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Abstract

The image segmentation methods based on Markovian as-
sumption consist in optimizing a Gibbs energy function
which depends on the observation field and the segmented
field. This energy function can be represented as a sum of
potentials defined on cliques which are subsets of the grid
of sites. The Potts model is the most commonly used to rep-
resent the segmented field. However, this model expressed
just a potential on the classes for nearest neighbour pixels.
In this paper, we propose the integration of global informa-
tions, like the size of a region, in the local potentials of the
Gibbs energy. To extract these informations, we use a rep-
resentation model well known in geometric modeling: the
topological map. Results on synthetic and natural images
are provided showing improvements in the obtained seg-
mented fields.

1 Introduction

The main objective of image segmentation methods is to
find areas of homogeneous pixels. In such context, there
is two main researches axes: the boundary and the region
based methods [1]. Fusions of these two approaches have
also been proposed. Nevertheless, whatever approach you
are using, a partitioned image is the result of the segmenta-
tion operation. This partition is composed of subsets called
“classes” for a set of homogeneous pixels, and “cluster” for
a set of homogeneous and related pixels.

The interest of such treatment can be found in many
fields like image compression [2], biomedical image anal-
ysis [3]....

For two decades, Monte-Carlo Markov Chain (MCMC)
methods have received increased interest. This is due to a
rigorous mathematical background and the growing power
of computers. From the original work of Geman & Geman
on image restoration [4], these methods have been applied
successfully to the problem of image segmentation using
different implementations, 7.e. using stochastic or determin-
istic algorithms [5] [6].

In such approaches, the image is considered as a hier-
archical field composed by an observation field and a seg-
mented or label field. Different parametric models have
been proposed to represent observation field’s textures. [7]
[8]. But in most cases, the commonly used Potts model [9]
is proposed for represent the label field. This model only
takes into account the label values of the nearest neighbours
in the Gibbs energy function. Geman & Geman [4] tried
to add more informations to the Potts model by using the
boundaries estimated during the optimization process. Some
boundary configurations were penalized. In [10], this idea
has been extensively used. A drawback can be seen to this
approach in the sense that a prior: weighted values were
given to each boundary configurations.

In this paper, we propose to add informations to the en-
ergy function from the label field’s geometry and topology.
These informations, like the form or the size of a cluster,
could be considered as “global” as opposed to “local” infor-
mation provided by the Potts model. Of course, the Potts
model will be still used cause of its regularization effect
but potentials functions taking account “global” information
will be added in the Gibbs energy function.

To get these additional informations, we propose the use
of a combinatorial model: the topological maps. This struc-
ture encode all topological and geometrical informations
contains in the image in an efficient way.

Our segmentation algorithm consists in two steps and it
is unsupervised considering the number of classes and the
model parameters. A first step allows to estimate the number
of classes and the model parameters of a gaussian mixture.
A Stochastic Expectation Maximization (SEM) algorithm is
used [11] as in [12]. During a second step, a simulated an-
nealing is done in order to obtain the final label field. This is
the step in which we will introduce topological or geometri-
cal informations obtained from the topological map.

In the second part, we start with a brief summary on the
principles of markovian segmentation. Then, after having
explained in the third part the operation of topological maps,
we will propose in fourth part an integration model to in-
clude this map in a markovian segmentation algorithm. In



the last, we propose some results on synthetic and natural
images.

2 Markovian segmentation algorithm

2.1 Definitions

Let X = {X,,s € S} a family of random variables on a
regular grid S = {s1,82,...,sy} which is a finite sub-
set of Z and an image x = {x;,s € S}, realization
of X. Each X, has the same state space which can be
Q, ={0,1,...,255}, the set of gray pixel values, 2, = R,
... We suppose now that there is an another random field
Z = {Zs,s € S} called the label field with state space
Q. = {ci,ca,...,cx} for which a realization will be
z = {zs,s € S}. In our case, a label represents the class to
which the site belongs.

From this definition, we suppose that X and Z are de-
fined in a hierarchical way : for each given z5, we have a
conditional model for X ¢ which can be, for example an AR
model or a Gaussian distribution [5] [8].

The likelihood method defines the a posteriori law
P(Z = z/X = z) as the probability to get one specific
realization of the labels field knowing the observations field:

P X =27 =2)

PZ=z/X=2)= PX =)

ey

Using the Bayes formula, we can also write equation 1 in
function of the a priori law:

PU= /X =0 = Bifemzz

x P(X=2/Z=2)P(Z==2)

since we consider the observations field’s probability
P(X = z) as a constant value.
From now, we will simply write:

P(z/z) o< P(z/2)P(2) 3)

Maximizing this a posteriori law (MAP) is equivalent to get-
ting the most probable labels field’s realization, knowing the
observations field.

2.2 Markov field and Gibbs distribution

We call V = {v,} a site neighborhood system for S. A
neighborhood system has the two following properties: s ¢
vsand s € v, & r € vs. Asubset C C S is a clique
if every pair of distinct sites in C' are neighbors and C is the
set of cliques. In our study, we will only use the neighboring
system based on the four nearest neighbors (4-connecivity)
and the eight nearest neighbors (8-connectivity). A random

field Y = {Y;, s € S} is a markovian field associated to the
system vy if and only if:

P(Y =y)=P(y) > 0,Vy € Qy @
P(Y;)Y,,re8S—{s})=PY;/Y,,r €vs)

From Hammersley-Clifford’s theorem, the distribution func-
tion of a Markov random field follows a Gibbs’ law:

exp (=U (y))
Z

Y

P(y) = ®)

in which U is an “energy function”. U can be written as:

Uy) =Y ®c(y) (6)

ceC

where ®¢ : Q!ym — R is the potential corresponding at C'
with @ (y) = Po(yce). |A] is the cardinality of the A set
and in the special case of a clique, it is called its order. y¢
denotes the set {y/y € C'}.

Therefore, if the markovian assumption is done about the
hierarchical field of the part 2.1, (X, Z), the equation 3 can
be written in a general way as follows:

exp(—Ui(x, z) — Ua(2))

P(z/x) = 7@)

(7

in which U; is an “energy function”, depending on the con-
ditional observation fields, and U, another energy function
depending on the label field. Z(x) is a normalization con-
stant depending on x. Let define now U(z) = Uy(z, z) +
Us(z) as x is the given observation field.

The MAP estimated of z (see part 2.1) can be written now:

2 = argmax [P (z/z)] = argmin Uy (z, 2) + Uz (2)]
2€0Q; 2€0Q;
®)

We have to optimize U : Q‘Zsl — R. Simulated annealing
(SA) based on Gibbs sampler has been shown to be adapted
to such an optimization problem. In the next part, we present
the stochastic model we have chosen and the form of the
corresponding potentials.

2.3 Stochastic modeling

The conditional field X is now supposed to be composed
of K textures. So, we have K probability laws describing
the gray pixel value variations in = for the different clus-
ters belonging to the K textures. Different choices can be
done for this probability laws [8]. In this paper, we are mak-
ing the assumption that our observation field is a mixture
of K i. i. d. (independently and identically distributed)
gaussian process. This assumption allows us to use Maxi-
mum Likelihood based algorithm like SEM [11] for estimat-
ing K and the different model parameters, 6, = {ug, ok},
k =1...K, where uj, and oy, are respectively the average



and the standard deviation of the texture k.
Now, we suppose that K and 0 = {0y, k=1...K} are
known. Then, we will have:

P(x/z) =[] f(2s/2) )

seS

with f(zs/zs) is a gaussian law N (p,,,0,,). Therefore,
we can write Uy (z, ) as:

(Ts — piz, )2

Vi@ =y (UQ +log(on) | 10
seS Zs

This energy can be seen as a sum of local potential based on

one order cliques:

(l‘s - ,UZS)

(I)i (xs, ZS) = 952

+log (02,) (11)
It remains to propose a model for the label field. In many
papers, the Potts model is used [8]. This assumption cor-
responds to a general hypothesis on the label field: the dif-
ferent classes can be permuted without any influence on the
probability law. We propose to use a more general formal-
ism mixing the Potts model, as it is used in [5], and the gen-
eral auto-model from Besag [13] in order to include some
additional informations to Potts model:
Us (2) = ZS(I)S (z5) + B > (1=0(zi,25))+
se

<i:j>1

12)
2 (1= 0(z ) ‘
(,3)5
where forp =1, 2:
(i,§) € S;i# 5 (i,5), & (13)

ACeC/{ijr e Clli—jl, = vp

So, it is possible now to express the local probability law at
site s € S:

Us (s, 25))

exp (—
Zs (x5,05)

Ps (2s/25,2°) = ps (25 /25, 05) =
(14)
with z° = {z;/s € S — {s}} and

U, = L (24, 25) + Dy (25) + OF (24)

(I)f (2’5) =7 Z(: > (1_5(357257“))_"
TEVs:(S,T)q
% S (1 =6(2s,2r)) (15)

TEVsi(S,T),

Zs (xs,05) = > exp(—Us (s,25))
2s€8Q,
®, must be chosen to respect the context of applicability
of MCMC methods like SA [4]. Moreover, SA implies the
introduction of a temperature 7" in the Gibbs distribution.
The local probability can then be written as follows:

—Us (1}5, ZS/T))

exp (
Zs (zs; UsvT)

DPs (Zs/xsa zs) = Ps (zs/xm Us) =
(16)

®, will allow us to integer geometrical and/or topological
informations, i.e. “global” informations, on the segmented
field at each iteration. Let’s present now the topological
map.

3 Topological map

Topological maps allow to represent the nD regions seg-
mented images. They encode at the same time topology and
geometry of images. Topological maps are combinatorial
maps with particular properties. So we are beginning by re-
calling the notion of combinatorial map before present the
topological map structure.

3.1 Combinatorial maps

Combinatorial maps were introduced in the sixties by [14],
at first as a planar graph representation model. They were
extended by [15] in dimension n to represent orientable or
not-orientable quasi-manifold. They encode space subdivi-
sions and all the incidency relations. They are made of ab-
stract elements, called darts, on which are defined applica-
tion, called ;. We are giving here the combinatorial map
definition in n dimensions, that we can find for example in
[16]:

Definition 1 (combinatorial maps) Let n > 0. A n com-
binatorial map, (or n-map) is an (n + 1)-tuple M =
(B, B1,-..,0n) where :

1. B is a finite set of darts;
2. (31 is a permutation on B;
3. V2 <i <mn, B; is an involution on B;

4V1<i<n-2Vi+2<j<n BiofBjisan
involution.

In this definition, there is an application (; for each space
dimension which puts in relation two ¢ dimension oriented
cells. When two darts are linked with §;, they are said f3;-
sewed. Each space cell is implicitly represented by a set of
darts. We can see figure 1.a an example of an image and
figure 1.b the corresponding combinatorial map. Each dart
is represented by a segment, the (5 relation by light grey
arrows and the (5 relation by dark grey arrows. (37 put in
relation a dart and the next dart of the same face. For exam-
ple, the light grey face of the image is represented by four
[B1-sewed darts in the map. The adjacency between this face
and the dark grey face is represented by two darts So-sewed
together. We are using the simplified representation (fig-
ure 1.c) that does not represent explicitly the applications,
because it is more understandable.
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Figure 1: An object and the corresponding combinatorial
map represented by two different ways.

3.2 Topological map

A topological map’s construction needs the cluster-based
partition of the image, as opposed to its classes-bases parti-
tion we get from the markovian segmentation algorithm. So
its construction will be preceded by a clusters growth algo-
rithm, introduced to split all clusters belonging to the same
class.

The topological map’s construction consists in taking the
pixels’ border elements, to coherently define the image’s
topology: the space is subdivided in elements and bor-
ders’ elements, with which are provided incidence and ad-
jacency relationships. Figure 2 represents a clusters-based
segmented image and its interpixel borders. [17, 18] pro-

a. A segmented image
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b. Its clusters’ interpixel borders

Figure 2: Interpixel Vision

poses to redefine the topological map in the 2-dimensional
space, introduced by Luc Brun in [19], a simpler way, so it
makes it easily expendable in n-dimensional spaces. This
definition uses simplification levels we show below:

1. Level O: Full map
It is the starting point of the process. This map doesn’t
code the image’s borders but simply all its interpixel el-
ements. It is composed by squared faces, each of them
represent a pixel of the image (figure 3).
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Figure 3: Level 0: Full map

2. Level 1: Linel map
Level 1 map is obtained from the level 0 map and en-
codes the image’s interpixel borders. This is done by
removing every edge of that level 0 that doesn’t belong
to a border line of the image (figure 4).
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Figure 4: Level 1: Linel map

3. Level 2: Borders map
It simplifies the linel map, by using edges to represent
parts of a straight-line border instead of interpixels be-
longing to a border line of the image (figure 5).

4. Level 3: Topological map
From this last simplification level results the topolog-
ical map, which now associates a single edge to each
border (figure 6).
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Figure 5: Level 2: Borders map

Figure 6: Level 3: Topological map

This last level is the topological map which encodes all topo-
logical and geometrical information of the represented im-
age. Moreover, it is minimal, stable for rigid transformations
and unique. So a topological map is characteristic of an im-
age. These properties ensure that this model is an efficient
way to encode information contains in an image. So we are
going to use this model to extract some global informations,
for instance size or shape of clusters, number of adjacent
clusters, clusters totally included into another. . . The follow-
ing part proposes an exploitation of some of these informa-
tions.

4 Integration of geometrical and
topological informations

4.1 Unsupervised segmentation

The main purpose of this work is to make an algorithm able
to treat any image. So we are looking for wanted or un-
wanted geometrical or topological features that could appear
in the estimated label field.

One of these unwanted features is the presence of isolated
pixels or small clusters. So, the first potential & (see equa-

tions 14 and 15) we propose is a “size” potential: It imposes
a minimal size, S,,;n, under which the probability of pixel
s to belong to a cluster will be disadvantaged. s, thresh-
old’s can be chosen proportional to the size of the image to
segment.

Disadvantaging a site’s membership to a cluster also equals

Figure 7: ®$%*¢ Size potential evolution in function of clus-
ter size

minimizing its a posteriori law, or maximizing the U en-

ergy of the Gibbs probability. The chosen “size” potential
function (figure 7) is written:

Psize = 5 (1 + 1(|As(zs)>8min|) X

(17)
(exp (= (|45 (25) — Sminl)) — 1))
. 1if |As (25)] > Smin
With 114, )l > ) = 0 otherwise and
As (zs) is the connected set of sites r such as z, = z,,

i.e. the cluster at which the site s belongs. 7 and x are
two constants which represents respectively the weight of
the potential in the Gibbs energy function and the exponen-
tial decrease of ®5¥*¢,

To introduce this part, we have evoqued our intention to
make an unsupervised algorithm. We are then now facing
the difficulty to find wanted or unwanted features on the la-
bel field other than small clusters: we want the topological
map to give us informations about the shape or the adjacency
of clusters and use these informations to segment the image.
But, advantaging or disadvantaging a cluster in function of
its shape or adjacency is a choice that can only be made by
the user, for a given image. So, this is the purpose of the
next part.

4.2 Semi-supervised segmentation

Let’s take two examples: an image representing geological
cuts (figure 8) and the “House” image (figure 9).

In the first case, the purpose of segmentation is to keep
the identified seismic faults (see 8.b). Our algorithm, at its
present state, is unable to get a satisfying segmentation of
that image. But if we decide to use the fact that fails rep-
resent relatively long and narrow, mainly vertical, clusters,
and ask it to advantage this type of clusters, the result could
become convincing.

In the case of the “House” image, the window to our left
is a rather small cluster that could disappear on during the
segmentation, although we would like to keep it. This clus-
ter has an interesting propriety: it is adjacent to only one
cluster (the wall). Here is another information we can easily
get from the topological map. To reduce the risk to see this



a. Geological cut

i el

AR
<

b. Seismic faults

Figure 8: Geological cut

Figure 9: “House” Image

cluster disappear, we have to provide the information to ad-
vantage clusters that are adjacent to only one cluster.

In this paper, we limit our presentation to the unsupervised
case. So, the following part gives results of the segmenta-
tion algorithm with and without the use of the size potential
(see equation 17).

5 Segmentation on synthetic and nat-
ural images

5.1 Synthetic image

Figure 10.a shows a synthetic (32 x 32) image which is a
realization of different gaussian i.i.d. process. Figure 10.b

represents the last iteration of the SEM algorithm. The num-
ber of classes and model parameters have been correctly es-
timated. In MCMC methods, the final result of the Markov
Chain process depends not on the initial law on X. So, we
used the last iteration of the SEM algorithm as initialization
of the SA. We start from an initial temperature 7 = 1 and
use the classical decrease scheme: T}, = 0.99%T;,. We fix
8 =1

Figure 10.c shows the result of the SA after 200 iterations
without taking account the potential on clusters. We can

a. Original image. b. First step segmentation :

SEM'’s last iteration.

c. SA Without size potential.  d. SA With size potential.

Figure 10: Synthetic image

notice on this first segmented image a few incoherences:
badly-defined borders, a few “isolated” pixels, that don’t
look meaningless when showing at the original image, but
that we don’t want to show off on the final partition.

To increase (3 is not a solution because it will produce a de-
crease in the accuracy of boundary estimation. However,
additional informations about the image’s clusters, such as
their size, or adjacency, could be used to perform these kinds
of enhancements. These informations, we call “global”, as
opposed to our previously used “local” informations, can be
extracted from the topological map.

Figure 10.d shows the estimated label field when using SA
with the size potential with s,,,;,, = 2, kK = 1.5 and v = 10.
We can notice on figure 10.d the disappearing of isolated
pixels and still exact boundaries. So, the size potential al-
lows an enhancement of the segmentation process. Let’s see
now on a natural image.

5.2 Natural image

We used the “House” (128 x 128) image (see figure 11.a).
Figure 11.b show the last iteration of the SEM algorithm we



used as an initialization for SA algorithm. On figure 11.c
and 11.d, we can notice that the noise on the wall without
the use of the size potential disappears when using it.

(a completer)

6 Conclusion

The algorithm we have proposed shows up as a markovian
relaxation algorithm, to which are added global informa-
tions about the image, extracted from the topological map,
as energy potentials, thanks to the Gibbs distribution. It
should be able to deal with any image, as long as the user
provides it an information, as simple as it can be, about the
cluster he wants to advantage or disadvantage’s characteris-
tics. A possible way to handle this would be a user interface,
on which choices such as “advantage long and narrow clus-
ters”, “advantage vertical clusters”, “advantage clusters ad-
jacent to only one cluster”, etc. In the case of “difficult” im-
ages, we could also remove the learning phase (SEM) and di-
rectly provide the relaxation algorithm the image’s stochas-
tic model’s parameters. Then it would be supervised seg-
mentation. Moreover, there are many different possibilities
to add some more topological or geometrical informations
to the simulated annealing. We currently work at the defini-
tion of some criterion based on some of these informations.
We think that these new criterion can strongly improve the
result of our final segmentation.
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