]
. (A.2d)

in which, the dimensionless properties of the material are:

d ⋆
m(u) = 1 + 0.91 u + 600 · exp

[

−10
(
u − 1.5

)2
]

,

c ⋆
m(u) = 900 − 656 u + 104 · exp

[

−5
(
u − 1.5

)2
]

.
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Simulations are performed for a total time of τ ⋆ = 120 . The ambient water vapour
pressure at the boundaries are different from the previous case study. At the left boundary,
uL has a fast jump until the saturation state uL = 2, ∀t ∈

[
10, 40

]
and at the right

boundary, uR(t
⋆) = 1 + 0.8 sin

(
2π t ⋆

4

)

, with Bi v,L = 101.5 and Bi v,R = 15.2 .
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