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Abstract. Topological map is a mathematical model of labeled image
representation which contains both topological and geometrical infor-
mation. In this work, we use this model to improve a Markovian seg-
mentation algorithm. Image segmentation methods based on Markovian
assumption consist in optimizing a Gibbs energy function. This energy
function can be given by a sum of potentials which could be based on the
shape or the size of a region, the number of adjacencies,. . . and can be
computed by using topological map. In this work we propose the integra-
tion of a new potential: the global linearity of the boundaries, and show
how this potential can be extracted from the topological map. Moreover,
to decrease the complexity of our algorithm, we propose a local modifi-
cation of the topological map in order to avoid the reconstruction of the
entire structure.

Keywords. Markovian segmentation, topological maps, region segmen-
tation, boundaries linearity.

1 Introduction

Topological maps were studied since several years in 2D [1–3] and more recently
in 3D [4–7]. Indeed, a topological map represents a labeled image with interesting
properties: it is minimal in number of atomic elements (darts); it is complete, it
represents both topology and geometry of the image; and it is unique. For these
reasons, topological map allows to retrieve most of the information which may
be required by an image processing algorithm with a low computational cost. So
the topological map seems to be a good tool to define efficient image processing.

The main objective of image segmentation is to partition the pixels of an
image. In such context, there are two main research axes: the boundary and the
region based methods [8]. Fusions of both approaches have also been proposed.
Image segmentation can be used in many applications like content-based image
retrieval, computer-aided medical diagnostic, recovery of shape information from
an image,. . .

In previous works [9–11], topological map was often used in split-and-merge
algorithms, since it is well suited to implement efficiently such methods. In this
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work, we present a new utilization of the topological map to improve a Markovian
segmentation algorithm.

The image partition contains areas of pixels considered as homogeneous fol-
lowing some properties. Using Markov models and Monte-Carlo Markov Chain
(MCMC) implementation like Simulated Annealing (SA) [12], the only properties
used for aggregating pixels are often statistical properties [13–16]. Nevertheless,
many other geometrical or topological information on the segmented or label
field could be used: the Markovian assumption for the representation of the hi-
erarchical field composed by an observation field and a label field leads to an
unnormalized Gibbs distribution; the energy of the Gibbs distribution can be
written as a sum of potential functions which is a powerful tool for the fusion
of information; geometrical or topological information on the label field could
then be integrated in potential functions. Our aim is then to find some potential
functions based on geometrical or topological properties and to compute them
thanks to the topological map. In this paper, we show how to favor the creation
of regions with linear boundaries during the segmentation process.

We first present in Sec. 2 a brief recall on topological maps that are com-
binatorial maps extended to represent images. Then in Sec. 3 we introduce the
Markovian image segmentation and show how potentials are integrated in such
a process. In Sec. 4 we define our new potential used to favor linear bound-
aries, and present how this new potential is integrated with topological maps
in Sec. 5. We give experimental results in Sec. 6, then we conclude and present
some perspectives in Sec. 7.

2 Topological Maps

Topological maps are an extension of combinatorial maps [17, 18] in order to
represent in a unique and minimal way a labeled image. Indeed, combinatorial
maps are a good model that allow to represent any orientable, quasi-manifold,
closed subdivision in any dimension, but one object can be represented by differ-
ent maps. We present here briefly the main notions of combinatorial maps and
of topological maps (see [19, 5] for more details).

Intuitively, a 2D combinatorial map is an extension of a planar graph that
keeps the orientation of edges around each vertex. Each edge of the graph is
divided in two parts. Basic elements obtained are called darts and are the unique
atoms of the combinatorial map definition. A combinatorial map is an algebra
composed by a set of darts that represent the elements of the subdivision, and
2 mappings defined of these darts that represent adjacency relations (this can
be easily extended in nD, with n mappings).

We can see in Fig. 1 an image and the corresponding topological map. In
this figure, there are 20 darts numbered from 1 to 20. β1 is a permutation1

that connects a dart and the next dart of the same face. There are for example
β1(2) = 3 and β1(3) = 11. β2 is an involution2 that connects the two darts

1 A permutation on a set S is a one to one mapping from S onto S.
2 An involution f on a set S is a one to one mapping from S onto S such that f = f−1.
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Fig. 1. (a) A 2D image drawn with its interpixel boundaries. (b) The corresponding
topological map. Each dart is represented by a numbered arrow. β1 connects a dart and
the next dart of the same face (drawn consecutively, orientation is represented with
arrows). β2 connects two darts drawn parallel, close to each other, and with reverse
orientations. (c) The embedding used in this work (partial representation). Each edge
is linked with an 1D oriented curve. Only one dart of the two that composed an edge
points to the 1D curve (liaisons are represented by dash arrows). The orientation of
the curve is given by the orientation of this dart.

belonging to the same edge. In our example, there are β2(1) = 2 (and since
β2 is an involution also β2(2) = 1). When two darts d1 and d2 are such that
βi(d1) = d2, we say that d1 is i -sewn with d2. We call i -sewing (resp. i -unsewing)
the operation that connects two darts for βi (resp. disconnects).

A topological map is a combinatorial map that represents a labeled image
and that verifies particular properties. Indeed, this map is minimal, complete
and unique. These properties lead to another characteristic of the topological
map: each edge represents exactly an interpixel boundary between two regions
of the image (this can be verified in Fig. 1). An interpixel boundary between two
regions Ri and Rj , is the set of interpixel curves such that each linel of these
curves is incident to exactly one pixel of Ri and one pixel of Rj .

Combinatorial map represents the topological part of our model: all the cells
of the space subdivision and all the adjacency and incidence relations. But it
is also necessary to represent the geometry of the image. We call embed the
operation that associates a geometrical model to a combinatorial map, and we
speak about embedding to design this geometrical model.

There are many possibilities to embed a combinatorial map and the choice
of one of them depends on the needs of each application. In this work, we link to
each edge of the map an 1D oriented curve. This curve represents the geometry
of the interpixel boundary associated with the edge. We can see in Fig. 1(c) this
type of embedding for the map already presented in the previous figure (only
a partial representation). Each 1D curve is described with a 1D combinatorial
map (we have so a hierarchical model that facilitates its extension in higher
dimension). Each vertex of these curves represents a pointel of an interpixel
boundary, and each edge represents a maximal set of aligned linels.
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3 Integration of Information in Markovian Image
Segmentation

Let X = {Xs, s ∈ S} a family of random variables on a regular grid S which is
a finite subset of Z2 and an image x = {xs, s ∈ S}, a realization of X. Each
Xs has the same state space that can be Ωx = {0, 1, . . . , 255}, the set of gray
pixel values, or Ωx = R, . . . We now suppose that there is another random field
L = {Ls, s ∈ S} called the label field with state space Ωl = {c1, c2, . . . , cK} for
which a realization will be l = {ls, s ∈ S}. In our case, a label represents the
region to which the pixel belongs.

From these definitions, we suppose that X and L are defined in a hierarchical
way: for each ls, we have a conditional model for Xs that can be, for example, an
independently and identically distributed (i.i.d.) model or a 2D Gaussian Marko-
vian model [13, 15, 16]. As the field X is supposed to be composed of K areas, we
then have K probability laws, defined by the stochastic models chosen, describ-
ing the variations of gray pixel values in x for the different regions belonging to
the K areas. Besides, such models allows the use of Maximum Likelihood-based
algorithms. For example, in the case of the Gaussian i.i.d. mixture model, K
and the parametric models, θk = {µk, σk}, k = 1 . . .K, can be estimated with
a Stochastic Expectation Maximization algorithm (SEM) [20]. µk and σk are
respectively the mean and the standard deviation of the area k. In the following,
K and θk, k = 1 . . .K, are then supposed to be known. At this step, we need
now to estimate the segmented field, l̂, or, in other words, the image partition.

The likelihood method defines the a posteriori law P (L = l/X = x) or
P (l/x) as the probability to get one specific realization of the label field knowing
the observation field. If the Markovian assumption is done about the (X,L)
hierarchical field, P (l/x) can be written in a general form following the Gibbs
distribution:

P (l/x) ∝ exp

(
−U (x, l)

T

)
(1)

in which U is an “energy function”, depending on the observation and label
fields, and T , the temperature.

Therefore, Maximum a Posteriori (MAP) estimation of l, l̂, consists in the
minimization of U in order to maximize P (l/x). SA methods have shown to be
appropriate for such an optimization problem [12]. SA is an iterative process
with decreasing T . For each T , a Gibbs sampler is done on the whole pixel of S:
a label is sampled at each pixel following local probabilities of labels.

The energy function can be seen as a sum of weighted potentials, each one
corresponding to a particular measure on the observation field or the label field.
Potentials can be expressed locally, i.e. for each pixel, thanks to the Markovian
assumption. Local probabilities of labels at each pixel can then be computed
from these potentials. Therefore, the potential functions will allow us to integrate
global information about the label field in a local probability.
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4 The Global Linearity Potential (GLP)

In some regions, favoring geometric properties of boundaries during a segmenta-
tion algorithm can be of interest. As an example, aerial images of cities contain
mostly regions with linear boundaries. In the following, we present a potential
function that is able to take into account such property.

pp l  = gl  = w
?

pixel p

Fig. 2. An example of boundary pixel.

First of all, at a given iteration of the Gibbs sampler, the GLP (called ΦGL)
is calculated only on pixels belonging to a boundary, i.e. we exclude isolated
pixels and pixels inside a region:

ΦGL (lp) =

∣∣∣∣V (lp) , if s belongs to a boundary
0, elsewhere

(2)

V (lp) is the energy function associated with the value of lp. For the example
given in Fig. 2, V (lp = w) is the energy when we consider the pixel p in the white
region, and V (lp = g) the energy when p is in the grey one. To favor the white
case, we search for a function that gives: V (lp = w) ≤ V (lp = g) ≤ V (lp = k) =
1 with (w, g, k) ∈ Ω3

l , w 6= g, w 6= k, g 6= k. To achieve this objective, we
discretize each boundary in a succession of discrete segments. Therefore, we can
choose V as follows, when the pixel s has the label lp:

V (lp) =
nb (lp)

nb(lp)∑
i=1

li (lp)

(3)

where nb (lp) is the number of segments of the boundaries, and li (lp), i =
1, ..., nb (lp), the length of the different segments. If we still consider the ex-
ample in Fig. 2, it gives V (w) = 1

lb
< V (g) = 5

lb+2 < 1, with lb the length in the
case of a linear boundary; lb > 1 as we excluded isolated pixels.

5 Integration of the GLP with Topological Maps

Since the SA is an iterative method, we compute at each iteration a topological
map that corresponds to the current label field. Then, to compute the GLP in
a pixel p, we proceed in four steps:



Using 2D Topological Map Information in a Markovian Image Segmentation 293

1. Test if p belongs to a boundary. Indeed, we compute the GLP only for
boundary pixels, for other pixels GLP is equal to 0;

2. Compute in what regions p can be set. Indeed, since we do not consider the
boundaries of isolated pixels, we can not set p is a region that leads to the
creation of such pixel;

3. Modify locally the map to take into account the modification of the region of
p. This optimization is necessary in order to avoid the entire reconstruction
of the map for each pixel of the image;

4. Finally, compute GLP on this map by using a discretization algorithm.

The first step can be easily achieved by testing the 4-neighbor pixels of p.
When they are all in the same region as p, p is not a boundary pixel and recip-
rocally.

For the step 2, we traverse the topological map in order to find all the darts
that touch p (note that we can obtain the same result by looking at the regions
of the 4-neighbor pixels of p, but darts computed here are going to be used in the
following). We say that a dart touches a pixel when it represents an interpixel
curve that contains a linel incident to the pixel. We can remark that only 0, 1,
2, 3 or 4 darts can touch a pixel. All possible configurations are given in Fig. 3
(We did not represent the cases when no dart and when 4 darts touch p).

p p p p

1 2 3 4

p p p p

5 6 7 8

p p

9 10
(a) 1 dart. (b) 2 darts. (c) 3 darts.

Fig. 3. The configurations of darts around a pixel, sorted in number of darts. Others
configurations can be deduced from these ones by rotations or by changing the length
of the darts.

Given p, retrieving all the incident darts can be done by traversing all the
darts of the region of p, and for each dart by looking if the corresponding 1D curve
contains a linel incident to p (by comparing coordinates). This can be performed
in a linear complexity in number of linels that belong to the boundaries of the
region of p. We present in Fig. 4(a) an image made of 3 regions (white, light
grey and dark grey), and its topological map (in the same figure). The pixel p
touches 2 darts (numbered 1 and 2), which corresponds to the case number 7 in
Fig. 3.

Then we can find all the regions around p, just by recovering the regions of
the darts 2-sewn with darts that touch p. In Fig. 4(a), β2(1) gives a dart that
belongs to the dark grey region, and β2(2) a dart that belongs to the white
region.

The step 3 of the algorithm consists in affecting p successively into all these
regions and modify locally the map in order to represent this modification. For
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1

2
p p p

(a) Initial map. (b) After unsewings. (c) Map obtained.

Fig. 4. A configuration of darts around a boundary pixel, and local modifications
performed to change the region of the pixel.

that, we need to define for each case shown in Fig. 3 how to transform locally the
map. First, we can remove cases numbered 1, 5 and 9 since we do not consider
isolated pixels. For the same reason, we can remove the two cases not drawn in
the figure where p touches 0 or 4 darts. We remove also the case numbered 8
because when we change the region of p this leads to topological modification of
the map. With the GLP, we want to favor linear boundaries only by modifying
locally the boundaries extract from the previous iteration. For this reason, we do
not allow to change the region of p into a region when this leads to topological
modification. So we still only have to consider cases numbered 2, 3, 4, 6, 7 and
10. We present in Fig. 4 modifications performed for the case 7, since we can
not give here all the different algorithms and they are quite similar.

Starting from the map shown in Fig. 4(a), we change the region of p to the
white region. This region touches the dart 2, so we first begin by cutting the
face between the two darts 1 and 2 (see Fig. 4(b)). This is done by unsewing
the two edges incident to the darts 1 and 2 and by decreasing their sizes. Then,
we create two new edges, one which pass to the left of p and the second to the
bottom. These edges are sewn with the darts that were previously sewn with the
initial edges.

The map obtained is given in Fig. 4(c), but this is not the final result. Indeed,
modifications performed here are done for the general case, and we do not obtain
a topological map (the map in Fig. 4(c) is not minimal since there are some
degree two vertices). We prefer to simplify the map after the local modification
in order to propose a general algorithm and to decrease the number of different
cases to consider. We can see in Fig. 5 two examples with the same initial
configuration of darts around p when p belonged to the light grey region. For
both configurations, putting p in the white region leads to the same map (those
presented in Fig. 4(c)) since both local configurations of darts around p are
the same. This is only during the simplification of the map (which merge edges
around degree two vertices) that we perform different operation, and obtain so
the two different maps shown in Fig. 5.

The last step of the GLP computation consists in retrieving, in the modified
topological map, the two numbers used in the V (lp) formula: the number of
segments of the boundaries and the length of the different segments. For that,
we use a discrete curve polygonalization algorithm of the pointels of each 1D
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p p

Fig. 5. Two different maps with same initial configuration of darts around a boundary
pixel when p belonged to the light grey region (initial darts drawn in light grey), and
with different maps after modification.

(a) Original image. (b) SA - without GLP. (c) SA - with GLP.

Fig. 6. GLP influence on a synthetic image.

curves around p (with the algorithm presented in [21]). This gives the number
of discrete segments of each boundaries around p. The length of each segment is
simply computed with the Euclidean distance.

6 Experimental Results

The synthetic (64×64) image given in Fig. 6(a) has been used to test the method.
This image is made up five Gaussian i.i.d. processes, with different means and
variances, inside regions with linear boundaries. The weights between potentials3

have been fixed in order to focus on the influence of the GLP. 200 iterations of
the Gibbs sampler has been realized from T0 = 2 with the decreasing scheme:
Tk = 0.99kT0. Figure 6(b) shows the result without using GLP and Fig. 6(c) with
GLP. Both results are good but boundaries are better with the GLP. Moreover,
the percentage of label errors is 0.3174 for Fig. 6(b) against 0.1709 for Fig. 6(c).

We can see in Fig. 7 one result obtained for a “real” image. We can observe
the influence of the GLP by comparing Fig. 7(b) and Fig. 7(c). Boundaries are
more straight with the GLP, even if the differences are not very visible. We need

3 Besides the GLP, we used three potentials respectively based on the Gaussian prob-
ability law, the local label neighboring and the size of regions.
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(a) Original image. (b) SA - without GLP. (c) SA - with GLP.

Fig. 7. GLP influence on a real image.

more experiments in order to fix the weights associated with each potential and
so to show the interest of this potential in real applications.

7 Conclusion

In this work we have shown how the topological map can be used in order
to improve an existing image processing: a Markovian segmentation algorithm.
Indeed, topological map is a good model that allows to retrieve most of the
information, both topological and geometrical, of the image in an efficient way.
Moreover, this work shows that we can use this model in different algorithm and
not only in split-and-merge approaches.

In other works, Markovian segmentation with MCMC implementation has
been done essentially by using statistical properties. It was due to a lack of
objects that allow to encode efficiently geometrical and topological properties of
the label field. With topological map, we could propose new global potentials
that allows to favor properties of label field. We show in this paper how to favor
the global linearity of the boundaries.

It is possible now to extend this work in order to propose others potentials.
Many others properties can be used, like the shape of a region or the number
of adjacent regions. Our goal is to define a set of particular potentials that
we can use or not, depending on the type of image to process. Moreover, the
definition of algorithms to compute these potentials will probably lead questions
on how to process particular operations on the topological map, like for the local
modification. This is particularly interesting in order to improve our model and
to propose new tools to deal with topological maps.
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