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Abstract. One of the most commonly used approach to segment a 2D
image is the split and merge approach. In this paper, we are defining
these two operations in 3D within the topological maps framework. This
mathematic model of regions segmented image representation allows us
to define these algorithms in a local and generic way. Moreover, we are
defining a new operation, the corefining, which allows to treat big images.
They are cut into small units, treated separately, then the result of each
of them are combined to reconstruct the final representation. These three
operations let us view efficient 3D segmentation algorithms, which is a
difficult problem due to the size of data to treat.

1 Introduction

The region segmentation is a difficult problem that was studied in many differ-
ent works in 2 dimensions. It consists in making a partition of an image into
connected sets of pixels verifying an homogeneity criterion, and that we are call-
ing regions. The main approaches for the region segmentation are the split and
merge methods.

The top-down approach [16, 13] consists in taking big regions and cutting
into smaller and smaller regions. The bottom-up approach [6, 11] is the opposite
approach, which begins with many small regions that are merged into bigger
and bigger regions. At last the mixed approach [12, 17] consists in mixing the
two previous ones, possibly making again the process until for example, result
stabilization.

These approaches require a “good” model of images representation. Many
works in 2 dimensions [10, 7, 8, 3] have shown that topological maps are a
model that allows to introduce these segmentation algorithms in an efficient way.
Moreover, thanks to that model we can also define many processing algorithms
allowing to access or to modify the result of this segmentation.

Recently, the topological maps have been extended in dimension 3 [5, 2]. In-
deed, more and more domains need to work in dimension 3, as medical imagery,
geology, or industry. In order to carry out segmentation algorithms as in dimen-
sion 2, we need to define basic operations on topological maps. This problem
turns out to be more difficult than in dimension 2, because first now we have an
additional dimension, that sets down new problems, but also because it is much



more difficult to represent and to make visual objects in 3 dimensions. These
visualization problems act as a brake to the comprehension and the development
of new algorithms. Moreover, there are complexity constraints, in memory space
as well as in execution time, that are much more important than in dimension
2. Indeed, the treated data quantity is much more important in dimension 3. It
requires us to define very efficient algorithms to use them on big images.

In this paper, we present the two algorithms of merge and split on the 3D
topological maps. These two algorithms are the basic operations for the regions
segmentation. The use of the topological maps let us define these algorithms in a
generic way, because they work on any configuration, and in a local way because
they treat the map element by element, only looking the direct neighborhood of
the current element. These two properties make these algorithms more simple to
understand but more efficient in complexity too. We also present the algorithm
of corefining that allows us to treat big 3D images in parallel. We are going
to cut this image into several small units, we are going to segment each unit
in parallel, then we will reconstruct all the image with this units, using the
corefining operation. Because of a lack of space and to not lose ourselves into
technical details we are just presenting the principle of the algorithms and the
main ideas of these three operations. For more details about these operations,
we can report to [18, 19].

We are first presenting Section 2 the combinatorial maps then the topological
maps that are combinatorial maps verifying specific properties. Then we are
presenting our three algorithms : merge Section 3, split Section 4 and corefining
Section 5. We are describing their principle and the different cases we have met.
At last, we are concluding and presenting some perspectives Section 6.

2 Topological Maps Recall

Topological maps allow to represent the nD regions segmented images. They
encode at the same time the topology and the geometry of images. Topological
maps are combinatorial maps with particular properties. So we are beginning by
recalling the notion of combinatorial map. This is just a short reminder; a more
detailed description can be found in [5, 1].

2.1 Combinatorial Maps

Combinatorial maps are a mathematical model of representation of space subdi-
visions in any dimension. They were introduced in the sixties by [9], at first as a
planar graph representation model, and extended by [14] in dimension n to rep-
resent orientable or not-orientable quasi-manifold. Combinatorial maps encode
space subdivisions and all the incidency relations. They are made of abstract
elements, called darts, on which are defined application, called βi. We are giv-
ing here the combinatorial map definition in n dimensions, that we can find for
example in [15].



Definition 1 (combinatorial maps). Let n ≥ 0. A n combinatorial map, (or
n-map) is an (n+ 1)-uplet M = (B, β1, . . . , βn) where :

1. B is a finite set of darts;
2. β1 is a permutation on B;
3. ∀i, 2 ≤ i ≤ n, βi is an involution on B;
4. ∀i, 1 ≤ i ≤ n− 2, ∀j, i+ 2 ≤ j ≤ n, βi ◦ βj is an involution.

In this definition, there is an application βi for each space dimension which
puts in relation two i-dimensional cells. When two darts are linked with βi,
we say that they are βi-sewed. Each space cell is implicitly represented by a
set of darts. We can see figure 1.a an example of an image and figure 1.b the
corresponding combinatorial map. Each dart is represented by a segment, the
β1 relation by light grey arrows and the β2 relation by dark grey arrows. β1 put
in relation a dart and the next dart of the same face. For example, the light
grey face of the image is represented by four β1-sewed darts in the map. The
adjacency between this face and the dark grey face is represented by two darts
β2-sewed together. We are using the simplified representation (figure 1.c) that
does not represent explicitly the applications, because it is more understandable.

a. A 2D object. b. The corresponding map. c. Simplified representation.

Fig. 1. An object and the corresponding combinatorial map represented by two differ-
ent way.

2.2 The Topological Maps

In the combinatorial maps framework, several representations of a single ob-
ject exist. We want a unique characterization of objects, for example to make
easier isomorphisms. That is the main goal of the topological maps. They are
mathematical model of 3D segmented images representation, which encode all
incidency and adjacency relations. They represent interpixel elements composing
the edge of boundary faces of an 3D image. Moreover, they are minimal, stable
for rigid transformations, and they characterize the image’s objects with their
topology. We remind that a boundary face is a surface between two neighbouring



a. A 3D image b. Its boundary faces. c. The topological map.

Fig. 2. A 3D image and the corresponding topological map.

regions. We can see on figure 2.a an example of a 3D image, and on figure 2.b
its boundary faces. The construction of a topological map is progressive : at
the beginning all image’s voxels are encoded with a combinatorial map, then we
simplify this map with successive mergings. The corresponding topological map
of our example is shown on figure 2.c. We can see that each face of the map
encodes a boundary face of the image.

Inclusions of volumes are represented by a inclusion tree where each node
corresponds to a region and its son nodes correspond to included regions. The
root is R0, the infinite region which rounds up the image. When there is a
hole on a face, the connexion between exterior and interior borders of this face
is represented with a virtual edge. This is a one degree edge (that is adjacent
twice to the same face). Such an edge should have been removed during the
construction of the topological map, but have been retained to conserve the
map connected, and each face homeomorphic to a topological disk. These edges
are also useful to represent closed faces (without border), as we can see for the
torus example shown figure 3.

a. A torus. b. Intermediary step. c. The topological map.

Fig. 3. The topological map of a torus.

This torus is represented with a single closed boundary face. An intermediate
step of the topological map’s construction is shown on figure 3.b, where we can



see two virtual edges (in grey) which keep the upper and lower faces connected.
The topological map shown figure 3.c is only composed of virtual edges. We
obtain the classic minimal representation of the torus composed of one face, one
vertex and two edges.

Combinatorial maps encode only the topological part of our model. To encode
the geometry of the corresponding image, we are using a geometrical model,
which links a geometrical face to each topological face of the map . We are
calling embedding this geometrical model. This distinction between topology
and embedding allows the differentiation of treatments and sometimes enables
a hierarchization of these treatments. Indeed, some operations only work on the
topological model, others only on the geometrical model, and some on both. We
can see figure 4.a the topological map of two adjacent objects and figure 4.a the
embedding of these objects. Each dart of the topological is linked with the border
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Fig. 4. Embedding example of a topological map.

of an embedding surface. For our example, the dart named a of the topological
map is linked with the surface named 1, the two darts named b and c are linked
with the same surface 2 because they belong to the same topological face, and
the dart named d is linked with the surface 3.

3 Merge

The merging operation consists, starting from two adjacent regions R1 and R2,
to gather them into a single region R’, union of the two first regions. Algorithm 1
make this operation on a topological map. It is local because it treats indepen-
dently each dart of R1. There are two different cases depending if the current
dart belongs to a virtual edge or not.

In the first case, we are testing if the deletion of this edge disconnects the map
into several connected components. If it happends, we are modifying the inclusion
tree this way. In the second case, we are just sewing the two faces adjacent to the
currently treated edge together, and we are deleting this edge. This operation is
made for all the darts of the boundary faces, so the two regions are merged and
boundary faces are finally destroyed. At last, the topological map is simplified,



Algorithm 1 Merge 3D

Data: Two adjacent regions R1 and R2.

Result: The two regions are merged into R2.

foreach dart b of the region R1 do
if b belongs to the boundary between R1 and R2 then

if b belongs to a virtual edge then
foreach dart t of the orbit < β1, β2 > of β1(b) and β13(b) do

if all regions of β3(t) are included into R1 ∪R2 then
Daughter(R2)=Daughter(R2)+regions of the connected
component of β3(t)

Destroy the virtual edge incident to b;

else
β2-sew(β2(b), β32(b));
Destroy β3(b) and b;

Simplification of R2;

because operations could have made the map incoherent or not minimal. For
that, first we are removing degree 2 vertex and edges. Then, as virtual edges have
just a topological existence, they can be moved to reduce the edge number. These
simplification step guarantee the minimality of the topological map. Moreover,
during this step, we are using the Euler characteristic to keep invariable all
topological characteristics of the map.

We can see figure 5 an example of the merging operation. Figure 5.a shows
a topological map that represent three adjacent objects, before the merging of
R1 and R2. Figure 5.b represents the map obtained after the merging. We have
destroyed the face between R1 and R2 and β2-sewn each other darts incident to
this face. We can see on this figure that this map is not a topological map because

1R
R 2

R2

a. A topological map. b. After the merging. c. After the simplification.

Fig. 5. An example of Merge 3D

it is not the minimal representation. Indeed, we have two edges incident to only
two faces. These edges can be removed without lost of topological information.
This is done by the simplification step of our algorithm. After the removal of



these edges, we obtain some vertices incident to only two different edges. They
can be also removed without lost of information. Finally, we obtain the map
shown figure 5.c that is the topological map representing two adjacent objects.
We can note that this simplification step can be performed during the merging,
but this leads to a less understandable algorithm, but also with a more efficient
complexity. We chose to present here the more simple algorithm, even though
its complexity is a little higher, to make easier its comprehension.

4 Split

This operation is the opposite of the merging one. It consists in spliting a region
by a separation face. This face is composed of a list of vertices which represent the
intersections of a plane and the edges of the map. Constraints have been fixed on
this separation face to simplify the algorithm and to limit the number of different
cases to treat. A simple solution to do complex splits is to combine several
simple splits and merge operation to obtain the wanted result. The principle of
the algorithm is first to insert a new boundary face into the embedding then
the corresponding boundary face in the topological map which represents the
region.

There are three different cases :

1. If the separation face of R1 cuts the edge of an already existing boundary
face, like the example shown figure 6.a. New vertices will be inserted into this
boundary face then they have to be separated with inserted edges between
these vertices. At last the new boundary face can be inserted in the middle
of the region. It is sewed on this new edge. We can see on figure 6.c the
resulting topological map of the operation of spliting.
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a. Two adjacents cubes. b. The corresponding map. c. After the split.

Fig. 6. Case 1 of Split 3D

2. If the separation face does not cut any edge of already existing boundary
faces (figure 7.a). A new face is inserted which is composed by four half-faces.
These half-faces are copying of cutted region’s faces. Two of this half-faces
are linked with an virtual edge because they represent the same surface as
it is shown on figure 7.b.



Algorithm 2 Split 3D

Data: A list List of vertex representing the separation face
A region R.

Result: R is splited in two regions along the separation face.

foreach dart b of R do
foreach dart t of the embedding of b do

foreach vertex S of List do
InsertVertexPlongement(S,t);
if t is on an edge then

InsertVertexMap(S,b)

if the separation face cuts an edge then
separate the concerned boundary face;
Create 2 new boundary faces and β2-sewed them to the previous separated
boundary face;

else
if the separation face cuts a closed face then

Create 4 faces composed each by a single dart a, b, c and d;
Insert a in the closed face;
β2-sew(a, b); β2-sew(c, d); β3-sew(b, c);

else
// The separation face cuts a not closed face F without cutting its edge;
Create 4 faces Fa, Fb, Fc andFd copyings of F ;
β3-sew Fc and Fd and link Fa et Fb with a virtual edge;
Insert the 4 faces between F and the face which was β2-sewed to F ;

Simplify the map;
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a. Two adjacents cubes. b. After the split.

Fig. 7. Case 2 of Split 3D



3. If the separation face cuts a closed face. A closed face is only represented with
virtual edges in the topological map. There is an example on figure 8.b with
its embedding in a. To obtain the minimal map, the new inserted boundary
faces are only composed with one dart and one of this faces has to be directly
β1-sewed to the closed face. The result of the split for a torus is shown on
figure 8.c. We can verify with the Euler formula that the characterization
of the torus is preserved. There is now 1 vertex, 3 edges and 2 faces, which
gives a genius of 1.
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a. A torus and the
separation face.

b. The corresponding map. c. After the split.

Fig. 8. Case 3 of Split 3D

5 Corefining

One method to segment a big 3D image consists in cutting it into several parts
and segmenting each part in parallel. During the reconstruction of the image, we
have to glue back the different segmented parts. The operation which performs
this glue back is the corefining. To design the two faces of each volume which are
going to be put in contact, we are passing two embedding darts to the algorithm.
The faces which contain these darts gives the coordinates of the corresponding
planes (as we works with interpixel).

In a first time, we build the new boundary faces. For that, we extract the
embeddings of the two faces belonging to the two planes, because we consider
that the initial image was cut in regular parts. We are building the map of
these new border faces A and B. This construction can be different if the new
boundary face cuts a closed face or the border of an existing boundary face, in
a similar way that the three different cases explained for the split. We can see
figure 9.a an example of this first step.

In a second step, we are inserting the intersection vertices of the two faces
A and B in the embedding of the two maps of these two faces. These two maps



a. Step 1. b. Step 2. c. Final result.

Fig. 9. Corefining principle.

have now exactly the same vertices, topological as well as geometrical. We are
β3-unsewing and destroying faces belonging to R0 which are previously β3-sewn
to A and B. Then, for each dart of A, we are looking for a similar dart in B
(a dart which connects the same vertices). If such a dart does not exist, we are
adding in B a copy of this dart. And we are exactly doing the same operation for
each dart of B, with eventually adding some copies in A. Then we are obtaining
two faces A and B totally similar, as we can see on figure 9.b. We just have to
β3-sew these two faces. For that, we are using the same coverage of the darts of
A and B, and β3-sew each couple of darts. We can see on figure 9.c the result
of this final operation.

Algorithm 3 Corefining 3D

Data: Two maps M1 and M2 and two darts d1 and d2 of their embeddings.

Result: The maps M1 and M2 are β3-sewn by the faces containig d1 and d2.

Step 1:
foreach region R of M1 (resp. M2) do

Building the new boundary face A (resp. B) of R;
Extracting this embeding and set it to A (resp. B);

Step 2:
Inserting intersection vertices of A and B into the faces A and B;
foreach dart d of A do

if it does not exist in B a dart similar to d then
Add a copy of d in B;

foreach dart d of B do
if it does not exist in A a dart similar to d then

Add a copy of d in A;

foreach dart a and b of A and B joining the same vertices do
β3-sew(a, b);



6 Conclusion

In this paper, we have presented the basic operations for the 3D segmentation :
merge and split plus an interesting operation in a parallelization goal : corefining.
These operations are defined on the 3D topological map, a mathematical model
of 3D images representation. The two first operations were already presented
in [4], but our approach differs from this solution by our aims to define local
algorithms. The last operation is very interesting, because it allows us to segment
big images by working in parallel onto different small parts of the image. Such
a segmentation is very difficult to perform if we want to do in a direct way.

We have totally used all the topological map properties to obtain algorithms
the most generic as possible. We are thus obtaining operations working on every
possible case. Moreover, these algorithms operate in a local way, which simpli-
fies a lot the different treatments. Indeed, we are treating each element without
particular order, and we just have to look at the direct neighborhood of the cur-
rent element. These different advantages allow us to obtain algorithms relatively
simple and understandable, but also to keep a good complexity.

Now, we have to implement these three operations in our computer software,
to obtain finally some 3D segmentation algorithms. We are currently working
to use these algorithms to perform segmentation refinement. Our approach con-
sists in starting from a first segmentation, performed in a classical way on the
voxel matrix with some algorithms used in the signal treatment research. Then,
we are computing the topological map corresponding to this first segmentation.
We can thus perform some treatments onto this map to refine this segmenta-
tion : automatic treatments, for example to remove small regions or particular
configurations, or interactifve treatments made by an expert. These results are
under development to obtain a software for cerebral tumor diagnostic. More-
over, we also work on some other operations, that could be combination of these
three basic operations, but also some specific ones as the chamfering or boolean
operations.
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