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Community structures evaluation in complex
networks: A descriptive approach

Vinh-Loc Dao, Cécile Bothorel, and Philippe Lenca

Abstract Evaluating a network partition just only via conventional quality metrics
– such as modularity, conductance or normalized mutual of information – is usu-
ally insufficient. Indeed, global quality scores of a network partition or its clusters
do not provide many ideas about their structural characteristics. Furthermore, qual-
ity metrics often fail to reach an agreement especially in networks whose modular
structures are not very obvious. Evaluating the goodness of network partitions in
function of desired structural properties is still a challenge.
Here, we propose a methodology that allows one to expose structural information
of clusters in a network partition in a comprehensive way, thus eventually helps one
to compare communities identified by different community detection methods. This
descriptive approach also helps to clarify the composition of communities in real-
world networks. The methodology hence bring us a step closer to the understanding
of modular structures in complex networks.

1 Introduction

Modular structures have been noticed in a large range of real-world networks
through many researches on social networks [6, 7, 11], computer networks such
as the Internet [5, 13], biochemical networks [9, 12], etc. Nodes in networks have a
tendency to connect preferably with the similar ones to establish functional groups,
sometimes called clusters, modules or communities. Understanding modular struc-
tures of networks pays an essential role in the study of their functionalities.

Since the notion of community varies according to specific contexts, it seems
not appropriate to use a global quality criteria in order to evaluate graph partitions.
Depending on which kind of network is considered in which kind of application,
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one might need to decompose a network into clusters that possess specific features
with desired structures. Once a network partition is available, the clusters need to
be analyzed to verify the existence of features as well as their quality in the global
image of the network.

In small networks, clusters can be evaluated manually by simple visualizations,
however when the sizes grow, manual evaluation is not feasible. In these cases, ex-
pected concepts of community are mathematically translated into quality metrics
such as conductance or modularity Q [3, 7, 11] in order to quantify the quality of
clusters. Those quality functions score the goodness of clusters according to their
associated concepts of community but can not identify or describe more specific
structural patterns. In other words, many interested structure features in communi-
ties are invisible to quality functions.

In this work, we propose a methodology to describe communities through intra-
cluster links and inter-cluster links in such a way that structural information is ex-
posed comprehensively to evaluators. Such a description will help one to evaluate
network partitions according to different concepts of community and to detect more
sophisticated structures. Our results show that ground-truth communities composi-
tion in many real-world networks exposes a diversity in structural patterns, which
are very different from the conventional notion of community.

2 Related works

Many researches have been conducted in order to understand the nature of ground-
truth communities in real-world networks as well as ones identified by community
detection algorithms over a broad range of networks. Although the notion of com-
munity is not straight forward, these researches provide essential information so that
one can study several qualities of communities as well as their characteristics.

Leskovec et al. [14] compared the performance of 13 quality functions in term
of their efficiencies to identify community goodness properties such as density, co-
hesiveness. Besides, the authors also analyzed the consistence of these quality func-
tions’ performances to many simulated perturbations.

Due to the fact that community structures may strongly differ from networks
to networks. Creusefond et al. [4] proposed a methodology to identify groups of
networks where quality functions perform consistently. The authors analyzed qual-
ity functions in three levels of granularity from node-level to community-level and
network-level.

Guimerà et al. in [8] proposed a methodology that allows one to extract and dis-
play information about node roles in complex networks. Specifically, the role of a
node in a network partition can be defined by its value of within-module connectiv-
ity and its participation into inter-cluster connections. Our work here is based on a
similar method of illustration, but instead of analyzing roles of nodes in a network
partition, we conduct a community-level analysis to expose the nature of communi-
ties that constitute the network.
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3 Community anatomy via out degree fractions of nodes

The idea behind quality metrics is that given a partition, they indicate how the
component subgraphs fit their concepts of community. In this section, we present
a methodology to analyze communities in networks based on the analysis of Out
Degree Fraction (ODF) of their nodes. We show that communities can be classi-
fied in several structural types based on the variation of their nodes’ ODFs.

3.1 Community structures in term of ODF

A graph G = (V,E) is composed of a set of n = |V | nodes and m = |E| edges where
E = (u,v) : u,v ∈ V . Given a cluster S of nS nodes, which is a subgraph of G, a
function f (S) quantifies a quality metric of S according to a particular notion of
community. Let d(u) be the degree of node u. The out degree fraction of node u in
community S is measured by:

ODFS(u) =
|(u,v) ∈ E : v /∈ S|

d(u)

When evaluating a community, one would normally not only want to know the
average fraction of out degrees in that community, but also be curious about how are
they distributed over nodes. By observing the average and the standard deviation of
ODF values of nodes in a community, one could deduce the composition of its
population. From now on, for given a community S, meanODF and sdODF denote
the average and the standard deviation of ODF values of nodes in S respectively.
They are calculated as following:

• meanODF(S) = ∑u∈S ODFS(u)
nS

• sdODF(S) =
(

∑u∈S[ODFS(u)−meanODF(S)]2

nS−1

)1/2

As a meanODF value indicates the average out degree fraction of nodes in a
community, a low meanODF implies that nodes in the community connect mostly
with other nodes inside the community while a high meanODF means that nodes
connect preferably to nodes in other communities rather than to the ones in its own.
We could refer low meanODF and high meanODF characteristics to assortative
structure and disassortative structure respectively. A medium value of meanODF in
this case signifies a hybrid structure of the community as shown in Fig. 1.

We know that a standard deviation of a variable help us to understand the fluctu-
ation of its values. Thus, to understand the composition of a community, we inspect
its sdODF value. A low sdODF value implies that community’s out degrees are
proportionally distributed among nodes in a way to limit the variation of ODF val-
ues. Meanwhile, a high sdODF argues a diverse connection patterns of nodes in the
community. In other words, based on sdODF value of a community, one can deter-
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mine whether is there a clear division of roles [8] among nodes in the community
(high sdODF) or nodes are just basically regular ones (low sdODF).

One might wonder why we chose the average and the standard deviation of ODF
values of nodes in order to describe a community. In fact, each quality metric has its
own meaning and reveals a different aspect of community structure [14]. Because
the notion of community also changes according to domains of application and anal-
ysis purposes, there is actually no universal metric that can generalize the goodness
of communities. Generally, one would expect a clustering where the majority of
edges reside between nodes in a same cluster while there are few edges that cross to
other clusters. The meanODF and sdODF are used since together, they can describe
the distribution edges among nodes in an informative way. However, quality metrics
could be chosen differently to match with specific concepts of community.

3.2 Community structures classification via nodes’ ODFs analysis

Follow this line of argumentation, we classify communities into different structural
groups based on their node orientations and their structure homogeneities. Commu-
nity structures in real networks are undeniably much more complex and can not just
only be described by meanODF and sdODF values. However, this simplification
helps one to have a general view of networks by qualifying community anatomy.
Here, we suggest to classify communities into 6 following groups, which are illus-
trated in Fig. 1:

• Conventional communities (S1 - low meanODF and low sdODF): This struc-
ture corresponds to the traditional definition of community where the majority
of edges locate inside communities. Most of actual community detection meth-
ods are based on this notion. In addition, community’s out degrees are homoge-
neously spread over its nodes.

• Casual communities (S2 - medium meanODF and low sdODF): Modular struc-
ture is not very clear in this type of community since there is not a clear propen-
sity in node connections inside and outside of communities.

• Extrovert communities (S3 - high meanODF and low sdODF): This structure
exposes an explicit disassortative structure where members in a same commu-
nity are not joined together generally, but rather connect with members of other
communities.

• Full-core communities (S4 - low meanODF and high sdODF): This group of
communities shows a striking similarity with ones of S1 structure since both
possess relatively dense inner connections. The only distinction between S1 and
S4 structure is that S4 contains a few numbers of active connector nodes, which
attract most out links. These connectors form a peripheral zone, whereas the other
nodes constitute a core as illustrated in Fig. 1.

• Half-core communities (S5 - medium meanODF and high sdODF): These com-
munities also display core-periphery structure, but there is not anymore a quantity
dominance of core nodes over periphery nodes like that of in structure S4.
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Fig. 1 Six representative community structures that can be measured by community’s nodes out
degree fractions (meanODF and sdODF). Blue edges represent intra-community connections and
red edges (stubs) represent inter-community connections. Dark background zones in S4,S5,S6
structures illustrate a core-periphery arrangement.

• Seed-core communities (S6 - high meanODF and high sdODF): Core-periphery
structure in this class of communities is degenerated or even disappeared since
out-bound connectors predominate in the whole community. Most nodes con-
nect mainly outside their community with a few exceptions. This structure have
many similarities with S3 structure and S5 structure and can be considered as a
transition state of community evolution between S3 and S5.

Here, a node is considered as a core node if it connects mostly inside its commu-
nity whether a periphery node is the one that attaches communities together.

3.3 Network partition evaluation methodology

We propose a methodology to decompose network partitions into classes of struc-
turally similar communities. For a given network partition:

1. Compute meanODF and sdODF values over all communities (cf Sect. 3.1)
2. Present each community by its couple of values (meanODF , sdODF) to observe

the distribution of these quality metrics.
3. Choose thresholds for each quality metric in order to describe desired structure

qualities for communities.
4. Identify structure profiles of all communities based on a representative map (cf

Fig. 1) defined from step 3
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As previously mentioned in section 3.1, quality metrics reveal different aspects
of community structures. Thus, replacing meanODF and sdODF in step 1 by other
quality metrics could also provide further structural information on community
structures of networks under consideration. A list of quality metrics and their per-
formances in detecting ground-truth communities in several networks can be found
in [14].

Based on requirements of each specific context, thresholds to be chosen in step 3
could be varied and must not cover the whole ranges of meanODF and sdODF. In
this case, the methodology also serves as a filter to eliminate unqualified communi-
ties. The choice of thresholds is, in fact, relative and can be a reference for analysis
purposes.

4 Community description experiment on real-world networks

We analyze undirected, unweighted and scale-free networks [2] with ground-truth
communities on SNAP dataset [10]. These communities are overlapped and may
not cover the whole network, which means one node can belong to no community
or can be members of many communities at a same time. The community sizes, the
overlap sizes and the community memberships per node in these networks follow a
power-law distribution [14].

Table 1 Network summary: N number of nodes, E number of edges, C number of communities,
S average community size, O community memberships per node, µ̄ average conductance [14] of
communities.

Network N E C S O µ̄ Community nature

Livejournala 4.0M 34.7M 664414 10.79 6.24 0.95 User-defined communities
Youtubea 1.13M 3.0M 16386 7.89 2.45 0.91 User-defined groups
DBLPa 0.32M 1.05M 13477 53.41 2.76 0.62 Publication venues
Amazona 0.33M 0.93M 75149 30.22 7.16 0.58 Product categories

a http://snap.stanford.edu/data/

Livejournal network is an online blogging community where users declare their
friendships. Youtube network represents a social network on Youtube video sharing
website. DBLP computer science bibliography co-authorship network is constructed
in a way that two authors are connected if they published at least one paper together.
Amazon co-purchased network represents products which are frequently bought to-
gether on Amazon website. A description of these networks and measures on their
ground-truth communities can be found in Table 1.

Here, we take the conductance µ̄ as an example to demonstrate the weaknesses
of conventional quality metrics [1]. The latter represents average portion of bound-
ary edges in ground-truth communities of a network. This metric could tell us a
global score of community quality, but they can not distinguish many different struc-
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tures that exist simultaneously in networks. For instance, the average conductance
µ̄ shows that there are above 90% of edges in Live journal and Youtube that cross
communities, meanwhile these numbers are about 60% in DBLP and Amazon. How-
ever, one could not gain more insight into the differences of community structure
between Livenetwork and Youtube, or between DBLP and Amazon. Thus, we de-
scribe the ground-truth communities of these networks in the next part by applying
the methodology presented in section 3.3.
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Fig. 2 The density of ground-truth communities on a meanODF , sdODF space. The dashed lines
represent thresholds between the 6 presented structures S1 to S6 (cf Sect. 3.2)

Fig. 2 presents the landscape of meanODF , sdODF values of all ground-truth
communities in the 4 networks (cf Sect. 3.3, step 1 and 2). We classify these com-
munities into the 6 groups as presented in section 3.2 by choosing thresholds for
meanODF at 0.3, 0.7 and for sdODF at 0.2 (cf Sect. 3.3, step 3). The landscape
helps us to analyze the composition of ground-truth community structures in each
network. We remind that the density landscapes in Fig. 2 do not represent the net-
works themselves, but the community structures in these networks.

We can see that the structural patterns of ground-truth communities within 4
networks are totally distinct. Normally, one would expect that ground-truth com-
munities in a network have a quite similar structure, but the density landscapes in
Fig. 2 illustrate a more complex community composition. While in Livejournal and
Youtube networks, the majority of communities have a similar structure, those in
DBLP and Amazon networks vary in a large range. Table 2 describes a global com-
position of the 4 networks in terms of the 6 basic structural groups (S1 to S6). We
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Table 2 The composition of ground-truth communities in the 4 networks (in percentage)

Network S1 S2 S3 S4 S5 S6

Livejournal 0.29 0.74 90.17 0.31 3.88 4.61
Youtube 0.08 2.36 65.36 1.37 17.55 13.28
DBLP 6.28 2.07 4.87 23.44 57.86 5.48
Amazon 8.33 31.13 23.57 9.13 26.63 1.21

find that S3 structure occupies around 90% and 65% of communities in Live journal
and Youtube networks respectively. This implies the fact that most users in these
networks usually have friendships outside their communities rather than inside. In
addition, there are many closely-knit members in Youtube network, who are not very
active outside their communities (S5 and S6).

In DBLP and Amazon network, although there is aways a dominance of some
structures, we notice a more equilibrate repartition of communities over the land-
scapes. In the case of DBLP, nearly 60% of publication venues (S5) attract a variety
type of authors in term of cooperation profile. These communities could represent
traditional publication venues which gather at the same time high influence authors
and newcomers. Meanwhile, there is about 23.44% publication venues where pre-
sented just a few active eminent authors. In Amazon network, the high presence of
S2 and S3 structures explains that products are more often co-purchased with ones of
other categories. Besides, there are also many miscellaneous product categories (S1,
S4, S5) which consist of a high portion of products that are mostly complemented
by ones in the same categories. Further analysis in natures and functionalities of
products need to be conducted in order to understand this commercial network.

5 Conclusion

We know that optimizing a particular quality function could discard many interest-
ing community structures. The methodology proposed in this paper presented a new
approach to community analysis, where specialists can evaluate network partitions
themselves according to contextual concepts with more insight into community
structures. We also extended the notion of community, which is actually general-
ized for most community detection methods and then described communities in real
networks in an informative way that many quality metrics fail to do. The extended
notion could be applied in order to identify more complex structures in networks.
Furthermore, we continue to enrich this notion by employing other pairs of metrics
to describe more sophisticated characteristics that exist in real-world communities.
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