
HAL Id: hal-01513015
https://hal.science/hal-01513015v1

Submitted on 24 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A behavioral perspective in meta-modeling
Saïd Assar, Sana Damak Mallouli, Carine Souveyet

To cite this version:
Saïd Assar, Sana Damak Mallouli, Carine Souveyet. A behavioral perspective in meta-modeling.
ICSOFT 2011 : 6th International Conference on Software and Data Technologies, Volume 2, Jul 2011,
Séville, Spain. pp.238-243. �hal-01513015�

https://hal.science/hal-01513015v1
https://hal.archives-ouvertes.fr

A BEHAVIORAL PERSPECTIVE IN META-MODELING

Saïd Assar
Institut Telecom, Telecom Business School, 9, rue C. Fourier 91011 Evry – France

said.assar@it-sudparis.eu

Sana Damak Mallouli, Carine Souveyet
Université Paris 1 La Sorbonne, Centre de Recherche en Informatique

90, rue de Tolbiac, 75013 Paris – France

{sana.mallouli, carine.souveyet }@univ-paris1.fr

Keywords: Meta-modeling, method engineering, model executability, behavioral perspective in meta-modeling, event-

based meta-modeling, meta-CASE tool, CAME tool.

Abstract: Meta-models are essential artifacts for specifying and reasoning on models and on methods. Traditionally,

meta-modeling follows the “data” perspective and only the structural part of a model is represented. The

“process” and “behavior” perspectives are neglected or partly represented, and for a process meta-model,

such specifications express its enactment and execution semantics. From a Computer Aided Method

Engineering (CAME) point of view, such specifications are necessary for enacting the process part of a

method when specified. In this paper, we defend the position that in process meta-modeling, it is essential to

include the behavior perspective, and that event-based meta-modeling can help in expressing, graphically

and at high level of abstraction, the executable semantics of a process modeling notation. We illustrate this

approach through the construction of event-based meta-models for the intention oriented Map notation.

1 INTRODUCTION

A meta-model is a formal specification of a model

that helps in understanding it and in reasoning on its

structure, its semantics and its usage. Meta-

modeling, which is the activity of constructing meta-

models, is widely used in Information Systems (IS)

engineering and especially in model design and

method engineering (Brinkkemper et al., 1996),

(Rolland, 2007b). It is a powerful conceptual tool to

analyze product and process models, and to design

corresponding CASE tools.

In the literature, meta-modeling is generally used

to specify meta-models that reflect the static

structure of models, i.e. concepts and links between

these concepts (Jeusfeld et al., 2009), (Sprinkle et

al., 2011). For instance, if we consider the meta-

model shown in figure 1, which is an extract of the

SPEM meta-model represented in UML, we notice

that this specification describes the structural

dimension of this process model. It represents SPEM

concepts and how they are inter-linked. How these

elements interact during the execution is not

explicitly expressed in the meta-model.

Figure 1: A fragment of the SPEM Meta-Model, extracted

from (OMG, 2008), p.54

While the "process" and the "behavior"

perspectives are well-known in IS modeling (Olle et

al., 1991), they are generally missing in meta-

models specified in the software engineering field.

Depending on the nature of the studied model, the

lack of these perspectives deprives tools designers

and method engineers of an important knowledge

about the models they are manipulating. In the case

of a process meta-model, the "process" and

"behavior" perspectives inquire in fact on the

executable semantics of the underlying model.

The goal of this paper is to present and discuss

how to take into account the "process" and

"behavior" perspectives when specifying at the

meta-level a process model. We are particularly

interested in process models with interactive

behavior. Indeed, these models (such as BPMN,

Workflow, etc.) were designed to represent

organizational systems involving external agents to

the system. To express these interactions and the

underlying semantics, corresponding meta-models

must take into account not only the structural

perspective (concepts and relationships), but also

dynamic and behavioral perspectives.

This paper is organized into 5 sections. Section 2

presents related works in specifying models

executability. Section 3 briefly provides the basics

of the meta-modeling notation which will be used.

Section 4 is an illustration of our approach applied

on the intentional Map model. Section 5 discusses

the advantages and disadvantages of the proposed

approach, and proceeds with the conclusion.

2 RELATED WORKS

In software engineering, expressing model

executability in meta-models has been studied

extensively, particularly since MDA (Model Driven

Architecture) and MDE (Model Driven Engineering)

approaches to software development have been

introduced. Indeed, given that the MDE approach is

fundamentally based on the extensive use of models

at all phases of software development, the question

of how to execute a model and how to express its

executable semantics quickly arose. A first study on

the relationship between a meta-model and the

problem of expressing the executability of the

underlying model was made on Petri nets in one of

Bézivin works (Breton et al., 2001). The authors

complement the static meta-model describing the

structure of the model (arcs and transitions in a Petri

net) by a dynamic meta-model which introduces data

structures necessary for the execution of an instance

of this model (tags and movement of token).

However, the authors acknowledge that this is not

sufficient to express the model full executability as

the used formalism (UML class diagram) has no

executable semantics, and the authors call for the

creation of an executable UML. And it is probably

the result of these preliminary thoughts on the

problem of expressing model executability in meta-

models that the Kermeta language was proposed and

developed (Muller et al., 2005). Kermeta is an

object-oriented meta-programming language with a

software environment designed for meta-model

engineering. It provides a way to add meta-

specification to an UML meta-diagram. The

Kermeta meta-programming language has been used

to build a comprehensive and executable

specification for simple models like Finite State

Machine (Kermeta, 2011).

Further works in the software engineering and

the MDE communities focused on studying

engineering processes models, because of the

importance of describing, controlling, and

automating procedures by which software systems

are constructed. UML4SPM is an important work in

this register (Bendraou et al., 2005). It defines a

modeling language for representing and enacting

engineering process models. It is based on UML,

and is similar to the OMG's SPEM standard. Several

experiments were made to specify the semantics and

express the executability of UML4SPM using the

BPEL processes execution language and the meta-

specification language Kermeta (Bendraou et al.,

2007). For both approaches, the problem of

interacting with the system environment (the user or

other systems) is highlighted.

In IS engineering domain and especially in

method engineering field, few studies to our

knowledge have addressed the question of the

explicit expression of executability in process meta-

model. As a method definition is a combination of

product and process meta-models, product meta-

model specifications are historically the oldest

(Harmsen et al., 1996). In (Brinkkemper et al.,

2001), the MEL language, which is a formal

language for specifying methods, is proposed. Apart

the structural specification of components, the

process aspect is described in MEL using formal

operators whose semantics is guaranteed by the

underlying mathematical notation. This approach by

assembling components methodology is currently

predominant (Henderson-Sellers et al., 2010);

however, there are still no models to formalize the

approach, neither to specify the methodological

component, nor to formally express the assembly

process (Seidita et al., 2007).

To conclude this overview, we have to mention

meta-modeling formalisms and languages proposed

by CAME and meta-CASE environment. MetaEdit

is a well known tool which allows specifying a

meta-model using the data-oriented static notation

GOPRR (Kelly et al., 1996), and generating a

graphical editor for the specified model (Kelly et al.,

2008), (MetaCASE, 2011). The "process" and the

"behavior" perspectives are relegated to the phase of

code generation where instances of the model can be

manipulated and corresponding instructions can be

generated in any target language (i.e. XML, C++,

Java) using the MERL scripting language. Whereas

the meta-model definition is declarative using a

graphic interface, executability is expressed in an

operational way with a standard programming

interface. This is the main drawback of MetaEdit.

ConceptBase is another meta-modeling

formalism supported by a meta-CASE environment.

which is based on the Telos model (Mylopoulos et

al., 1990), and is implemented using the Datalog

logic based language. ConceptBase is a powerful

graphical meta-modeling environment allowing to

specify any number of abstraction levels, and to

express constraints and queries on several of these

levels. Regarding “process” and “behavior”

perspectives, ConceptBase introduced Event-

Condition-Action (ECA) rules to express the

dynamics of a meta-model. An illustration is given

in (Jarke et al., 2010) with the rules of execution of a

Petri net.

3 EVENT BASED META-

MODELING NOTATION

The aim of this paper is to show the importance

of the behavioral perspective by applying it in

specifying a process meta-model. We argue that

such a description can improve model specification

and consequently facilitate the implementation of a

corresponding CASE tool. For this purpose, we will

first use the UML class diagram to specify the data

perspective of the meta-model. This model can be

complemented with the UML sequence diagram to

express the process perspective. For sake of space,

this step will not be shown here. Finally, for

specifying the behavior of the model, we introduce

an event-based notation directly inspired from the

Information System Development Framework (Olle

et al., 1991). The behavior perspective is built upon

the concepts of event, trigger and operation (figure

2). An event is characterized by its name, its type

(internal or external), and a predicate expressing the

condition of its occurrence. An external event

corresponds to the arrival of a message, while an

internal event is related to a state change in an

object. A message is issued by an agent, which can

be a human actor or an application system. It is a set

of structured data which is relevant and significant

for the system. An Agent is described by its name,

its type (human or system), a set of incoming

messages and a set of out coming messages.

Figure 2. Graphical notation for representing the behavior

perspective in meta-models

The ascertain relationship is defined either

between an event and a message for an external

event, or between an event and an object in case of

an internal event. The trigger relationship relates an

event to one or several operations. A trigger body is

composed of a flow of unsorted atomic operations to

be executed when the event occurs. This execution

can be conditional; in this case, a specific condition

is associated to the triggering of the operation.

The main advantages of this notation are its

simplicity and the availability of a graphical

representation. An important feature is the emphasis

on the interaction between the system application

tool and the external environment.

4 SPECIFYING THE MAP META-

MODEL

A map is a labeled directed graph with intentions

as nodes and strategies as edges (Rolland, 2007a).

An edge enters a node if its strategy can be used to

achieve the intention of the node. Since there can be

multiple edges entering a node, the map is capable

of representing many strategies that can be used for

achieving an intention. A map is a non deterministic

representation of a process. We call “Section” a

triplet composed of a source intention, a target

intention and strategy. The Map formalism do not

constrain the user in a sequential process consisting

of successive steps, but allows instead a large degree

of freedom in the scheduling of intentions and in the

choice of the strategy to be applied at each step in

the process. The UML class diagram in figure 3

depicts the static structure of the Map meta-model.

The meta-model contains on one hand

representations for the Map concepts (“Map”,

“Intention”, “Strategy”, “Section”, “Constraint”,

“Situation”), and on the other hand, additional

structures necessary for handling the enactment of a

map (“Intention_Realisation”, “Section_Execution”,

“Trace”, “Map_application”, “Map_User”).

Figure 3: Static representation of the Map meta-model

A map is enacted one section at a time. At each

step of the enactment process, a new set of candidate

sections (sections that can be executed in the next

step) is computed. This is done by checking those

sections that respect the scheduling constraints, and

that match with the given current situation of the

working products (“Situation”), and that match with

the given history of the process execution (“Trace”).

From this set of candidate section, a section with the

corresponding product fragment (i.e. the situation) is

interactively selected by the user (Assar et al., 2000).

We have defined in the meta-model additional

attributes such as the “state” attribute in several

classes to track the current state of an object and its

evolution during the enactment process. For

example, the attribute „State_Section‟ in the class

“Section” takes the values („Selected‟, „Executed‟,

„Candidate‟, „Prohibited‟, „Running‟). This

information indicates the changing status of the class

“Section” during the execution of a map, and thus

plays an important role in reasoning about the

progress of the enactment process. Finally, the

classes “Map_User” and “Map_Application”

represent external agents that interact during the

enactment of a map. They contain necessary data

about human and software users of the system.

Without these elements of information, it is

impossible to know when and why an operation will

be executed.

The class diagram in figure 3 is a partial

representation of a procedural vision of the

enactment process. It is insufficient for designing a

meta-model-driven Map enactment tool because the

way interactions are handled, is not explicitly

represented. That‟s why we propose to use the

behavior perspective to describe the causal

relationship between the Map enactment tool and

environment, together with the inside event driven

logic of the enactment process. Figure 4 corresponds

to the dynamic schema of the Map meta-model. This

graphic representation reflects the systemic view of

the Map execution. For the sake of place, only some

events will be briefly detailed in this paper (table 1).

Table 1: Specifications for the behavioural meta-model.

EV1 - arrival of an “Execute map” message

- triggers the “Execute_Map” operation of the

class “Map”

- sets the value to „Selected‟ in the attribute

“State_Map”

EV2 - the value of “State_Map” changes from

„Selected‟ to „Running‟
- triggers the computation of candidate sections

EV3 - the value of attribute “State_Section” changes

from „Prohibited‟ to „Candidate‟
- triggers the display of all candidate sections

EV4 - the user selects an item among the list of

candidate sections

- modifies the “State_Section” attribute value

from „Candidate‟ to „Selected‟
EV5 - attribute “State_Section” change its value

from „Candidate‟ to „Running‟
- triggers the execution of the selected section

and invokes an external application to perform

the task associated with a strategy

EV6 - the execution of a section is finished,

“State_Section” changes from „Running‟ to

„Executed‟

- triggers the update of the trace, insert a new

realized intention, updates the situation of the

product and notifies the user of the end of

execution of the selected section

Figure 4. Representation of the dynamic perspective for the Map meta-model

5 DISCUSSION AND

CONCLUSION

We have addressed in this position paper the

problem of specifying the enactment semantics of a

process meta-model. By analyzing the state of the

art, we find that the software engineering

community has begun addressing this problem.

Proposed solutions are based on UML and on the

generic MOF meta-model, and they are inspired by

the work around the implementation of the SPEM

process meta-model. In the method engineering

field, approaches are different and the assembly of

components is the privileged approach to define new

methods. However, we note that the issue of

executability is common to both domains of

research, in the sense that to be implemented, a

methodological component must be specified in

detail and its executable semantics have then to be

clearly expressed.

By using an adequate modeling notation which

combines rigorous behavioral semantics and a clear

graphical representation, we showed the contribution

of this approach in the expression of process model

executability. Our proposal is to be considered as a

hybrid approach that combines the advantages of

declarative and imperative paradigms for process

modeling languages. It allows the construction of

dynamic meta-models which have well defined

semantics, and which are able to take into account

the non-deterministic executable nature of a process

model such as the Map. We have to notice here that

some of the concepts of the meta-model are

considered as object classes in the data perspective,

but also as agents in the behavior perspective. This

is an important aspect of the behavior perspective

since it captures the semantic of the interaction, not

only from the information or data point of view but

also from the agent point of view. Compared with a

meta-programming approach (e.i. Kermeta) or a

purely declarative approach (e.i. ConceptBase), our

approach highlights graphically the points of

interaction between the running process and its

environment.

This paper is part of an ongoing research work

for the design and the specification of CASE-like

software tools to support the Map intentional model.

We are convinced that meta-models should deal with

concepts of the behavior perspective and not only

concepts of data and process perspectives, especially

if a model-driven execution tool is to be derived

from it. We are currently studying, testing and

comparing various meta-modeling environments

(Kermeta, MetaEdit, ConceptBase) to assess the

relevance of such meta-CASE approaches for

building a software support tool. The work presented

here suggests that the meta-modeling approaches are

multiple and complementary, but suggest also that

they are unable to take into account all the

requirements of the designer in terms of graphical

representation, in terms of expressing correctly the

interactive semantics of process models, and in

terms of formal and detailed expression of

executability.

REFERENCES

Assar, S., Ben Achour, C. & Si-Said, S. 2000. 'A

model for the specification of Information

Systems analysis process (in French)'. In Proc.

13th INFORSID conference, Lyon, France.

Bendraou, R., Combemale, B., Cregut, X. &

Gervais, M. P. 2007. 'Definition of an Executable

SPEM 2.0'. In Proceedings 14th Asia-Pacific

Software Engineering Conference (APSEC

2007), 4-7 Dec. 2007, Nagoya, Japan.

Bendraou, R., Gervais, M.-P. & Blanc, X. 2005.

'UML4SPM: A UML2.0-Based Metamodel for

Software Process Modelling'. In Briand, L. &

Williams, C. (eds.) Model Driven Engineering

Languages and Systems. Springer. pp. 17-38.

Breton, E. & Bézivin, J. 2001. 'Towards an

understanding of model executability'. In

Proceedings Int. Conf. on Formal Ontology in

Information Systems - Volume 2001, Ogunquit,

Maine, .

Brinkkemper, S., Lyytinen, K. & Welke, R. (eds.)

1996. Method engineering: Principles of method

construction and tool support: Chapman and

Hall.

Brinkkemper, S., Saeki, M. & Harmsen, F. 2001. 'A

Method Engineering Language for the

Description of Systems Development Methods'.

In Dittrich, K., Geppert, A. & Norrie, M. (eds.)

Advanced Information Systems Engineering

(CAiSE). Springer Berlin / Heidelberg. pp. 473-

476.

Harmsen, A. & Saeki, M. 1996. 'Comparison of four

method engineering languages'. In Brinkkemper,

S., Lyytinen, K. & Welke, R. (eds.) Method

engineering: principles of method construction

and tool support. Chapman and Hall.

Henderson-Sellers, B. & Ralyté, J. 2010. 'Situational

method engineering: state-of-the-art review'.

Journal of Universal Computer Science, 16(3),

pp. 424-478.

Jarke, M., Jeusfeld, M., Nissen, H., Quix, C. &

Staudt, M. 2010. 'Metamodelling with Datalog

and Classes: ConceptBase at the Age of 21'. In

Norrie, M. & Grossniklaus, M. (eds.) Object

Databases. Springer Berlin / Heidelberg. pp. 95-

112.

Jeusfeld, M., Jarke, M. & Mylopoulos, J. 2009.

Metamodeling for method engineering,

Cambridge, MA, The MIT Press.

Kelly, S., Lyytinen, K. & Rossi, M. 1996.

'MetaEdit+ A fully configurable multi-user and

multi-tool CASE and CAME environment'. In

Constantopoulos, P., Mylopoulos, J. & Vassiliou,

Y. (eds.) Advanced Information Systems

Engineering (CAiSE). Springer. pp. 1-21.

Kelly, S. & Tolvanen, J. P. 2008. Domain-specific

modeling: enabling full code generation, Wiley-

IEEE Computer Society Press.

Kermeta. http://www.kermeta.org [Online, 2011].

MetaCASE. http://www.metacase.com/ [Online].

Muller, P.-A., Fleurey, F. & Jézéquel, J.-M. 2005.

'Weaving Executability into Object-Oriented

Meta-languages'. In Briand, L. & Williams, C.

(eds.) Model Driven Engineering Languages and

Systems. Springer. pp. 264-278.

Mylopoulos, J., Borgida, A., Jarke, M. &

Koubarakis, M. 1990. 'Telos: Representing

knowledge about information systems'. ACM

Transactions on Information Systems, 8(4).

Olle, T. W., Hagelstein, J., MacDonald, I. G.,

Rolland, C., Sol, H. G., Van Assche, F. J. M. &

Verrijn-Stuart, A. A. 1991. Information Systems

Methodologies: a framework for understanding,

Addison-Wesley.

OMG. 2008. Software & Systems Process

Engineering Meta-Model Specification, Version

2.0 - OMG document formal/2008-04-01

[Online]. Available at:

http://www.omg.org/spec/SPEM/2.0/PDF.

Rolland, C. 2007a. 'Capturing System Intentionality

with Maps'. In Krogstie, J., Opdahl, A. L. &

Brinkkemper, S. (eds.) Conceptual Modelling in

Information Systems Engineering. Springer

Berlin Heidelberg. pp. 141-158.

Rolland, C. 2007b. 'Method Engineering: Trends

and Challenges (Invited talk)'. In Ralyté, J.,

Brinkkemper, S. & Henderson-Sellers, B. (eds.)

Situational Method Engineering: Fundamentals

and Experiences. Springer Boston. pp. 6-6.

Seidita, V., Ralyté, J., Henderson-Sellers, B.,

Cossentino, M. & Arni-Bloch, N. 2007. 'A

comparison of deontic matrices, maps and

activity diagrams for the construction of

situational methods'. In Proceedings CAiSE

Forum, 19th Int. Conf. on Advanced Information

Systems Engineering, 11-15 June 2007,

Trondheim, Norway.

Sprinkle, J., Rumpe, B., Vangheluwe, H. & Karsai,

G. 2011. 'Metamodelling: State of the Art and

Research Challenges'. In Giese, H., Karsai, G.,

Lee, E., Rumpe, B. & Schätz, B. (eds.) Model-

Based Engineering of Embedded Real-Time

Systems. Springer Berlin / Heidelberg. pp. 57-76.

http://www.kermeta.org/
http://www.metacase.com/
http://www.omg.org/spec/SPEM/2.0/PDF

