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A second-order well-balanced scheme for the
shallow-water equations with topography

Christophe Berthon, Raphaël Loubère and Victor Michel-Dansac

Abstract We consider the well-balanced numerical scheme for the shallow-water
equations with topography introduced in [8] and its second-order well-balanced
extension, which requires two heuristic parameters. The goal of the present con-
tribution is to derive a parameter-free second-order well-balanced scheme. To that
end, we consider a convex combination between the well-balanced scheme and a
second-order scheme. We then prove that a relevant choice of the parameter of this
convex combination ensures that the resulting scheme is both second-order accurate
and well-balanced. Afterwards, we perform several numerical experiments, in order
to illustrate both the second-order accuracy and the well-balance property of this
numerical scheme. Finally, we outline some perspectives in a short conclusion.

1 Introduction

We consider the shallow-water system with topography, governed by the following
set of equations: 

∂th + ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1
2
gh2

)
= −gh∂xZ,

(1)
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where h(t, x) > 0 is the water height, q(t, x) is the water discharge, Z(x) is the smooth
topography, and g is the gravity constant. To shorten the notations, we rewrite this
system under the condensed form ∂tW + ∂xF(W) = S(W), where we have set:

W =
(
h
q

)
; F(W) = ©«

q
q2

h
+

1
2
gh2

ª®¬ ; S(W) =
(

0
−gh∂xZ

)
.

In particular, we focus on smooth steady solutions, free from time and governed by:
q = cst,

q
2h2 + g(h + Z) = cst.

(2)

Well-balanced schemes, i.e. schemes that exactly preserve such steady solutions,
have been derived in the last decade (see for instance [2, 4, 5, 8]).

Namely, in [8], the authors suggested a well-balanced Godunov-type scheme
based on a two-state approximate Riemann solver. We briefly recall the general form
of a numerical scheme that falls within this classification (see for instance [10]). In
the finite volume framework, the space domain R is discretized into cells, assumed
to be of constant width ∆x. The center of the i-th cell is denoted by xi and its bounds
are labeled xi− 1

2
and xi+ 1

2
; this cell shall henceforth be referred to by its center xi .

The approximate solution is piecewise constant, and it is denoted by Wn
i within the

cell xi and at time tn. In order to provide a time update of this approximate solution,
we note that Riemann problems (i.e. Cauchy problems with discontinuous initial
data) are present at each interface between cells. However, the exact solution to such
Riemann problems is usually difficult or impossible to compute exactly. To address
this issue, an approximate Riemann solver is introduced.More specifically, in [8], the
authors develop an approximate Riemann solver satisfying several crucial properties:
consistency, well-balance and preservation of the water height non-negativity. The
time update of the approximate solution in the cell xi reads:

Wn+1,WB
i = Wn

i −
∆t
∆x

[
λi+ 1

2

(
WL,∗

i+ 1
2
− hn

i

)
+ λi− 1

2

(
WR,∗

i− 1
2
− hn

i

)]
, (3)

whereWL,∗
i+ 1

2
andWR,∗

i− 1
2
are the intermediate states of the approximate Riemann solver,

respectively approximations of the Riemann solutions at the interfaces xi+ 1
2
and xi− 1

2
.

In addition, λi+ 1
2
and λi− 1

2
are approximations of the wave velocities from the exact

Riemann solution. The authors of [8] prove that the Godunov-type scheme (3) is
consistent, well-balanced and non-negativity-preserving.

The accuracy of the first-order scheme (3) could be significantly improved by
introducing a well-balanced second-order extension. TheMUSCL framework is well
suited to this extension. It consists in providing a piecewise linear approximation,
instead of piecewise constant, of the solution in each cell. This is achieved using
slope reconstructions, supplemented with slope limiters in order to recover the non-
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negativity preservation. For more details on such procedures, the reader is referred
for instance to [7]. The resulting MUSCL scheme reads as follows:

Wn+1,MUSCL
i = Wn

i −
∆t
∆x
∆Fi + ∆tSi, (4)

where ∆Fi and Si are, respectively, second-order approximations of the physical
flux F and the source term S in the cell xi . Note that the intermediate states of the
scheme (3) are used to define ∆Fi and Si . In addition to the second-order in space
time update (4), a specific treatment of the steady states is necessary, because this
scheme is no longer naturally well-balanced due to the reconstruction procedure. For
instance, in [4, 3], the authors suggest a reconstruction based on the steady states,
which leads to a well-balanced second-order scheme. However, the downside of this
approach is that, in each cell, the nonlinear steady relations (2) have to be solved,
thus leading to extra computational cost.

In [8], the authors proposed a convex combination, in each cell ci and at time tn+1,
between the well-balanced scheme and aMUSCL reconstruction to recover the well-
balance property without having to solve nonlinear equations, as follows:

Wn+1
i = θni Wn+1,MUSCL

i + (1 − θni )Wn+1,WB
i . (5)

On the one hand, for a steady state, the well-balanced scheme is exact, and therefore
is of order at least two. In this case, we wish to use the well-balanced scheme. On
the other hand, for an unsteady state, the well-balanced scheme is of order one, and
it should not be used. The MUSCL scheme is second-order accurate in both these
cases. Therefore, we wish to use the MUSCL scheme when the approximate solution
is unsteady and the well-balanced scheme when it is steady. As a consequence, the
convex combination (5) becomes relevant when its parameter θni allows switching
between theMUSCL scheme and the well-balanced scheme to ensure both a second-
order accuracy and the well-balance property. To that end, θni must be equal to 1 in
the unsteady case, and it must vanish for a steady state.

In [8], this convex combination relied on two heuristic parameters used to define
θni with respect to some error to a steady state. The goal of the present manuscript
is to propose a parameter-free formula for θni , that ensures both the well-balance
property and the second-order accuracy of the scheme.

To that end, we first introduce such an expression of θni . We then prove that the
required properties are satisfied by the resulting scheme. Finally, several numerical
experiments confirm the second-order accuracy and the well-balance of the scheme.
A short conclusion outlines several perspectives to this work.

2 A second-order accurate convex combination

The goal of this section is to introduce a parameter-free expression of θni such that the
convex combination (5) yields a second-order accurate and well-balanced scheme.
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To that end, let us first define the following potential Φ:

Φ =
q2

2h2 + g(h + Z).

Note that, for a steady state, we have Φ = cst as well as q = cst, as per (2). Let us
then define the spatial errors to a steady state, as follows:

êni = max
( |qn

i − qn
i−1 |, |qn

i+1 − qn
i |

)
,

ěni = max
( |Φn

i − Φn
i−1 |, |Φn

i+1 − Φn
i |

)
.

In order to provide a relevant definition of θni , we make the following remarks:

• the well-balanced scheme is stationary (i.e. Wn+1,WB
i = Wn

i ) if and only if the
solution is stationary, i.e. êni = 0 and ěni = 0;

• the MUSCL scheme is not well-balanced; it can however become stationary (i.e.
Wn+1,MUSCL

i = Wn
i ), but, in this case, êni , 0 and ěni , 0.

These remarks lead us to consider switching between the well-balanced and the
MUSCL scheme when the time update of the MUCSL scheme becomes very small.
Indeed, we will show that, in this case, the MUSCL scheme approximates a steady
solution, and switching to the well-balanced scheme ensures its preservation. The
following result states how to define θni in order to make sure that the scheme (5) is
both well-balanced and second-order accurate.

Theorem 1. We first introduce the following two conditions:

(C1) êni < εm and ěni < εm,
(C2) |hn+1,MUSCL

i − hn
i | ≤ (eh)ni and |qn+1,MUSCL

i − qn
i | ≤ (eq)ni ,

where the errors (eh)ni and (eq)ni are defined by:

(eh)ni = êni ∆t∆x
∆t
∆x

qn
i

(hn
i )3
+ ěni ∆t∆x

∆t2

∆x2

qn
i

(hn
i )2
+
∆x3

(hn
i )2

,

(eq)ni = êni ∆t∆x
qn
i

(hn
i )3
+ ěni ∆t∆x

∆t
∆x

qn
i

(hn
i )2
+ ∆x3 qn

i

(hn
i )3

,

(6)

and where εm is a measure of the machine precision, usually taken equal to 10−12

in the numerical simulations. Then, let us define θni as follows:

θni =

{
0 if (C1) or (C2) holds,
1 otherwise.

(7)

The above definition of θni ensures the scheme (5) is well-balanced and second-order
accurate.

Remark 2. Note that the respective units of (eh)ni and (eq)ni , as defined by (6),
are those of the height and the discharge. In addition, note that êni = O(∆x)
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and ěni = O(∆x), and that ∆x = O(∆t) because of the CFL condition. As a
consequence, we remark that (eh)ni = O(∆x2∆t) and (eq)ni = O(∆x2∆t).

The remainder of this section is dedicated to a proof of Theorem 1. First, we prove
a preliminary result related to the time update of the well-balanced scheme. Then,
this result is used to complete the proof of Theorem 1.

2.1 Time update of the well-balanced scheme with respect to the
steady state deviation

The goal of this section is to prove a result that will be used to complete the proof of
Theorem 1. It is an estimation of the time update of the well-balanced scheme with
respect to the error to a steady state. Indeed, we know that, if this error vanishes,
then so does the time update of the well-balanced scheme. The following statement
provides us with such an estimation.

Lemma 3. Let us consider the following (almost steady) configuration:{
qn
i−1 = qn

i + ε̂−,

qn
i+1 = qn

i + ε̂+,

{
Φ

n
i−1 = Φ

n
i + ε̌−,

Φ
n
i+1 = Φ

n
i + ε̌+.

(8)

Then the time update of the well-balanced scheme (3) satisfies:

Wn+1,WB
i = Wn

i + O(ε̂+) + O(ε̌+) + O(ε̂−) + O(ε̌−). (9)

Proof. In order to prove Lemma 3, we first provide an estimation of the intermediate
states of the approximate Riemann solver involved in the scheme (3) and derived
in [8]. This estimation will then act as a stepping stone towards proving Lemma 3,
by being used at each interface of the cell xi and injected within the time update (3).

We begin by considering two states WL and WR almost defining a steady state,
i.e. we assume that there exist small ε̂ and ε̌ such that qR = qL + ε̂ andΦR = ΦL + ε̌.
Let us also define the following quantities:

• [X] = XR − XL denotes the jump of a quantity X ,
• Xa = (XL + XR)/2 its arithmetic mean, and
• Xh = 2XLXR/(XL + XR) its harmonic mean.

In addition, we introduce

β = − q2
L

hLhR
+ gha .

We now consider the intermediate states h∗L , h∗R and q∗ of the Godunov-type
scheme introduced in [8]. Equipped with these assumptions and definitions, these
intermediate states are proven to satisfy, after straightforward but tedious computa-
tions:
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h∗L = hL −
ε̂

2

(
1
λ
+

qL

βha

(
hL

hR
+
[h]
hh
− qL

λ

[h]
hLhR

))
+

ε̌

2βha

(
hLhR +

qL

λ
[h]

)
+ O(ε̂2) + O(ε̂2),

(10a)

h∗R = hR −
ε̂

2

(
1
λ
− qL

βha

(
hL

hR
+
[h]
hh
− qL

λ

[h]
hLhR

))
− ε̌

2βha

(
hLhR +

qL

λ
[h]

)
+ O(ε̂2) + O(ε̂2),

(10b)

q∗ = qL +
ε̂

2

(
1 − 1

λ

qL

ha

)
− ε̌

2
hh

λ
+ O(ε̂2) + O(ε̂2), (10c)

where λ = −λL = λR, as prescribed in [8]. Note that such expressions come from
the fact that the scheme is well-balanced. Indeed, for a true steady state, we have
ε̂ = 0 and ε̌ = 0, which correctly yields h∗L = hL , h∗R = hR and q∗ = qL = qR.

Now, recall that the time update of the well-balanced scheme from [8] reads as
follows:

hn+1,WB
i = hn

i +
∆t
∆x

[
λ+

(
hL,∗
+ − hn

i

)
+ λ−

(
hR,∗
− − hn

i

)]
, (11a)

qn+1,WB
i = qn

i +
∆t
∆x

[
λ+

(
q∗+ − qn

i

)
+ λ−

(
q∗− − qn

i

) ]
, (11b)

where the subscript ± is a shorter notation for i ± 1/2. Let us assume that the almost
steady configuration (8) is satisfied for the cells xi−1, xi and xi+1. As a consequence,
we can use the formulas (10) to rewrite the update (11) as follows:

hn+1,WB
i = hn

i +
∆t

2∆x

[
− ε̂+

(
1 +

qn
i

β+ha
+

(
λ+

(
hi

hi+1
+
[h]+
hh+

)
− qn

i [h]+
hihi+1

))
+

ε̌+
β+ha

+

(λ+hihi+1 + qi[h]+)

+ ε̂−

(
1 − qn

i

β−ha−

(
λ−

(
hi−1
hi
+
[h]−
hh−

)
− qn

i [h]−
hi−1hi

))
+

ε̌−
β−ha−

(λ−hi−1hi + qi[h]−)
]

+ O(ε̂2
+) + O(ε̌2

+) + O(ε̂2
−) + O(ε̌2

−),

qn+1,WB
i = qn

i +
∆t

2∆x

[
ε̂+

(
λ+ −

qn
i

ha
+

)
− ε̌+hh+ + ε̂−

(
λ− +

qn
i

ha−

)
+ ε̌−hh−

]
+ O(ε̂2

+) + O(ε̌2
+) + O(ε̂2

−) + O(ε̌2
−).

As a consequence, the estimation (9) holds, and the proof is achieved. ut



A second-order well-balanced scheme for the shallow-water equations with topography 7

2.2 Proof of Theorem 1

Proof (Theorem 1). The goal of this proof is to show that, with θni defined by
(7), the scheme defined by the convex combination (5) is second-order accurate
and well-balanced. More precisely, let Wex(t, x) be a smooth exact solution of the
system (1) equipped with suitable initial and boundary conditions. We introduce the
notation (Wex)ni := Wex(tn, xi). The expected result is established as soon as we have
shown that |hn+1

i − (hex)n+1
i | = O(∆x2) and |qn+1

i − (qex)n+1
i | = O(∆x2) and that, if

the states (Wex)n
i−1, (Wex)ni and (Wex)n

i+1 define a steady solution, then Wn+1
i = Wn

i .
To that end, we consider the three possible cases: θni = 1, θni = 0 because (C1)

holds, and θni = 0 because (C2) holds.

• First, if θni = 1, then the scheme is second-order accurate. Indeed, the contribution
of the well-balanced scheme is multiplied to 1− θni , and the convex combination is
therefore reduced to contribution of the second-orderMUSCL scheme. In addition,
neither (C1) nor (C2) holds, and therefore the exact solution is unsteady. Thus, the
well-balance property is irrelevant in this case.

• Second, if (C1) holds, then θni = 0, and the convex combination is reduced to
the sole well-balanced scheme. Note that (C1) is equivalent to the approximate
solution being steady (up to the machine precision). Since only the well-balanced
scheme is used in the update (5), the resulting scheme exactly preserves this steady
solution, and it is, consequently, at least second-order accurate.

• Third, let us assume that (C2) holds. As a consequence, θni = 0 and the well-
balanced scheme is used. However, contrary to the case where (C1) held, the
approximate solution is unsteady. For this third case, we need to prove that the
well-balanced scheme is actually second-order accurate. To that end, we prove that
(C2) necessarily implies that the approximate solution is close to a steady state, up
to ∆x2. Arguing Lemma 3 will then allow us to conclude that the well-balanced
scheme is actually second-order accurate.
Using Remark 2, we get that

|Wn+1,MUSCL
i −Wn

i | = O(∆x2
∆t).

Arguing the expression (4) of the time update Wn+1,MUSCL
i immediately yields:����∆Fi∆x

− Si
���� = O(∆x2). (12)

The above equation is a discretization of the steady relation ∂xF(W) = S(W).
Therefore, since the MUSCL scheme is consistent, the states Wn

i−1, Wn
i and Wn

i−1
are close to a steady state. Thus, there exist small ε̂−, ε̂+, ε̌− and ε̌+ such that{

qn
i−1 = qn

i + ε̂−,

qn
i+1 = qn

i + ε̂+,

{
Φ

n
i−1 = Φ

n
i + ε̌−,

Φ
n
i+1 = Φ

n
i + ε̌+.

(13)



8 Christophe Berthon, Raphaël Loubère and Victor Michel-Dansac

Consequently, the above identities are a direct consequence of the condition (C2),
and they hold as soon as it is true. We now set out to prove that ε̂−, ε̂+, ε̌− and ε̌+
are of orderO(∆x2). Once this fact is established, applying Lemma 3will conclude
the proof in this third case.
To that end, let us introduce a truly steady state W steady , such that{

qsteady
i−1 = qsteady

i ,

qsteady
i+1 = qsteady

i ,

{
Φ

steady
i−1 = Φ

steady
i ,

Φ
steady
i+1 = Φ

steady
i .

Since the MUSCL scheme is consistent and second-order accurate in space, the
following estimation holds:

|W steady,MUSCL
i −W steady

i |
∆t

= O(∆x2),

where W steady,MUSCL
i denotes the time update provided by the MUSCL scheme

when considering W steady as initial condition. Arguing the expression (4) of this
time update, we get: ����{∆Fi∆x

− Si
}
(W steady)

���� = O(∆x2). (14)

Moreover, we show after tedious computations that����∆Fi∆x
− Si

���� − ����{∆Fi∆x
− Si

}
(W steady)

���� = O(ε̂+) + O(ε̌+) + O(ε̂−) + O(ε̌−), (15)

where the first term of the left-hand side corresponds to the MUSCL scheme
applied to the current configuration (13). Plugging the estimation (14) into (15)
yields: ����∆Fi∆x

− Si
���� = O(∆x2) + O(ε̂+) + O(ε̌+) + O(ε̂−) + O(ε̌−). (16)

Using both (12) and (16), we obtain the result we had set out to prove:

ε̂− = O(∆x2) ; ε̂+ = O(∆x2) ; ε̌− = O(∆x2) ; ε̌+ = O(∆x2). (17)

Finally, note that since the approximate solution satisfies (13), which is identical
to (8). Therefore, we apply Lemma 3, using (17), to conclude that the time update
of the well-balanced scheme satisfies the following estimation:

Wn+1,WB
i = Wn

i + O(∆x2). (18)

In addition, thanks to (17), the configuration (13) becomes{
qn
i−1 = qn

i + O(∆x2),
qn
i+1 = qn

i + O(∆x2),

{
Φ

n
i−1 = Φ

n
i + O(∆x2),

Φ
n
i+1 = Φ

n
i + O(∆x2),
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and the sequence Wn
i−1, Wn

i , Wn
i+1 corresponds to a steady state, up to ∆x2. There-

fore, (18) yields
|Wn+1,WB

i − (Wex)n+1
i | = O(∆x2),

i.e. the well-balanced scheme is second-order accurate. Since the convex combi-
nation scheme (5) is reduced to the contribution of the well-balanced scheme, it is
second-order accurate.

Therefore, in all three cases under consideration, the scheme (5) is at least second-
order accurate. In addition, if a steady state is considered, then this scheme is exact.
As a consequence, the convex combination (5) yields a well-balanced and second-
order accurate scheme, which concludes the proof of Theorem 1. ut

3 Numerical experiments

In this section, we propose three numerical experiments. The goal of these experi-
ments is to check that the scheme (5) satisfies the required properties. To this end,
we first present an experiment dedicated to the computation of the order of accuracy.
Then, we check the well-balance property of the scheme by considering an unsteady
state, which, in finite time and after a transient state, converges to a steady state. The
last experiment consists in a “dam-break” problem over a non-flat topography.

The numerical schemes tested in these experiments are labeled as follows: the
first-order well-balanced scheme is called WB, the second-order scheme is labeled
MUSCL, and the convex combination (5) is called θ-WB. In addition, the time
accuracy of both second-order schemes is improved thanks to Heun’s method.

3.1 Order of accuracy verification

This first experiment consists in the approximation of a smooth solution. This smooth
solution is defined on the space domain [0.9, 1.1] by

h(x) = 1 + ω
(

2
0.05
(x − 1)

)
, q(x) = 0, Z(x) = 1

4
+

3
4

cos
(
π(x + 0.05) + π

4

)2
,

where we have set

ω(y) =

(

2 − |y |
2

)4
(1 + 2|y |) if |y | < 2,

0 otherwise.

The numerical simulation is carried out until the final physical time tend = 0.005s.



10 Christophe Berthon, Raphaël Loubère and Victor Michel-Dansac

In Table 1, we present the errors onΦ in the L2-norm, as well as the corresponding
orders of accuracy. These errors have been computed using a reference solution,
provided by the hydrostatic reconstruction scheme from [1]with 25600 discretization
cells. Note that similar results are obtained by considering the discharge or other
norms. These results show that the θ-WB scheme is more accurate than both the WB
and the MUSCL scheme, and that is is second-order accurate, as expected.

N WB MUSCL θ-WB

25 5.46e-01 — 2.89e-01 — 2.94e-01 —
50 2.84e-01 0.94 2.84e-02 3.34 2.41e-02 3.61
100 1.55e-01 0.87 7.36e-03 1.95 5.99e-03 2.01
200 8.11e-02 0.94 1.90e-03 1.95 1.51e-03 1.99
400 4.10e-02 0.98 5.15e-04 1.88 4.41e-04 1.78

Table 1 L2-error on Φ for the approximation of a smooth solution.

3.2 Well-balance of the scheme: capture of a steady state

We now consider the capture of a steady state obtained after a transient state. Such
steady states are exactly captured by the WB scheme, and we require the θ-WB
scheme to exactly capture them as well.

Namely, we focus on the subcritical steady flow presented in [6].We consider, over
the space domain [0, 25], the topography function Z(x) = (

0.2 − 0.05(x − 10)2)
+
.

We take initial conditions at rest, given by q(0, x) = 0 and h(0, x) = h0 − Z(x),
where h0 = 2. The boundary conditions, q(t, 0) = q0 and h(t, 25) = h0 (with
q0 = 4.42), ensure that the solution is a transient state followed by a smooth steady
state with nonzero velocity. This steady state is governed by (2).

The numerical experiment is performed using 100 discretization cells and until
the final physical time tend = 500s. The results are presented in Figure 1, where
we note that the steady state is exactly captured, even after the transient state, by
the second-order θ-WB scheme. Indeed, the errors between the numerical discharge
(resp. potential) and the steady state discharge (resp. potential) are of the order of
the machine precision. Therefore, this scheme is well-balanced in the sense that it is
able to exactly capture steady states, even after a transient state.

3.3 Dam-break experiment

This last experiment consists in a “dam-break” problem, on the space domain [0, 1],
whose initial data is:
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Fig. 1 Subcritical flow experiment. Left panel: free surface and topography for the steady state.
Right panel: errors on the discharge q and the potential Φ.

{
qL = 5,
ΦL = 60,

{
qR = 5,
ΦR = 30.

Note that the left and right states of this dam-break are moving steady states, which
satisfy the equation (2). As a consequence, they will be exactly preserved by the first-
order well-balanced scheme: the goal of this experiment is to display the accuracy
gained by the use of the θ-WB scheme. To that end, we take the exact steady solution
as boundary conditions, and we display the approximate solution obtained with 100
cells at the final time tend = 0.02s, as well as a reference solution, in Figure 2.

0 0.2 0.4 0.6 0.8 1

3

4

5

6 WB
θ-WB
Reference

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 q/qmax

θ

Fig. 2 Riemann problem at time t = 0.02s. Left panel: free surface. Right panel: value of θni for
the θ-WB scheme.

The left panel of Figure 2 shows a comparison between the WB scheme, the
θ-WB scheme and a reference solution. We observe that the θ-WB scheme is more
accurate than the WB scheme, and that the steady areas are exactly preserved. In the
right panel, we display the convex combination parameter θni on the space domain.
We have added a plot of q/maxi(qi) to emphasize the steady areas. As expected, we
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have θni = 0 away from the waves, and θni = 1 within and close to the waves. This
means that the well-balanced scheme is used in the steady areas, while the MUSCL
scheme is used within the dam-break itself, as expected.

4 Conclusion

We have developed a parameter-free, second-order and well-balanced extension of
the scheme presented in [8]. This new scheme is a significant improvement over the
second-order scheme suggested in [8], which relied on a heuristic parameter choice.

Several perspectives of this work naturally arise. Namely, in [9], the authors
propose a well-balanced scheme for the nonlinearManning friction source term. Due
to the nonlinearity, providing a parameter-free second-order extension of this scheme
would be an interesting challenge. Another challenge lies in a two-dimensional
extension of this scheme. Indeed, the definitions of the conditions (C1) and (C2) in
Theorem 1 strongly depend on the expression of the one-dimensional scheme.
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