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The control of complex dynamic systems, both in their behavior and in their mission, 
goes through the implementation of multi-loop control architectures based on 

information about the system internal state and from the environment, as well as on the 
mission plan state. This results in systems that are becoming increasingly autonomous, 
for which requirements in terms of safety and reliability, as well as expected performance, 
are increasingly high. Research works developed at ONERA in the field of control for 
autonomous systems cover all levels of the control architectures, which are basically 
structured with respect to temporal aspects, as well as the level of abstraction that they 
entail for the system dynamic. We will consider them in this paper by increasing level. 
We will discuss the advances achieved recently in the robust control techniques of 
uncertain dynamic systems generally implemented at the lower control level and we will 
discuss their extensions to consider input and output constraints, as well as the hybrid 
nature of most of the systems considered. To design "task" level control primitives that take 
place just above the previous control loops, we will introduce sensor-based robust and 
non-linear control techniques. These are based on information on the environment extracted 
from exteroceptive sensors, to adapt system behavior to uncertainties and perturbations. 
Multi-sensor and/or multi-objective controls will be discussed in this particular context. 
We will also present several recent results in the field of trajectory tracking based on 
visual navigation techniques in complex environments, which combine objectives and 
constraints within the same control architecture. We will discuss how model predictive 
control (MPC) techniques and advanced optimization techniques can be used for solving 
the resulting control problems. In addition, we will discuss several ongoing developments 
of these methods by exploiting distributed model predictive control techniques (DMPC) and 
predictive control of hybrid systems. Finally, integration with the control architectures at the 
upper level of reactive, predictive and distributed planning capabilities will be proposed to 
accommodate time constraints and uncertainties in decision.

Introduction

The issues underlying a large number of research activities in the 
departments for Information Processing and Systems at ONERA deal 
with control of systems with complex dynamic behavior, such as air-
craft, spacecraft, robotics systems etc., and this in the presence of 
uncertainties and various constraints related to physical systems and 
the environments in which they evolve. Consideration of these phe-
nomena is of major importance in the control of real systems.

In order to cope with the increasing complexity of technological sys-
tems in general and with the requirements in terms of performance 
and adaptability, for which there are increasing demands, a trend that 
can be observed since over two decades ago is to abstract the com-
plexity of systems by integrating the control means responsible for the 
system behavior and their adaptation to the various "tasks" defined at 
a high-level; tasks which may require coordination between multiple 
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entities. In the implementation of these systems, which thereby 
become "robotic systems", safety and security issues are and remain 
of major importance.

The various components of the control software are designed to be 
integrated into an overall architecture whose structure generally sepa-
rates different levels that may or may not be implemented, depending 
on the degree of "autonomy" to be achieved.

•	 The lower level is in charge of multi-loop actuator servo mod-
ules, generating control inputs and perception modules that are 
often used in sensor-based control loops. This level allows el-
ementary actions of the systems to be controlled and allows 
perception information on the environment, as well as on the 
system state, to be accessed.

•	 The executive level operates the execution control of elementary 
functions (i.e., the tasks defined through low-level components 
carried out by the entities involved, their organization and their 
interactions defined as a plan) and the evaluation of a number 
of functional and temporal properties to be fulfilled at runtime.

•	 The decision-making level is in charge of scheduling algorithms 
(i.e., creation and supervision plans ). It controls how the robot 
will bind tasks to achieve each objective of its mission. High-
er-level decision-making mechanisms, known traditionally as 
deliberative mechanisms, are the central mechanisms in these 
architectures [1].

Notice that, beyond these control methods and algorithms, ONERA 
jointly carries out important work on formal and semi-formal speci-
fication and verification software of the underpinned critical software 
architectures, taking into account their hardware implementation [2].

One of the major limitations in these control structures, which com-
bine reactive and deliberative mechanisms around an execution 
controller, is that complex behaviors are not anticipated, nor are the 
constraints on these behaviors. Also, we frequently seek to mix the 
principles of predictive control and stochastic optimization, aiming 
towards "goal-driven control architectures". This concern, as we 
shall see, is strongly present in the current research developments at 
ONERA and is expected to increase in the future.

In this paper, we review and discuss the potential offered by current 
and future developments carried out at ONERA in the field of control 
engineering for the autonomy and reliability of complex systems. On 
this occasion, we will introduce, in the various sections concerned, 
several ONERA-toolboxes (SMAC, COPERNIC, InCELL, etc.).

We will start with robust control tools and their ongoing enhancements 
to consider hybrid systems and sub-system constraints (all physical 
systems have inputs and outputs, which are limited in size due to 
safety or physical constraints). Robust control laws are designed to 
achieve the desired behavior of the controlled system and maintain 
this behavior when faced with disturbances and hazards that affect the 
system during operation. Achieving a high performance and ensuring 
the safe behavior of complex dynamic systems, despite the paramet-
ric uncertainties and/or failures, has been for several years a central 
theme in control engineering activities at ONERA. These issues have 
led to the development of a consistent set of estimation methods for 
robust control synthesis, analysis and validation of control laws, in 
particular to limit the costs of the certification process. They provide 
a unified framework for control from modeling to time-frequency 
analysis and synthesis of robust control laws. We will discuss more 
specifically here the extensions of this work, first to consider input/out-
put constraints through model predictive control techniques and anti-
windup compensation and then to exploit hybrid control techniques.

At a higher level of control, exteroceptive-sensor based control loops 
enable "task-oriented" functions to be set by controlling a system, not in 
the system configuration space, but rather in the "sensor measurement" 
space in the form of a local relationship between the system and its envi-
ronment. These output feedback control loops are called "sensor-based 
control". They permit the need for an accurate model of the system and 
errors to be avoided by setting control loops based on the informa-
tion obtained by the sensors (vision sensors, force sensors, proximet-
ric sensors, etc.). The use of visual feedback to perform closed-loop 
control on geometric primitives extracted from features observed by a 
camera embedded on aerial robots have been specifically developed at 
ONERA to deal with complex behaviors. We have developed methods 
of analysis and synthesis of "advanced" 2D1/2 visual feedback, taking 
into account all of the constraints (visibility, saturation of actuators, 3D 
constraints while driving, etc.), uncertainties related to the calibration 
of cameras and the non-modeled dynamic environment like the aero-
logic perturbations, for example. We will discuss how these techniques 
enable the problem of "hybrid tasks" to be solved rigorously, combining 
heterogeneous sensor data in the low-level servo controller.

In addition, we are also developing vision-based state estimation 
and trajectory control approaches (monocular-, stereo-, and RGB/D 
camera-based) that exploit the principles of SLAM (Simultaneous 
Localization and Mapping). We will not discuss SLAM techniques in 
this paper and the reader can refer to several recent references from 
ONERA in this field [3] [4]. However, we will propose a generalization 
of navigation techniques with steady and dynamic obstacle avoidance, 
as well as cooperative guidance based on predictive models of the 
behavior of the system. We will, more particularly, put into perspective 
the potential of Distributed Model Predictive Control (DMPC) methods 
and hybrid methods for dealing with continuous and discrete variables.

At the higher level, to achieve a complex mission, action/perception 
tasks are then structured into a plan generated by algorithms (plan-
ners), which relies on both a representation of the dynamic properties 
of the system and of the tasks, as well as on an integrative level of 

Figure 1 – Example of a robotics system composed of several autonomous 
entities deployed to perform high-level tasks, such as the surveillance of an area
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information to obtain a certain representation of the world in which 
the system operates. The mission management is a high-level con-
trol, which determines, depending on the operating environment and 
on the overall goal, the elementary tasks to be carried out by the 
perception and action entities. The methods studied at ONERA in this 
field rely on formal models of the considered system (or subsystem), 
a formal model of the possible changes in the environment in which 
the system operates, and a formal model of the goals to be achieved. 
We thus use general mathematical modeling frameworks, such as 
Constraint Satisfaction Problems (CSP), discrete event systems 
(Petri Nets, Temporal Networks , etc.) or Markov Decision Processes 
(MDP), to make decisions based on uncertain data. We will discuss 
several directions that we are exploring to increase the system auton-
omy at the planning level and to make planners more reactive and 
proactive, such as hierarchical deliberations, distributed planning and 
the use of stochastic optimization and predictive models.

The following sections consider these ongoing developments, or 
those considered on these different control levels, from the point of 
view that we have of the evolution of aerospace and defense/security 
systems autonomy.

Achieving robust constrained control of dynamical systems

The development of robust control techniques for sequenced and multi-
objectives systems is an important area of research at ONERA. Robust-
ness to uncertainties for stationary systems (LTI) has been the purpose 
of many developments based on the LFT formalism and a large set of 
appropriate tools for the construction of this type of model and for robust-
ness analysis are today available in the SMAC toolbox w3.onera.fr/smac/.

Once an LFT model of the closed loop is available, validation of control 
laws may be considered by various analytical techniques for robust sta-
bility and performance, using analysis techniques [5] particularly suit-
able for LTI systems. Current research at ONERA in this area is aimed at:
•	 better controlling the trade-off complexity/precision [6, 7, 8],
•	 dealing with higher order systems ( flexible modes, finer model-

ing calculators) [9],
•	 controlling precision and reducing conservatism (less pessi-

mistic margins) [10].

Stationary uncertainties represent only a relatively small part of all of 
the uncertainties encountered in practice. Most effects vary over time 
and systems being studied become unsteady. Consequently, analy-
sis techniques are no longer applicable and the control law validation 
issue becomes numerically much more complex. Two large families 
of techniques exist to address this kind of uncertainty. The first one, 
inspired by analysis techniques, is based on the optimization of matrix 
"scaling" that are constant (for LTV uncertainties) and dynamic (for LTI 
uncertainties) in the frequency domain [11, 12]. This approach relies 
on special techniques based on the IQC formalism (Integral quadratic 
constraints). The second one makes use of dependent Lyapunov 
parameters. For the cost of higher computational complexity, these 
techniques can be considered to be bounds on speed parameter vari-
ation. The specific contribution that we made to these techniques is 
the reduction of their numerical complexity to make them competitive 
over intensive simulations [13].

The robustness analysis in the presence of nonlinearities such as 
input/output constraints remains an open research area, which 

motivates various extensions for tools developed as part of the analy-
sis of robustness LTI/LTV. Inputs and outputs constraints arise in most 
control engineering applications. This topic is crucial since ignoring 
these constraints can lead to a dramatic loss of stability and perfor-
mance. It is therefore not surprising that the topics of model predictive 
control [14, 15] and anti-windup compensation [16, 17] have been 
intensively studied for many years.

Model predictive control

Model Predictive Control (MPC) is a branch of control design tech-
niques that take advantage of the knowledge of an explicit model to 
predict the future response of the plant over a sufficiently large time 
interval (i.e., the selected time horizon exceeds the expected transient 
time of the control system). Using such a prediction, the control prob-
lems are then formulated as optimizing on line the system behavior 
under its input and output constraints. Although this technique is very 
popular and effective when the model is linear, low dimensional and 
perfectly known, it is sometimes criticized because of its lack of intu-
ition in terms of tuning, thus designing a controller "from scratch" by an 
"obscure" optimization and because of its computational load or con-
servativeness when the model is uncertain or even nonlinear. Recent 
research has already started addressing such issues [18, 19, 20] and 
model predictive control deserves further consideration in aerospace 
control where the models are often uncertain and high dimensional. 
We will consider the use of MPC techniques in Section 5. Another 
limitation in use of the MPC is the computational cost compared to 
anti-windup techniques, which are discussed below.

Anti-windup compensation

Anti-windup is a very popular technique that is currently mainly 
used to deal with control saturation. In anti-windup compensation, a 
nominal controller that does not explicitly take into account control-
ler saturations is first designed using the best control design tools. 
Then, after that, an anti-windup compensator is combined with this 
controller to both ensure the stability (at least in some region near 
the origin when the open loop system is unstable) and to avoid per-
formance degradation when saturations are active. It is worth noting 
that such a technique is appealing because the desired response of 
the nominal control law is recovered when the saturation limits are 
not exceeded.

Nominal control law design

As a main drawback for practitioners, the nominal control design (i.e., 
the unconstrained control law design) specifications of many aero-
space applications require either a large amount of tuning or master-
ing advanced control design tools.

Most of the time, the nominal control law must be designed using 
powerful control design techniques that account for uncertain and 
high dimensional linear models. Another possibility in which we are 
deeply involved is the use of specialized non-smooth optimization 
techniques dedicated to control system design [21, 22, 23].

Input constraints and anti-windup

Among many possibilities that are summarized in [16, 17], the 
so-called MRAW (Model Recovery Anti-Windup) is often preferred 
because it can be applied with any (possibly nonlinear) nominal 
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controller [24, 25]. First, the nominal control is designed; then it is 
merged with a global controller that is able to globally (or at least 
locally) stabilize the plant, despite the control saturations. This anti-
windup solution is illustrated in Figure 2.

Basically, anti-windup block design involves solving some LMIs (Lin-
ear Matrix inequalities) [16, 17]. However, some papers have shown 
how this problem should be addressed, by using other powerful non-
smooth optimization techniques [26, 27]. Recent efforts have also 
been concentrated on MRAW design when the plant model is uncer-
tain (see e.g., [28, 29]).

Output constraints and anti-windup

Among several approaches summarized in [30, 31], taking output 
constraints into account may consist in modifying a nominal control-
ler whenever the constraints are about to be violated. Following this 
line, the Output to Input Saturation Transformation (OIST) approach 
was recently proposed [32] to replace an output constraint by a 
state-dependent control saturation. Such an approach is attractive 
because the output constrained problem is then recast into an input 
constrained problem, which may in particular lead to considering the 
aforementioned MRAW loop design.

This OIST technique was originally proposed for the state feedback 
control of nonlinear systems when a minimum phase output is con-
strained. Guarantees on the global asymptotic stability of the closed-
loop in the presence of the obtained control saturation have also been 
studied for a large class of linear systems [33]. The OIST technique 
has then been further developed in the output feedback case [34]: an 
interval observer was used in combination with the OIST technique, to 
ensure that the constraint is still not violated; this new technique was 
therefore called OISTeR, which means OIST extended with robust-
ness properties (with respect to the uncertain initial state). Figure 3 
illustrates this novel framework.

Anti-windup techniques can now be applied to control design prob-
lems under both input and output constraints; the major interest 
of using the anti-windup framework is to apply some very sophis-
ticated robust control design techniques when we are far from the 
constraints. Anti-windup is now mature enough to take into account 
input constraints. Then, a novel Output to Input Saturation technique 
has recently been developed, in order to recast an output-constrained 
control problem into an input-constrained control problem. Such an 
innovative technique has been already successfully assessed for sev-
eral aerospace applications, including:
•	 the longitudinal control of a large scale long range flexible air-

craft under a wing root bending moment constraint [35],
•	 the problem of satellite attitude reference trajectory tracking un-

der some angular velocity limitations [36],
•	 the atmospheric flight control of a flexible launch vehicle under 

an angle of attack constraint [37, 38],
•	 the obstacle avoidance of a UAV [39].

Future research may extend this technique by considering modeling 
uncertainties. Moreover, current research is aimed at studying local 
stability results when the constrained outputs are non-minimum-
phase.

Hybrid system control

Aircraft flight control systems implement a gain-scheduled controller 
switching strategy for linear parameter-varying systems. However, 
the switching action tends to generate non-smooth control input, 
which may cause undesired behavior and even instability. For other 
systems, such as robotics systems, breaking down the overall con-
trol task into several simpler ones can simplify the design process; 
here also, the instantaneous changes in the system dynamics and the 
rules of the discrete switching logic may result in unexpected system 
behaviors, or even catastrophic failures, making the analysis and 
safety verification of the overall system significantly more challeng-
ing. Hence, to guarantee safety and to meet the specific performance 
requirements, these couplings should be properly incorporated into 
the mathematical representation of the system, necessitating the 
use of a hybrid system model incorporating discrete and continuous 
variables. Many of the aeronautic and aerospace vehicles or robot-
ics systems that we are considering show continuous and discrete 
dynamics interactions and can be seen as hybrid systems. This is 
the case for:
•	 self/event-triggered systems, including sample and hold con-

trol, quantized control systems, etc. [40, 41, 42],
•	 switching systems, including systems described by a family of 

differential equations, combination of local and global control-
lers, systems with explicit discrete states (or logical modes), 
hybrid automata, etc. [43, 44],

•	 "hybridized" systems, including nonlinear models seen as sets 
of simpler equations, reset controllers, etc. [45, 46].

Hybrid control system methods provide a unique framework to 
investigate systems with such dynamical behavior. Let us briefly 
recall that, from control theory point of view, the term hybrid refers to 
combinations or compositions of continuous and discrete parts and 
a hybrid dynamical system (or simply a hybrid system) combines 
behaviors that are typical of continuous-time dynamical systems 
with behaviors that are typical of discrete-time dynamical systems 
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Figure 2 – Model recovery anti-windup architecture for merging the local and 
global controllers.
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Figure 3 – Model recovery anti-windup architecture associated with OISTeR.
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(see Figure 4). In this framework, a system can be represented in the 
following way:

	

( )

( )

x C x f x
x D x g x+

∈ =


∈ =



	

This representation suggests that the state of the hybrid system, 
represented by x, can change according to a differential equation 

( )x f x=  while in the set C, and it can change according to a dif-
ferential equation ( )x g x+ =  while in the set D. The notation x  rep-
resents the time derivative of the state x, while x+ represents the value 
of the state after an instantaneous change.

The modeling and design of the control solutions for hybrid dynami-
cal systems have been widely studied over these last years [44, 47]. 
They can be used to capture and better understand the behavior of 
control change between free and constrained movements of a robotic 
arm (or an autonomous robot moving in a constrained environment) 
where the switching between sensor-based control laws is stochastic 
and provided by finite state automata. Moreover, in a context of aero-
nautic applications, it can be useful to transform, in a more suitable 
framework, detailed models that include equations, lookup tables and 
switching logics that are excellent for simulation but not for analy-
sis or controller design. The dynamical behavior of systems like air-

craft subject to transitions between different phases of flight (with a 
gain-scheduled/linear parameter-varying control law and supervisory 
switching control). In practice, such control laws are often in block 
diagram form, where time-continuous processes and logical modes 
are nested and cannot be manually identified. A problem of interest is 
the development of tools that, based on such block schemes, gener-
ate automatically structured formal code like Lustre and Prelude high-
level programming languages for real-time embedded applications, 
allowing the modeling of the overall systems as a hybrid automata: 
sets of differential equations and switching rules among this model.

Regarding the analysis of hybrid dynamical systems, switching among 
simpler dynamical systems or integrator resets has been used suc-
cessfully in practice for many decades. Recent efforts concentrate on 
guaranteeing properties such as reachability and stability. Reachabil-
ity concerns more specifically discrete automata or Petri net states 
and must assess, among other things, the absence of Zeno execution 
(infinity of instantaneous transition in a finite delay which is unrealistic 
for real systems) [48, 44]. The stability of the continuous states of a 
hybrid system is often carried out using multiple or piecewise Lyapu-
nov functions (see Figure 6) [49, 50]. Such functions can be seen 
as particular energy functions depending on continuous states of the 
system. By proving the monotonical decrease of this function along 
state trajectories (continuous behavior and instantaneous transition), 
the asymptotic stability of the hybrid system can be assessed.

Stability of sets can be considered for systems that include timers, 
counters, and other discrete states that do not converge. By exploit-
ing such approaches, a major issue for aerospace control engineer-
ing is the stability analysis of hybrid dynamical systems in the pres-
ence of uncertain inputs and uncertain parameters (see Figure  7). 

C
D

x

Figure 4 – Hybrid behavior: succession of continuous-time trajectories (blue 
line) in the set C and discrete transition (red dashed line) in the set D

Lustre Prelude

Figure 5 – From Block schemes to structured language
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V

i = 1 i = 2 i = 1
t

i = 2

Figure 6 – Multiple Lyapunov functions: a function Vi is used in Logical Mode i
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( )1x h x+ −=
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Figure 7 – Hybrid automata with uncertain time-continuous dynamics: 
Stochastic Parameter λ
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The practical stability of such system can be studied with Monte Carlo 
and Quasi-Monte Carlo methods. Such time consuming sampling 
methods might be improved by exploiting Polynomial Chaos expan-
sions to deal with uncertainties and properties of Multiple Lyapunov 
functions.

Hybrid control framework also opens a large field of investigation 
in terms of synthesis, both for controllers and for the correspond-
ing switching rules. Making hybrid time-continuous controllers to 
improve performance is another form of investigation. This includes, 
among others, reset systems where a reset law enriches a nominal 
controller to improve controller state decrease or L2 gain [51, 52]. 
By resetting, under conditions and when necessary, all or part of the 
controller states, such approaches enable performance improve-
ments without modifying the nominal structure and behavior of the 
nominal controller [53, 54].

Moreover, the fact that a hybrid dynamical system framework enables 
the widest representation of systems opens up promising perspec-
tives for Model Predictive Control (MPC). Indeed, such control meth-
ods are based on the explicit use of a model of the process (see 
Section 2) and the richer the model is, the more efficient the control 
law is (beyond the efficiency of the chosen optimization algorithm, 
terminal cost, stage cost and prediction horizon). A number of con-
troller design techniques have been proposed recently based on rep-
resentations relying, in particular, on piecewise-affine (PWA) or mixed 
logical dynamical (MLD) systems [55, 56]. They can be achieved 
by formulating a MPC problem and solving it on-line using a mixed-
integer quadratic program (MIQP) [57] or a multi-parametric mixed-
integer linear program (mp-MILP) and computing a piecewise linear 
(PWL) optimal control law offline [58].

Beyond the challenge of the hybrid modeling of complex systems, 
several other issues must be addressed, in order to consider large size 
problems (in terms both of continuous and discrete states), uncer-
tainties (in terms of inputs and parameters) and computation load 
(critical for aircraft future configurations, for instance, see Figure 8) 
specifically encountered in such industrial processes.

Multi-sensor-based control

Sensor-based control provides a framework to control the evolution 
of systems with embedded sensors in dynamic environments (not 
known a priori: disturbances, moving obstacles, etc.). Basically, this 

type of control directly exploits, in a closed loop, physical cues of the 
environment perceived by sensors to obtain a desired behavior with 
regard to the environment. The control is defined in the formalism 
introduced in [59] [60] as the control to zero steady-state error on a 
time horizon of a function ( );e q t  called "task function".

	 ( ) ( )( ) ( )( );; ;e C s r t sq t q t t= − 	

The vector ( )( )s r t  is a set of measurements (e.g., for a vision sen-
sor: geometric characteristics of an object) given by a sensor whose 
configuration in SE(3) is known from a set of state parameters q. The 
vector ( )s t  contains the desired value of the features, which can be 
either constant in the case of a fixed goal, or varying if the task con-
sists in following a specified trajectory. C is a matrix for taking into 
account a possible redundancy of information.

Vision-based control

We have used this technique recently to deal with under-actuated 
systems (rotary wing UAVs) equipped with a monocular visual sen-
sor to obtain control laws providing stability and robustness proper-
ties. The latter includes local stabilization on visual landmarks [61] 
[62] or in large displacements for path tracking or moving object 
tracking [63] [64]. Their design makes no a priori assumption on 
the environment (with respect to the tracking object configuration, 
for instance, or type of tracking motion) and by taking into account 
physical constraints acting on the system (flight envelope, actuator 
saturation) which makes it particularly nonlinear. Using anti-windup 
techniques (see Section  "anti-windup compensation"), input satu-
ration has been incorporated into the control scheme to implicitly 
deal with constraints on the output variables. This approach has 
been used for reactive obstacle avoidance [39] and to permanently 
maintain the availability of visual cues in the image while performing 
maneuvers [65] [66].

Multi-task control

Multi-task control (tracking a vehicle with obstacle avoidance, for 
example, or spatial manipulation under constraints) or control using 
multimodal exteroceptive sensors can be considered using exten-
sions of sensor-based control technique [67].

Several tasks may be indeed considered simultaneously using a cas-
cade of orthogonal projections in the null-space of tasks (expressed 
in the form of linear relations between the operational variables and 
the control variables) of higher priority using the recursive approach 

Hybrid model

Supervisor

Controller 1

Controller 2

Controller m

Process
yu

u1

u2

um

switching 
signal

measurements

MPC
r(t) u(t) y(t)

Figure 8 – Predictive control based on the evolution of the hybrid system

Figure 9 – Vision-based tracking of an autonomous mobile robot by an AirMax 
drone equipped with a monocular camera
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proposed in [68]. Let q be the generalized coordinate vector for the 
considered system, the multi-task motion control can be obtained 
from:

	 ( ) ( )1 1 11 †k k k k k k k k kq q x q q− − −= − + − −

 
  J P J J 	

where 0 0q = , and where Jk is the Jacobian associated with the task 
k and Pk is the projector operator in the null-space of the augmented 
Jacobian matrix for the task k, which can be computed as:

	 ( )1 1 1 1†k k k k k k− − − −= −P P J P J P 	

starting from 0 d=P I .

Equality or inequality constraints (such as actuator saturation or 
obstacles) can thus be placed in a Jacobian of constraints, as pro-
posed in [69]. The various tasks can also be a decoupled by using a 
consistent pseudo-inverse [70]. Using this algebraic form, inequal-
ity constraints can be verified and enforced a posteriori only, thus 
potentially leading to sub-optimal solutions using, for instance, the 
Constraint Compliant Control framework [71] [72]. However, once the 
number of constraints becomes high, this type of method cannot lead 
to control solutions that can strictly guarantee constraint satisfaction 
and the use of Quadratic Programming (QP) techniques may thus be 
considered (see the following section).

The sensor-based control paradigm can be extended to systems with 
several types of embedded sensors. A multi-sensor approach can 
either use several identical sensors and exploit their redundancy, or 
use different sensor types for their complementarity and reduce inac-
curacies and uncertainties in the measurements. This may lead to the 
implementation of fault-tolerant control schemes if a decision layer 
for detection and reconfiguration is associated with the multi-sensor 
based controller.

Heterogeneous sensor data can be fed into fusion algorithms (e.g., 
Kalman or Bayesian methods) to provide state estimation for model-
ing the environment. However, since these sensors generally measure 
different physical phenomena, it is preferable to use them directly 
in the low-level servo controller rather than to apply multisensory 
fusion, or to design complex state machines [73]. This idea, originally 
proposed in the hybrid position-force control paradigm [74], can be 
extended to feedback from multiple sensors. This brings new chal-
lenges to controller design (e.g., related to the sensor characteristics 
(synchronization, hybrid control, task compatibility, etc.) or to the task 
representation [75]. A matrix C must be defined for this purpose to 
either decompose the sensor feedback in an orthogonal or recipro-
cal base and smoothly switching between different sensor feedback 
(transition between free and constrained motions for instance) or by 
treating the data coming from different sensors as a unique, higher-
dimensional signal.

In another approach, each sensor is given a reference signal and 
considered as an independent sub-task in the global task function 
[76]. Control can thus be drawn as a hierarchy between the differ-
ent sensors to build a control scheme that prevents lower subtasks 
from disturbing higher ones. This hierarchy can be made dynamic to 
avoid local minima [77], as suggested above for multi-task control 
schemes.

Quadratic multi-objective optimization

The control problem for a system whose behavior results from 
sensor-based task redundancy may be expressed as the problem 
of finding series of control inputs that will drive the system from an 
initial state towards several objectives and can be seen as a multi-
objective optimization problem that can be treated with optimization 
techniques, such as a quadratic multi-objective optimization problem 
under linear constraints (system dynamics) and inequality constraints 
(control input and other physical constraints) where priorities between 
the objectives can be dealt with through a strict or soft hierarchy. 
Assuming a convex solution space, the optimal solution of the control 
problem lies at the boundary of the feasible (constraint compliant) 
solution space. Finding the optimal solution thus boils down to finding 
the active constraint set, i.e., the boundary where it lies. Optimiza-
tion problem solvers are designed to optimally choose this subset of 
constraints that should be considered when computing the optimal 
solution of the control problem.

Obstacle avoidance techniques included in the control law structure 
based on a Quadratic Program (QP) were investigated initially by 
[78]. Since then, control approaches relying on optimization tools 
such as a Linear Quadratic Problem (LQP), enable inequality con-
straints to be solved more easily and Hierarchical Quadratic Pro-
gramming (HQP) has been introduced [79] by starting to solve a 
QP to obtain a solution for a higher priority task and then solving 
other QP for lower priority tasks, without interfering with any higher 
priority task.

An alternative solution is to solve a single QP for a prioritized multi-
objective problem by introducing a weighting vector influenced by a 
decision variable [76]. Note that Pareto-optimal solutions can also 
be sought. Prioritized constraint satisfaction and, if needed, con-
straint relaxation or uncertainties can be introduced via slack vari-
ables to "soften" the constraints and can be considered through set-
ting adequate multiparametric-MINLP or mp-MIQP problems [80]. 
Smooth task transitions can be easily achieved within a framework 
using a weighting strategy [76]. More recently, a generalized hierar-
chical framework that enables both soft and strict priority problems 
with smooth priority transitions to be described have been proposed 
[81] [82].

Notice that the problem can also be formulated using Model Predic-
tive Control (MPC) to ease the integration of constraints (through 
soft-constraints and an exact penalty function to guarantee the 
problem feasibility) and to explicitly take into account the effect of 
uncertainty and disturbances on the future evolution of the system 
(see next Section).

Model Predictive Control techniques in navigation

For the evolution of vehicles in outdoor environments, abso-
lute localization by merging the INS (Inertial Navigation System) 
and GPS information is often used. It is however subject to a lack 
of robustness, due to GPS signal masking problems and to multi-
path signals encountered in urban environments, or even no sig-
nal at all. The localization can be carried out alternatively or addi-
tionally by combining measurements of proprioceptive sensors  
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(inertial, odometry) and visual cues perceived by active sensors (lidar, 
camera RGBD) or passive sensors (stereo and monocular cameras). 
We have developed at ONERA a navigation software kit called AZUR, 
which combines in a modular way several techniques for localiza-
tion and guidance with a path planner (see Figure 10), which can be 
said to belong to map-based navigation techniques, which rely on 
the absolute localization on a previously acquired map of the environ-
ment. For navigation in large and unknown environments, techniques 
that simultaneously associate safe exploration/navigation and map-
ping/self-localization processes automatically and on-line have been 
investigated for more than a decade. These techniques are grouped 
under the SLAM (Simultaneous Localization And Mapping) or CML 
(Concurrent Mapping and Localization) acronyms. They basically rely 
on an estimation of the mobile sensor configuration and then of the 
trajectory from noisy sensor data and probabilistic methods. Today, 
the latter experience a rapid development due to their central role in 
the development of autonomous vehicles.

Most advanced navigation techniques, map-based navigation and 
mapless navigation combine a multi-metric representation of the 
environment in which the robot operates with perceptual information 
"as they come" (optical flow, feature detection and tracking, environ-
ment appearance, and other qualitative information). Thus, with an 
accurate estimation of the vehicle trajectory, the information gathered 
on the environment over time can be aggregated into a common ref-
erence to build a 3D representation of the scene (stereo depth map 
or RGBD camera or cloud Lidar points) in which high level semantic 

information on the objects, such as the dynamic type of the object 
or object class (car, pedestrian, tree, etc.) can be added. Figure 11 
shows the result of a 3D modeling chain developed at ONERA for 
the real-time environment modeling from embedded vision sensors of 
autonomous vehicles, which have to be equipped with safe navigation 
algorithms (obstacle detection and path planning).

Indeed, while the vehicle state is estimated and the environment 
modeled, navigation algorithms must run to plan and execute opti-
mal paths to fulfill a mission, which can, for instance, be to explore 
the environment while avoiding obstacles (i.e., to perform an active 
vision function). The mission objectives can be translated for this 
into various cost functions expressed in terms of control variables. 
Based on these principles, we have developed a whole set of auton-
omous safe navigation algorithms in dynamic environments which 
have been grouped in a toolbox call COPERNIC (w3.onera.fr/coper-
nic). Many of the techniques take advantage of Model Predictive 
Control principles.

MPC principles as a general framework for navigation

MPC is an effective means to deal with a multi-variable constrained 
control strategy for which the issues of real-time implementation, sta-
bility and performance are well understood for linear systems. More-
over, much progress have been made over the last decade with regard 
to non-linear systems, with model uncertainties [83], as well as with 
regard to systems that are subject to a large set of constraints [84]. 
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The MPC problem for a discrete time model of a LTI system can be 
formalized as:

	 ( ) ( ) ( )1 xx A Buk k k= ++ 	

where ( ) nx Rk ∈  et ( ) mu Rk ∈  denote the state and control input 
respectively [83]. The predictive control feedback law is computed by 
minimizing a predicted performance cost, which is defined in terms of 
the predicted sequences of state and input predictions over prediction 
horizons. This predicted cost can be set in the following quadratic 
form:

	 ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
0, 0, 1,1. 1

minimize
t

p m u i ip m

x x x x up p i i iJ
= =− −

 + +=   
∑ ∑P Q R 	

subject to
	 Ex Fu+ ≤ Φ 	

where p and m denote respectively the prediction and the con-
trol horizons with p ≥ m. P, Q, R are positive definite matrices (Q 
may be positive semi-definite). The origin of the problem (x  =  0, 
u  =  0) is assumed to be in a feasible region. Once the minimiz-
ing control sequence is determined, a receding horizon scheme pro-
ceeds by implementing the first control ( ) ( )( )*

, 0p mu x k  to obtain 
( ) ( )

*
,p mAx Buk + , the rest of the control sequence being used to 

update the problem. When the constraints are linear, the convex opti-
mization problem of the objective function under constraints, which 
therefore has a unique solution, requires Quadratic Program (QP) to 
be solved.

Fast and reliable solvers based on interior point or active set methods 
are today available for solving QP problems in real-time, and parallel-
izable forms exists (PQP) that can readily exploit the full parallelism of 
multiprocessor machines, including multi-core, SIMD, and GPU [85].
MPC may be used in various control problems as discussed in the 
previous sections. In particular, we used this problem formulation in 
navigation algorithms. Based on a prediction of the system behavior, a 
multi-objective performance criterion is optimized at each time-step for 
computing control inputs that achieve the required goals. Unlike most 
path planning methods, this scheme allows the dynamics of the sys-
tem to be adequately described using model reduction techniques, for 
instance, as well as environment changes, since new control inputs are 
computed on the basis of measurements acquired in real time. More-
over, MPC translates the preview over a future horizon of the conse-
quences of the control on the system state in the sense of a certain 
cost while satisfying the constraints for producing emergent behaviors.

Example of emergent behaviors

Using this MPC framework, a first contribution has been made to 3D 
trajectory tracking with obstacle avoidance for UAVs [86] defining a 
multi-objective control problem. The latter consists in finding, under 
constraints, the desired sub-task parameters (a set of gains of PD-
feedback elementary controllers) over a preview horizon N that mini-
mizes the sub-task errors; i.e., ˆ ˆ rx x−  according to the measured 
state ( ,k kx x ), at the time period k, the optimization problem:

	
|

2

| | |
1,

ˆ ˆminimize
k N k

r m
m k i k k i k k i kK i N

x x rω
+

+ + +
=

− +∑ 	

while considering the system dynamics to satisfy which can be 
expressed as equality constraints. |k N kK +  denotes the horizon of the 
task parameters. The terms r m are regularization costs introduced to 
limit the variations of the optimization variables.

Several types of behaviors have been explored for a fleet of autono-
mous robots equipped in the experimental setup with stereo vision 
sensors by using this general framework [87].

•	 Exploration strategies of a finite environment have been experi-
mented on using a weighted cost function combining a cost of 
navigation, which allows the regulation of the speed of vehicles 
and the control of their travel to waypoints to be minimized, 
a security cost whose cost minimization allows obstacle and 
collision avoidance between vehicles and a cost on the energy 
consumption [87].

•	 Another contribution [88, 89] relies on the resolution of the op-
timization problem (non-linear and constrained) by a discretiza-
tion and exploration of the control space to complete the explo-
ration of a defined area, considering that each point of the zone 
was visited by at least one of the vehicles in the fleet. The al-
gorithm has the advantage of ensuring a constant computation 
time at each iteration, to be potentially less sensitive to local 
minima and to optimizer initialization. It has been successfully 
implemented on mobile robots and UAVs for safe exploration of 
a cluttered environment [90].

AUTONOMOUS 
FLIGHT

Figure 11 – 3D modeling of an indoor environment based on stereo images 
where the voxel color code displays the height information

Figure 12 – Obstacle avoidance trajectory by a UAV from a real-time 
reconstruction of the 3D environment using a predictive model of the vehicle 
and a multi-objective optimization for its motion control
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•	 Source localization strategies within a pre-defined area by a 
swarm of robotic systems have been designed in a distributive 
way and have shown high efficiency in terms of time spent and 
robustness to vehicle and communication failures [131].

Other emergent behaviors for swarms of autonomous vehicles can be 
explored on the basis of Distributed Model Predictive Control (DMPC) 
[91], this by exploiting MPCs on local sub-systems and exchanging 
predictions so as to coordinate with each other, the whole system 
convergence and stability being ensured by consensus mechanisms 
[92, 93, 94] or by using structured optimization techniques (see the 
next section).

The potential offered by the various DMPC strategies is quite broad 
and could constitute a general framework for implementing agile 
autonomous sensor networks (embedded on autonomous robots) 
whose implementation would face a set of practical difficulties, such 
as the existence of possible communications between the distributed 
sensors, uncertainty on the measurements collected and the environ-
ment, and the possible loss of observability depending on trajecto-
ries, taking into account strapdown constraints [95, 96]. Based on 
such a framework, we can, for instance, benefit from the information 
redundancy to increase the localization robustness by fusing individ-
ual localizations or, in a more integrated way, by merging information 
collected on the environment from various sensors in a distributed fil-
ter architecture, a problem which is known as: distributed localization 
and mapping [97, 98, 99]. Collaborative SLAM (CoSLAM) [100, 88, 
95], considering non-coordinated vehicles sharing their SLAM infor-
mation under communication constraints can also be investigated on 
the basis of such a framework.

Structured Distributed Control

It is possible to go further in the integration of subsystem MPCs, 
while controlling the overall system performance/stability by the use 
of structured optimization methods to compute a distributed control 
law. Distributed control is introduced as an alternative architecture 
to centralized and decentralized control [91]. Distributed approaches 
suggest breaking down the system into autonomous sub-agents 
organized into an information exchange network, in order to reduce 
the drawbacks of a centralized architecture by taking advantage of the 
sparsity of large-scale systems where the interaction between sub-
systems can generally be reduced to direct neighbors. Setting up dis-
tribution techniques nevertheless requires the coordination problem 
of the several local controllers to be addressed. In this perspective, 
Model Predictive Control is particularly relevant since it provides a 
temporal window – the preview horizon – to exploit in order to estab-
lish a coordination strategy.

Distributed architectures rely on a decomposition of the system into 
subsystems of lower dimension, and single out from decentralized 
approaches by the coordination of sub-agents. The table in Figure 13 
presents an optimal control architecture nomenclature in the case of 
two coupled sub-systems [101]. This coordination is aimed at bring-
ing the distributed optimization toward a collective optimum (in the 
sense of Pareto), in the case of cooperative algorithms. It may be 
viewed as a class of sub-optimal control. Conversely, non-coopera-
tive algorithms imply the respective optimization from each sub-agent 
of a local cost function, whose evolution is also subject to known 
actions from the other sub-systems. As a result, actions are taken 

individually, with each controller being aimed at accepting a change in 
a variable under the sole condition of a local benefit, and thus tending 
to produce solutions drawing the system towards a Nash equilibrium. 
This equilibrium is a stable state around which one or all system(s) 
would have a handicap with respect to its or their respective local 
objective.

Problems for which decomposition (in which variables can be par-
titioned into sub-vectors and each constraint involves only variables 
from one of the sub-vectors) lead evidently to the ability of solving 
each problem separately (and in parallel), and then re-assembling the 
solution. A more interesting situation occurs when there is some cou-
pling or interaction between the sub-vectors, so the problems cannot 
be solved independently. For these cases, such decomposition tech-
niques can be used to solve the overall problem by iteratively solving 
a sequence of smaller problems, including the dual decomposition 
technique [103].

This approach makes it possible to strictly decompose the multi-
objective MPC problem into coupled and conflicting sub-problems. 
The coordination problem is translated into a non-cooperative game 
problem, providing the control architecture with a gain in modularity 
that allows approximations on the couplings between sub-systems to 
be naturally enforced. A parallel algorithm can then be used to solve 
the resulting distributed control problem as a set of sub-problems of 
various time scales and approximation levels, able to successfully 
solve conflicts between objectives [102].

DMPC also offers a set of possibilities for the implementation of 
Fault-Tolerant Control (FTC) laws in case of sensor and actuator fault 
detection, in order to maintain the desired closed-loop performance 
[104]. In [105], a data-based monitoring and reconfiguration system 
was developed for a distributed model predictive control system in 
the presence of control actuator faults. In addition to a monitoring 
method, appropriate DMPC reconfiguration (fault-tolerant control) 
strategies were designed to handle the actuator faults and maintain 
the closed-loop system state within a desired operating region.
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Figure 13 – Distributed control architecture nomenclature for two coupled 
sub-systems (from [102])
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Coordination strategy with mixed-integer-continuous variables

Coordination strategies between autonomous vehicles can also 
involve discrete and continuous variables. The use of mixed-inte-
ger variables allows discrete actions to be described in the model 
and non-convex admissible domains to be handled. The mixed-
integer MPC formulation thus allows discrete actions to be drawn 
at the control layer, which are commonly supported by the decision 
layer, and thus enables a more consistent coordination of discrete 
events. Mixed-Integer Programming (MIP) [57] indeed proposes 
an ideal framework to account for logic events and non-convex 
admissible domains. MIP approaches generally use integer vari-
ables to describe logic and combinatorial systems, with these vari-
ables being used either as discrete state/input values or as triggers 
to activate and deactivate constraints in the optimization problem. 
The latter use offers opportunities to regard non-convex admis-
sible domains as an arrangement of convex regions, an integer 
variable specifying in which convex region the now convex problem 
is currently being considered. While integer programs are NP-hard, 
efficient algorithms and solvers are available for specific classes 
of programs, exploiting the form of the optimization problem or 
employing heuristics. For example, quadratic MIPs (MIQPs) can be 
solved using branch and bound algorithms which solve a graph of 
QP problems resulting from the con-sideration of integer variables 
as real variables [106]. Given that real-valued QP problems are 
convex, the resolution of these relaxed sub-problems is computa-
tionally efficient.

Dynamic Adaptive Planning

At the upper level of the control hierarchy, the role of the deci-
sion layer is to produce high-level activity plans composed of 
sequences of elementary tasks to be fulfilled by a system whose 
control would be performed at a task-level by making use of some 
of the techniques discussed before. Such plans are especially use-
ful for complex missions requiring high-level goals to be achieved, 
which could be, for example, the "long-term surveillance of criti-
cal areas". High-level goals of this type are hardly satisfied by 
using only low-level reactive strategies, which is the reason why a 
deliberative planner comes into play [107]. Several toolboxes have 
been developed at ONERA over this last decade to solve planning 
and scheduling problems, such as InCELL [108], HiPOP [109] or 
CPT [110].

As an input, the planner considers a symbolic representation of 
the current state of the system (e.g., a Boolean component fail-
ure status), a symbolic representation of the environment (e.g., 
a waypoint graph for modeling trajectories on a complex terrain), 
goals that must be fulfilled (tasks to be performed, states to be 
reached, etc.), constraints that must be met (temporal constraints, 
resource constraints, etc.), optimization criteria (mission dura-
tion, action costs, etc.), and simplified equations of the dynamic 
behavior (e.g., navigation durations modeled as arc weights in the 
waypoint graph).

The planner uses these inputs to produce a plan. In practice, it must 
also be able to cope with the uncertainty about the current state 
of the system and about possible future evolutions of the environ-
ment, and with dynamic missions in which the set of high-level 
goals provided can be updated following new event detections or 

new operator requests. Two main approaches are classically used 
in such contexts:

•	 Reactive planning, which consists in building an initial plan 
based on arbitrary deterministic assumptions and in perform-
ing online replanning or online plan repairs each time that a new 
relevant item of data coming from the lower levels of control or 
from the perception modules is received [111]. The integration 
of this planning level with the task control level is tricky. The 
necessary dialog between action and cognition is a particularly 
complex issue. Receding horizon optimization methods, such 
as those discussed in the previous section, may help to antici-
pate the effects of actions and produce local adaptations, for 
instance by using Mixed-Integer Linear Programming (MILP) 
to incorporate kino-dynamic, obstacle avoidance and collision 
avoidance constraints, as proposed in [112] or Mixed-Integer 
Quadratic Programming (MIQP) to reach complex adaptive 
behavior [113]. This dialog must be supported by a common 
representational medium, such as that proposed by the Theory 
of Event Coding (TEC), in which perceptual contents and ac-
tion plans are coded for an adequate theoretical treatment of 
perception and action planning [114].

•	 Proactive planning, which consists in producing offline a de-
cision strategy covering several situations; such a strategy 
might be represented as a decision policy (mapping from 
observable state values to actions), as a conditional plan (a 
plan with branches), or as a robust plan by explicitly taking 
into account the effect of uncer tainty and constraint satis-
faction using for instance adaptations of the MPC formula-
tion [115].

See Figure 14 for an illustration of these concepts. For more detailed 
examples of reactive planning, see [116] for an application to a 
multi-robot area surveillance mission and [117] for an application 
to an autonomous satellite surveillance mission. On the proactive 
side, see [118] for the production of decision policies for a UAV and 
[119] for the production of temporally flexible plans for multi-robot 
deployment.
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Figure 14 – (a) Reactive planning transforming an online plan containing 
a sequence of four tasks into a new plan containing one more task. (b) 
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depending on an observable state parameter t and affecting the performance 
of tasks E, F, G)
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Reactive and proactive planners can be based on various resolution 
methods, such as PDDL-like deterministic and non-deterministic 
planning algorithms [107], scheduling algorithms [120], constraint 
programming [121], Markov Decision Processes [122], Simple 
Temporal Networks with Uncertainty [123], etc. In each case, com-
plete or approximate search techniques can be used (exhaustive 
tree search, local search, global optimization, dynamic program-
ming, etc.).

In the following, we describe research directions deserving to be 
explored to achieve increasing system autonomy at the planning 
level. These directions are summarized in Figure 15.

Hierarchical deliberations

In the case of reactive planning, the first idea is to push hierarchi-
cal deliberations further, which produce plans containing high-level 
tasks decomposed into lower level tasks, such as in Hierarchical 
Task Networks (HTN [124]). With regard to HTN, a major objec-
tive is to mix hierarchical representations with scheduling models 
containing complex temporal constraints among tasks, complex 
resource constraints, and complex criteria. Another objective is 
to refine physical models used at the lower levels of the hierar-
chy (e.g., navigation models). These lower levels could for instance 
embed Model Predictive Control techniques to obtain a more accu-
rate view of the impact of high-level decisions. Such an integration 
with MPC would be quite natural since reactive planning and MPC 
are based on similar principles (search for a control strategy over 
a finite horizon using deterministic modeling of future evolutions). 
Note also that using hierarchical representations enables for more 
modularity in mission modeling, for shorter computation times, and 
for more readability from an operational point of view [109].

Real-time planning strategies

From the online reasoning side, a second goal is to explore real-time 
planning strategies more in depth. On this point, hierarchical delib-
erations pave the way for obtaining a continuum between conserva-
tive high-level coarse-grain reasoning when quick deliberations are 
required, and fine-grain reasoning at lower levels of the hierarchy 
when more computation time is available. Hierarchical deliberations 

can also help to make plan repairs more local, leading to increased 
plan stability [125]. Another advantage of hierarchical representa-
tions is that they can help to handle the tricky issues classically 
encountered when combining online reactive planning and real-time 
execution [126] (action interruption issues, state projection issues, 
plan concatenation issues, etc.). For example, reactive planners 
need an initial state as an input and, with current approaches, this 
initial state is very often either the state obtained by interrupting all 
pre-emptible actions, or the state obtained by finishing all ongoing 
actions. Having low-level tasks embedding MPC techniques could 
help in considering intermediate states obtained in the course of 
actions, which could lead to more fluidity in the real-time control of 
the system.

Distributed plans

In another direction, a third objective is to push further distributed 
plans, which are needed for missions involving multiple agents 
that must be coordinated for achieving common high-level goals, 
such as robots performing acquisition tasks and robots deployed 
to establish an ad hoc communication network. Concerning distrib-
uted plans, our ambition is to develop generic strategies combining 
centralized reasoning for high-level decisions, like task allocation 
among agents, and decentralized plan repair for low-level decisions 
referring to a single agent or team of agents. When using distrib-
uted plans, one major difficulty is also the outage of communication 
links between agents, which is why the plans built in a centralized 
way must ideally be robust to the absence of communication links 
(multi-agent dynamic controllability issues [127]). Another dif-
ficulty is that operators supervising the mission must have some 
global situation awareness, which is why the generic schemes 
developed should explicitly describe by which agent a particular 
decision can be made. As an illustration, see [128] for a space mis-
sion where robust plans sent to satellites are built at a centralized 
mission center, while opportunistic reactive planning is performed 
by decentralized satellite on-board reasoning. Note that since we 
target missions in which agents all share the same high-level goals, 
using multiagent negotiation schemes is less relevant.

Uncertainty management

Lastly, some of the planners that we develop are built upon con-
straint-based optimization models solved using local search and 
global optimization strategies [129, 108]. Using such planners for 
reactive planning is quite natural, but there is still some work to 
be done before an efficient adaptation to proactive planning can be 
obtained, e.g., for producing plans maximizing an expected reward 
or minimizing a risk-level as in Online Combinatorial Stochastic 
Optimization (OSCO [130]). For this, we would like to explore new 
combinations between constraint-based scheduling on the one 
hand and stochastic uncertainty reasoning or set uncertainty rea-
soning on the other hand. Finally, uncertainty management should 
be combined with all of the hierarchical and distributed aspects 
mentioned above.

Conclusion

Functional and decisional autonomy in automated systems is at the 
core of research activities for designing future aircraft and space-
craft, as well as all systems for mobility in the fields of transportation, 
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Figure 15 – Hierarchical distributed plans with uncertain parameters and 
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not represented, nor the planning criteria)
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Acronyms

CML	 (Concurrent Mapping and Localization)
CoSLAM	 (Collaborative SLAM)
DMPC	 (Distributed MPC)
FTC	 (Fault-Tolerant Control)
GPS	 (Global Positioning System)
GPU	 (Graphics Processing Unit)
HQP	 (Hierarchical Quadratic Programming)
HTN	 (Hierarchical Task Networks)
INS	 (Inertial Navigation System)
IQC	 (Integral Quadratic Constraints)
LFT	 (Linear Fractional Transformation)
LMI	 (Linear Matrix Inequality)
LTI	 (Linear Time Invariant)
LTV	 (Linear Time Varying)
MILP	 (Mixed Integer Linear Programming)
MIQP	 (Mixed Integer Quadratic Programming)
MLD	 (Mixed Logical Dynamical)
MPC	 (Model Predictive Control)
mp-MILP	 (multi-parametric Mixed Integer Quadratic Programming)
MRAW	 (Model Recovery Anti Windup)
OIST	 (Output to Input Saturation Transformation)
OISTeR	 (Output to Input Saturation Transformation extended for Robustness)
PD	 (Proportional-Derivative)
PWA	 (Piecewise Affine)
PWL	 (Piecewise Linear)
QP	 (Quadratic Programming)
SIMD	 (Single Instruction, Multiple Data)
SLAM	 (Simultaneous Localization And Mapping)
TEC	 (Theory of Event Coding)
UAV	 (Unmanned Aerial Vehicle)
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