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Abstract

In this paper, we present a detailed numerical study of the non-linear dynamics

in structural components under unilateral contact constraints. Here, the unilateral

term characterises the constitutive law of the restoring force in the constraints as

they only sustain elastic reactions in one direction, either compressive or tensile.

Thus, the non-differentiability of the contact law at the discontinuity point is the

only source of non-linearity. In our approach, the discrete lattice method (DLM) is

used to treat the continuous system as a piecewise linear model. Thus, the trajec-

tory of each node in the discrete model would be a sequence of smooth solutions

with the switching times between them. The application of the one-step integra-

tion scheme allows us to detect the occurrence of contact (i.e. the instants that the

lattice nodes cross the discontinuity boundary) and consequently update the active
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constraints. We also consider embedding the bisection algorithm into the time in-

tegration procedure to localise the instants at which the nodes cross the boundary

and minimise the accumulative error. Subsequently, the resulting unconditionally

stable integration scheme is utilised as the modelling tool in combination with the

shooting technique to perform a novel non-smooth modal analysis. In analogy with

the smooth non-linear systems, the evolution of non-smooth periodic motions is pre-

sented in the frequency-stiffness plots. We apply our method to obtain non-linear

normal modes (NNMs) for a number of representative problems, including a bar-

obstacle system, a beam-substrate system and a granular chain with tensionless

interactions. These numerical examples demonstrate the efficiency of the solution

procedure to trace the family of energy-independent non-linear modes across the

range of contact stiffnesses. Moreover, the stability analysis of the modes on the

plot backbone reveal that they may become unstable due to the interaction with

the higher modes or bifurcation of a new NNM with a period equal to the inte-

ger multiple of the main mode period. Our results also indicate that the bilinear

formula can accurately predict the non-linear frequencies only if the corresponding

mode exhibits a smooth character, regardless of the commutativity conditions of

the system stiffness matrix. However, it is obvious that the assumption of smooth

bilinear behaviour for non-linear modes is not generally valid. This highlights the

importance of the present numerical framework for the computation of non-smooth

resonance frequencies.
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1 Introduction

During the past few decades, significant research efforts have been focused

towards the theory and application of analytical and numerical models to pre-

dict the dynamic behaviour of mechanical systems. Various substructures of

these systems can be presented as thin members such as prismatic plates, slen-

der rods or beams that usually operate in contact with other flexible members.

Conventionally, the structural supporting components and their mechanical

characteristics can be modelled by spring and damper elements with a smooth

constitutive law for their restoring forces. This constitutive relation is based

on the assumption that the interconnected body and deformable supports in-

teract through a perfect connection at their interface. Therefore, the resulting

reaction is proportional to the relative displacement at the contact interface

with the same stiffness coefficient in compression and tension (i.e. bilateral

constraint).

The study of the dynamic properties of such a system has widespread ap-

plications, such as predicting the effect of scour on the frequency response of

a pile partially embedded in soil [1], dynamic analysis of damaged engineering

structures [2–4], detection of resonance speed of railway tracks in high-speed

transportation systems [5], stability analysis of fluid-conveying pipes [6] and

post-buckling behaviours of functionally graded plates resting on elastic foun-

dations [7]. For these linear dynamic settings, the free and forced vibratory re-

sponses are always combinations of the system’s linear normal modes (LNMs).

However, in practice, the global dynamic behaviour of a dynamic setting can

be strongly influenced by different sources of non-linearity, such as non-linear

material laws or large deformations [8, 9]. Non-linearities may also arise from

the connecting elements in the aforementioned bilateral constraints where they

3



exhibit non-linear mechanical properties to describe the supporting reaction

[10]. As a result, the conventional linear techniques no longer present a valid

mathematical model of the real physics and they cannot be used anymore

to express the general transient response as a linear superposition of normal

mode-shapes. Moreover, any attempt to overlook the non-linearity or to seek

a simplified model that linearises the system at the forcing level will yield

inaccurate results, or at best, a suboptimal design.

The non-linearities due to the interactions between the solid body and de-

formable supports can be generally classified into two broad categories: smooth

non-linearity where the local contact force is only a non-linear function of

the local relative displacement at the interface but with equal magnitudes in

compression and tension [10] (i.e. the force-displacement constitutive contact

model is always differentiable with respect to the displacement component),

and non-smooth non-linearity where the magnitude of local restoring force is

also a function of the local interpenetration direction between two objects [11]

(i.e. there is a discontinuity boundary in the vicinity of the interface where

the contact model is different at two sides of this border and this makes the

constitutive equation non-differentiable at the break-point).

Dynamic analysis of systems with smooth non-linearities has been an ac-

tive research domain for many years [10, 12–17]. Among the first scholars

who studied such problems, Rosenberg [12] extended the concept of modal

analysis theory to non-linear systems and firstly introduced the definition of

non-linear normal modes (NNMs) in the 1960s as an essential and robust

tool to interpret dynamic properties of non-linear models. Since then, various

definitions of NNMs for conservative and non-conservative models have been

proposed over the years to gain more insight into the behaviour of non-linear

systems under different sets of operating conditions [13–15]. Among them, we
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use the extended version of Rosenberg’s definition in the present study where

NNMs are characterised as not necessarily synchronous periodic motions of

the undamped free non-linear system in which all physical coordinates vi-

brate equiperiodically [16, 17]. In contrast to LNMs, although NNMs are not

orthogonally independent (i.e. superposition principle is not valid for them),

it is clear that they have significant potential to describe salient features of

non-linear systems which have no counterparts in the underlying linear model

[17]. For instance, non-linear modes can describe the resonance frequencies of

the smooth non-linear system as a function of their conserved energy where

the number of NNMs may even exceed the number of degrees of freedom

(DOFs) in the space-discretised system. From an engineering standpoint, the

importance of resonance frequencies is obvious as the system forced response

can lead to large persistent oscillations in the neighbourhood of them and

the structure is at the highest risk of failure. Moreover, NNMs may be used

to explain other distinct phenomena such as bifurcations, modal interactions

(internal resonances), subharmonic resonances and superharmonic resonances

that cannot be captured by the linear theory.

Recently, significant progress has been achieved in the development of ana-

lytical and numerical techniques for determining NNMs, such as the method

of multiple scales [18], modal representation approach [19] and optimisation

technique [20]. While in practice the analytical methods are limited to the sys-

tems with only a small number of DOFs as they need the explicit form of the

equations of motion, the numerical techniques have become more common due

to their applicability for large-scale non-linear models. The current most pop-

ular methodology is based on the shooting scheme [14, 17] which iteratively

improves the initial estimates for the non-linear mode-shape and respective

frequency by enforcing the free response of the conservative system to satisfy
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the periodicity condition. The pseudo-arclength continuation method [17] can

also be utilised to elucidate the evolution of the oscillation frequency with the

variation of the system’s energy in the frequency-energy plots and capture the

internal resonance phenomenon (i.e. modal interactions) as emanating tongues

from the NNM branch. It should be noted that each iteration of the shoot-

ing scheme relies on the time integration of the non-linear dynamic setting

for the prescribed initial condition over the corresponding period and conse-

quently, refining the initial conditions based on the Newton-Raphson method.

Thus, the accuracy of the tools that are used for structural dynamic analysis

directly affects the efficiency of the NNM computation process. For models

with smooth non-linearities, a great deal of research has been carried out on

treating the second-order equations of motion in the time integration step and

a number of reliable numerical schemes are available (e.g. Newmark family of

methods [21]).

On the other hand, despite the importance of the second family of non-

linearities, only a few notable contributions have been devoted to the detailed

understanding of the corresponding dynamics. Furthermore, when the non-

linearities involved are non-smooth, even small systems can lead to complex

behaviour with no analogy in the linear theory [13]. This could be the main

reason for the limited number of studies dedicated to the non-linear modal

analysis of the classical structural components under unilateral constraints.

However, non-smooth constraints arise in many practical situations. Nu-

merous examples have been already identified, such as critical velocity of the

moving load applied on the beam-like components resting on the unilateral

substrate [11], moored floating systems where the stiffness of the mooring com-

ponent is highly influenced by the tether operating in the taut-slack state [22],

suspension bridges which are subjected to the slackness response of hangers,
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granular media with the non-smooth dynamics due to the contact between the

grains (beads) [23], delamination of thin coating films adhered to elastic sub-

strates in flexible electronic devices [24] and complex unilateral behaviour of

soil in the offshore riser-seabed interactions [25]. The primary objective of the

present study is to develop a numerically efficient scheme for dynamic anal-

ysis of the structural members subjected to the unilateral elastic constraints.

Herein, the unilateral (also described as damaged, one-sided, bimodular or bi-

linear) term is used to characterise the constitutive law of the restoring force

model in the constraining elements as they only sustain contact forces in one

direction, either compressive or tensile. For example, they only sustain com-

pression (i.e. repulsive forces) if they are considered as a substrate and tension

(i.e. attractive forces) if they are considered as hangers. We focus on the uni-

lateral constraints with the linear elastic contact law at two regions, before

and after contact. A detailed understanding of the free and forced vibrations

in such a system is a necessary initial step towards the characterisation of non-

smooth dynamics in many physical systems, such as prismatic members (i.e.

bars, beams and rectangular plates) subjected to the unilateral constraints.

A number of studies exist for the static and dynamic analysis of structure-

support problem with unilateral connection (e.g. [26–31]), but, mostly, they

assume that the location of the contact and non-contact zones are given as

prior information, or they are limited to the systems with limited DOFs. An in-

depth understanding is still incomplete, as the ongoing challenge is to perform

the time integration procedure in a predictive and efficient way. The difficulty

stems from the inherent non-smoothness of the time evolution that leads to

accumulative error. In this work, we use the idea that was first introduced

in [11] and develop a stable integration method by reducing the continuous

non-smooth system to a piecewise-smooth multi-degree of freedom (MDOF)
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model. Therefore, the trajectory of each node in the space-discretised model

will be a sequence of smooth solutions with switching time instants between

them. In order to minimise the accumulative error, the transition instants

that the nodes cross the boundary between the subdomains must be accu-

rately captured. For this reason, a bisection technique can be embedded in

the generalised α-method to detect and localise these moments during the

time integration procedure. Although the NNM frequency of the systems with

no initial gap between the solid body and unilateral constraint is energy in-

dependent [14], we utilise the developed dynamic solution and the shooting

technique at a fixed level of energy to follow the NNM branch and present the

evolution of the periodic motions as a function of the contact stiffness. These

plots can provide useful information about the system non-linear resonance

frequencies and modal properties which cannot be predicted using the linear

and bilinear theories. This scenario is very similar to the frequency-energy

plots in the smooth non-linear systems and it would help us to study salient

features of the computed NNMs. The local stability of these non-linear modes

can also be assessed by the Lyapunov theory. Our analysis suggests that the

loss of stability on the computed branch can be associated with a bifurcation

point. This may happen due to the modal interaction with the higher modes

(internal resonance phenomenon), or evolution of new non-linear modes from

the main branch with periods equal to the integer multiples of the fundamental

period.

The outline of this paper is as follows. In Section 2, we first present the class

of mechanical systems under study and the form of corresponding governing

equations of motion. It is also elaborated how to reduce the non-smooth dy-

namic setting into a piecewise-smooth discrete model. Then, we present the

basic steps of the unconditionally stable time integration scheme and the so-
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lution algorithm. In Section 3, we describe how to implement the developed

numerical method in the shooting technique and obtain the non-linear vibra-

tional modes of the system. We also apply the path following method and

stability analysis to study non-smooth dynamics of the chain of oscillators

with an elastic unilateral obstacle. Section 4 is devoted to demonstrating the

computational efficiency of the presented approach on typical numerical ex-

amples. Finally, the concluding remarks are presented in Section 5.

2 Non-smooth dynamics of the structures subjected to the unilat-

eral elastic contact

2.1 Continuous model

Several structural components in dynamic systems can be represented as

one-dimensional (1D) elastic members, such as bars and beams, or two-dimen-

sional (2D) thin structures, such as plates and shells. These components

may undergo longitudinal, torsional, and lateral vibrations while they are in

contact with other interconnecting deformable element(s) as the unilateral

constraint(s). The non-smooth connection between the structure and sup-

port(s) permissible in such configurations can give rise to non-negligible non-

linearities, even if the material properties remain linear and the assumption

of the elastic behaviour within the range of small deformation theory remains

valid. In such a case, the general form of the equations of motion for the in-

teraction of the deformable body and elastic support(s) can be obtained by

the use of classical theories and the Heaviside step function to describe the

non-smooth nature of the contact constraint [11].

Consider a straight homogenous elastic bar where its right end is subjected
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to the unilateral constraint due to the presence of an elastic wall, as shown in

Fig. 1(a). This bar with the length of L, cross-sectional area of A and density

of ρ is characterised by its centroidal axis. Hence, the displacement field at any

point on the centreline is composed of the longitudinal displacement u (x, t)

where x is the axial coordinate and t is time. The unilateral support is also

characterised with the stiffness kw and damping coefficient cw (in SI units,

kw and cw for the bar-support system are expressed by N/m and N.s/m,

respectively) where its unstressed position is shifted by the gap of δ from

the right end of the unstressed bar. The magnitude of the contact force can be

determined by the penetration of the bar end into the constraint, i.e. u (L, t)−δ

(if any penetration occurs), and the time derivative of the end displacement,

i.e. ∂u (L, t) /∂t, as

Fc (t) =
{
cw
∂u (L, t)

∂t
+ kw [u (L, t)− δ]

}
· H̃

(
u (L, t)− δ, ∂u (L, t)

∂t

)
(1)

where H̃ (ε, ∂ε/∂t) is the non-smooth contact function to represent the unilat-

eral nature of the constraint and it is expressed as

H̃(ε, ∂ε
∂t

) = Θ̃(ε) · Θ̃(kwε+ cw
∂ε

∂t
) (2)

where Θ̃(ε) is the Heaviside step function which is defined as Θ̃(ε) = 1 when

ε ≥ 0 and Θ̃(ε) = 0 when ε < 0. Note that the contact function H̃ (ε, ∂ε/∂t)

prescribes the non-smooth property of the constraint and it verifies that the

contact force Fc acts axially on the bar at point x = L, if and only if,

u (L, t) ≥ δ and kwu (L, t) + cw∂u (L, t) /∂t ≥ 0 (i.e. the contact force is

always compressive). Using the mathematical description of the contact force

from Eq. 1 and the definition of the Dirac delta function δ̃ (·) to apply this

non-smooth force at the bar end (x = L), the equation of motion for the axial
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displacement field u (x, t) can be identified as

ρA
∂2u (x, t)
∂t2

− EA∂
2u (x, t)
∂x2 = F (x, t)− Fc (t) δ̃ (x− L) (3)

where E is the Young’s modulus and F (x, t) is the externally applied force

on the component. It is important to note that Eqs. 1 and 3 are obtained

by assuming that the unilateral constraint (obstacle) is always at rest at the

moment that the contact occurs. Therefore, we can ignore the free motion of

the obstacle. This assumption is reasonable for small values of damping [32]

and we use it in present study. For high levels of damping, two separate sets

of differential equations should be constructed to govern the behaviour of the

bar and obstacle independently (i.e. a second order equation for the bar ax-

ial displacement and a first order one for the obstacle deformation), and the

contact and non-contact states will be regulated by the contact load at their

interface. There is another approach to describe the non-smooth character of

the contact mechanism which is utilised in [33] for a 1-DOF model by consid-

ering H̃(ε, ∂ε/∂t) = Θ̃(ε) and consequently, assuming that the discontinuity

of both of the elastic and damping contact forces are always concentrated

at u (L, t) = δ. It is also obvious that the contact function reduces to the

Heaviside step function for the undamped constraints (cw = 0). Moreover, by

setting H̃(ε, ∂ε/∂t) = 1, Eq. 3 will be reduced to the bar interacting with the

conventional bilateral obstacle (smooth model).

We can pursue the same approach to derive the governing equation of motion

for the lateral vibrations of beam-like structures subjected to the unilateral

supports, as illustrated in Fig. 1(b). Utilising the Timoshenko theory (i.e.

considering the effect of shear deformation and rotary inertia with no axial

deformation), the displacement field at any point on the beam centreline is

composed of the lateral displacement w (x, t) and rotation of the cross-section
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ϕ (x, t). In order to describe the homogenous unilateral support, we can use

a one-way viscoelastic Winkler model with the stiffness of kw and damping

coefficient of cw (note that for the case of beam-support system, the units of kw

and cw are N/m2 and N.s/m2 in SI units, respectively) where its unstressed

position is shifted by the gap of δ from the unstressed configuration of the

beam section that is subjected to the contact. In a similar fashion as the

previous system, the magnitude of the contact force per unit length can be

determined by the lateral penetration of the beam into the constraint, i.e.

w (x, t) − δ, and the time derivative of the lateral displacement ∂w (x, t) /∂t

as

Pc (x, t) =
{
cw
∂w (x, t)

∂t
+ kw [w (x, t)− δ]

}
· H̃

(
w (x, t)− δ, ∂w (x, t)

∂t

)
(4)

The physical mechanism of such a constraint can be illustrated by considering,

for instance, a hanger connected to the beam at point x where the slackness

property of the hanger switches on the contact force as soon as the hanger

becomes under tension. Therefore, the governing differential equations at point

x of the centreline can be expressed as (with the damping of the constraint as

the only source of dissipation)

ρA
∂2w

∂t2
− κsGA

[
∂2w

∂x2 + ∂ϕ

∂x

]
= F (x, t)− Pc (x, t) (5)

ρI
∂2ϕ

∂t2
− EI ∂

2ϕ

∂x2 + κsGA

[
∂w

∂x
+ ϕ

]
= µ (x, t) (6)

where G is the shear modulus, κs is the Timoshenko correction factor, I is

the second moment of area about the y−axis, F (x, t) is the externally applied

load on the component per unit length, and µ (x, t) is the externally applied

moment per unit length. Once more, we note that in the dynamic equations

of motion, the contact function is the only source of non-linearity. This func-

tion introduces inequalities into the system, which are the multi-valued op-
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erators and they establish the length and number of the contact regions. In

other words, the contact conditions for a particular x are ambiguous as it is

unknown beforehand whether the respective displacement and velocity com-

ponents satisfy H̃ (w − δ, ∂w/∂t) = 1 or H̃ (w − δ, ∂w/∂t) = 0. This gives rise

to the non-smooth dynamics of the system even for the present linear elas-

tic structure and substrate. We can also realise that the parameters of the

unilateral constraint (i.e. kw, cw and δ) can be specified locally at point x.

Thus, multiple unilateral constraints may be considered over the length of the

component with variable properties with respect to x. For instance, Fig. 1(b)

depicts a cantilever component where for x ∈ [0, L− xf ] there is no constraint

and for x ∈ [L− xf , L] the beam is subjected to the unilateral support with

the parameters of kw, cw and δ.

Reducing the Timoshenko formulation to a system with an Euler-Bernoulli

beam as the slender member is straightforward. To this end, the role of shear

deformation and rotary inertia are neglected in Eqs. 5 and 6 by making

EI/ (κsGA) → 0 and ρI → 0 (note that we can also obtain the formula-

tion corresponding to the Rayleigh beam theory by keeping the rotary inertia

term and only neglecting the shear deformation). We can extend the same

approach for non-smooth systems involving 2D structural members such as

plates and shells. For instance, we can consider the Kirchhoff plate theory [34]

for dynamic analysis of a rectangular thin plate subjected to the unilateral

Winkler constraint (see Fig. 1(c)) where the plate deformation is described

by the lateral displacement of its middle surface w (x, t). Within the range of

small deformation, the lines vertical to the middle surface of the plate thick-

ness remain straight and vertical to the deformed middle surface. In a similar

fashion as the beam component, the contact function can be used again in

the classical theory to consider the distributed contact reaction per unit area
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as a non-smooth unilateral load. Thus, the governing non-smooth equation of

motion for the isotropic thin plate of length L, width c and thickness b can be

expressed as

Eb3

12 (1− ν2)

[
∂4w

∂x4 + 2∂4w

∂x2∂y2 + ∂4w

∂y4

]
+ ρb

∂2w

∂t2

= F (x, y, t)−
{
cw
∂w

∂t
+ kw [w − δ]

}
H̃(w − δ, ∂w

∂t
) (7)

where ν is the Poisson’s ratio, F (x, y, t) is the externally applied force on the

plate per unit area and in SI units, the foundation parameters for the plate-

support system are expressed by N/m3 and N.s/m3 for kw and cw, respectively.

2.2 Discretisation

Unlike for linear systems, the superposition principle and the direct appli-

cation of modal expansion method [4] cannot solve the governing equations of

non-smooth systems. Note that multiple/global constraints may exist in the

model (e.g. when the lateral motion of the structure is fully constrained by

the unilateral substrate) and thus, the combination of the modal expansion

method and a non-linear iterative solver such as Newton-Raphson method is

also inappropriate. In such a scheme, all the points where the non-smooth sup-

port reaction is present should be captured in the solution [35] and it makes

the number of generalised coordinates and consequently, the number of modes

required to reach a converged solution very high. Moreover, it involves the sta-

bility and convergence issues where this method may not converge toward the

desired solution, or any solution. Therefore, we are looking for a general stable

solution method that can be utilised for any length of the non-smooth contact

area between the flexible body and support. Subsequently, this method can

be employed as the time integration step in the computation of NNMs.
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It is important to note the discontinuity boundary for the non-smooth be-

haviour divides the space into two adjacent regions for point x (or point (x, y)

of the plate). In each of these regions, the system’s equations of motion are

smooth and crossing the border is the source of non-smoothness. This im-

plies that the non-smooth continuous system can be partitioned into several

segments where the behaviour of each segment is piecewise linear. Here, we

utilise the discrete lattice method (DLM) [3, 36] to discretise the system into

a network of identical particles. Based on the DLM, these particles interact

with their neighbours through the connecting elements between them. These

connecting elements can be springs [3, 37, 38], truss elements [39], beam el-

ements [40] or a combination of them. The interactions between the discrete

units at small scale allow us to reproduce the macro-mechanical response of

the continuous system. In this study, we use a combination of the bar elements

and springs in the DLM for the dynamic analysis of the bar-support system in

such a way that each particle has one DOF, i.e. {ui (t)} with ui as the longitu-

dinal displacement in x direction. The lumped masses are connected through

bar elements and also, the unilateral elastic obstacle is modelled by the one-

way spring-damper element, as shown in Fig. 1(a). The contact element is

only active when the corresponding condition is satisfied, i.e. un (t) ≥ δ and

KNun (t) +CN∂un (t) /∂t ≥ 0, where n is the number of particles (nodes) and

KN and CN are the constraint constants in the DLM.

The same strategy can be extended to study the non-smooth dynamics of

beam-like components and 2D thin structures. In the discrete model of the

beam-substrate system each particle has two DOFs, i.e. {wi (t) , ϕi (t)} with wi
as the lateral displacement in z direction and ϕi as the rotation about y−axis.

The lattice nodes are connected through the beam elements and the non-

smooth support(s) is represented by a chain of parallel mutually independent
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spring-damper elements (see Fig. 1(b)). These contact spring-dampers are

switched on when H̃ (wi − δi, ẇi) = 1 where δi is the gap length for particle i

and the over-dot denotes the time derivative. In a similar way, the DLM of the

2D thin structure involves FEM plate elements and one-way spring-dampers,

as illustrated in Figs. 1(c) and (d). It is important to note that particles of the

plate-support model have one more DOF, compared to the beam structure,

which is the rotation about the x-axis (θ) and it makes the DOFs of each point

as {wi,j (t) , ϕi,j (t) , θi,j (t)}.

The relationships between the lattice model parameters at the discrete level

and continuum properties at the macro scale can be obtained from the ho-

mogenisation technique [3]. For instance, the constraint constants in the beam-

support system can be identified as KN = kwh and CN = cwh and the particle

concentrated mass and rotational moment of inertia about the y−axis are

M = ρAh and Jyy = (M/12) (h2 + ε̌b2), respectively, where h is the length

of the unit cells, b is the thickness of the component with rectangular cross-

section, ε̌ = 1 for the Timoshenko theory and ε̌ = 0 for the Euler beam model.

The stiffness matrix of the beam elements which relates the nodal displace-

ments of particle i to i+ 1 is also expressed as [41]

k = 2EI
h3 + 12ǧh




6 −3h −6 −3h
−3h 2h2 + 6ǧ 3h h2 − 6ǧ
−6 3h 6 3h
−3h h2 − 6ǧ 3h 2h2 + 6ǧ




(8)

where ǧ = 0 for the Euler beam model and ǧ = EI/ (κsGA) for the Timo-

shenko theory. We can now derive the non-linear discrete equations of motion

for the particles by applying the Lagrange equation as

d
dt

(
∂L (t)
∂Ḋq

)
− ∂L (t)

∂Dq

+ ∂R (t)
∂Ḋq

= Fq (t) (9)

where L (t) = T (t)−U (t) is the so-called Lagrangian function of the system,
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with T (t) and U (t) being the kinetic energy and potential energy, respectively,

R (t) is the Rayleigh dissipation function, Fq (t) is the q-th member of the

generalised load vector F (t) ∈ RN applied on the system, N = ñp · n is the

total number of DOFs in the discrete system when each node has ñp degrees

of freedom (ñp = 1 for the bar elements, while for the beam-support and

plate-support systems ñp = 2 and ñp = 3, respectively), and Dq is the q-th

member of the general displacement vector D (t) ∈ RN . The kinetic energy,

potential energy and Rayleigh functions of the smooth system can be expressed

respectively as the following

T (t) = 1
2ḊT (t) ·M · Ḋ (t) (10)

U (t) = 1
2DT (t) ·K ·D (t) + 1

2KN

[
DT (t)−GT

]
· [D (t)−G] (11)

R (t) = 1
2CNḊT (t) · Ḋ (t) (12)

herein, (·)T denotes the transpose operator, M ∈ RN×N is the diagonal mass

matrix with the lumped mass and rotational inertia of the particles on the

main diagonal, K ∈ RN×N is the symmetric stiffness matrix containing the

contribution of the connecting elements (e.g. for beam-support systems, it

can be obtained by assembling Eq. 8 into the global form), and G ∈ RN is a

vector containing the length of initial gaps between the unstressed supports

and lattice nodes (note that G has n̂ nonzero components where n̂ ≥ 0 is the

number of DLM nodes that are subjected to the constraints and it depends on

the system configuration). The second-order equation of motion for the smooth

discrete model can be obtained in the matrix form by using Eqs. 10-12 in Eq.

9 as

M · D̈ (t) + CNḊ (t) + K ·D (t) +KN [D (t)−G] = F (t) (13)

In order to include the unilateral contact effects, we introduce the contact
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constraint matrix H (t) ∈ RN×N which is a diagonal matrix with n̂ nonzero

members on the main diagonal containing the contact function of the inter-

acting lattice nodes (note that, like G, the position of n̂ nonzero components

on the main diagonal of H (t) also depend on the system configuration). Ac-

cordingly, P (t) ∈ RN , which is the vector of general discrete unilateral forces

developed at the contact points, is characterised by the following equation

P (t) = CNH (t) · Ḋ (t) +KNH (t) · [D (t)−G] (14)

Therefore, the second-order equation of motion for the non-smooth discrete

model can be obtained as

M · D̈ (t) + CNH (t) · Ḋ (t) + K ·D (t) +KNH (t) · [D (t)−G] = F (t) (15)

For example, if a beam is interacting with a unilateral substrate through its

full length (i.e. N = 2n and n̂ = n) , M, D (t), G, H (t) and F (t) will have

the following forms

M = diag [M,Jyy,M, Jyy, · · · ,M, Jyy] (16)

DT (t) = {w1, ϕ1, w2, ϕ2, · · · , wn, ϕn} (17)

GT = {δ1, 0, δ2, 0, · · · , δn, 0} (18)

H (t) = diag
[
H̃ (w1 − δ1, ẇ1) , 0, H̃ (w2 − δ2, ẇ2) , 0, · · · , H̃ (wn − δn, ẇn) , 0

]

(19)

FT (t) = {f1, µ1, f2, µ2, · · · , fn, µn} (20)

where fi and µi are the nodal external force and moment applied on point i.

Eq. 15 can help us to treat the non-smooth structural dynamics of the problem

by the corresponding discrete piecewise smooth model. This model partitions

the state-space R2 of each lattice node, which is subjected to the unilateral

constraint, into two neighbouring subdomains within which the trajectory
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of the node is smooth. Accordingly, when n is large enough, the mechanical

behaviour of the continuous system can be simulated with high accuracy using

the DLM. For instance, the equations of motion for particle i in the beam-

substrate system can be obtained from Eq. 15 as

Mẅi + CN ẇiH̃ (wi − δi, ẇi) +KN {wi − δi} H̃ (wi − δi, ẇi)

+ 6EI
h3 + 12ǧh {−2wi−1 + hϕi−1 + 4wi − 2wi+1 − hϕi+1} = fi (21)

Jyyϕ̈i + 2EI
h3 + 12ǧh { − 3hwi−1 +

(
h2 − 6ǧ

)
ϕi−1 +

(
4h2 + 12ǧ

)
ϕi

+ 3hwi+1 +
(
h2 − 6ǧ

)
ϕi+1 } = µi (22)

Note that for applying Eq. 2 to calculate the contact function at discrete

level, we use the well-known property of the Heaviside function as Θ̃(kwε/ȟ+

cwε̇/ȟ) = Θ̃(kwε + cwε̇) for any ȟ > 0. In order to establish the relation be-

tween the continuum properties and DLM parameters and also, quantify the

role of h as the characteristic length of the discrete model, we can utilise the

homogenisation technique to obtain the continuous form of Eqs. 21 and 22

and compare them to Eqs. 5 and 6. To this end, the discrete displacement

components wi (t) and ϕi (t) are replaced by the respective continuous func-

tions as w (x, t) and ϕ (x, t). Therefore, the displacements of the neighbouring

points can also be substituted by the corresponding truncated Taylor series

expansions [3].

2.3 Time integration algorithm

Upon knowing the boundary conditions in terms of external forces or kine-

matics, the smooth counterpart of Eq. 15 could be solved with classic numer-

ical techniques. Moreover, coupled with the well-known non-linear iterative

solvers (e.g. Newton-Raphson), one may be able to obtain the solution of a
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specific problem. However, as the inherent mathematical issues (e.g. conver-

gence problems and/or the accumulative error due to the non-smoothness)

may arise in the time integration procedure, the calculation of NNMs can be

infeasible when the solution involves theses typical integration instabilities. It

is also noteworthy that the application of the reduced model techniques is not

computationally effective here, as these methods are efficient only if there is

a local contact constraint in the system (i.e. n̂ << n), which is not generally

valid for the present study. In this section, we propose an alternative algorithm

that is based on tracking the trajectories of the DLM particles, localisation

of the events that they cross the constraint boundary, and successively cap-

turing the back-to-back intervals that they spend in the smooth subdomains.

Taking advantage of the piecewise linear nature of the problem, the Jacobian

matrix of the shooting method process can also be determined concurrently

with the system solution. This outstanding numerical property reduces the

computational cost of computing the NNMs compared to the finite difference

scheme where the components of Jacobian matrix are evaluated numerically

by perturbing each DOF.

We solve the differential equilibrium equation of motion Eq. 15 by combined

use of the generalised-α time integration scheme [42] and the bisection method.

To this end, an appropriate time increment is assigned as ∆t = tr+1 − tr to

discretise the time domain where the subscript r is the time step number

starting from r = 0. The first step is to compute the initial acceleration vector

D̈0 at t = t0 by means of the equation of motion and known initial conditions,

i.e. initial displacement D0, velocity Ḋ0 and external applied load F0, as (the

initial contact constraint matrix H0 can be calculated from D0)

D̈0 = M−1 ·
{
F0 − CNH0 · Ḋ0 −K ·D0 −KNH0 · [D0 −G]

}
(23)
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We use the generalised-α method [42] to rewrite Eq. 15 in a general midpoint

of the time step as (note that in the classical Newmark method, the respective

equation is considered at the end-point of the time step)

(1− αm) M · D̈r+1 + αmM · D̈r + (1− αf )CNHr+1 · Ḋr+1 + αfCNHr · Ḋr

+ (1− αf ) K ·Dr+1 + αfK ·Dr + (1− αf )KNHr+1 · [Dr+1 −G]

+ αfKNHr · [Dr −G] = (1− αf ) Fr+1 + αfFr

(24)

Moreover, the generalised-α method uses the Newmark difference approxima-

tion equations as

Dr+1 = Dr + ∆tḊr + (∆t)2

2
[
(1− 2β) D̈r + 2βD̈r+1

]
(25)

Ḋr+1 = Ḋr + ∆t (1− γ) D̈r + ∆tγD̈r+1 (26)

The parameters for this unconditionally stable integration scheme in Eqs. 24-

26 are defined as [42]

αm = 2ρ∞ − 1
ρ∞ + 1 , αf = ρ∞

ρ∞ + 1 , γ = 1
2 − αm + αf , β = 1

4 (1− αm + αf )2

(27)

where ρ∞ ∈ [0, 1] is the spectral radius of the method. We note that choosing

0 ≤ ρ∞ < 1 introduces numerical dissipation in the integration procedure,

while ρ∞ = 1 makes it conservative. Thanks to the generalised-α one-step

scheme, we only require data at t = tr (i.e. one single previous time step) to

obtain the system solution at t = tr+1. Therefore, by using Eqs. 24-26 and

after some algebra, the displacement vector at the end of the time step can

be obtained from the following equation

Keff
r+1 ·Dr+1 = Feff

r+1 (28)
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where Keff
r+1 and Feff

r+1 are identified as

Keff
r+1 = (1− αf ) (K +KNHr+1) + (1− αf ) γ

β (∆t) CNHr+1 + 1− αm
β (∆t)2 M (29)

Feff
r+1 = (1− αf ) Fr+1 + αfFr + (1− αf )KNHr+1 ·G + αfKNHr ·G

+ (1− αm) M ·
[

1
β (∆t)2 Dr + 1

β (∆t)Ḋr + ( 1
2β − 1)D̈r

]

+ (1− αf )CNHr+1 ·
[

γ

β (∆t)Dr + (γ
β
− 1)Ḋr + ∆t( γ2β − 1)D̈r

]

− αmM · D̈r − αfCNHr · Ḋr − αf (K +KNHr) ·Dr (30)

Then, the acceleration and velocity of the system can be computed as

D̈r+1 = 1
β (∆t)2 (Dr+1 −Dr)−

1
β (∆t)Ḋr − ( 1

2β − 1)D̈r (31)

Ḋr+1 = Ḋr + ∆t (1− γ) D̈r + ∆tγD̈r+1 (32)

We can now proceed and obtain the transient step-by-step solution of the sys-

tem from Eqs. 28, 31 and 32. The application of the Heaviside step function in

the contact constraint matrix of the system (H) will enable the solution proce-

dure to automatically detect the position of the lattice points with respect to

the unilateral elastic constraint, and accordingly update the system stiffness

matrix. Therefore, if we assume that no lattice node crosses the boundary over

∆t (i.e. Hr+1 = Hr), the system response can be obtained at t = tr+1 from the

input data at t = tr. Once the crossing event occurs and the contact condition

is satisfied for any of the lattice nodes at t = tr+1, the system solution activates

the corresponding constraint elements (i.e. the discrete spring-damper com-

ponents) in the subsequent time step and considers their contribution in the

effective stiffness matrix and force vector (Eqs. 29 and 30). It is important to

note that the time step must be appropriately small to enable this direct time

integration procedure to accurately localise the crossing events and minimise
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the numerical error due to the approximation of the crossing time instants

(the main source of error comes from approximating the boundary-crossing

time instants by t = tr+1, while they occur at t ∈ [tr, tr+1]). In practice how-

ever, the error due to this approximation would increase progressively at every

occurrence so that the accuracy of the following estimate would gradually de-

crease. As a consequence, it can lead to an accumulative error at the end of

the simulation and may significantly affect the resolution of the results. One

possible method to resolve this issue is to choose a smaller ∆t and perform

convergence study to ensure that the solution is independent of the length of

the time step. However, in some cases it may impractically increase the overall

computational time.

To minimise the accumulative error, we can also embed the bisection al-

gorithm into the integration procedure to capture the time instants that the

lattice nodes impact the constraint or recover the gap length at the end of

their contact period. To this end, we proceed with the integration procedure

and obtain Dr+1 from Eq. 28 with the assumption that no particles cross the

boundary over ∆t (i.e. Hr+1 = Hr). Then, we calculate Hr+1 from the result-

ing displacement vector to verify this precondition. The solution at t = tr+1

can be accepted as the system dynamic response (i.e. we are allowed to go

to the next time step) if the resulting contact constraint matrix verifies our

assumption, i.e. Hr+1 = Hr. But, if any event is detected (i.e. Hr+1 6= Hr),

it implies that a number of lattice points have crossed the boundary over ∆t

where they can be localised by comparing the position of unequal members

on the main diagonal of Hr+1 with Hr. Therefore, we locally break down the

current time step [tr, tr+1] into a number of subintervals to compute the time
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instants that the events occur as

tsm ∈
{
ts1 = tr, t

s
2, t

s
3, t

s
4, · · · , tsm−1, t

s
m, t

s
m+1, · · · , tsη−2, t

s
η−1, t

s
η = tr+1

}
(33)

where η−1 is the number of subintervals (the required number of subintervals

depends on the bisection module), and the subscript m shows the counter of

local time instants ts, starting from ts1 = tr and ending with tsη = tr+1. Thus,

the bisection module is called to use Eqs. 28-30 and compute the earliest time

instant over tr+1 − tsm that the lattice nodes cross the boundary. This can be

achieved by monitoring the diagonal components of Hs
m+1 versus Hs

m during

the bisection search to capture the earliest instant that they change from 0 to

1 or vice versa (note that the superscript s shows that the contact constraint

matrices are associated with the subintervals). The new subinterval obtained

from the bisection module is ∆tsm (note that ∆tsm ≤ tr+1 − tsm ≤ ∆t) and the

new local time instant is tsm+1 = tsm + ∆tsm. Now, we assume that Hs
m+1 = Hs

m

to perform the numerical integration over
[
tsm, t

s
m+1

]
and accept the solution as

the system response at t = tsm+1. Subsequently, we use the system output data

at tsm+1 to calculate Hs
m+1 and considering Hr+1 = Hs

m+1, perform the numer-

ical integration over
[
tsm+1, tr+1

]
. If the resulting contact constraint matrix

supports the validity of the preceding assumption (i.e. Hr+1 = Hs
m+1), all the

localised lattice points have crossed the boundary and we can accept the solu-

tion at t = tr+1 = tsη to exit the local subintervals. Otherwise, this procedure

continues by calling the bisection module again for m = m + 1, until all the

localised discrete segments cross the boundary at t = tr+1. In order to avoid nu-

merical instabilities, if the crossing lattice nodes at the beginning of the subin-

tervals are in contact with the constraint (i.e. H̃ [wi (tsm)− δi, ẇi (tsm)] = 1), the

new subinterval ∆tsm is computed from the bisection search in such a way that
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−εs <
KN [wi(tsm+1)−δi]+CN ẇi(tsm+1)
‖KN [D(tsm+1)−G]+CN Ḋ(tsm+1)‖ < 0 where ‖·‖ implies the Euclidean norm

and εs ∈ R+ is the specified precision tolerance (note that this parameter is

specified to localise the event of crossing the non-smoothness boundary by the

lattice nodes up to a given precision. Therefore, the suitability of the selected

value should be studied by the convergence analysis to make sure that it is

small enough to obtain the system response with sufficient accuracy). On the

other hand, when the crossing lattice nodes at the beginning of the subinter-

vals are not in contact with the constraint (i.e. H̃ [wi (tsm)− δi, ẇi (tsm)] = 0),

the new subinterval ∆tsm is obtained in such a way that 0 ≤ wi(tsm+1)−δi

‖D(tsm+1)−G‖ < εs

if wi (tsm) < δi, and 0 ≤ KN [wi(tsm+1)−δi]+CN ẇi(tsm+1)
‖KN [D(tsm+1)−G]+CN Ḋ(tsm+1)‖ < εs if wi (tsm) ≥ δi.

3 Non-linear normal modes

Consider the unforced conservative form of Eq. 15 for the non-smooth dis-

crete system

M · D̈ (t) + K ·D (t) +KNH (t) · [D (t)−G] = 0 (34)

where 0 ∈ RN is the zero vector. Based on Rosenberg’s definition, and as high-

lighted in [14], the energy dependency of the NNMs in this system arises from

the presence of the gap (clearance) between the structure and unilateral con-

straint. The physical interpretation of this fact is obvious. For instance, in the

presence of the gap, if the energy is not sufficient to make the structure inter-

act with the constraint, the system always remains within one of the smooth

subdomains and the solution is linear. Thus, unlike the smooth non-linear

systems where the frequency-energy dependence is the inherent property of

their oscillations, the non-linear frequencies of the structure-support systems

are energy invariant as long as the unilateral interaction is concentrated at the
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interface passing through the origin (i.e. G = 0). This means that changing

the energy level (e.g. initial conditions) of the present non-smooth model with

no gap does not lead to a new NNM frequency for the system. Accordingly,

for λ ∈ R we have z(t, λz(0)) = λz(t, z(0)) where z(t, z(0)) =
{

D
Ḋ

}
∈ R2N refers

to the solution of Eq. 34 with G = 0 which can be recast into the state space

form as

ż = Q · z (35)

where Q ∈ R2N×2N reads

Q =
[

0 I
M−1 · (K +KNH) 0

]
(36)

herein, I ∈ RN×N is the identity matrix and 0 ∈ RN×N is the zero ma-

trix. We can now use the proposed time integration algorithm as the dynamic

analysis tool of the shooting algorithm to compute NNMs of the system pre-

sented by Eq. 35. Although the NNMs of this system are energy invariant,

they can exhibit salient properties with no counterparts in the underlying

smooth model. For instance, the number of resonance frequencies and corre-

sponding NNMs may be more than the number of system DOFs. Furthermore,

the non-linear modes of the system can be excited at frequencies which are

fractional or integer multiples of the NNM frequencies (subharmonic and su-

perharmonic modes). Another noticeable feature is the internal resonance phe-

nomenon where the non-linear modes interact and generate new multimodal

periodic motions with no analogy in the linear system. The internal resonance

may occur once the system non-linear frequencies are commensurate or nearly

commensurate [43]. Therefore, since the deployment of the structural mem-

bers onto the unilateral supports is commonly found in a variety engineering

applications, a systematic study of the NNMs can greatly improve our predic-

tive understanding of their dynamic behaviour. Herein, we briefly outline the
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application of the shooting methodology for computing NNMs in Appendix

A where some modifications are also required to adopt it to the present non-

smooth system. The reader is referred to [14, 17] for more details on this

approach for systems with smooth and non-smooth non-linearities.

If we consider the interaction of the component with a homogenous unilateral

support with no gap at the interface (e.g. a bar in contact with a unilateral

elastic obstacle at one of its boundaries, a beam supported by a series of

hangers, or a plate resting on the unilateral substrate), the resulting initial

conditions together with its period define a portion of the non-smooth periodic

motions branch in terms of the given contact stiffness. For a range of the

contact coefficient, the backbone of the NNMs branch can be constructed by

sequentially incrementing the contact coefficient and using the result of each

step as the initial assumption of the shooting scheme in the following step. This

plot can provide useful information about the system nonliear frequencies and

corresponding mode-shapes in a similar fashion as the frequency-energy plot

in the smooth non-linear systems [17]. For illustration purposes, consider the

chain of oscillators in Fig. 2 with DT (t) = {u1, u2, u3} (i.e. n = 3, ñp = 1 and

N = 3). This chain is interacting with the unilateral elastic obstacle with the

stiffness of kw = kn. This simple but insightful example can represent the non-

smooth axial vibration of a thin bar (considering the stiffness of the connecting

elements as kx = EA/h), such as a drill-string, with non-smooth contact at

its end. The corresponding unforced conservative equations of motion can be

obtained from Eq. 34 as

[
m 0 0
0 m 0
0 0 m

]
·
{
ü1(t)
ü2(t)
ü3(t)

}
+
[ 2kx −kx 0
−kx 2kx −kx

0 −kx kx

]
·
{
u1(t)
u2(t)
u3(t)

}
+kn

[ 0 0 0
0 0 0
0 0 H̃(u3−δ)

]
·
{

u1(t)
u2(t)
u3(t)−δ

}
=
{ 0

0
0

}

(37)

Three natural frequencies of the underlying linear system with kn = 0 can
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be easily obtained from the eigenvalue analysis as ωu1 = 0.445
√
kx/m, ωu2 =

1.247
√
kx/m and ωu3 = 1.802

√
kx/m. These frequencies and corresponding

linear normal modes can be used as the start-points in computing the NNMs

for a range of the unilateral contact stiffness kn (note that the superscript u

in ωui denotes the unilateral interaction). We perform the non-smooth modal

analysis of this system with δ = 0 by sequentially increasing kn and using the

shooting method. The NNMs are depicted for 0 ≤ kn/kx ≤ 10 in Fig. 3. The

first NNM is presented in more details where the incremental evolution of the

NNMs for points (a)-(l) on its backbone is demonstrated as the time-history

of the system free response over the first period T u1 = 2π/ωu1 in Fig. 4(a) and

the configuration space, i.e. u1(t) vs. u3(t) and u2(t) vs. u3(t), in Fig. 4(b). For

small values of kn/kx, the NNMs are close to the linear shape, i.e. they exhibit

linear symmetric configuration and simultaneously pass through the origin

(see Figs. 4(a.a) and (a.b)). By increasing the contact stiffness, the NNMs

lose their symmetric linear shape and do not pass through zero at the same

instant. There are some other important considerations that must be taken

into account. Firstly, the bilinear approximation of the non-linear frequencies

loses its accuracy at higher values of the contact stiffness (see the orange line

in Fig. 3). Secondly, the stability analysis of the NNMs reveals that additional

periodic motions may appear in the non-smooth system once the NNMs on the

branch become unstable (see the new periodic motions that are born at points

(d) and (i) on the backbone of the first NNM in Fig. 3(a)). The well-known

bilinear formula has been used in previous studies [13, 14, 16] to approximate

the non-linear frequency of the system with the zero gap as

ω̌a = 2ω−a ω+
a

ω−a + ω+
a

(38)

herein, ω̌a is the bilinear frequency of the a-th mode, and ω−a and ω+
a are
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the resonance frequencies before and after making contact with the unilateral

constraints (i.e. ω− =
√

K−/M and ω+ =
√

K+/M). Zuo and Curnier [14]

believe that the accuracy of this formula depends on the commutativity con-

dition of stiffness matrix i.e. the bilinear formula leads to accurate results if

K− ·K+ = K+ ·K− where K− and K+ are the system stiffness before and

after making contact with the support, respectively. The present 3-DOF sys-

tem is not commutative as the contact stiffness partially contributes to the

main diagonal of the global stiffness matrix (see Eq. 37). Thus, it is not sur-

prising that the bilinear relation cannot provide accurate approximations for

the NNMs, specially for higher modes, as it is shown in Figs. 3(b) and 3(c).

The stability of the computed non-linear modes can also be studied in the

linear sense by computing its characteristic multipliers (also known as Floquet

multipliers) [14, 17]. Based on the Lyapunov theory, the periodic solution

z(t, z(0)) is stable if for an arbitrary infinitesimal disturbance of the initial

conditions (‖d0‖ �
∥∥∥z(0)

∥∥∥) the distance between the perturbed solution and

initial conditions, i.e. ‖d(t)‖ =
∥∥∥z(t, z(0) + d0)− z(0)

∥∥∥, tends to zero when

t → ∞. This means that the non-linear mode is stable when the eigenvalues

(characteristic multipliers) of the monodromy matrix have magnitudes less

than one. The monodromy matrix can be identified as φT (z(0)) = ∂z(T,z(0))
∂z(0) .

It is worth mentioning that the components of φT (z(0)) have already been

evaluated at the last iteration of the Newton-Raphson algorithm during the

numerical computation of NNMs as g (t = T ) for constructing the Jacobian

matrix (see details of the shooting scheme in Appendix A, in particular Eqs.

A.5 and A.10). Therefore, the stability analysis of the computed NNM can be

simply performed by calculating the eigenvalues of g (T ) after the last step of

the iterative loop. As long as the eigenvalues are located inside the unit circle in

the complex plane, the computed NNM is stable. If any of the characteristic
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multipliers moves towards the outside of the unit circle, the corresponding

NNM becomes unstable. The unstable NNMs in Fig. 3 are shown with the

dashed line. Interestingly, the stability analysis reveals that when the non-

linear modes become unstable on the branch, new periodic motions are born

with the periods equal to the integer multiples of the fundamental period.

This behaviour is similar to the well-known flip bifurcation that occurs in the

non-linear systems to switch to a new dynamic response with twice the period

of the original system [44]. When the instability threshold for the onset of the

bifurcation is identified by the system Floquet multipliers, the new periodic

motion can be predicted by applying a perturbation technique.

For the first NNM of the present system, the first instability occurs at point

(d) on the backbone (see Fig. 3(a)) where the new non-smooth periodic motion

is born with the period doubling (T u1 7→ 2T u1 ). The incremental evolution of

this newly born NNM with the dimensionless stiffness kn/kx is qualitatively

different from the backbone branch, as illustrated in Fig. 5 (both the time

response and configuration space). The second bifurcation also occurs at point

(i) where the new branch is formed with the period equal to the quintuple

of the fundamental period (T u1 7→ 5T u1 ) and the system traces a different

trajectory. The corresponding evolution of this branch is also presented in

Fig. 6. It is important to note that the new NNM branches can also switch

from stable to unstable modes where at the location of the instabilities again

new periodic solutions arise. For the sake of clarity and conciseness, other

branches of higher levels are not presented here.

Another distinct feature of the NNMs is the internal resonance phenomenon

where the non-linear modes may interact with the system’s higher modes once

their frequencies are commensurate. This interaction can be observed at higher

resolutions of the frequency-stiffness plot where new multimodal periodic mo-
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tions can be generated and the corresponding branch may emanate from the

main branch. In the previous strategy, it is implicitly assumed that the non-

linear frequency always increases with the contact coefficient. However, if one

is interested in predicting the internal resonances, sequentially increasing the

contact stiffness cannot locate the turning points and trace the branch after

that. A proper treatment of this issue can be achieved through the appli-

cation of the pseudo-arclength continuation method in a similar fashion as is

proposed in [17] for the smooth non-linear systems. The details of this continu-

ation algorithm for the present non-smooth systems are provided in Appendix

B. Nevertheless, we believe that this is the backbone of the frequency-stiffness

plot that contains more useful information about the non-smooth dynamics

of the structure in contact with the unilateral support. A higher resolution of

the stiffness stepsizes can be used only if additional information is required to

investigate the occurrence of the internal resonance in the vicinity of a specific

contact stiffness.

For the first NNM of the present 3-DOF system, the internal resonance is

identified in the vicinity of kn/kx = 0.018 where 4ωu1 ≈ ωu3 . Thus, this modal

interaction can be specified as modes 1-3 (4:1) where a smooth transition

between the first and third mode occurs. A detailed description of this scenario

is shown in Fig. 7 which is the close-up view of the frequency-stiffness plot

for 0.015 ≤ kn/kx ≤ 0.022. Following the branch path in Fig. 7 and the

evolution of the corresponding trajectories in Fig. 8(a) (the time-history) and

Fig. 8(b) (the configuration space) reveals that the contribution of the third

mode gradually increases during the interaction from point (a) to (d) where the

NNM becomes unstable (point (d) is the first turning point which is identified

by the use of the proposed method). From points (d) to (f), the NNM is

more like the third mode until it converts totally to the third mode at the
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intersection of the blue dashed line and orange line (between points (f) and

(g) in Fig. 7). Then, from point (g) the first mode again starts to contribute

(note the phase shift of π between points (f) and (g) where the first mode

again starts to contribute to the interactive mode) and at point (h) the NNM

becomes stable again (point (h) is the second turning point). From points (h)

to (i) the third more gradually diminishes and finally, the first NNM forms

again on the plot backbone. It is obvious that the bilinear equation is not able

to reproduce this interaction scenario.

Having introduced, developed and explained our mathematical and compu-

tational tools, we can now perform the non-smooth modal analysis of partic-

ular systems subjected to the unilateral constraints.

4 Numerical examples

A computer code has been developed for the non-smooth dynamic analysis

and also computing the NNMs of structural members subjected to unilateral

constraints. In the following section, we proceed by verifying the time inte-

gration algorithm for a MDOF system against the standard FEM package

of ANSYS [45]. The present approach is then utilised to perform non-linear

modal analysis for two case studies.

4.1 Non-smooth dynamics of a beam constrained by elastic walls

The transient dynamic response of beam-like members constrained by elas-

tic unilateral walls is of interest to many engineering applications, such as

petroleum engineering and drilling industries. For the first dynamic example,

we considered a cantilever beam-like component that is partially constrained

on both sides by the unilateral supports as shown in Fig 9. An extended ver-
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sion of this example can be used to study the vibration of a drill-string with

unilateral string-borehole interactions. In this example, the material of the

structure is linear elastic with the Young’s modulus of E = 200 GPa, den-

sity of ρ = 7800 kg/m3 (no gravity is considered here) and Poisson’s ratio of

ν = 0.3. The beam length is L = 3.2 m and it has a circular cross-section with

the radius of R/L = 0.025 (the cross-section correction factor for the Timo-

shenko theory is considered here as κs = 0.925). Note that second moment of

area for this system can be obtained as I = πR4/4 and the rotational moment

of inertia in the mass matrix is Jyy = (M/12) (h2 + 3ε̌R2). Two unilateral

elastic walls are constraining the structure on both sides with equal elastic

properties as shown in Fig. 9. The dimensionless stiffness of the undamped

unilateral support is kwL4/ (EI) = 500 and its length is xf/L = 0.4.

To perform the non-linear dynamic analysis, one may employ the well-known

contact algorithms, i.e. penalty approach (or Lagrange multiplier method in

case of contact impenetrability condition) [45], and construct a full-scale con-

tact model at the interface of the wall and structure. Consequently, the uni-

lateral constraint mechanism can be captured by using the non-linear iter-

ative solvers (e.g. Newton-Raphson). However, it should be noted that the

inherent stability and convergence issues of these solution methods are major

concerns for a comprehensive investigation and also the design optimisation.

In the present example, we only use the full-scale FEM analysis to verify

the results obtained from the proposed unconditional stable algorithm. The

Euler-Bernoulli (BEAM3) and Timoshenko (BEAM188) elements are used

in ANSYS [45] to construct the FEM mesh. The zero-length contact ele-

ments (COMBIN39) are also utilised to specify the non-smooth constraints

for the beam length that is constrained by the elastic walls. The unilateral

constitutive law is introduced for each element of the walls by using the non-
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linear generalised capability of the contact elements and considering the gap of

δ/R = 0.0125 between the walls and the structure. The transient dynamic re-

sponse of the system subjected to the harmonic excitation of F (t) = F0 sin (ωt)

at xp/L = 0.5 and with F0 = 4000 kN and ωL2
√
ρA/ (EI) = 3.5 are displayed

in Fig. 10. Excellent agreement between the present DLM and the reference

FEM results can be observed for both Euler-Bernoulli and Timoshenko beam

models. Moreover, no discrepancy exists between the two beam theories un-

til tω/ (2π) = 2. However, it is important to note that the stability of Ansys

non-linear solver strongly depends on the convergence values that are set as in-

put parameters, while the proposed method is unconditionally stable. Also, in

terms of computation time, the present algorithm is approximately one-third

of the Ansys solver for this MDOF example.

To gain further insight into the role of the rotary inertia and shear deforma-

tion in the system non-smooth dynamics, we use the present DLM to compare

the dynamic response of the Euler-Bernoulli and Timoshenko beams over a

longer time span. Since L/R = 40, one may initially expect that the consis-

tency between the two beam models in Fig. 10 continues after tω/ (2π) = 2.

In practice however, it is interesting to notice that as the slender structure

progressively interacts with the walls over time, the roles of rotary inertia and

shear deformation may become increasingly stronger leading to a large discrep-

ancy between two beam models for a same time span. In Fig. 11, we monitor

the dynamic behaviour of the two beam models for the same system as the

previous example, but with three different gap lengths and over an extended

time period, i.e. 0 ≤ tω/ (2π) ≤ 4. Focusing first on the case of the zero gap

(δ = 0), the elastic walls can be interpreted as the smooth bilateral foundation

where its reaction is identical in the compression and tension. Therefore, two

beam theories lead to consistent dynamic responses, as shown in Fig. 11(a.1)
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by the time-history of the displacements at x = L/2 and x = L and in Fig.

11(b.1) by the deformed shape of the structure at two time instants t̄ = 0.8

and t̄ = 4 where t̄ = tω/ (2π).

When the gap takes nonzero values (δ = 0.0125R in Fig. 11(a.2) and

δ = 0.025R in Fig. 11(a.3)), the role of non-smooth unilateral contact interac-

tion becomes important. As the beam-like member makes more contacts with

the elastic unilateral supports over time, the error due to the Euler-Bernoulli

assumption continuously accumulates. As a result, the Euler-Bernoulli model

can lose its accuracy to reproduce the beam’s dynamic displacement at the

end of the time period. To further quantify this process, the resulting beam’s

configuration from the Euler-Bernoulli model can be compared with the Tim-

oshenko theory at t̄ = 0.8 and t̄ = 4 in Figs. 11(b.2) and 11(b.3). It is obvious

that this discrepancy between the two beam theories depends on the gap

length and also, elastic properties of the constraints.

4.2 Modal analysis of a beam on the unilateral substrate

To further illustrate the versatility of the present approach, the NNMs of

two beam-like structures with the pinned-pinned and fixed-free boundary con-

ditions are computed by using the proposed piecewise smooth model. These

beams are interacting with the unilateral elastic substrate throughout their

whole lengths while there is no gap at their interface (see Fig. 1(b) with

F (t) = 0, δ = 0, cw = 0 and xf = L). Therefore, their NNMs are energy

independent and the results of non-linear modal analysis can be presented in

the frequency-stiffness plots. The DLM in this example has been constructed

using the identical discrete unit cells with the length of h = L/100, resulting

in a total of 202 DOFs, before applying the boundary conditions (i.e. n = 101,
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ñp = 2 and N = 202).

In Fig. 12, we present the first three NNMs of the pinned-pinned model

and the corresponding maximum amplitudes w (x, t = 0) at the same level of

energy for three scenarios, i.e. the Euler-Bernoulli theory (results are indepen-

dent of its L/b) and Timoshenko formulation with L/b = 10 and L/b = 20.

Since the fundamental modes are of primary importance, only the dimen-

sionless non-linear frequencies ωui L2
√
ρA/ (EI) on the plot backbone are pre-

sented with respect to the normalised contact stiffness k̄w = kwL
4/ (EI). The

internal resonance branches that may emanate from the main branch during

the continuation algorithm are not shown here. Each branch of non-smooth

modes is initiated on the vertical axis at the linear mode of the corresponding

beam with no supporting foundation (k̄w = 0). Note that these dimensionless

frequency-stiffness plots enable us to obtain the resonance frequencies of the

Euler-Bernoulli beams for 0 ≤ k̄w ≤ 1000 with any geometrical and material

properties and in a similar fashion, for the Timoshenko beams with L/b = 10

and L/b = 20. These plots can be utilised for the practical engineering appli-

cations, e.g. computing the resonance velocities of the moving loads applied

on the beams or calculating the non-smooth critical velocities of the fluid-

conveying pipes which are resting on the tensionless subgrade.

In parallel to the numerical results, the system bilinear frequencies are ob-

tained from Eq. 38 and plotted in Figs. 12(a.1)-(a.3) for the three scenarios.

We observe an excellent agreement between the first NNM frequency and bi-

linear approximation in Fig. 12(a.1), although the system is not commutative

(i.e. K− ·K+ 6= K+ ·K−). This can be explained by the shape of the beam

maximum amplitudes for the first NNM. Fig. 12(b.1) demonstrates that the

periodic motion of the first NNM always preserves its bilinear (smooth) nature

over the whole period, in the sense that no non-smooth effects are experienced
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during the free motion. Subsequently, increasing the substrate stiffness does

not change its initial form which is obtained at k̄w = 0 for both Timoshenko

and Euler-Bernoulli models. In other words, over the first period T u1 = 2π/ωu1 ,

all the DLM nodes vibrate synchronously. They start to move from their max-

imum amplitudes at t = 0, as depicted in Fig. 12(b.1), and simultaneously

reach the contact interface line, i.e. z = 0. At this time instant, the whole

energy of the system, which was purely elastic at t = 0, is transformed to

purely kinetic. Subsequently, the nodes start to interact with the substrate

and reach their maximum amplitudes on the other side of the interface at

t = T u1 /2 (note that the nodal maximum amplitudes in contact with the sub-

strate can be different from what is shown in 12(b.1) and it depends on the

value of k̄w). From t = T u1 /2 to t = T u1 , the lattice nodes travel back through

the same path as the first half of the period to reach their initial positions.

Therefore, the system dynamics associated with the time span that the beam

has no contact with the substrate is decoupled from the interacting span. As

a consequence, the bilinear formula can accurately predict the first non-linear

frequency, regardless of the commutativity condition of the stiffness matrix.

The inaccurate approximation of the bilinear formula for the second and

third NNMs in Figs. 12(a.2) and 12(a.3) can now be understood in light of the

computed maximum amplitudes. If we increase k̄w, the maximum amplitudes

of these modes do not keep their initial forms at k̄w = 0. Instead, Figs. 12(b.2)

and 12(b.3) depict how the shape of the maximum amplitudes change in ac-

cordance with the contact coefficient. Unlike the first mode, the non-linear

periodic motions do not feature bilinear behaviour. As a result, the system

experiences the non-smooth effects and the bilinear approximation loses its

accuracy by increasing the unilateral substrate stiffness.

Based on the smooth character of the first mode in the modal analysis, we
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can utilise the bilinear formula to propose an analytical expression for the first

NNM frequency of the beam-substrate system with the pinned-pinned bound-

ary conditions. Using the separation of variables approach, it is straightforward

to obtain the eigenvalues of the corresponding linear system. Thus, after re-

ducing Eqs. 5 and 6 to the Euler-Bernoulli theory and assuming F (x, t) = 0,

cw = 0, δ = 0 and H̃ (w) = 1 to obtain the free vibration equation, the natural

frequencies of the Euler-Bernoulli beam on the bilateral foundation can be

obtained as

ωi =
√
i4π4EI

ρAL4 + kw
ρA

(39)

Using Eq. 39 for the first mode (i = 1), we can compute the natural frequencies

of the linearised system with and without the foundation. Substituting them

into Eq. 38, the first NNM frequency is obtained as

ωu1 =
2
√
π4EI/L4 + kw

√
ρA

{
1 +

√
1 + kwL4/ (π4EI)

} (40)

A similar equation can also be derived for the first NNM frequency in the

analogous problem of rectangular Kirchhoff plate with the simply supported

edges. The linear natural frequency is first obtained from Eq. 7 for the plate

on the bilateral foundation. Subsequently, the first eigenvalues of the system

in the presence of the foundation and with no foundation are used in Eq.

38 to achieve the following equation for the first non-linear frequency of the

plate-substrate system

ωu11 =

√
π4Eb2

3ρ(1−ν2)

(
1
c2 + 1

L2

)√
12kw(1−ν2)
π4Eb3 +

(
1
c2 + 1

L2

)2

(
1
c2 + 1

L2

)
+
√

12kw(1−ν2)
π4Eb3 +

(
1
c2 + 1

L2

)2
(41)

For the case of beam with the fixed-free boundary conditions, the NNM

frequencies on the plot backbone exhibit qualitatively similar behaviour, as

shown in Fig. 13. Once again, the accuracy of the bilinear equation to predict
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the first frequency is remarkable (see Fig. 13(a.1)), as the system does not ex-

perience any non-smooth effects. Thus, the shape of the maximum amplitudes

for the first mode does not vary with the substrate stiffness for 0 ≤ k̄w ≤ 1000

(see Fig. 13(b.1)). However, when k̄w is increased for the higher modes, the

initial shape of the maximum amplitudes evolves smoothly into a new form

with a smaller contact area between the beam and substrate, as shown in

Figs. 13(b.2) and 13(b.3). Our results confirm that the error due to the bilin-

ear approximation for the second and third NNMs becomes more significant

at higher k̄w, as indicated in Figs. 13(a.2) and 13(a.3).

4.3 Granular chain with the non-smooth contacts

The last application example is inspired from the complex non-smooth be-

haviour of granular materials. Two main reasons can be considered as the

source of non-linearity in the granular medium: the geometrical effects of the

interacting particles, which can be modelled by the Hertzian contact theory,

and the repulsive (tensionless) interactions between the grains, which cause

the non-smoothness in the system [23]. The former makes the non-linear vibra-

tional modes energy-dependent, while assuming the latter as the only source

of non-linearity keeps the system dynamics energy-invariant.

In this example, we consider the basic but important example of 1D gran-

ular chain with only the second type of non-linearity, i.e. the non-smooth

contact mechanism between the identical particles (see Fig. 14(a)). Note that

this discrete system is allowed to exhibit the contact/detachment phenomenon

between its components where in the previous examples the constraints are in-

troduced over the boundary of the solid. However, as the constitutive contact

law is defined with respect to the relative displacements between the particles,
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the non-smoothness is still concentrated at the origin (see Fig. 14(b)). Such

a system is of significant interest due to its tunability to exhibit from weakly

non-linear characteristics (with the static constraining compression) to highly

non-linear dynamics (with no constraining load) [46]. Here, no longitudinal

compressive load is assumed to be able to preserve the highest non-smooth

conditions. As our objective is to show the applicability of the proposed ap-

proach to compute the fundamental NNMs of the granular chain, a detailed

bifurcation analysis of the energy-independent periodic motions is not pre-

sented in this study. Interested readers may refer to [23, 46] for a detailed

discussion on the energy-variant NNMs of the same problem, but with the

Hertzian contact model.

Following the same strategy as in Section 3 to compute the NNMs in a

stepwise manner, we first define the interaction law between the oscillators by

the bilinear equation with kc and kt as the contact stiffness in compression

and tension, respectively, where 0 ≤ kt ≤ kc (see Fig. 14(b)). Thus, ď =

1 − kt/kc can be expressed as the damage parameter where ď = 0 (i.e. kt =

kc) corresponds to the linear elastic case (perfect connection), 0 < ď < 1

describes the damaged (imperfect) connection and ď = 1 (i.e. kt = 0) specifies

the unilateral contact mechanism. Before proceeding to apply the shooting

technique, we ought to modify the second-order equation of motion to express

the interactions in terms of the relative displacements between the oscillators.

Adopting the approach that we utilised in Eq. 15, it is convenient to convert

the diagonal contact constraint matrix H (t) into two separate sparse matrices

for the contact (compressive) state as Hc (t) and the detachment (tensional)

state as Ht (t). The corresponding unforced equations of motion in the matrix
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notation can be obtained as (no damping is present)

M · D̈ (t) + [kcHc (t) + ktHt (t)] ·D (t) = 0 (42)

For the sake of clarity, let us consider the case of n = 3 particles. The sparse

matrices of Hc (t) and Ht (t) can be expressed as the following

Hc (t) =
[
H̃(−u1)+H̃(u1−u2) −H̃(u1−u2) 0
−H̃(u1−u2) H̃(u1−u2)+H̃(u2−u3) −H̃(u2−u3)

0 −H̃(u2−u3) H̃(u2−u3)+H̃(u3)

]
(43)

Ht (t) =
[

2−H̃(−u1)−H̃(u1−u2) −1+H̃(u1−u2) 0
−1+H̃(u1−u2) 2−H̃(u1−u2)−H̃(u2−u3) −1+H̃(u2−u3)

0 −1+H̃(u2−u3) 2−H̃(u2−u3)−H̃(u3)

]
(44)

The equations of motion for other values of n can be derived by extending Eqs.

43 and 42 for different number of particles in a similar manner. Now, using the

linear normal modes and the corresponding frequencies at ď = 1 − kt/kc = 0

as the initial modal information, we can employ the combination of present

time-integration technique and shooting method to compute the fundamental

NNMs as a function of ď when kt changes from kt = kc to kt = 0. The results

of each step are used as the initial guess for the following step and the non-

smooth modal results are presented over the backbone branch, similar to the

previous examples.

The fundamental NNMs for the chain with n = 2, n = 3 and n = 4 particles

are depicted in Figs. 15(a.1)-(i.1). The maximum amplitudes of the non-linear

modes at ď = 0, ď = 0.5 and ď = 1 are also presented in these figures for

a fixed level of energy. Moreover, the time-history of the fundamental modes

with kt = 0 (i.e. the unilateral constraint) are depicted in Figs. 15(a.2)-(i.2).

It can be observed that the present numerical continuation method is able to

robustly and efficiently trace the backbone branch and obtain the non-smooth

periodic orbits across the range of kt/kc.

Interestingly, we can find a qualitative resemblance between the behaviour

of these NNMs and the energy-dependent system with the Hertzian contact
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interactions, which has been studied in [23]. Correspondingly, three types of

(fundamental) NNMs can be recognised in Fig. 15. There are non-linear modes

that are influenced by the detachment phenomenon between the particles and

their neighbours. Thus, the particles become motionless at a distance from

their zero positions for a fraction of the whole period, as illustrated in Figs.

15(a.2), (c.2), (f.2) and (g.2). Due to the occurrence of separation, it is obvious

that the continuum homogenised theories are not able to capture this type of

NNMs. Therefore, it can highlight the importance of lattice dynamics as the

role of micro-structure is considered in the response of the granular system.

There also exist periodic orbits where the non-smooth character reveals itself

only as the non-synchronous motion (see Figs. 15(e.2), (h.2) and (i.2)). Fur-

thermore, depending on the number of particles, we may observe modes with

the smooth character over the whole period, as indicated in Fig. 15(b.2) and

(d.2) for n = 2 and n = 3, respectively. In analogy with the smooth nature

of the first NNM in the beam-substrate system (see Section 4.2), the bilin-

ear formula is able to accurately compute the non-linear frequencies for these

modes too.

The excitability of the computed fundamental NNMs due to the harmonic

load is studied in Fig. 16 for four representative examples with n = 2, n = 4

and n = 6. The transient response of the chain is driven into resonance as the

excitation frequency reaches the NNM frequency. We can also observe that

the forced response of the system occurs in the vicinity of the corresponding

NNM (for example, compare Fig. 16(a) with Fig. 15(a.2)).

The results of Fig. 15 also indicate that the NNMs may become unstable

as their Floquet multipliers move towards the outside of the unit circle. This

behaviour is analogous to the process seen for the 3-DOF bar model in Fig.

3. Thus, the number of modes in this system exceeds the number of DOFs.
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The instability can be triggered by the interaction between two NNMs or the

evolution of a new mode with a period equal to the integer multiple of the

fundamental period. Only as an illustrative example, the incremental evolution

of the new NNM for the chain with n = 2 particles is displayed in Fig. 17.

We already observed that the second NNM of this system manifests itself as a

smooth mode (see Fig. 15(b.1) and (b.2) for n = 2). However, when it becomes

unstable, a small perturbation of the maximum amplitudes can make the

system to form a new non-smooth periodic orbit. This can be clearly observed

in Fig. 17 where the second NNM is still stable at ď = 0.7 with the frequency of

ω̄u2 = 1.379 and the maximum amplitudes of {−1.369, 1.369}. After the onset

of instability, the new NNM starts to grow incrementally over a new branch

with a change of T u2 7→ 27T u2 for the period. Three representative points on this

new branch are depicted in Fig. 17 where the non-linear frequencies change

from ω̄u2 = 0.051 (at ď = 0.704, right after the bifurcation) to ω̄u2 = 0.043

(at ď = 1 which is the chain with the unilateral contact). The maximum

amplitudes are also indicated as the insets in Fig. 17(b).

5 Conclusions

We have presented a numerical framework to study the non-smooth dynam-

ics of mechanical systems subjected to unilateral elastic constraints. In our

model, different stiffnesses of the constitutive law at two sides of the con-

tact interface is the only source of non-linearity, under the assumption that

the material properties are linear and the system remains in the range of

small deformation theory. The discrete lattice method is used to obtain the

space-discretised model of the problem. Taking advantage of the piecewise

smooth nature of this model, we developed an unconditionally stable inte-
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gration scheme to solve the corresponding second-order equations of motion.

The proposed method is based on tracking the trajectory of lattice nodes to

update the active constraints at each time step, without implementation of

any additional contact strategy.

The main contribution of this research lies in the combination of proposed

unconditionally stable time integration method with the shooting technique

to compute the NNMs of the system. Accordingly, the variation of these non-

linear periodic orbits with respect to the contact stiffness has been presented

in the frequency-stiffness plots, which are analogous to the frequency-energy

plots in the smooth non-linear systems.

Important observations and conclusions can be made from the non-smooth

modal analysis of the representative examples. The stability analysis of the

computed modes on the backbone of the frequency-stiffness plot reveals that

the NNMs may become unstable, in the sense that a small disturbance of the

initial conditions leads to the elimination of the corresponding mode. This

oscillatory instability can be triggered due to the modal interaction between

the NNMs with the higher modes (the internal resonance phenomenon) or the

bifurcation of new non-smooth periodic motions with a period equal to the in-

teger multiple of the fundamental period. The former can be detected once the

frequencies of two modes are commensurate by utilising the numerical contin-

uation algorithm. The latter can also be computed by using the perturbation

technique. In addition, we observed that the bilinear equation can predict the

system resonance frequencies only if the associated modes manifest themselves

as smooth modes (e.g. the first mode of the beam-substrate system), regard-

less of the commutativity conditions of the stiffness matrix. Otherwise, the

bilinear formula loses its accuracy. This can illustrate the importance of the

proposed numerical algorithm, as the condition of smooth character for the
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non-linear modes may not be satisfied for many important cases of practical

interest. Moreover, the computed NNMs of the tensionless granular chain ex-

hibited qualitatively similar characteristics as the energy-dependent modes in

the same model but with the Hertzian contact between the particles. In par-

ticular, the 1D tensionless case study has significant implications for modeling

the dynamics of granular materials by the discrete lattice methods as the ho-

mogenised continuum theories are not able to capture the NNMs associated

with the detachment phenomenon between the particles.

Future work on this subject could include the modal analysis of mechani-

cal systems in the presence of the gap, which makes the NNMs to vary with

the total energy. Moreover, it would be desirable to extend the proposed al-

gorithm to treat non-smooth problems when the source of discontinuity is in

the velocity field, e.g. the non-smooth stick-slip vibrations induced by the dry

friction or the bit-rock interaction in the horizontal drilling problem [47]. It is

also conceivable that the principles of the present method can be utilised for

the non-linear buckling analysis of a beam/rod inside a horizontal/cylindrical

unilateral constraint.
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Appendix A Computation of NNMs for non-smooth systems using

the shooting method

The shooting technique is commonly used in the literature to numerically

obtain the NNMs of a non-linear MDOF setting and present a family of them in

the frequency-energy plots. The resulting NNMs form a branch in the 2N +1-

dimensional space of initial conditions and oscillation period at different energy

levels. Following the principles of this technique (bearing in mind that we are

looking for the system NNMs at a certain level of energy), the combination

of the Newton-Raphson algorithm and present solution scheme (Section 2.3)

can be utilised in an iterative process to find a particular period T ∈ R+ and

initial conditions z(0) =
{

D0
Ḋ0

}
∈ R2n that satisfy the periodicity condition of

the free response in the phase plane, i.e. z(t, z(0)) = z(t + T, z(0)). In order

to apply this method to our case, we consider the system energy at a fixed

level, as E(z(0)) = ě where the energy of the conservative system at any time

instant is identified as E(z) = 1
2zT ·B · z with B ∈ R2N×2N as

B =
[
K +KNH 0

0 M

]
(A.1)

Setting k = 1, 2, 3, ... as the iteration index number, it is required to examine

the validity of periodicity condition at each step of the Newton-Raphson algo-

rithm for the refined period Tk and initial conditions z(0)
k . It can be achieved

by introducing the shooting function S(T, z(0)) ∈ R2N as

S(Tk, z(0)
k ) = z(Tk, z(0)

k )− z(0)
k (A.2)

Since the phase of periodic solution is not fixed, we also need to remove the

arbitrariness of the initial conditions [17]. Here, we fix the phase of each non-

linear periodic motion by setting all initial velocities of the discrete points
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to zero. Therefore, the following three conditions have to be verified for the

actual solution of the NNMs




S(Tk + ∆Tk, z(0)
k + ∆z(0)

k ) = 0
Ḋ(0)
k (z(0)

k + ∆z(0)
k ) = 0

E(z(0)
k + ∆z(0)

k )− ě = 0
(A.3)

where ∆Tk ∈ R and ∆z(0)
k ∈ R2N are the corrections at each iteration. Eq. A.3

sets the necessary and sufficient conditions of the present constrained minimi-

sation problem (i.e. minimisation of the shooting function with constraints

on the phase condition and system energy). The corrections can be obtained

from the Taylor expansion of Eq. A.3, neglecting about the higher order terms

and constructing the system of equations with ∆Tk and ∆z(0)
k as the unknown

parameters. Thus, the corrections at each iteration are computed by utilising

the Moore-Penrose matrix inverse [17] to solve the following overdetermined

system 

J11 J12
J21 0
J31 0


 ·
{

∆z(0)
k

∆Tk

}
= −





S(Tk,z
(0)
k

)
Ḋ(0)

k

E(z(0)
k

)−ě



 (A.4)

where J11 ∈ R2N×2N , J12 ∈ R2N , J21 ∈ RN×2N and J31 ∈ R1×2N are the

components of the Jacobian matrix (0 ∈ RN in Eq. A.4 is the zero vector)

and they can be identified from the Taylor expansion of Eq. A.3 as

J11 = ∂S
∂z(0) | (Tk,z

(0)
k

) = ∂z(t, z(0))
∂z(0) | (Tk,z

(0)
k

) − I2N (A.5)

J12 = ∂S
∂T
| (Tk,z

(0)
k

) = ż(Tk, z(0)
k ) (A.6)

J21 = ∂Ḋ(0)

∂z(0) = [0 I] (A.7)

J31 = ∂E

∂z(0) | (z(0)
k

) =
(
z(0)
k

)T ·B (A.8)

with I2N ∈ R2N×2N and I ∈ RN×N as the identity matrices and 0 ∈ RN×N

as the zero matrix. Thus, the components J12, J21 and J31 can be computed

from Eqs. A.6-A.8. We only need to evaluate ∂z(t,z(0))
∂z(0) ∈ R2N×2N in Eq. A.5 to
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obtain J11 and complete the Jacobian matrix. Considering g = ∂z(t,z(0))
∂z(0) , the

extended form of g is expressed as

g =




∂D0
∂D

(0)
0

∂D0
∂D

(0)
1
··· ∂D0

∂D
(0)
N

∂D0
∂Ḋ

(0)
0

∂D0
∂Ḋ

(0)
1
··· ∂D0

∂Ḋ
(0)
N

∂D1
∂D

(0)
0

∂D1
∂D

(0)
1
··· ∂D1

∂D
(0)
N

∂D1
∂Ḋ

(0)
0

∂D1
∂Ḋ

(0)
1
··· ∂D1

∂Ḋ
(0)
N

... ... ... ... ... ...
∂DN
∂D

(0)
0

∂DN
∂D

(0)
1
··· ∂DN

∂D
(0)
N

∂DN
∂Ḋ

(0)
0

∂DN
∂Ḋ

(0)
1
··· ∂DN

∂Ḋ
(0)
N

∂Ḋ0
∂D

(0)
0

∂Ḋ0
∂D

(0)
1
··· ∂Ḋ0

∂D
(0)
N

∂Ḋ0
∂Ḋ

(0)
0

∂Ḋ0
∂Ḋ

(0)
1
··· ∂Ḋ0

∂Ḋ
(0)
N

∂Ḋ1
∂D

(0)
0

∂Ḋ1
∂D

(0)
1
··· ∂Ḋ1

∂D
(0)
N

∂Ḋ1
∂Ḋ

(0)
0

∂Ḋ1
∂Ḋ

(0)
1
··· ∂Ḋ1

∂Ḋ
(0)
N

... ... ... ... ... ...
∂ḊN
∂D

(0)
0

∂ḊN
∂D

(0)
1
··· ∂ḊN

∂D
(0)
N

∂ḊN
∂Ḋ

(0)
0

∂ḊN
∂Ḋ

(0)
1
··· ∂ḊN

∂Ḋ
(0)
N




(A.9)

According to the numerical finite-difference method [17], computing g requires

to repeat the time integration of the MDOF system for 2N times where the

components of z(0)
k are successively perturbed to numerically capture the mem-

bers of g. Obviously, this procedure needs far too many computations to gener-

ate the Jacobian matrix at every iteration. To circumvent this issue, we follow

the approach presented by [14] and differentiate Eq. 35 with respect to z(0) to

obtain ġ = Q ·g as the governing differential equation for g. Starting with the

initial conditions of g0 = ∂z(0,z(0))
∂z(0) = I2N , this ordinary differential equation

can be solved concurrently with the solution of the piecewise linear system and

the solution is stored at each step of the time integration procedure to finally

obtain g at t = T . For example, using the trapezoidal rule (i.e. αm = αf = 0,

γ = 1/2, β = 1/4), the numerical solution of g at the end of each time step is

obtained as

gr+1 =
[
I2N −

∆t
2 Q

]−1

·
[
I2N + ∆t

2 Q
]
· gr (A.10)

Therefore, the Jacobian matrix is formed at each iteration of the shooting

scheme and the corrections are calculated from Eq. A.4. The procedure exits

the iterative loop and returns z(0)
k and Tk as the NNM and its period when
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‖S(Tk,z(0)
k

)‖
‖z(0)

k ‖
< ε where ‖·‖ implies the Euclidean norm and ε is the precision

tolerance.

Appendix B The continuation of periodic solution for the non-

smooth system

The pseudo-arclength continuation approach uses a known periodic motion

on the branch, i.e. (z(0)
j , Tj), to trace the branch and identify the next solution,

i.e. (z(0)
j+1, Tj+1), where subscript j denotes the step number during the path

following process. This method includes two steps, i.e. a predictor step and a

corrector step. In the predictor step, the tangent of the branch at the current

known point j is utilised to generate the initial guess of the shooting algorithm

at the next point j + 1 along the tangent as

{
z(0)

0,j+1
T0,j+1

}
=
{

z(0)
j

Tj

}
+ sjpj (B.1)

herein,
{

z(0)
j

Tj

}
∈ R2N+1 is the NNM and its period identified using the shoot-

ing scheme at point j with the unilateral contact stiffness of kw,j,
{

z(0)
0,j+1
T0,j+1

}
∈

R2N+1 is the initial guess of the shooting algorithm at point j + 1 with the

contact stiffness of kw,j+1, sj ∈ R is the step-size where its sign is selected

in order to trace the branch, and pj =
{ pz,j
pT,j

}
∈ R2N+1 is the tangent vector

to the (2N + 1)-dimensional space of initial conditions and period at point

j. The tangent vector is comprised of two components; pz,j ∈ R2N denoting

the tangent to the branch with respect to z(0)
j and pT,j ∈ R representing the

tangent with respect to Tj. The governing equation of the frequency-stiffness

branch is denoted by Eq. A.3. Therefore, pj is identified as the tangent unit
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vector to the coefficient matrix in Eq. A.4 as


J11 J12
J21 0
J31 0


 ·
{pz,j
pT,j

}
= 03N+1 (B.2)

with 03N+1 ∈ R3N+1 as the zero vector. Thus, pj can be computed by

fixing one of its components, solving Eq. B.2 by the Moore-Penrose matrix

inverse, and normalising the resulting vector to the unit length. The stiffness

of the system at point j+1 can also be specified as kw,j+1 = kw,j+∆kw,j where

∆kw,j ∈ R is the contact stiffness step-size and it should be carefully controlled

in accordance with sj. In the corrector step, the initial guess obtained from Eq.

B.1 and contact stiffness of kw,j+1 are used in the shooting iterative process

to find the periodic orbit at point j + 1 by solving Eq. A.3. There is only

an extra condition which forces the corrections to converge to the solution in

the direction orthogonal to the tangent vector obtained in the predictor step.

Thus, the corrections can be computed from the modified form of Eq. A.4 as



J11 J12
J21 0
J31 0
p′z,j pT,j


 ·
{

∆z(0)
k,j+1

∆Tk,j+1

}
= −





S(Tk,j+1,z
(0)
k,j+1)

Ḋ(0)
k,j+1

E(z(0)
k,j+1)−ě

0





(B.3)

herein, the superscript ′ indicates the transpose operator and the components

of the Jacobian matrix are computed by the use of Eqs. A.5-A.8 at point

j + 1. The last equation of this overdetermined system satisfies the orthogo-

nality condition by prescribing the inner product of the tangent vector and

the corrections vector to be zero.

In order to properly trace the branch in the same direction during the present

numerical continuation scheme, in addition to the constraints set by Eqs. B.2

and B.3, we also need to change the sign of ∆kw,j at the turning points.

The turning points can be identified with two important properties. First, the

tangent to the branch with respect to the period, i.e. pT,j, changes its sign at
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these points, i.e. p−T,j · p+
T,j < 0 where p−T,j and p+

T,j refer to the value of pT,j

just before and after the turning points (it is obvious that pT,j = 0 at the

turning points). Second, once the branch reaches the turning points, following

the continuation process with the same sign for ∆kw,j results in failure of the

shooting algorithm to converge. Therefore, the path following method requires

a decision module to track both sign(pT,j) and the solution convergence. This

module can detect the occurrence of turning points and accordingly, handles

sign(∆kw,j) with an adoptive control over it. It should be noted that in the

areas close to the turning points, a higher resolution is used to capture how

the tongues emanate from the branch, whereas larger steps can be used once

we are far from the turning points.

References

[1] L. Prendergast, D. Hester, K. Gavin, J. O’Sullivan, An investigation of

the changes in the natural frequency of a pile affected by scour, Journal

of Sound and Vibration 332 (2013) 6685–6702.

[2] M. Attar, A transfer matrix method for free vibration analysis and crack

identification of stepped beams with multiple edge cracks and different

boundary conditions, International Journal of Mechanical Sciences 57

(2012) 19–33.

[3] M. Attar, A. Karrech, K. Regenauer-Lieb, Free vibration analysis of a

cracked shear deformable beam on a two-parameter elastic foundation

using a lattice spring model, Journal of Sound and Vibration 333 (2014)

2359–2377.

[4] M. Attar, A. Karrech, K. Regenauer-Lieb, Dynamic response of

cracked timoshenko beams on elastic foundations under moving har-

51



monic loads, Journal of Vibration and Control (2015). doi:10.1177/

1077546315580470.

[5] M. T. Tran, K. K. Ang, V. H. Luong, Vertical dynamic response of non-

uniform motion of high-speed rails, Journal of Sound and Vibration 333

(2014) 5427–5442.

[6] O. Doaré, Dissipation effect on local and global stability of fluid-conveying

pipes, Journal of Sound and Vibration 329 (2010) 72–83.

[7] N. D. Duc, P. H. Cong, Nonlinear postbuckling of symmetric S-FGM

plates resting on elastic foundations using higher order shear deformation

plate theory in thermal environments, Composite Structures 100 (2013)

566–574.

[8] R. Mullapudi, A. Ayoub, Nonlinear finite element modeling of beams

on two-parameter foundations, Computers and Geotechnics 37 (2010)

334–342.

[9] R. H. Hendou, A. K. Mohammadi, Transient analysis of nonlinear euler–

bernoulli micro-beam with thermoelastic damping, via nonlinear normal

modes, Journal of Sound and Vibration 333 (2014) 6224–6236.

[10] A. Vakakis, L. Manevitch, O. Gendelman, L. Bergman, Dynamics of

linear discrete systems connected to local, essentially non-linear attach-

ments, Journal of Sound and Vibration 264 (2003) 559–577.

[11] M. Attar, A. Karrech, K. Regenauer-Lieb, A novel technique for dy-

namic analysis of beam-like structures on tensionless elastic foundations

subjected to moving loads, Advanced Materials Research 1016 (2014)

192–197.

[12] R. Rosenberg, On nonlinear vibrations of systems with many degrees of

freedom, Advances in applied mechanics 9 (1966) 155–242.

[13] S. Shaw, P. Holmes, A periodically forced piecewise linear oscillator,

52

10.1177/1077546315580470
10.1177/1077546315580470


Journal of Sound and Vibration 90 (1983) 129–155.

[14] L. Zuo, A. Curnier, Non-linear real and complex modes of conewise linear

systems, Journal of Sound and Vibration 174 (1994) 289–313.

[15] A. Vakakis, Non-linear normal modes and their applications in vibration

theory: An overview, Mechanical Systems and Signal Processing 11 (1997)

3–22.

[16] M. Chati, R. Rand, S. Mukherjee, Modal analysis of a cracked beam,

Journal of Sound and Vibration 207 (1997) 249–270.

[17] M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, J.-C. Golinval, Nonlin-

ear normal modes, part II: Toward a practical computation using numer-

ical continuation techniques, Mechanical Systems and Signal Processing

23 (2009) 195–216.

[18] W. Lacarbonara, G. Rega, A. Nayfeh, Resonant non-linear normal modes.

part i: analytical treatment for structural one-dimensional systems, In-

ternational Journal of Non-Linear Mechanics 38 (2003) 851–872.

[19] R. Arquier, S. Bellizzi, R. Bouc, B. Cochelin, Two methods for the com-

putation of nonlinear modes of vibrating systems at large amplitudes,

Computers & Structures 84 (2006) 1565–1576. Non-linear Dynamics of

Structures and Mechanical Systems.

[20] J. Slater, A numerical method for determining nonlinear normal modes,

Nonlinear Dynamics 10 (1996) 19–30.

[21] M. Géradin, D. J. Rixen, Mechanical vibrations: theory and application

to structural dynamics, John Wiley & Sons, 2014.

[22] W. Lu, F. Ge, X. Wu, Y. Hong, Nonlinear dynamics of a submerged

floating moored structure by incremental harmonic balance method with

FFT, Marine Structures 31 (2013) 63–81.

[23] K. Jayaprakash, Y. Starosvetsky, A. Vakakis, M. Peeters, G. Kerschen,

53



Nonlinear normal modes and band zones in granular chains with no pre-

compression, Nonlinear Dynamics 63 (2011) 359–385.

[24] H. Mei, R. Huang, J. Y. Chung, C. M. Stafford, H.-H. Yu, Buckling

modes of elastic thin films on elastic substrates, Applied Physics Letters

90 (2007) 151902.

[25] A. G. Neto, C. de Arruda Martins, Structural stability of flexible lines in

catenary configuration under torsion, Marine Structures 34 (2013) 16–40.

[26] İ. Coşkun, The response of a finite beam on a tensionless pasternak

foundation subjected to a harmonic load, European Journal of Mechanics-

A/Solids 22 (2003) 151–161.

[27] Y. Zhang, K. D. Murphy, Response of a finite beam in contact with a

tensionless foundation under symmetric and asymmetric loading, Inter-

national Journal of Solids and Structures 41 (2004) 6745–6758.

[28] R. A. Silveira, W. L. Pereira, P. B. Gonçalves, Nonlinear analysis of

structural elements under unilateral contact constraints by a ritz type

approach, International Journal of Solids and Structures 45 (2008) 2629–

2650.

[29] X. Ma, J. Butterworth, G. Clifton, Response of an infinite beam resting

on a tensionless elastic foundation subjected to arbitrarily complex trans-

verse loads, Mechanics Research Communications 36 (2009) 818–825.

[30] O. Giannini, P. Casini, F. Vestroni, Experimental evidence of bifurcating

nonlinear normal modes in piecewise linear systems, Nonlinear Dynamics

63 (2011) 655–666.

[31] P. Casini, O. Giannini, F. Vestroni, Persistent and ghost nonlinear normal

modes in the forced response of non-smooth systems, Physica D: Non-

linear Phenomena 241 (2012) 2058 – 2067. Dynamics and Bifurcations of

Nonsmooth Systems.

54



[32] R. I. Leine, H. Nijmeijer, Dynamics and bifurcations of non-smooth me-

chanical systems, volume 18, Springer Science & Business Media, 2013.

[33] U. Andreaus, L. Placidi, G. Rega, Numerical simulation of the soft con-

tact dynamics of an impacting bilinear oscillator, Communications in

Nonlinear Science and Numerical Simulation 15 (2010) 2603–2616.

[34] S. Timoshenko, S. Woinowsky-Krieger, S. Woinowsky-Krieger, Theory of

plates and shells, volume 2, McGraw-hill New York, 1959.

[35] C. Papalukopoulos, S. Natsiavas, Dynamics of large scale mechanical

models using multilevel substructuring, Journal of computational and

nonlinear dynamics 2 (2007) 40–51.

[36] D. V. Griffiths, G. G. W. Mustoe, Modelling of elastic continua us-

ing a grillage of structural elements based on discrete element concepts,

International Journal for Numerical Methods in Engineering 50 (2001)

1759–1775.

[37] E. Pasternak, H.-B. Mühlhaus, A. Dyskin, On the possibility of elastic

strain localisation in a fault, pure and applied geophysics 161 (2004)

2309–2326.

[38] E. Pasternak, H.-B. Mühlhaus, Generalised homogenisation procedures

for granular materials, Journal of Engineering Mathematics 52 (2005)

199–229.

[39] L. Beex, R. Peerlings, M. Geers, A multiscale quasicontinuum method for

dissipative lattice models and discrete networks, Journal of the Mechanics

and Physics of Solids 64 (2014) 154–169.

[40] M. Nikolic, A. Ibrahimbegovic, Rock mechanics model capable of rep-

resenting initial heterogeneities and full set of 3D failure mechanisms,

Computer Methods in Applied Mechanics and Engineering 290 (2015)

209–227.

55



[41] J. Reddy, On the dynamic behaviour of the timoshenko beam finite

elements, Sadhana 24 (1999) 175–198.

[42] J. Chung, G. Hulbert, A time integration algorithm for structural dy-

namics with improved numerical dissipation: the generalized-α method,

Journal of applied mechanics 60 (1993) 371–375.

[43] G. Kerschen, M. Peeters, J. Golinval, A. Vakakis, Nonlinear normal

modes, part I: A useful framework for the structural dynamicist, Me-

chanical Systems and Signal Processing 23 (2009) 170–194. Special Issue:

Non-linear Structural Dynamics.

[44] R. Seydel, Practical bifurcation and stability analysis, volume 5, Springer

Science & Business Media, 2009.

[45] ANSYS Academic Research, Release 13.0, Mechanical APDL and Me-

chanical Applications Theory Reference, ANSYS, Inc., 2010.

[46] Y. Starosvetsky, K. R. Jayaprakash, A. F. Vakakis, G. Kerschen, L. I.

Manevitch, Effective particles and classification of the dynamics of ho-

mogeneous granular chains with no precompression, Phys. Rev. E 85

(2012) 036606.

[47] T. Ritto, M. Escalante, R. Sampaio, M. Rosales, Drill-string horizontal

dynamics with uncertainty on the frictional force, Journal of Sound and

Vibration 332 (2013) 145–153.

56



List of Figures

1 Structural components subjected to unilateral supports. (a)
The longitudinal vibration of the bar is constrained by the
elastic unilateral obstacle at its right end. The contact element
is active when u (L, t) ≥ δ where u (x, t) is the bar axial
deformation. (b) The beam-like component is interacting
with the elastic unilateral substrate. The contact occurs once
w (x, t) ≥ δ for L − xf ≤ x ≤ L where w (x, t) is the beam
lateral deflection. (c) Rectangular thin plate subjected to the
unilateral Winkler constraint. The contact elements are only
active once w (x, y, t) ≥ δ for L − xf ≤ x ≤ L where w (x, t)
denotes the transverse displacement of plate middle surface.
(d) The top view of the discrete model of the plate. The DOFs
of each lattice node is identified as {wi,j (t) , ϕi,j (t) , θi,j (t)}.
The unilateral support is also modelled as a network of parallel
one-way spring-damper elements (KN = kwhxhy, CN = cwhxhy
where hx and hy are the length of the unit cells in x and y
directions, respectively). 64

2 Sketch of a 3-DOF chain of oscillators in contact with the
elastic unilateral constraint. The unilateral obstacle kn is only
active when u3 ≥ δ. 65
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3 Frequency-stiffness plots for the NNMs of the 3-DOF chain of
oscillators with δ = 0 (see Fig. 2). The vertical axis shows the
dimensionless frequencies ωui

√
m/kx where the superscript u

denotes the unilateral interaction and i = 1, 2, 3. The horizontal
axis shows the range of normalised contact stiffness kn/kx.
The unstable NNM frequencies are shown with the dashed
lines. The orange line also depicts the bilinear approximation
for the NNM frequencies obtained from Eq. 38. (a) The first
NNM is presented where the backbone branch starts from
ωu1

√
m/kx = 0.445 on the vertical axis. More details about the

first NNM are presented here. The incremental evolution of
the NNMs for the representative points (a)-(l) on its backbone
is illustrated in Fig. 4. New periodic motions are also born at
points (d) and (i) where the NNMs on the backbone branch
become unstable. The corresponding incremental evolution of
these newly born NNMs for representative points (d.1)-(d.11)
and (i.1)-(i.11) are depicted in Figs. 5 and 6, respectively.
(b) The second NNM is presented where its backbone branch
starts from ωu2

√
m/kx = 1.247 on the vertical axis. (c) The

third NNM is presented where its backbone branch starts from
ωu3

√
m/kx = 1.802 on the vertical axis. The start-points on the

vertical axis are the three natural frequencies of the 3-DOF
system with kn = 0 which can be obtained from the linear
eigenvalue analysis of Eq. 37. 66

4 Trajectories of NNMs for points (a)-(l) on the backbone of the
first NNM in Fig 3(a). (a) The incremental evolution of the
NNMs are presented by the time-history of the free system
over one period T u1 = 2π/ωu1 . The vertical axis shows the
displacement components of the 3-DOF chain of oscillators
with δ = 0 (see Fig. 2). The horizontal axis depicts the
dimensionless time t/T u1 where T u1 = 2π/ωu1 is the period. (b)
The incremental evolution of the NNMs are presented in the
configuration space over one period. The vertical axis shows
the displacements of the first and second mass, i.e. u1(t) and
u2(t) respectively. The horizontal axis depicts the displacement
of the third mass u3(t). The gray coloured plots show the
unstable NNMs. 67
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5 Trajectories of NNMs for points (d)-(d.11) of the first NNM in
Fig 3(a) where the new periodic motion is born at point (d)
with a period equal to the double of the fundamental period
(T u1 7→ 2T u1 ). (a) The incremental evolution of the NNMs are
presented by the time-history of the free system over one
period. The vertical axis shows the displacement components
of the 3-DOF chain of oscillators with δ = 0 (see Fig. 2). The
horizontal axis depicts the dimensionless time t/T u1 where
T u1 = 2π/ωu1 is the period. (b) The incremental evolution
of the NNMs are presented in the configuration space over
one period. The vertical axis shows the displacements of the
first and second mass, i.e. u1(t) and u2(t) respectively. The
horizontal axis depicts the displacement of the third mass
u3(t). The gray coloured plots show the unstable NNMs. 68

6 Trajectories of NNMs for points (i)-(i.11) of the first NNM in
Fig 3(a) where the new periodic motion is born at point (i)
with a period equal to quintuple of the fundamental period
(T u1 7→ 5T u1 ). (a) The incremental evolution of the NNMs are
presented by the time-history of the free system over one
period. The vertical axis shows the displacement components
of the 3-DOF chain of oscillators with δ = 0 (see Fig. 2). The
horizontal axis depicts the dimensionless time t/T u1 where
T u1 = 2π/ωu1 is the period. (b) The incremental evolution
of the NNMs are presented in the configuration space over
one period. The vertical axis shows the displacements of the
first and second mass, i.e. u1(t) and u2(t) respectively. The
horizontal axis depicts the displacement of the third mass
u3(t). The gray coloured plots show the unstable NNMs. 69

7 Close-up view of the modes 1-3 (4:1) internal resonance that
occurs for the first NNM of the 3-DOF chain of oscillators with
δ = 0 (see Fig. 2 and the corresponding frequency-stiffness
plots in Fig. 3). The first and third modes start to interact
once 4ωu1 ≈ ωu3 . The vertical axis shows the first dimensionless
frequency ωu1

√
m/kx. The horizontal axis shows the range

of normalised contact stiffness kn/kx. The unstable NNM
frequencies are shown with the dashed line. The orange line
also depicts the (ωu3/4)

√
m/kx obtained from the shooting

method. 70
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8 Trajectories of NNMs for points (a)-(l) of Fig 7 where the
first and third modes start to interact once 4ωu1 ≈ ωu3 and
accordingly, the modes 1-3 (4:1) internal resonance occurs.
(a) The incremental evolution of the NNMs are presented
by the time-history of the free system over one period. The
displacement components of the 3-DOF chain of oscillators
(see Fig. 2 with δ = 0) are shown with u1(t), u2(t) and u3(t).
(b) The incremental evolution of the NNMs are presented in
the configuration space over one period. The gray coloured
plots show the unstable NNMs. 71

9 The cantilever beam is constrained by the unilateral elastic
walls on both sides with the gap of δ. The structure has a
circular cross-section with the radius of R and it is subjected
to the harmonic load of F (t) applied at point xp, i.e.
F (x, t) = F (t) δ̃ (x− xp). 72

10 Transient dynamic response of the beam with the circular
cross-section constrained by the elastic unilateral walls on
both sides (see Fig. 9) with kwL

4/ (EI) = 500, cw = 0,
xf/L = 0.4 and δ/R = 0.0125. The structure is subjected to
the harmonic excitation of F (t) = F0 sin (ωt) at xp/L = 0.5
with F0 = 4000 kN and ωL2

√
ρA/ (EI) = 3.5. The vertical

axis shows the time-history of the dimensionless displacement
w̄ = w/ds in z-direction at x = L/2 (thin solid line for
the present discrete model and thin dashed line for the
ANSYS results) and x = L (thick solid line for the present
discrete model and thick dashed line for the ANSYS results)
where ds = F0L

3/ (3EI). The horizontal axis depicts the
dimensionless time t̄ = tω/ (2π) which is normalised with
respect to the period of the applied harmonic load. (a) Present
discrete lattice model (DLM) versus the FEM results (ANSYS)
for the Euler-Bernoulli theory (ǧ = 0). (b) DLM versus the
FEM results for the Timoshenko theory (ǧ = 1). 73
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11 Transient dynamic response of the beam with the circular
cross-section constrained by the elastic unilateral walls on
both sides (see Fig. 9) with kwL

4/ (EI) = 500, cw = 0,
xf/L = 0.4 and three different gap lengths. The structure is
subjected to the harmonic excitation of F (t) = F0 sin (ωt) at
xp/L = 0.5 with F0 = 4000 kN and ωL2

√
ρA/ (EI) = 3.5. The

results obtained from the Timoshenko beam model (ǧ = 1)
are compared with the Euler-Bernoulli theory (ǧ = 0). (a)
The vertical axis shows the time-history of the dimensionless
displacement w̄ = w/ds in z-direction at x = L/2 and x = L
where ds = F0L

3/ (3EI). The horizontal axis depicts the
dimensionless time t̄ = tω/ (2π) which is normalised with
respect to the period of the applied harmonic load. (b) The
vertical axis shows the dimensionless lateral displacement
throughout the beam length (i.e. the deformed shape of the
structure) at two different time instants t̄ = 0.8 and t̄ = 4. The
horizontal axis depicts the dimensionless axial coordinate x/L.
Note that the gap length for Figs. (a.1) and (b.1) is δ = 0,
Figs. (a.2) and (b.2) is δ = 0.0125R, and Figs. (a.3) and (b.3)
is δ = 0.025R. 74

12 (a.1)-(a.3) Frequency-stiffness plots for the first three
NNMs of the pinned-pinned beam fully supported by the
unilateral substrate (see Fig. 1(b) with the pinned-pinned
boundary conditions and F (t) = 0, δ = 0, cw = 0 and
xf = L). The vertical axis shows the dimensionless frequency
ωui L

2
√
ρA/ (EI) where the superscript u denotes the

unilateral interaction. The horizontal axis shows the range
of dimensionless contact stiffness k̄w = kwL

4/ (EI). Only the
fundamental non-linear frequencies are shown here and the
internal resonance branches that may emanate from the plot
backbone are not included. The dot-dashed lines also depict
the bilinear approximation for the NNM frequencies obtained
from Eq. 38. (b.1)-(b.3) The evolution of the maximum
amplitudes as a function of k̄w for the first three NNMs. Theses
maximum amplitudes are shown for the Timoshenko beam
with L/b = 20. Two other scenarios (Euler-Bernoulli beam and
Timoshenko beam with L/b = 10) have qualitatively similar
shapes. Note that the maximum amplitudes of the first NNM
do not change with k̄w. 75
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13 (a.1)-(a.3) Frequency-stiffness plots for the first three NNMs
of the fixed-free beam fully supported by the unilateral
substrate (see Fig. 1 with F (t) = 0, δ = 0, cw = 0 and
xf = L). The vertical axis shows the dimensionless frequency
ωui L

2
√
ρA/ (EI). The horizontal axis shows the range of

dimensionless contact stiffness k̄w = kwL
4/ (EI). Only the

main frequencies on the plot backbone are shown here and
the internal resonance branches that may emanate from the
backbones are not included. The dot-dashed lines also depict
the bilinear approximation for the NNM frequencies obtained
from Eq. 38. (b.1)-(b.3) The evolution of the maximum
amplitudes as a function of k̄w for the first three NNMs. Theses
maximum amplitudes are shown for the Timoshenko beam
with L/b = 20. Two other scenarios (Euler-Bernoulli beam and
Timoshenko beam with L/b = 10) have qualitatively similar
shapes. Note that the maximum amplitudes of the first NNM
do not change with k̄w. 76

14 (a) Granular chain of identical particles with non-smooth
constraint between them. (b) The bilinear constitutive
model for the restoring contact force between the particles
(oscillators); kt = kc represents the linear elastic model (perfect
connection) and kt = 0 corresponds to the unilateral constraint
(fully damaged connection). Accordingly, ď = 1 − kt/kc can
be considered as the damage parameter which can vary from
ď = 0 (perfect or intact connection between particles) to ď = 1
(tensionless contact constraint). 77

15 (a.1)-(i.1) The frequency plots of the granular chain with n = 2,
n = 3 and n = 4 particles (see Fig. 14). The dimensionless
frequency ω̄ui = ωui

√
m/kc is shown as a function of the

damage parameter ď = 1 − kt/kc. The maximum amplitudes
of the NNMs at ď = 0, ď = 0.5 and ď = 1 are also presented.
(a.2)-(i.2) The time-history of the fundamental modes with
kt = 0 (i.e. ď = 1). The displacement of particles are indicated
versus dimensionless time t/T ui where T ui = 2π/ωui . 78
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16 The transient response of the tensionless granular chain
(kt = 0) due to the harmonic excitation. The vertical
axis shows the dimensionless displacement of the particles
ūi (t) = ui (t) /us where us = 10F0/kc. The horizontal
axis represents dimensionless time tω/ (2π) where ω is the
frequency of the applied force(s). The inset figures show the
number and the direction of the applied harmonic loads.
(a) The number of particles is n = 2 and the frequency
of the applied load is ω = ω̄u1

√
kc/m = 0.739

√
kc/m. (b)

n = 4 and ω = ω̄u2

√
kc/m = 0.829

√
kc/m. (c) n = 4

and ω = ω̄u4

√
kc/m = 1.281

√
kc/m. (d) n = 6 and

ω = ω̄u6

√
kc/m = 1.323

√
kc/m. 79

17 Trajectories of NNMs for the second mode of the granular
chain with n = 2 particles (see Fig. 14). The second mode
becomes unstable at ď = 0.704 (see Fig. 15(b.1) where the
dashed line shows the unstable modes). As a consequence, the
new periodic motion is born with a change of T u2 7→ 27T u2
for the period. (a) The incremental evolution of the NNMs
are presented by the time-history of the free system over one
period. The displacement of two particles are shown versus
dimensionless time t/T u2 where T u2 = 2π/ωu2 is the second
NNM period. (b) The incremental evolution of the NNMs
are presented in the configuration space over one period.
The displacement of the first particle u1(t) is shown versus
the displacement of the second particle u2(t). The maximum
amplitudes of each NNM are displayed on the right-top corner
of each plot. 80
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Fig. 1. Structural components subjected to unilateral supports. (a) The longitu-
dinal vibration of the bar is constrained by the elastic unilateral obstacle at its
right end. The contact element is active when u (L, t) ≥ δ where u (x, t) is the
bar axial deformation. (b) The beam-like component is interacting with the elastic
unilateral substrate. The contact occurs once w (x, t) ≥ δ for L − xf ≤ x ≤ L
where w (x, t) is the beam lateral deflection. (c) Rectangular thin plate subjected
to the unilateral Winkler constraint. The contact elements are only active once
w (x, y, t) ≥ δ for L − xf ≤ x ≤ L where w (x, t) denotes the transverse displace-
ment of plate middle surface. (d) The top view of the discrete model of the plate.
The DOFs of each lattice node is identified as {wi,j (t) , ϕi,j (t) , θi,j (t)}. The uni-
lateral support is also modelled as a network of parallel one-way spring-damper
elements (KN = kwhxhy, CN = cwhxhy where hx and hy are the length of the unit
cells in x and y directions, respectively).
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Fig. 2. Sketch of a 3-DOF chain of oscillators in contact with the elastic unilateral
constraint. The unilateral obstacle kn is only active when u3 ≥ δ.
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Fig. 3. Frequency-stiffness plots for the NNMs of the 3-DOF chain of oscillators with
δ = 0 (see Fig. 2). The vertical axis shows the dimensionless frequencies ωui

√
m/kx

where the superscript u denotes the unilateral interaction and i = 1, 2, 3. The hor-
izontal axis shows the range of normalised contact stiffness kn/kx. The unstable
NNM frequencies are shown with the dashed lines. The orange line also depicts the
bilinear approximation for the NNM frequencies obtained from Eq. 38. (a) The first
NNM is presented where the backbone branch starts from ωu1

√
m/kx = 0.445 on

the vertical axis. More details about the first NNM are presented here. The incre-
mental evolution of the NNMs for the representative points (a)-(l) on its backbone
is illustrated in Fig. 4. New periodic motions are also born at points (d) and (i)
where the NNMs on the backbone branch become unstable. The corresponding in-
cremental evolution of these newly born NNMs for representative points (d.1)-(d.11)
and (i.1)-(i.11) are depicted in Figs. 5 and 6, respectively. (b) The second NNM is
presented where its backbone branch starts from ωu2

√
m/kx = 1.247 on the verti-

cal axis. (c) The third NNM is presented where its backbone branch starts from
ωu3
√
m/kx = 1.802 on the vertical axis. The start-points on the vertical axis are the

three natural frequencies of the 3-DOF system with kn = 0 which can be obtained
from the linear eigenvalue analysis of Eq. 37.
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Fig. 4. Trajectories of NNMs for points (a)-(l) on the backbone of the first NNM in
Fig 3(a). (a) The incremental evolution of the NNMs are presented by the time-his-
tory of the free system over one period T u1 = 2π/ωu1 . The vertical axis shows the
displacement components of the 3-DOF chain of oscillators with δ = 0 (see Fig. 2).
The horizontal axis depicts the dimensionless time t/T u1 where T u1 = 2π/ωu1 is the
period. (b) The incremental evolution of the NNMs are presented in the configura-
tion space over one period. The vertical axis shows the displacements of the first
and second mass, i.e. u1(t) and u2(t) respectively. The horizontal axis depicts the
displacement of the third mass u3(t). The gray coloured plots show the unstable
NNMs.
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Fig. 5. Trajectories of NNMs for points (d)-(d.11) of the first NNM in Fig 3(a)
where the new periodic motion is born at point (d) with a period equal to the
double of the fundamental period (T u1 7→ 2T u1 ). (a) The incremental evolution of
the NNMs are presented by the time-history of the free system over one period. The
vertical axis shows the displacement components of the 3-DOF chain of oscillators
with δ = 0 (see Fig. 2). The horizontal axis depicts the dimensionless time t/T u1
where T u1 = 2π/ωu1 is the period. (b) The incremental evolution of the NNMs are
presented in the configuration space over one period. The vertical axis shows the
displacements of the first and second mass, i.e. u1(t) and u2(t) respectively. The
horizontal axis depicts the displacement of the third mass u3(t). The gray coloured
plots show the unstable NNMs.
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Fig. 6. Trajectories of NNMs for points (i)-(i.11) of the first NNM in Fig 3(a) where
the new periodic motion is born at point (i) with a period equal to quintuple of
the fundamental period (T u1 7→ 5T u1 ). (a) The incremental evolution of the NNMs
are presented by the time-history of the free system over one period. The vertical
axis shows the displacement components of the 3-DOF chain of oscillators with
δ = 0 (see Fig. 2). The horizontal axis depicts the dimensionless time t/T u1 where
T u1 = 2π/ωu1 is the period. (b) The incremental evolution of the NNMs are presented
in the configuration space over one period. The vertical axis shows the displacements
of the first and second mass, i.e. u1(t) and u2(t) respectively. The horizontal axis
depicts the displacement of the third mass u3(t). The gray coloured plots show the
unstable NNMs.
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Fig. 7. Close-up view of the modes 1-3 (4:1) internal resonance that occurs for
the first NNM of the 3-DOF chain of oscillators with δ = 0 (see Fig. 2 and the
corresponding frequency-stiffness plots in Fig. 3). The first and third modes start
to interact once 4ωu1 ≈ ωu3 . The vertical axis shows the first dimensionless fre-
quency ωu1

√
m/kx. The horizontal axis shows the range of normalised contact stiff-

ness kn/kx. The unstable NNM frequencies are shown with the dashed line. The
orange line also depicts the (ωu3/4)

√
m/kx obtained from the shooting method.
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Fig. 8. Trajectories of NNMs for points (a)-(l) of Fig 7 where the first and third
modes start to interact once 4ωu1 ≈ ωu3 and accordingly, the modes 1-3 (4:1) internal
resonance occurs. (a) The incremental evolution of the NNMs are presented by the
time-history of the free system over one period. The displacement components of the
3-DOF chain of oscillators (see Fig. 2 with δ = 0) are shown with u1(t), u2(t) and
u3(t). (b) The incremental evolution of the NNMs are presented in the configuration
space over one period. The gray coloured plots show the unstable NNMs.
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Fig. 9. The cantilever beam is constrained by the unilateral elastic walls on both
sides with the gap of δ. The structure has a circular cross-section with the radius
of R and it is subjected to the harmonic load of F (t) applied at point xp, i.e.
F (x, t) = F (t) δ̃ (x− xp).
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Fig. 10. Transient dynamic response of the beam with the circular cross-sec-
tion constrained by the elastic unilateral walls on both sides (see Fig. 9) with
kwL

4/ (EI) = 500, cw = 0, xf/L = 0.4 and δ/R = 0.0125. The structure is
subjected to the harmonic excitation of F (t) = F0 sin (ωt) at xp/L = 0.5 with
F0 = 4000 kN and ωL2√ρA/ (EI) = 3.5. The vertical axis shows the time-history
of the dimensionless displacement w̄ = w/ds in z-direction at x = L/2 (thin solid
line for the present discrete model and thin dashed line for the ANSYS results) and
x = L (thick solid line for the present discrete model and thick dashed line for the
ANSYS results) where ds = F0L3/ (3EI). The horizontal axis depicts the dimen-
sionless time t̄ = tω/ (2π) which is normalised with respect to the period of the
applied harmonic load. (a) Present discrete lattice model (DLM) versus the FEM
results (ANSYS) for the Euler-Bernoulli theory (ǧ = 0). (b) DLM versus the FEM
results for the Timoshenko theory (ǧ = 1).

73



(a.1) (b.1)

0 1 2 3 4

-0.02

-0.01

0.00

0.01

0.02

0.03

tω/ (2π)

w̄
(x

,t
)

x = L, Timoshenko theory (ǧ = 1)
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Fig. 11. Transient dynamic response of the beam with the circular cross-sec-
tion constrained by the elastic unilateral walls on both sides (see Fig. 9) with
kwL

4/ (EI) = 500, cw = 0, xf/L = 0.4 and three different gap lengths. The struc-
ture is subjected to the harmonic excitation of F (t) = F0 sin (ωt) at xp/L = 0.5 with
F0 = 4000 kN and ωL2√ρA/ (EI) = 3.5. The results obtained from the Timoshenko
beam model (ǧ = 1) are compared with the Euler-Bernoulli theory (ǧ = 0). (a) The
vertical axis shows the time-history of the dimensionless displacement w̄ = w/ds in
z-direction at x = L/2 and x = L where ds = F0L3/ (3EI). The horizontal axis
depicts the dimensionless time t̄ = tω/ (2π) which is normalised with respect to the
period of the applied harmonic load. (b) The vertical axis shows the dimensionless
lateral displacement throughout the beam length (i.e. the deformed shape of the
structure) at two different time instants t̄ = 0.8 and t̄ = 4. The horizontal axis
depicts the dimensionless axial coordinate x/L. Note that the gap length for Figs.
(a.1) and (b.1) is δ = 0, Figs. (a.2) and (b.2) is δ = 0.0125R, and Figs. (a.3) and
(b.3) is δ = 0.025R.
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Fig. 12. (a.1)-(a.3) Frequency-stiffness plots for the first three NNMs of the
pinned-pinned beam fully supported by the unilateral substrate (see Fig. 1(b) with
the pinned-pinned boundary conditions and F (t) = 0, δ = 0, cw = 0 and xf = L).
The vertical axis shows the dimensionless frequency ωui L2√ρA/ (EI) where the su-
perscript u denotes the unilateral interaction. The horizontal axis shows the range of
dimensionless contact stiffness k̄w = kwL

4/ (EI). Only the fundamental non-linear
frequencies are shown here and the internal resonance branches that may emanate
from the plot backbone are not included. The dot-dashed lines also depict the bilin-
ear approximation for the NNM frequencies obtained from Eq. 38. (b.1)-(b.3) The
evolution of the maximum amplitudes as a function of k̄w for the first three NNMs.
Theses maximum amplitudes are shown for the Timoshenko beam with L/b = 20.
Two other scenarios (Euler-Bernoulli beam and Timoshenko beam with L/b = 10)
have qualitatively similar shapes. Note that the maximum amplitudes of the first
NNM do not change with k̄w.
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Fig. 13. (a.1)-(a.3) Frequency-stiffness plots for the first three NNMs of the fixed-free
beam fully supported by the unilateral substrate (see Fig. 1 with F (t) = 0,
δ = 0, cw = 0 and xf = L). The vertical axis shows the dimensionless frequency
ωui L

2√ρA/ (EI). The horizontal axis shows the range of dimensionless contact stiff-
ness k̄w = kwL

4/ (EI). Only the main frequencies on the plot backbone are shown
here and the internal resonance branches that may emanate from the backbones are
not included. The dot-dashed lines also depict the bilinear approximation for the
NNM frequencies obtained from Eq. 38. (b.1)-(b.3) The evolution of the maximum
amplitudes as a function of k̄w for the first three NNMs. Theses maximum am-
plitudes are shown for the Timoshenko beam with L/b = 20. Two other scenarios
(Euler-Bernoulli beam and Timoshenko beam with L/b = 10) have qualitatively
similar shapes. Note that the maximum amplitudes of the first NNM do not change
with k̄w.
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Fig. 14. (a) Granular chain of identical particles with non-smooth constraint be-
tween them. (b) The bilinear constitutive model for the restoring contact force
between the particles (oscillators); kt = kc represents the linear elastic model (per-
fect connection) and kt = 0 corresponds to the unilateral constraint (fully damaged
connection). Accordingly, ď = 1−kt/kc can be considered as the damage parameter
which can vary from ď = 0 (perfect or intact connection between particles) to ď = 1
(tensionless contact constraint).
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Fig. 16. Transient dynamic response of the beam with the circular cross-sec-
tion constrained by the elastic unilateral walls on both sides (see Fig. 10) with
kwL4/ (EI) = 500, cw = 0, xf /L = 0.4 and different gap lengths. The structure is
subjected to the harmonic excitation of F (t) = F0 sin (ωt) at.
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Fig. 15. (a.1)-(i.1) The frequency plots of the granular chain with n = 2, n = 3 and
n = 4 particles (see Fig. 14). The dimensionless frequency ω̄ui = ωui

√
m/kc is shown

as a function of the damage parameter ď = 1 − kt/kc. The maximum amplitudes
of the NNMs at ď = 0, ď = 0.5 and ď = 1 are also presented. (a.2)-(i.2) The
time-history of the fundamental modes with kt = 0 (i.e. ď = 1). The displacement
of particles are indicated versus dimensionless time t/T ui where T ui = 2π/ωui .
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ū
i
(t

)=
u

i
(t

)/
u

s
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Fig. 16. The transient response of the tensionless granular chain (kt = 0) due
to the harmonic excitation. The vertical axis shows the dimensionless displace-
ment of the particles ūi (t) = ui (t) /us where us = 10F0/kc. The horizon-
tal axis represents dimensionless time tω/ (2π) where ω is the frequency of the
applied force(s). The inset figures show the number and the direction of the
applied harmonic loads. (a) The number of particles is n = 2 and the fre-
quency of the applied load is ω = ω̄u1

√
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Fig. 17. Trajectories of NNMs for the second mode of the granular chain with
n = 2 particles (see Fig. 14). The second mode becomes unstable at ď = 0.704 (see
Fig. 15(b.1) where the dashed line shows the unstable modes). As a consequence,
the new periodic motion is born with a change of T u2 7→ 27T u2 for the period. (a)
The incremental evolution of the NNMs are presented by the time-history of the
free system over one period. The displacement of two particles are shown versus
dimensionless time t/T u2 where T u2 = 2π/ωu2 is the second NNM period. (b) The
incremental evolution of the NNMs are presented in the configuration space over one
period. The displacement of the first particle u1(t) is shown versus the displacement
of the second particle u2(t). The maximum amplitudes of each NNM are displayed
on the right-top corner of each plot.
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