
HAL Id: hal-01512952
https://hal.science/hal-01512952v1

Submitted on 24 Apr 2017 (v1), last revised 5 May 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Exploring the Evolution of Node Neighborhoods in
Dynamic Networks

Günce Keziban Orman, Vincent Labatut, Ahmet Teoman Naskali

To cite this version:
Günce Keziban Orman, Vincent Labatut, Ahmet Teoman Naskali. Exploring the Evolution of Node
Neighborhoods in Dynamic Networks. Physica A: Statistical Mechanics and its Applications, 2017.
�hal-01512952v1�

https://hal.science/hal-01512952v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Exploring the Evolution of Node Neighborhoods
in Dynamic Networks

Günce Keziban ORMAN1, Vincent LABATUT2 & Ahmet Teoman NASKALI1

1: Computer Engineering Department, Galatasaray University, Ortaköy, Istanbul, Turkey
korman@gsu.edu.tr, tnaskali@gsu.edu.tr

2: Laboratoire Informatique d’Avignon (LIA) EA 4128, Université d’Avignon, France
vincent.labatut@univ-avignon.fr

April 24, 2017

Abstract

Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their
analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently
much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the
longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct
neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node
in the whole network. For this purpose, we define the concept of neighborhood event, which corresponds to the various
transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate
the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining
to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of
behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also
perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting
different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a
very large group of stable nodes.

Keywords: Dynamic networks, Network Evolution, Network Topology, Neighborhood Events.

1 Introduction
Dynamic Network Analysis is a subfield of Network Science aiming at representing and studying the behavior of systems
constituted of interacting or related objects evolving through time. This domain gained attention lately, as attested by the
recent publication of several surveys (Aggarwal and Subbian 2014; Blonder et al. 2012; Holme and Saramäki 2012; Kuhn
and Oshman 2011; Spiliopoulou 2011).

Authors generally distinguish two types of such dynamic systems. In the first, interactions or relationships are very
short, or even punctual, and occur frequently. They are called contact sequences (Holme and Saramäki 2012) and strea-
ming networks (Aggarwal and Subbian 2014) in the literature (among other names). In the second type, called interval
graphs (Holme and Saramäki 2012) and slowly evolving networks (Aggarwal and Subbian 2014), interactions or relati-
onships have a significant duration and are not so frequent. Dynamic network modeling can be applied to both types,
although it is more suited to the second. It consists in representing the system evolution through a sequence of graphs.
Each one of these graphs, which we call time slices in this article, represents the aggregation of the system changes over
a given period of time. This representation allows studying the system properties with sequence-based tools such as time
series analysis and sequential pattern mining.

According to Aggarwal & Subbian, one can distinguish two types of methods to analyze dynamic networks (Aggarwal
and Subbian 2014). On the one hand, so-called maintenance methods consist in performing an initial analysis on the first
time slice (e.g. detect the community structure), and then updating its output for each subsequent time slice (e.g. move
certain nodes from one community to another). This is typically done with methods originally developed for static
networks and later adapted to dynamic ones. On the other hand, evolution methods embrace the longitudinal nature of
the data and focus on describing the changes caused by temporal evolution. They are useful to identify and understand
the rules governing the evolution of the studied network, and allow the design of new models. Note that it is possible
to simultaneously belong to both types of methods. Another important feature is the granularity used to perform the
analysis. First, macroscopic methods deal with the whole network at once. They are the most widespread in the literature,
e.g. network density, network diameter (Leskovec et al. 2005a). Second, mesoscopic methods consider the network at
an intermediary level, generally that of the community structure, e.g. modularity measure (Kashtan and Alon 2005), size

1

mailto:korman@gsu.edu.tr
mailto:tnaskali@gsu.edu.tr
mailto:vincent.labatut@univ-avignon.fr

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

of the communities (Backstrom et al. 2006). Finally, microscopic methods focus on individual nodes and possibly their
direct neighborhood, e.g. clustering coefficient (Clauset and Eagle 2007).

By definition, methods specifically designed to handle a dynamic network are more likely to take advantage of the spe-
cificity of such data. Regarding the granularity, if macroscopic and mesoscopic methods are widespread in the literature,
it is not the case for microscopic methods. Yet, the benefits of such approaches are numerous: by allowing the tracking
of finer evolution processes, they complement macroscopic and/or mesoscopic results. They help identifying behavioral
trends among the network nodes, and consequently outliers. These results can facilitate the description and understanding
of processes observed at a higher level, and can be useful to define models of the studied system, especially agent-based
ones.

In this work, we propose a method specifically designed to study dynamic slowly evolving networks, at the microsco-
pic level. We characterize a node by the evolution of its neighborhood. More precisely, we detect specific events occurring
among the groups of nodes constituting this neighborhood, between each pair of consecutive time slices, which we call
neighborhood evolution events. This method constitutes our main contribution. To the best of our knowledge, it is the
first attempt at describing the dynamics of a network based on such local events. For each node, our method outputs a
sequence of categorical features corresponding to the different types of events it experienced. These features can then
be analyzed with any tool capable of processing temporal categorical data, in order to extract meaningful information
regarding the network dynamics. This knowledge can noticeably be used to categorize nodes, or identify trends and out-
liers. For illustration purposes, and as a second contribution, we analyze three real-world networks: DBLP (scientific
collaborations), LastFM (social relations through musical tastes) and Enron (email exchanges). We first apply our event
identification method, before using Sequential Pattern Mining and some complementary analysis to extract higher level
information.

The rest of this article is organized as follows. In Section 2, we review in further detail the existing work the most
related to our method. In Section 3, we formally define the concept of neighborhood evolution event, and describe the
method we use to detect such events in dynamic networks. In Section 4, we apply our method to three real-world networks
and discuss the obtained results. Finally, in Section 5, we comment on the limitations of our work, how they could be
overcome and how our method could be extended.

2 Related Work
This section does not aim at being exhaustive, but rather at presenting the various general families of methods existing to
characterize dynamic graphs. A number of reviews exist which describe them in further detail, and list them in a more
exhaustive way (Aggarwal and Subbian 2014; Holme and Saramäki 2012; Nicosia et al. 2013).

As mentioned in the introduction, the most straightforward way of characterizing a dynamic network is to use measures
designed for static networks, by applying them to each time slice and considering the resulting time series. A number
of studies adopted this approach for a variety of measures, at different granularities. To cite a few, at the macroscopic
level: number of links (Akoglu et al. 2008), size of the giant component (Leskovec et al. 2005b), diameter (Leskovec et al.
2005a,b), principal Eigenvalue of the adjacency matrix (Akoglu et al. 2008); at the mesoscopic level: modularity (Kashtan
and Alon 2005), size of the communities (Backstrom et al. 2006), number of communities (Aynaud and Guillaume 2010),
numbers of motifs (predefined small subgraphs) (Braha and Bar-Yam 2009); and at the microscopic level: degree (Braha
and Bar-Yam 2009; Clauset and Eagle 2007; Leskovec et al. 2005a), clustering coefficient (Clauset and Eagle 2007).

The next step is to apply tools originally designed to process static networks at each time slice, like before, but
with some additional updating mechanism allowing to smooth the results. This is particularly common in the domain of
community detection, like for instance in (Aynaud and Guillaume 2010). A related incremental approach, consisting in
performing an initial computation on the first time slice and updating it at each additional time sleice, is also applied to
the processing of centrality measures, such as the incremental closeness (Kas et al. 2013). In contrast, more recent tools
go farther in the adaptation of these static methods to the analysis of dynamic networks and better describe or detect the
changes caused by temporal evolution. For instance, Gupta et al. (2011) describe a method allowing to detect the most
significant changes in the distance between nodes, assuming such changes correspond to important events in the evolution
of the graph.

With their method based on the identification of role dynamics, Rossi et al. (2012) use several such measures at once.
They consider each one of them as a feature characterizing the topological position of a node in the graph. They apply
non-negative matrix factorization to identify a small number of node roles, corresponding to typical evolutions of the
features for the considered period of time. Each role is characterized by its dependence on certain features, and each node
is more or less related to certain roles. The prevalence of a role can change with time, which can be used to characterize
the network dynamics. For instance, Rossi et al. (2012) observe that certain roles are more represented at day or at night,
i.e. they are periodic, whereas others are more stationary.

A whole family of descriptive tools is based on the generalization of the notion of path to dynamic networks. In a
static graph, a path between two nodes is a sequence of adjacent links allowing to indirectly connect them The concept
of time-respecting path (Kempe et al. 2002) states that in a dynamic graph, the links must additionally be chronologically
ordered. This can be used to generalize all the path-based measures originally designed for static graphs, such as the

2 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

betweenness (Tang et al. 2010a) or edge-betweenness (number of shortest paths going through some node or link of inte-
rest, respectively). A similar chronological constraint was applied to spectral centrality measures such as the Eigenvector
centrality (Grindrod et al. 2011; Nicosia et al. 2013), Katz centrality (Grindrod et al. 2011) or PageRank (Lerman et al.
2010).

Moreover, the distance between two nodes being the length of the shortest path connecting them, the same can be said
of all the distance-based measures, such as: closeness (Magnien and Tarissan 2015) (reciprocal of the average distance
to a node of interest), eccentricity (maximal distance to a node of interest), average distance (Holme and Saramäki 2012;
Nicosia et al. 2013) (over all pairs of nodes in a graph), diameter (Holme and Saramäki 2012) (longest distance in
the graph) or efficiency (Magnien and Tarissan 2015) (average of the distance reciprocal over all paths in the graph).
Alternatively, certain authors prefer to consider the total duration of paths instead of their length, leading to the notion
of temporal length (by opposition to the traditional topological length). The temporal length of the fastest path is called
temporal distance, and can be substituted to the topological distance in the previously mentioned measures, e.g. the
temporal closeness described in (Pan and Saramäki 2011), or the characteristic temporal path length used in (Tang et al.
2010b) (which is the average temporal distance).

The concept of time-respecting path can also be used to generalize the notion of component, as in (Nicosia et al.
2012). The number of components and the presence of a giant one are two largely studied properties in static graphs.
Time-respecting paths can additionally be used to define connectivity-related measures. For instance, Holme (2005)
defines the influence set of a node of interest, as the set of nodes it can reach through such a path in a given time. Based
on this, he derives his reachability ratio: the proportion of nodes belonging to the influence set, averaged over the whole
graph. The source set is defined symmetrically in (Riolo et al. 2001) as the set of nodes able to reach the node of interest,
and allows deriving a similar measure. It is also possible to monitor the evolution of the number of time-respecting
shortest paths able to reach a node of interest for a given time window (Moody 2002) (a measure not unlike the dynamic
betweenness).

Several tools have been proposed to characterize dynamic graphs in terms of their constituting subgraphs. Lahiri
and Berger-Wolf (2007) use a pattern mining approach to detect frequent subgraphs based on their temporal support, i.e.
depending on how persistent these subgraphs are. Another family of works tried to generalize the notion of motif to
dynamic networks. A motif is a generic subgraph of a few nodes appearing frequently in a static network (Milo et al.
2002), comparatively to some null model. A number of such generalizations have been proposed: some authors detect
static subgraphs in time slices (Braha and Bar-Yam 2009), others detect dynamic time-respecting subgraphs (Bajardi et al.
2011). See Section 4.10 of (Nicosia et al. 2013) for a more exhaustive review of motif-based approaches in dynamic
networks.

A number of works have transposed concepts developed from the field of data mining to the analysis of graphs.
Authors generally suppose that a node can be represented by a set of descriptor values, a descriptor being either topological
(e.g. degree, centrality measure, etc.) or attribute-based (e.g. for a social network: age, gender, interests of the considered
person). Berlingerio et al. (2009) propose a method to identify graph evolution rules, i.e. association rules describing
the evolution of local connections. Briefly, these rules state that if a certain local interconnection pattern is observed, the
network will locally evolve in a certain way. For instance, in the case of an academic co-authorship network, such a rule
could be that if a high degree individual is connected to four medium degree researchers, he is likely to get connected to
a fifth one in the next time slice.

Other data mining-related works have focused on pattern mining to describe dynamic networks. In the context of
traditional data mining, a pattern is a set of descriptor values common to certain instances of the studied dataset, and
possessing certain properties. For instance, a frequent pattern is shared by a large number of instances. Desmier et al.
(2012) study co-evolution patterns, i.e. the trend for certain groups of nodes to behave similarly in terms of how their
descriptor values change with time. A sequential pattern aims at describing time series, in which one looks for sequences
of sets of descriptor values (Mabroukeh and Ezeife 2010). Orman et al. (2014) use sequential pattern mining to make
sense of dynamic communities and ease their interpretation.

Most of the methods defined at the level of the community structure focus on so-called community events. These
were originally proposed by Toyoda and Kitsuregawa (2003), and have later been used by many other authors. They
correspond to the 6 different kinds of transformations a community can undergo: emerge vs. dissolve (a community
appears vs. disappears), grow vs. shrink (a community size increases vs. decreases), split vs. merge (a community breaks
down into smaller ones vs. several communities form a larger one). Note that these events appear under different names
in the literature, e.g. Palla et al. (2007) call them birth, death, growth, contraction, merging and splitting, respectively.

The evolution of the community structure can be characterized by tracking and counting these events, but some authors
also have used them to define more synthetic measures. Toyoda & Kitsuregawa define their evolution metric as rates of
changes, by focusing on the different types of changes: growth rate (total increase in nodes per unit time), stability (total
change in nodes), novelty (increase due to node creation), disappearance rate (decrease due to node deletion), merge rate
(increase in nodes due to merges) and split rate (decrease in nodes due to splits). On the same principle, Asur et al. (2009)
define their popularity index as the difference between the numbers of nodes joining and leaving a community of interest,
for a given period.

A number of measures have been proposed to assess the stability of the graph or of various of its parts, through the
expression of some form of auto-correlation. Palla et al. (2007) monitor the stability of a community through their statio-

3 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

● ●
●

●●
●
●
●

● ●
●

1 2

3
45

6

7

8
9 10

11

G1

● ●
●

●●
●
●
●

● ●
●

1 2

3
45

6

7

8
9 10

11

G2

● ●
●

●●
●
●
●

● ●
●

1 2

3
45

6

7

8
9 10

11

G3

Figure 1: Example of dynamic network containing three time slices.

narity measure, based on the averaging of a custom auto-correlation function processed from the community appearance
to its disappearance. This auto-correlation function is related to Jaccard’s coefficient, i.e. it is based only on the evolution
of the nodes community membership, and ignores completely the link distribution. On the same principle Clauset & Eagle
have proposed a measure designed for the whole graph, and taking the topology into account: their adjacency correla-
tion measures how similar, topologically speaking, two consecutive time slices are (Clauset and Eagle 2007). Braha and
Bar-Yam (2009) apply a similar approach, except they compare all pairs of time slices (not just consecutive ones). On the
same note, Bost (2016) uses Jaccard’s coefficient to compare consecutive node neighborhoods in a dynamic network, and
segments the neighborhood evolution into meaningful distinct parts.

Let us now stress how the method presented in this article is positioned relatively to this existing body of work. First,
it is not an adaptation of some existing measure: the method was designed specifically to take advantage of dynamic
networks. Second, it is a microscopic approach, because it focuses on a node of interest and its neighborhood, through
the so-called ego-network of this node. But it also borrows from the mesoscopic methods based on community events,
because it adapts them to the context of the node neighborhood. Our idea is to characterize the evolution of a node through
changes in its direct neighborhood, described by the occurrence of so-called neighborhood events. Finally, our method
also relates to the work of Desmier et al. as well as to our previous work (Orman et al. 2014) in that we use sequential
pattern mining to extract meaningful information from the identified sequences of neighborhood events. Note that such
pattern mining is just one possible post-analysis method among others, though.

3 Methods
In this section, we start with introducing the concept of node neighborhood evolution events (3.1), before explaining how
these can be detected and used (3.2).

3.1 Neighborhood Evolution Events
This subsection is twofold: we first explain certain preliminary concepts and notations, and then properly define neig-
hborhood evolution events. We illustrate our explanations with the toy example network from Figure 1.

3.1.1 Preliminary definitions

We start by properly defining the type of dynamic network used in this article, before deriving ad hoc concepts used in
the rest of this section to define neighborhood events.

Definition 1 (Dynamic network and Time slice) A Dynamic network G is a sequence of θ chronologically ordered time
slices Gt (1≤ t ≤ θ):

G = 〈G1, . . . ,Gθ 〉 (1)

A time slice is a static graph defined as Gt = (V,Et), where V is the set of nodes and Et ⊆V ×V is the set of links.

The set of links can vary from one time slice to the other, but the set of nodes is the same for all time slices, and we
can consequently note n = |V | the size of each time slice (and of the dynamic network as well). In Figure 1, we describe
a dynamic network G = 〈G1,G2,G3〉, in which we have θ = 3 and n = 11. Remark that the number of nodes does not
change with time, whereas the number of links and their distribution do.

4 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

● ●
●

●●
●
●

●

● ●

●

1 2

3
45

6

7

G1(v1)

● ●

●

●●
●

●
●

● ●

1 2

45

7

8
9 10

G2(v1)

● ●

●

●●
●

●
●

● ●
●

1

45

7

9 10
11

G3(v1)

C1(v1)
3

C1(v1)
1

C1(v1)
2

C2(v1)
3

C3(v1)
3

C2(v1)
2

C3(v1)
2C2(v1)

1

C3(v1)
1

C2(v1)
4

C3(v1)
4

Figure 2: Ego-networks extracted from Figure 1, for node v1.

Definition 2 (Ego-network) The ego-network (or egocentric network) of node v∈V at time t (1≤ t ≤ θ) is the subgraph
noted Gt(v) = (Vt(v),Et(v)) and such that:

Vt(v) = {v}∪Nt(v) (2)
Et(v) = {(ui,u j) ∈ Et : ui,u j ∈Vt(v)} (3)

where Nt(v) is the first order neighborhood of v at time t.

Put differently, the ego-network Gt(v) is the induced subgraph of Gt constituted of node v and its neighborhood in Gt .
In Figure 2, we represent the evolution of the ego-network of node v1 from Figure 1, for three time slices t = {1,2,3}.
This results in three consecutive subnetworks G1(v1), G2(v1) and G3(v1). Note that, at each time slice, both the numbers
of nodes and links can change depending on the neighborhood of node v1.

Definition 3 (Diminished ego-network) The diminished ego-network G′t(v) = (V ′t (v),E
′
t (v)) is the subgraph obtained by

removing v and all its attached links from the ego-network Gt(v). It is such that:

V ′t (v) = Nt(v) (4)
E ′t (v) = {(ui,u j) ∈ Et : ui,u j ∈V ′t (v)} (5)

The diminished ego-network is the induced subgraph of Gt for Nt(v). In Figure 2, it corresponds to the subgraphs
obtained when removing v1.

Definition 4 (Ego-component and Neighborhood partition) Let G′t(v) = (V ′t (v),E
′
t (v)) be the diminished ego-network

of v∈V at time t. This graph is composed of πt(v) components (i.e. maximal connected subgraphs) called ego-components
and noted Ci

t(v)⊆ Nt(v).
The set Ct(v) = {C1

t (v), ...,C
πt (v)
t (v)} of these πt(v) ego-components constitutes a partition of the original neighbor-

hood of the node, called the neighborhood partition.

In practice, a diminished ego-network is often constituted of several components, i.e. πt(v)> 1. These ego-components
constitute a partition of Nt(v), so by definition we have

⋃
i C

i
t(v) = Nt(v) and

⋂
i C

i
t(v) = /0. In Figure 2, the nodes belon-

ging to the same ego-component are represented with the same color. At time t = 1, for instance, there are π1(v1) = 3
ego-components: C1

1(v1) = {v2,v3} (red), C2
1(v1) = {v4} (yellow) and C3

1(v1) = {v5,v6,v7} (green). Therefore, the neig-
hborhood partition of v1 at time t = 1 is C1(v1) = {C1

1(v1),C2
1(v1),C3

1(v1)}.

Definition 5 (Event matrix) Let Ct(v) and Ct+1(v) (t < θ) be two consecutive neighborhood partitions for some node v.
The event matrix Mt,t+1(v) is the πt(v)×πt+1(v) matrix whose elements are defined as follows:

mi j
t,t+1(v) = |C

i
t(v)∩C j

t+1(v)| (6)

with 1≤ i≤ πt(v) and 1≤ j ≤ πt+1(v)).

In other words, this neighborhood matrix is the confusion matrix allowing to compare both considered partitions: each
element mi j

t,t+1(v) contains the number of nodes belonging to the ith ego-component at time t and to the jth one at t +1.
In our toy example from Figure 2, we get the following event matrices for node v1:

M1,2(v1) =

1 0 0 0
0 1 0 0
0 1 1 0

 ; M2,3(v1) =

0 0 0 0
2 0 0 0
0 1 0 0
0 0 2 0

 (7)

5 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

3.1.2 Notion of Neighborhood Event

Before defining the events themselves, we need first to introduce the notion of identical partitions.

Definition 6 (Identical partitions) Two consecutive neighborhood partitions Ct(v) and Ct+1(v) are identical if the fol-
lowing conditions are all met:

∀i,∃ j,∀ j′ 6= j : mi j
t,t+1(v) 6= 0∧mi j′

t,t+1(v) = 0, (8)

∀ j,∃i,∀i′ 6= i : mi j
t,t+1(v) 6= 0∧mi′ j

t,t+1(v) = 0, (9)

∑
i, j

mi j
t,t+1(v) = |Nt(v)∪Nt+1(v)|. (10)

These partitions are thus considered identical if each column and each row of Mt,t+1(v) contains exactly one non-zero
value, and if the sum over Mt,t+1(v) is equal to the number of nodes which are neighbors of v at t or t +1. In other words,
they are not identical if some neighbor appears, disappears, or switches ego-component during the considered interval.

If two consecutive neighborhood partitions are not identical, we consider that at least one evolution event is happening.
We define six types of such events: birth vs. death, merge vs. split, and expansion vs. contraction. Note that it is possible
for an ego-component to simultaneously undergo several events. The matrices described in Eq. (7) fail to fulfill our
conditions, so the partitions considered in our toy example are not identical, and evolution events are consequently taking
place.

Definition 7 (Birth and Death events) The ego-component C j
t+1(v) is born at time t +1 iff ∑i mi j

t,t+1(v)= 0. This amounts
to having a column of zeros in the event matrix.

Symmetrically, Ci
t(v) dies at time t +1 iff ∑ j mi j

t,t+1(v) = 0. This amounts to having a row of zeros in the event matrix.

We say there is a birth event if a new ego-component appears from one time slice to the next one, i.e. it contains only
nodes not belonging to any ego-component of the previous time slice. In our example, if we consider M1,2(v1), we see a
birth taking place for C4

2(v1), because column j = 4 contains only zeros. In Figure 2, this corresponds to the apparition of
the cyan ego-component (nodes v9 and v10) at t = 2.

Symmetrically, a death event appears if an ego-component disappears from one time slice to the next one, i.e. all the
nodes it contains in the previous time slice do not appear in any ego-component of the current one. In our example, if
we consider M2,3(v1), we observe a death occurring for C1

2(v1), since row i = 1 contains only zeros. In Figure 2, this
corresponds to the disappearance of the red ego-component (node v2) from t = 2.

Definition 8 (Merge and Split events) The ego-component C j
t+1(v) is the result of a merge at time t+1 iff |{i : mi j

t,t+1(v)>
0}|> 1. This amounts to having more than one non-zero value in the jth column of the event matrix.

Symmetrically, Ci
t(v) is split at time t +1 iff |{ j : mi j

t,t+1(v)> 0}|> 1. This amounts to having more than one non-zero
value in the ith row of the event matrix.

A merge event corresponds to the combination of two or more ego-components into a single one, i.e. the resulting
ego-component contains nodes coming from at least two distinct ego-components from the previous time-slice. In our
example, if we consider M1,2(v1), we observe a merge resulting in C2

2(v1), since column j = 2 contains two ones. In
Figure 2, this corresponds to the fusion of the yellow ego-component (node v4) and a part of the green ego-component
(node v5) from t = 1, to form the yellow ego-component at t = 2.

Symmetrically, a split event occurs if an ego-component breaks down into two or more ego-components, i.e. some
of its nodes belong to different ego-components in the next time slice. In our example, if we consider M1,2(v1), C1

3(v1)
undergoes a split, since row i = 3 contains two ones. In Figure 2, this corresponds to the split of the green ego-component,
whose node v5 joins node v4 to form the yellow ego-component at t = 2, while v7 becomes a part of a new green ego-
component together with v8.

Definition 9 (Expansion and Contraction events) The ego-component C j
t+1(v) expands at time t + 1 iff ∑i mi j

t,t+1(v) <

|C j
t+1(v)|. This amounts to having more nodes in C j

t+1(v) than in the jth column.
Symmetrically, Ci

t(v) contracts at time t +1 iff ∑ j mi j
t,t+1(v)< |Ci

t(v)|. This amounts to having more nodes in Ci
t+1(v)

than in the ith row.

There is an expansion event if an ego-component includes new nodes from one time slice to the next, i.e. if it contains
at least one node which did not belong to any ego-component in the previous time slice. This is the case when the size of
the ego-component (at t +1) is larger than the sum over its corresponding column in the event matrix. In our example, if
we consider M1,2(v1), an expansion occurs for C3

2(v1), because the sum over column j = 3 is 1, which is smaller than the
ego-component size |C3

2(v1)|= 2. In Figure 2, this corresponds to the fact the green ego-component gets a new node v8 at

6 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

t = 2. Note that the same ego-component also loses two nodes (v5 and v6) due to other events (a merge and a contraction,
respectively) occurring simultaneously.

Symmetrically, a contraction event happens if some nodes of an ego-component disappear from the neighborhood
from one time slice to the next, i.e. if at least one of its nodes from the previous time slice does not belong to any ego-
component in the current one. This is the case when the size of the ego-component (at t) is larger than the sum over its
corresponding row in the event matrix. In our example, if we consider M1,2(v1), a contraction occurs for C3

1(v1), because
the sum over row i = 3 is 2, which is smaller than the ego-component size |C3

1(v1)|= 3. In Figure 2, this corresponds to
the fact node v6 of the green ego-component disappears from the neighborhood at t = 2.

The events we use are quite similar to those proposed in several works studying the evolution of dynamic community
structures, such as those of Toyoda and Kitsuregawa (2003) or Palla et al. (2007). However, their semantics is quite
different, since in our case these events are experienced by node neighborhoods, whereas in the other works they concern
communities. The main consequence is that in our case, it is possible for a node to simply disappear from the neighbor-
hood, or appear into it. On the contrary, in the context of community structures, the whole network is considered, so nodes
can only switch communities (provided the communities form a partition of V , and V is fixed). All the events considered
by Toyoda & Kitsuregawa or Palla et al. are different types of such switches. By comparison, in our case the birth and
expansion (resp. death and contraction) events are based only on nodes entering (resp. leaving) the neighborhood. Only
the merge and split events are based on nodes already present and remaining in the neighborhood.

Finally, as mentioned before, and as illustrated by our example, several events can occur simultaneously. Their
occurrence and frequency depends on the dynamics of the network structure in the neighborhood of the considered node.
This is why we make the assumption that the sequence of these events can be used to characterize this node.

3.2 Processing of Neighborhood Events
In this subsection, we first describe our algorithm to identify and extract neighborhood events from a dynamic network and
constitute a sequential database, then explain how sequential pattern mining can be used to extract relevant information
from this database.

3.2.1 Event Detection

We now need to identify all the evolution events taking place between each pair of consecutive time slices, for each node.
This procedure is described as Algorithm 1, and outputs a database noted S. It takes the form of a set of n sequences,
each one containing the ordered events underwent by the neighborhood of a given node (sequence-related concepts are
described in more details in Section 3.2.2).

Each node is processed iteratively (first loop), as well as each pair of consecutive time slices (second loop). We
first extract the ego-networks of the considered node v for both considered time slices t and t + 1, using the function
extractEgoNetwork (lines 3 and 4). This function performs a breadth-first search (BFS) restricted to v and its neighbors.
Let us note note kt(v) the degree of v at time t. In the worst case, v and its neighborhood form a clique, which means
the ego-network contains kt(v)(kt(v)−1)/2 links. Since the complexity of the BFS is linear in the number of nodes and
links, we get O((kt(v)+1)+ kt(v)(kt(v)−1)/2) = O(k(v)2) for our function.

Algorithm 1 Finding Evolution Events
Require: G
Ensure: S

1: for v ∈V do
2: for t ∈ {1 . . .(θ −1)} do
3: Gt(v)← extractEgoNetwork(Gt ,v)
4: Gt+1(v)← extractEgoNetwork(Gt+1,v)
5: G′t(v)← removeNode(Gt(v),v)
6: G′t+1(v)← removeNode(Gt+1(v),v)
7: Ct(v)← identi f yEgoComponents(G′t(v))
8: Ct+1(v)← identi f yEgoComponents(G′t+1(v))
9: Mt,t+1(v)← processEventMatrix(Ct(v),Ct+1(v))

10: sv← detectEvents(Mt,t+1(v))
11: S← insertSequence(S,sv)
12: end for
13: end for

The next step consists in applying function removeNode (lines 5 and 6), whose role is to delete v from both Gt(v)
and Gt+1(v), in order to get the corresponding diminished ego-networks. For time slice t, this is simply done by re-
moving 1 node and kt(v) links, i.e. O(kt(v)) operations. Both diminished ego-networks are then fetched to function
identi f yEgoComponents (lines 7 and 8), in order to process the corresponding neighborhood partitions. For time slice t,

7 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

this is achieved by iteratively performing a BFS until all nodes in G′t(v) have been explored, so we have a complexity in
O(kt(v)2) again.

Function processEventMatrix is then applied to get the event matrix (line 9). We basically have to process the
intersection cardinality for all pairs of ego-components in partitions Ct(v) and Ct+1(v). Computing the intersection of
Ci

t(v) and C j
t+1(v) requires O(|Ci

tv|+ |C
j
(t+1)v|) operations if both sets are ordered. The worst case is when both partitions

contain only singletons, leading to a complexity in O(kt(v)kt+1(v)). This can be simplified to O(kt(v)2) if we suppose the
degree of a node is relatively stable. We then look for events in this matrix, through function detectEvents (line 10). It
checks the conditions given for each type of event in section 3.1.2. All of them require to scan the whole matrix, leading
again to a complexity in O(kt(v)k(t+1)(v)) ≈ O(kt(v)2) in the worst case (partitions containing only singletons). Finally,
all detected events are added to the database thanks to function insertSequence (line 11), which operates in constant time.

The total computation for a node v and a pair of consecutive time slices is in O(kt(v)2). Instead of kt(v), let us
consider the degree averaged over all nodes in all time slices 〈k〉 = 2m/(θn), where m = ∑t |Et | (n being the number of
nodes in each time slice). The complexity can then be rewritten O(m2/(θn)2). By taking both loops into account, the
expression becomes O(m2/(θn)2 · θn) = O(m2/(θn)). The algorithm has a computational complexity in O(m2/(θn)),
where m = ∑t |Et |, n is the number of nodes in each time slice, and θ is the number of time slices. Note that each node in
each time slice can be treated independently, so this computation can be parallelized, which significantly speeds it up in
practice.

3.2.2 Sequential Pattern Mining

As mentioned before, we see evolution events as categorical variables describing the nodes. Once our database is con-
stituted, we can analyze them through sequential pattern mining tools. Sequential pattern mining is the data mining task
aiming at discovering frequent subsequences in sequentially structured databases (Mabroukeh and Ezeife 2010). This
approach was previously used in network science for interpreting communities in dynamic attributed networks (Orman
et al. 2015). In this work, we use it as a descriptive tool to find out general trends of node evolution. Here, we shortly
explain the related concepts in the perspective of our work and how we use them.

In our work, an item li is an evolution event which can be birth, death, merge, split, expansion or contraction. The set
of all items is noted I. An itemset h is any subset of I. Although itemsets are sets, in the rest of this article we represent
them between parentheses, e.g. h = (l1, l3, l4) because it is the standard notation in the literature.

A sequence s = 〈h1, · · · ,hm〉 is a chronologically ordered list of itemsets. Two itemsets can be consecutive in the
sequence while not correspond to consecutive time slices: the important point is that the first to appear must be associated
to a time slice preceding that of the second one. In other words, hi occurs before hi+1 and after hi−1. The size of a sequence
is the number of itemsets it contains. A sequence α = 〈a1, . . . ,aµ〉 is a sub-sequence of another sequence β = 〈b1, . . . ,bν〉
iff ∃i1, i2, . . . , iµ such that 1 ≤ i1 < i2 < .. . < iµ ≤ ν and a1 ⊆ bi1 ,a2 ⊆ bi2 , . . . ,aµ ⊆ biµ . This is noted α v β . It is also
said that β is a super-sequence of α ,which is noted β w α .

The node sequence sv of a node v is a specific type of sequence of size θ−1. We have sv = 〈(l11, . . . , lk1) . . .(l1(θ−1), . . . , lk(θ−1))〉,
where lit is the item representing the occurrence of a ith evolution event in the neighborhood of v between time slices t
and t +1. The sequence database S built in the previous subsection is the collection of node sequences sv for all nodes in
the considered network. The set of supporting nodes S (s) of a sequence s is defined as S (s) = {v ∈ V : sv w s}. The
support of a sequence s, Sup(s) = |S (s)|/n , is the proportion of nodes, in G, whose node sequences are equal to s, or are
super-sequences of s.

Sequences can be mined based on a number of different constraints, as illustrated in the sequential pattern mining
literature (Mabroukeh and Ezeife 2010). We take advantage of the SPMF framework (Fournier-Viger 2010), which
contains several sequential pattern mining algorithms, to detect different types of patterns. Finding the most interesting
patterns is an important and difficult issue. Here, without deepening this subject, we focus on frequent patterns with
additional constraints on closeness and length. First, thanks to the Clospan algorithm (Yan et al. 2003), we search for
closed frequent sequential patterns (CFS). In this context, a sequence s is considered as frequent (FS) if its support is
larger than a predefined minimum support threshold minsup, i.e. Sup(s)≥ minsup. A CFS is a FS with no super-sequence
possessing the same support. We start with the maximal value (1.0) for minimum support and iteratively decrease it with
a 0.1 step, until completion. Second, we take advantage of the TKS algorithm (Fournier-Viger et al. 2013), in which
the notion of FS is expressed in terms of k most supported patterns. This algorithm allows putting constraints on the
minimal/maximal length of the detected sequences. We look for the longest frequent sequences (LFS) by setting the
minimal length parameter to the longest value treatable by our hardware. The length of a sequence gives us an idea
about the duration of a trend, but longer patterns have also smaller support. In our case, nodes following LFSs may have
interesting topological properties or a specific role in the network.

Depending on the homogeneity of the considered dataset, it may not be possible to find interesting patterns when
considering the whole network. In this case, one can mine subparts of the network separately, as was done in (Orman
et al. 2015) for communities. We apply this principle using clusters identified based on the sequences of neighborhood
events. For this purpose, we describe each node by a sequence of numerical values, each one representing the number of
neighborhood events it undergoes at one time slice. We process the distance between two nodes through Dynamic Time

8 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

0
20

0
40

0
60

0
80

0

DBLP
N

od
e

N
um

be
r H

av
in

g
E

ve
nt

s

19
90
−1
99
6

19
92
−1
99
8

19
94
−2
00
0

19
96
−2
00
2

19
98
−2
00
4

20
00
−2
00
6

20
02
−2
00
8

20
04
−2
01
0

20
06
−2
01
2

●

●

●

●
●

● ● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0
10

0
20

0
30

0
40

0

LastFM

N
od

e
N

um
be

r H
av

in
g

E
ve

nt
s

Ja
n−
A
pr

Fe
b−
M

ay

M
ar
−J

un

A
pr
−J

ul

M
ay
−A

ug

Ju
n−
S
ep

Ju
l−
O
ct

Au
g−
N

ov

S
ep
−D

ec

●

●
●

●

●

●

● ●
●

● ●
● ●

● ●

●
● ●

●

● ● ● ●
● ●

● ●

0
20

00
60

00
10

00
0

Enron

N
od

e
N

um
be

r H
av

in
g

E
ve

nt
s

N
ov
,9
8−
D
ec

,9
8

Fe
b,
99
−M

ar
,9

9

M
ay
,9
9−

Ju
n,

99

Au
g,
99
−S

ep
,9

9

N
ov
,9
9−
D
ec

,9
9

Fe
b,
00
−M

ar
,0

0

M
ay
,0
0−

Ju
n,

00

Au
g,
00
−S

ep
,0

0

N
ov
,0
0−
D
ec

,0
0

Fe
b,
01
−M

ar
,0

1

M
ay
,0
1−

Ju
n,

01

Au
g,
01
−S

ep
,0

1

N
ov
,0
1−
D
ec

,0
1

Fe
b,
02
−M

ar
,0

2

M
ay
,0
2−

Ju
n,

02

●●●●●●●●●
●●●

●
●●●

●
●
●●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●

●●●
●●●

●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●

●●●
●

●
●

●●
●●●●●●

●

●

●

birth
death
merge
split
expand
shrink

Figure 3: Number of nodes undergoing each type of event, per time slice, for all three considered dynamic networks

Warping (DTW) (Giorgino 2009), which was designed to measure the distance between two numerical time series. Once
we have the distance between each pair of nodes, we apply a standard hierarchical clustering method, which outputs a
dendrogram. We select its best cut using the average Silhouette width (ASW) (Rousseeuw 1987). The Silouhette width
measures how much a node fits its cluster. It ranges from −1 (worst fit) to +1 (best fit). When averaged over a dataset, it
allows assessing the quality of the considered partition. We then look for both types of patterns in each cluster separately.
In order to select the most relevant ones, we take advantage of an additional criterion called the growth rate. The growth
rate of a sequential pattern s relatively to a cluster C is Gr(s,C) = Sup(s,C)/Sup(s,C). Here, C is the complement of C
in V , i.e. C =V \C. The growth rate measures the emergence of s. It is the ratio of the support of s in C to the support of
s in C. Thus, a value larger than 1 means s is particularly frequent (i.e. emerging) in C, when compared to the rest of the
network.

The cluster analysis we perform can be considered as complementary to the pattern mining method. Indeed, both rely
on the analysis of event-based sequences, but the former focuses on the numbers of events occurring, without regards for
their types, whereas the latter depends only on the presence/absence of types of events, and not on their numbers.

4 Experimental validation
In this section, we first describe the data on which we applied our tools (Subsection 4.1). Second, we give the results
obtained in terms of neighborhood events, discuss their distribution over time, and propose an interpretation for the
studied systems (Subsection 4.2). Third, we focus on the patterns extracted from these sequences of events, and discuss
them relatively to the systems (Subsection 4.3). Fourth, we turn to cluster analysis and describe and comment the obtained
clusters in terms of patterns (Subsection 4.4).

4.1 Data Description
We have studied 3 dynamic networks based on three different datasets: DBLP, LastFM and Enron. Both the DBLP and
LastFM networks were previously used in the literature: the former to detect evolution patterns (Desmier et al. 2012),
and the latter to interpret communities through sequential pattern mining (Orman et al. 2015). The Enron network was
specifically extracted for this study, as described below. A summary of the networks can be found in Table 1: number of
nodes, number of nodes undergoing at least one event, number of time slices, and time span of the considered data.

When extracting slowly evolving dynamic networks from raw data (by opposition to streaming networks, as described
in the introduction), one of the most important point is the time scale used to discretize or bin the original data. In other
words, it is the duration represented by each time slice. This point has been discussed in the literature, and it has been
shown this parameter can have significant effect on the network topological properties (Clauset and Eagle 2007; Krings
et al. 2012; Sulo et al. 2010). The DBLP and LastFM networks have been the object of previous studies, so we assumed
the problem of selecting the most appropriate time scale had already been solved for them, and used them as is. For the

Table 1: Real-world networks used in the experimental evaluation
Network Nodes Active nodes Time slices Time span
DBLP 2145 2046 10 1990-2012
LastFM 1701 1269 10 Jan-Dec 2013
Enron 28802 28649 46 1997-2002

9 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

Enron network, we had access to the clean raw data and took advantage of this to apply the method proposed in (Clauset
and Eagle 2007) in order to identify the most appropriate time scale.

4.1.1 DBLP Network

The DBLP dynamic network considered in this work was first used in (Desmier et al. 2012). It is a co-authorship network
extracted from the DBLP database. Each one of its 2145 nodes represents an author working in one or several Computer
Science subfields among: Databases, Data Mining, Knowledge Discovery, Information Retrieval and Artificial Intelli-
gence. Two nodes are connected if the corresponding authors have published an article together at the considered time, in
a selected set of 43 conferences and journals. Only authors who have at least 10 publications between 1990 and 2012 are
included in the network. Each time slice corresponds to a period of five years. There are a total of 10 time slices ranging
from 1990 to 2012. The consecutive periods have a three year overlap for the sake of stability.

4.1.2 LastFM Network

The LastFM dynamic network considered in this work was first used in (Orman et al. 2015). It represents the music
tastes and friend relationships of 1701 LastFM users registered to the Jazz group on this musical platform. Each node
corresponds to a user, and two users are connected by a link if two conditions are fulfilled: 1) the users are friends on the
LastFM platform, and 2) both of them have listened to the music of at least one common artist over the considered period
of time. The network represents the evolution of the users in the year 2013. The time slices were one month long in the
first published occurrence of this network (Orman et al. 2015), however in this article we used a three month period with
two months overlap to ensure continuity between consecutive times slices. Hence, we have 10 time slices in total. This
new version is publicly available online1.

4.1.3 Enron Network

Enron is a well-known dataset, which has been widely studied in network science and text mining. In particular, it
appears in the literature under the form of several distinct static and dynamic networks. In this work, we perform another
extraction based on the original dataset2, in order to get a network appropriate to the application and evaluation of our
analysis method. As mentioned before, we used the approach of Clauset & Eagle to identify the best time scale (Clauset
and Eagle 2007). Put briefly, in order not to leave the scope of this article: we compared the networks obtained with
one- (without overlap), two- (without overlap), three- (without and with a 1-month overlap), six- (without and with 1-
and 2-month overlaps) and twelve-month time slices (without, with 1-, 2- and 3-month overlaps) and identified 1 month
without any overlap as the most appropriate time scale. Our network is publicly available online3.

It contains 158 nodes representing Enron employees between 1997 and 2002. All the addresses in the From and To

fields of each email are considered, resulting in a network of 28802 nodes representing distinct email addresses. Two
nodes are connected if the corresponding persons emailed each other during the given time slice. Note that the networks
extracted from such datasets are usually directed. As this information was not relevant to our studies at this time, we did
not make any distinction between sender and receiver, and thus produced an undirected dynamic network. Since we used
a one-month long time slice, this dynamic network is composed of 46 time slices.

4.2 Event Distribution
We identified the neighborhood events by applying the method described in Section 3.2.1 to all three networks. Only a
minority of nodes do not undergo a single event for the whole considered time span: 99 for DBLP (' 4.6% of the network
size), 432 for LastFM (' 25%) and 153 for Enron (' 0.5%). Figure 3 displays the numbers of nodes undergoing the
different types of events at each time slice. It is interesting to notice that the evolution of the event counts is very different
from one network to the other. However, there are also some common points: births are the most common events for all
the networks, followed by deaths, whereas the rarest ones are merges and splits.

This changes could be directly caused by evolution of the network structure, e.g. the densification process often obser-
ved in real-world systems could explain the increase in births. To check this assumption, we considered two topological
measures: (1) the number of alive nodes (i.e. nodes having at least one neighbor) and (2) the link density. We studied
the association between these measures and the number of events of each type, using Pearson’s correlation coefficient
and linear regression. It turns out there is no statistically significant linear relation between the studied measures and the
numbers of events, for any of the three considered networks. According to these results, the occurrence of events is not
directly due to the global changes in the network structure. We therefore suppose it is caused by other factors, which we
discuss in the rest of this section.

1https://dx.doi.org/10.6084/m9.figshare.3203404
2https://www.cs.cmu.edu/~./enron/
3https://dx.doi.org/10.6084/m9.figshare.3203410

10 / 19

https://dx.doi.org/10.6084/m9.figshare.3203404
https://www.cs.cmu.edu/~./enron/
https://dx.doi.org/10.6084/m9.figshare.3203410

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

4.2.1 DBLP

We observe an increase in all the events, starting from the beginning of the considered period (1990–2012). Then, around
time slice 1994–2000, there is a sudden increase for both births and expansions. The number of deaths also increases,
but to a lesser extent. The increase in contractions occurs later, around time slice 2000–2006. In comparison, splits and
merges are relatively stable throughout the whole considered period. Moreover, until time slice 2004–2010, there are more
births, expansions and merges than deaths, contractions and splits, respectively. These observations indicate the monitored
scientific communities underwent significant changes during this period. The high number of births can be interpreted
as the apparition of new collaborations among researchers. The slower increase in deaths means these collaborations did
not disappear right away and were likely to be relatively stable. The large increase in expansions shows authors tended to
include new people into existing collaborations. The fact the number of contractions also largely increases, but only after
a delay, indicates the initial expansion was followed by some adjustments to reduce the size of the collaborator groups.

Interestingly, the periods for which the plot exhibits a sudden increase of births and expansions (1994–2000 and 1996–
2002) correspond to the merger of two important Data Mining-related conferences, ECML and PKDD (occurring in 2001)
and the apparition of an important new one, ICDM (also in 2001). ECML was more Machine Learning-oriented, whereas
the focus of PKDD was more on Knowledge Discovery. The combination of these two conferences caused the encounter
of many researchers coming from two different subfields, forcing them to share, discuss and exchange ideas. Although
not the result of a merge, ICDM is one of the most important conferences on Data Mining, it has gathered numerous
researchers from the whole world since its beginning. We believe the collaborations resulting from these academic events
explain our observations regarding the neighborhood events in the DBLP network. Or, conversely, the events extracted
from the network depict the historical evolution of the Data Mining field.

Time slice 2004–2010 corresponds to a trend reversal: the numbers of births, expansions and merges plummet and
are dominated by their counterparts (deaths, contractions and splits). Although it is a bit more far-fetched, this could
correspond to the emergence of new domains relatively close to Data Mining, but possessing their own conferences. We
think, in particular, about the large quantity of data produced by the Web 2.0 and its social media platforms, leading to the
Big Data and Network Analysis fields. Under this assumption, the observed increase in deaths and splits could correspond
to researchers starting to collaborate out of the (strictly speaking) Data Mining field, becoming less active in this domain
and disappearing from our dataset.

4.2.2 LastFM

Like for DBLP, the most frequent events are births/deaths, followed by expansions/contractions, and then merges/splits.
However, for LastFM the measured values are much stabler, and the plot does not display any sudden increase or drop.
When checking the data, we observed most of these births/deaths do not concern large ego-components, but rather single
nodes arriving/leaving the neighborhood.

Our LastFM dataset corresponds to a 1 year evolution of Jazz listeners, so the considered time span might not be long
enough to uncover stronger changes in this network. Nevertheless, we obtained interesting results when characterizing
local event evolution through sequential pattern mining, as shown in Section 4.3.

4.2.3 Enron

Like before, the most common event types are, by decreasing order: births/deaths, expansions/contractions and mer-
ges/splits. Symmetrical event types evolve jointly as in the other networks, but this is even more marked here. Since this
is an email network, a birth and a death correspond to a conversation starting/restarting and ending/pausing, respectively.
Put differently, if two persons stop sending each other emails for some time, a death event will occur, and if they then
resume their exchange, it will be a birth. This is a common situation, which explains the much larger numbers of births
and deaths. Expansions and contractions correspond to people joining or leaving existing conversations, which is much
rarer. Merges and splits are even rarer because they happen when two conversations become one, or when some people
start branching out of the conversation, which is quite unusual in email exchanges.

Although it is not obvious in the plot due to the scale, all the types of events follow similar trends. First, there is
a seasonal trend: sudden increases on the months of June and December. This could be due to the fact those months
are particularly busy in the corporate sector, as they mark the first and second halves of the year. For instance, many
reports describing the company situation are collectively prepared at these moments. Hence, it is natural that employees
communicate more intensely, possibly with persons with which they do not usually work. The second trend goes through
the years: the different types of exchanges gradually increase until the first month of 2002, after which they drop. This
date corresponds to the official declaration of bankruptcy of the company.

4.3 Sequential Patterns of the Network
As explained in Section 3.2.2, we use the SPMF framework (Fournier-Viger 2010) to identify the closed frequent sequen-
ces (CFS) and the longest frequent sequences (LFS) in the whole network. We now describe the main results obtained for

11 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

Table 2: Most supported Closed Sequential Patterns
Network Sequential pattern s |S (s)| Sup(s)

DBLP 〈(B)〉 2041 0.95
〈(D)〉 2032 0.94

LastFM 〈(D)〉 1530 0.90
〈(B)〉 1510 0.88

Enron 〈(B,D)〉 28649 0.99
〈(B,D) (B,D)〉 28634 0.99

Table 3: Longest Sequential Patterns
Network Sequential pattern s |S (s)| Sup(s)
DBLP 〈(B)(B)(E)(E)(E)(C)(C)(C)〉 33 0.010
LastFM 〈(B)(D,M,E)(D)(D,C)(C)(C)(C)〉 14 0.008
Enron 〈(B,D)(B)(D)(B)(D)(B)(D)(B)(D)(B)(B)(D)(B,D)〉 1266 0.004

the three considered datasets. Our goal here is not to be exhaustive, but rather to illustrate what can be done by combining
our event-based approach and pattern mining methods.

4.3.1 Closed Patterns

In Table 2, we list the CFSs with the highest support rates for all three networks. For a pattern s, the last two columns
correspond to the number of supporting nodes (|S (s)|) and support rate (Sup(s)). Unsurprisingly (given the observations
of Section 4.2), for all networks, the most frequent CFSs are composed only of births and/or deaths. Moreover, they are
very short: one or two itemsets. All other highly supported patterns (not represented in the table) are very short ; longer
patterns are much less supported. In the DBLP network, 95% of the nodes undergo at least one birth over the considered
period, and the support rate is 94% for a death. This means that between 1990 and 2012, the overwhelming majority of
authors started a completely new collaboration and ended a collaboration (not necessarily the same).

For LastFM, the most frequent CFSs are the same than for DBLP, but with slightly lower support rates. In this
context, this means a large majority of users listened at least once to the same music than a friend (possibly a new one)
not connected to other friends (or with different listening habits); and also stopped listening to the same music than a
friend, or even ended the friendship relation. From the perspective of this system, this can be interpreted as the action of
starting/stopping listening to music recommended by some other users.

In the case of Enron, births and deaths appear in the same time slice, followed by other births and deaths in a later
time slice, for 99% of the nodes. This means almost everyone started an email conversation with a new person or group
twice during the considered period; and similarly, they stopped a conversation twice (not necessarily the same). When
considering the event distribution (Figure 3), we already observed births and deaths were the most common events.
However, the CFSs show that not only some people, but almost everyone in all three networks adds or drops one (two for
Enron) ego-component during the considered period.

4.3.2 Longest Patterns

The LFSs identified for each network are listed in Table 3. In the case of Enron, the longest pattern spans 13 time intervals
(out of 45). It is a sequence of births and deaths indicating the consecutive starts/ends of email conversations. There are
a number of very similar shorter patterns alternating the same events (not represented in the table). They reflect the very
unstable nature of the neighborhood in this dataset, as already noticed in the previous subsection.

In DBLP, the longest pattern spans 8 time intervals (out of 9). The trend is: first births (for 2 time intervals), then
expansions (3 times intervals) and finally contractions (3 time intervals). It concerns 1% of the nodes, which is low, but
we have found many very similar (though slightly shorter) patterns with higher support (not represented in the table). In
total, all those nodes amount to approximately 11% of the network. Hence, we can conclude that this is a significant
trend in its evolution. It means authors tend to start new collaborations in the beginning of the considered period, then
they develop their ego-components, before finally reducing their size. We do not observe significantly supported patterns
containing merges or splits. The trend we identified is quite a common life cycle: creation, growth and decline. Usually,
decline is followed by destruction (death) in many real-life phenomenons. However, in DBLP, it seems once a group of
collaborators is set, it tends to last, even though it evolves. As an illustration of this observation, Figure 4 displays an
example of such a life cycle for node 98. For clarity, only the time slices relevant to the pattern are represented. The red
ego-component initially containing nodes 99 and 342 is born between t = 3 and 4. Then, it expands (t = 5 and 6) and its
size increases from 2 to 17 nodes. Later, it contractions (t = 8 to 10) back to 4 nodes. This case is representative of many
nodes in this network.

12 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

t=3, 1994−1998

●

●
●

98

431

493

526

t=4, 1996−2000

●

●

●

●

98 99

342

431

934

t=5, 1998−2002

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

86

98 99

100
112

342

431

453

470

653

777

778

809

860

934

1733

1813

t=6, 2000−2004

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

●

14

86

98 99

100
112

342

453

470

653

777

778

809

860

934

1352

1733

1813

1867

t=7, 2002−2006

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

14

86

98 99

100

262

453

470

777

778

809

860

934

1352

1733

1813

1867

t=8, 2004−2008

●

●

●

●
●

●

●

●

●
98 99

262

778

809

934

1181

1352

1733

1867

t=9, 2006−2010

●●

●

●

●

●

●
98 99

778

809

942

1181

1352

1733

t=10, 2008−2012

●

●

●

●

●

●

98 99

112

809

942

1181

1352

Figure 4: Example of a node (in blue) following the longest frequent pattern in DBLP. Colors correspond to ego-
components, and spatial positions are constant.

The longest pattern found in the LastFM network spans 7 time intervals (out of 9), and is supported by 14 nodes.
Unlike for DBLP, we did not detect any shorter pattern similar to this one, so we cannot affirm the trend concerns a
significant number of nodes. This is because the long patterns are rare in LastFM, be them frequent or not. Put differently,
there is not a lot of significant regularities in the way the nodes evolve (at least regarding their ego-components). The
pattern shown in Table 3 is not unlike the one observed for DBLP: it starts with births, continues with expansions, itself
followed by contractions. However, there are some differences: first, deaths are not limited to the end of the sequence,
and second, merges appear together with expansions. After having investigated in detail the nodes following this trend,
we noticed all of them have one big ego-component including many neighbors, and several small ego-components, many
of them containing a single node. Expansions, merges and contractions affect the big ego-component, whereas births and
deaths occur on the single neighbors. Interestingly, these 14 nodes are the most active users on the LastFM service (for
this dataset), as reflected by their degree: in average, it ranges from 42 to 50, while it is between 2.7 and 3.3 for the rest
of the nodes. The patterns can be interpreted as follows: the users supporting it tend to listen to a relatively stable group
of artists, together with their friends, which correspond to their core favorites. But they are also open to trying new artists,
without necessarily sticking to them, as shown by the fluctuations observed in the pattern. This type of interpretation is
characteristic of our event-based approach and could not be done through classic topological measures.

Regarding Enron, the pattern we obtain spans 13 time intervals and includes only births and deaths. In the context of
this network, they mean joining/leaving an email conversation. But here, it is worth focusing on the events absent from
the pattern, rather than on the present ones: there is no merge, split, expansion or contraction. For the Enron network,
these events represent including/excluding a person to/from a conversation, or merging/separating different conversations.
Since these do not appear in the pattern,this confirms that most of the users have conversations within stable groups. The
profusion of deaths and births can be interpreted as the fact one user participates in several simultaneous conversations
conducted at various time scales.

The general conclusion of this subsection is that in these datasets, it was difficult to identify patterns being both long
and largely supported. This can be due to a certain heterogeneity in the networks. To check this assumption, in the next
section we deepen our analysis by mining patterns in subgroups of nodes obtained through a cluster analysis.

4.4 Cluster Analysis
In this subsection, we present the results obtained through the cluster analysis described in Subsection 3.2.2, in particular
we characterize them in terms of CFS and LFS, as we did previously for the whole network.

4.4.1 Description of the Clusters

As explained in Subsection 3.2.2, we apply a hierarchical clustering method to our set of sequential patterns. The left
plots of Figure 6 show the average Silhouette width (ASW) as a function of the number of clusters, up to 15 (after this

13 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

t=2, Feb−Apr

19

t=3, Mar−May

●
●●

●

●

●

●
●
●

●

●

●
●●

●

●

●
●

19

66

85123

145

151

191

288

300

439

466

467

494

520
536

562

621

689

690

t=4, Apr−Jun

●
●●

●

●

●

●
●
●

●

●

●
●●

●

●

●
●

19

66

85123

145

151

191

288

300

439

466

467

494

520
536

562

621

689

690

t=5, May−Jul

●
●●

●

●

●

●

●
●
●

●●

●

●
●●

●

●

●

●
●

19

66

85123

145

151

191

197

288

300

439

460
466

467

494

520
536

562

621

688

689

690

t=6, Jun−Aug

●
●●

●

●

●

●

● ●
●●

●
●

19

66

85123

151

191

197

288

460
494

520
536

562

688

t=7, Jul−Sep

●
●

●
●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●● ●

1

19

53

66

85
97

123
133

145

150

151

166191

197

200

284

288

300

315

460

470

494

520

535

536

562

619

682683

684

685
687

688
691 692

t=8, Aug−Oct

●
●

●●●
●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●●

●

●●

●● ●

1

19

53

85
97

123
133

145

150

151

166200

284

288

300

315

470

494

535

536

562

619

682683

684

685
687

688
691 692

t=9, Sep−Nov

●
●

●●●
●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●●

●

●●

●● ●

1

19

53

85
97

123
133

145

150

151

166200

284

288

300

315

470

494

535

536

562

619

682683

684

685
687

688
691 692

t=10, Oct−Dec

●
●

●●

●

●

●
●●

●

●
●

●

●
19

24

66
97

123

145

200

284

288331

460

520

562

689

692

Figure 5: Example of a node (in blue) following the most heterogeneous pattern in LastFM. Colors correspond to ego-
components; spatial positions are constant.

Table 4: Statistics of Clusters
Network Average cluster ID # of nodes # of nodes # of nodes # of nodes

Silhouette have event at all with more with negative
Width time interval than 10 event Silhouette Width

DBLP 0.65 1 2099 50 458 46
2 46 38 46 2

LastFM 0.84 1 1684 39 141 15
2 17 16 17 -

Enron 0.92 1 28727 - 4908 160
2 75 - 75 12

value, the ASW stays low). The center plots show the Silhouette plot obtained for the best partition in terms of ASW,
and the right plots display a projection of the data and clusters on a two-dimensional space. Table 4 shows some statistics
describing the best partitions.

Interestingly, some results are common to all three considered networks. First, the best partitions contain 2 clusters,
and reach high ASW values (Table 4), which means there is a clear separation in the data. Increasing the number of
clusters decreases the ASW and causes the apparition of many small clusters, including numerous singletons. One of the
two clusters is much larger than the other one, as shown in Table 4. We call it Cluster 1 (in blue in Figure 6), whereas
the smaller one is Cluster 2 (in red). The most striking difference between them is the frequency and number of events
their nodes undergo: in this sense, the nodes from Cluster 1 are much less active. As shown in Table 4, only a very
small proportion of Cluster 1 nodes undergo at least one event at each time slice of the considered period, whereas this
observation is true for almost all nodes in Cluster 2. The number of nodes undergoing more than 10 events over the
complete time period is also much lower for Cluster 1.

Second, when considering the individual Silhouette widths of the nodes, we find that the majority of nodes in Cluster 1
reach a high value, meaning they belong with this cluster. Put differently, these clusters are very homogeneous (relatively
to the criterion used for clustering). This appears quite clearly in the right plots of Figure 6 (blue clusters). Nevertheless,
these clusters still contain a few nodes whose Silhouette width is negative, meaning they do not match their cluster well.
Graphically, these nodes are located at the periphery of the clusters, near the center of the plots. The Clusters 2 are also
very homogeneous, with only a very few nodes (or sometimes even none) with a negative Silhouette width.

Based on these observations, we consider these clusters correspond to two classes of nodes characterized by different
behaviors: stable nodes, which are majority and whose neighborhood does not change much over time ; and active nodes,
different from most other nodes in their network, and who undergo numerous and frequent events. Nevertheless, as
mentioned before, the clusters are not perfectly homogeneous, and some nodes are even located at the limit of the clusters
in Figure 6, indicating the possible existence of sub-clusters. Also, the level of separation between the clusters varies
from one dataset to the other: they are clearly apart for LastFM, and much more intertwined for Enron. In order to better
characterize our behavioral classes, we now look for their characteristic patterns.

14 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

2 4 6 8 10 12 14

0.
30

0.
40

0.
50

0.
60

Average silhouette width for
different cluster numbers

Numbers of clusters

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Silhouette width si

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

DBLP Silhouette

Average silhouette width : 0.65

n = 2145 2 clusters Cj
j : nj | avei∈Cj si

1 : 2099 | 0.66

2 : 46 | 0.43

−10 −8 −6 −4 −2 0 2

−
6

−
4

−
2

0
2

4

DBLP Clusters

Component 1

C
om

po
ne

nt
 2

These two components explain 49.59 % of the point variability.

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●
●

●

●

●

●●

●●

●●

●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●
●

●

●
●
●

● ●

●●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
● ●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●●

●
●●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●● ●

●
●

●

●

●

●

● ●

●●

●

●●

●

●

●
●

●

●

● ●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●● ●

●

● ●

●
●

●

●

●

●

●
●
●

●

●●●

●●

●
● ●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●
●

●

●
●

● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

● ●
●

●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

1

2

2 4 6 8 10 12 14

0.
4

0.
5

0.
6

0.
7

0.
8

Average silhouette width for
different cluster numbers

Numbers of clusters

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Silhouette width si

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

LastFM Silhouette

Average silhouette width : 0.84

n = 1701 2 clusters Cj
j : nj | avei∈Cj si

1 : 1684 | 0.84

2 : 17 | 0.73

−15 −10 −5 0

−
4

−
2

0
2

4

LastFM Clusters

Component 1

C
om

po
ne

nt
 2

These two components explain 49.18 % of the point variability.

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●
●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●● ●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
● ●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●●
●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

● ●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●●

●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

● ●●●●●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
● ●

●
●

●●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

12

2 4 6 8 10 12 14

0.
85

0.
86

0.
87

0.
88

0.
89

0.
90

0.
91

Average silhouette width for
different cluster numbers

Numbers of clusters

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Silhouette width si

−0.5 0.0 0.5 1.0

ENRON Silhouette

Average silhouette width : 0.92

n = 28802 2 clusters Cj
j : nj | avei∈Cj si

1 : 28727 | 0.92

2 : 75 | 0.34

−80 −60 −40 −20 0

−
40

−
20

0
20

ENRON Clusters

Component 1

C
om

po
ne

nt
 2

These two components explain 26.73 % of the point variability.

●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●

●

●●●●
●●●
●●

●

●●●
●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●
●●
●
●●
●●●●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●
●

●●●●●●●●●
●●●●

●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●

●

●
●●

●

●●●●●
●
●
●●●●
●●●●●

●

●●
●
●

●
●
●

●

●
●●●

●●

●
●

●●●●●●●●●
●

●●
●●●

●
●●

●●●●●
●

●●●●●
●●●
●
●
●●

●

●●●●
● ●●●●●●●●●

● ●●●
●●

●
●●

●
●●●●●●●
●

●
●●●
●●
●
●●●●●●●●●
●●●

●
●

●
●
●●●●●●●

●●●●●●●● ●●●
●●●
●●
●
●●●●●
●
●●

●
●●●●● ●●

●●
●

●●●●
●

●●●●●●●●●●●●●
●
●●
●●●●
●●●●●●●●●●●●

●
●●●●●●
●●●●
●●●
●●

●
●●

●●●●●●●●●
●●●●●● ●●●●

●

●

●
●●

●

●

●
●

●●
●

●

●

● ●●●
●
●●●●●●●●●

●
●

●●●●●●●●
●

●

●
●●●●●●●●●

● ●●●●

●

●●
●
●

●

●
●●●●●●●●● ●●

●●
●●●

●
●●●●●●●

●
●●

●
●●●●●●●●●●●
●●●●●●●●
●
●
●
●●

●

●●

●●●●
●
●
●●●●

●●●●●●●●●●●●●●
●

●●●●
●●

●● ●●●●
●
●

●
●●●●●●●

●●
●●●●●

●
●●●●●●

●
●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●
●●●

●
●

●
●
●●

●
●
●
●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●
●
●●●●

●
●●
●

●
●● ●●● ●●

●

●●●
●
●●●●●

●●●
●
●

●●

●

● ●● ●
●●●●●

●●●●
●

●●●
●

●●●●●●
●●●●●

●
●

●
●●
●
●
●●

●

●●●●●●
●
●●●●●●● ●

●
●

●

●●●●●●●●●●●●●●●●●
●●

●●●●●

●
●
●●●

●
●●●

●● ●●
●●●
●

●

●●● ●●●●●
●
●●●●●●

●
● ●●●●●
●

●
●●●● ●●●●●● ●

●●●●
●

●●●
●

●●●●

●

●

●

●● ●●●●

●

●●●
●
●●●●●●●●●●●●●●● ●

● ●● ●●●
●●
●● ●●
●

● ●
●
●●●●●●
●●●●●●●

●
●●●●●●●●●

●
●●

●

●

●
●
●●●●●
●

●

●●●●●
●●

●●

●●
●●●●

●

●

●●●●●●

●●

●●●●●●●

●
●●●
●●●●●
●●●●●●

●
●

●●●
●

●
●●●●●●●

●

●
●●●●●

●
●●●●
●●

●
●●●●●●●●●●●●●●●●● ●●●●●●●●
●
●

●
●●●●●●●

●
●

●
●●
●
●●

●
●

●
●●●●

●
●
●●●
●
●●●●●●●
●●

●

●

●
●

●
●●●●●

●

●●
●

●●
●●●●

●

● ●●●●●●●●●●●●●
●●●●●
●●

●●

●

●
●

●
●●●●●●●●
●●●●

●
●●●

● ●●
●●●●●
●●●●●●●

●
●

●

●●
●●●●●●●●

●

●
●

●●●
●

●

●●●●●
●
●●

●

●●
●●●●

●
●●●●
●●●●●●●●●
●
●●●●●●

●
●●
●●●●●●●●●●
●●●●●●●●●●●●
●

●● ●
●

●●
●

●
●

●

● ●●●
●●●●

●

●

●
●●
●●

●

●●●●●
●

●●●●●●●●●
●●●

●
●

●

●
●

●●●●●● ●●●●●●●●
●

●
●●
●

●

●●
●

●
●●

●

●●●●
● ●

●
●●●●●●●●

●●
●●●

●
●●
●●
●●
●

●●
●
●●

●

●
●

●
●

●●●●●●
●

●●●●
●
●●●

●●●●●●
●
●●●
●●●●●

●

●●●●●●
● ●●●●

●

●●●

●

●
●

●●●●●●●●●●
●

●●●

●

●
●

●

●

●
●

●
●●

●
●
●
●
●●
●
●●●●

●
●

●

●

●
●

●

●●
●
●●●
●●
●●

●
●●

●
●●
●
●

●
●●●●●
●●
●●●●●
●●
●

● ●
●

●

● ●

●●●●●●●
●

●
●●●●

●

●
●
●●●●●●●●●●●●●●

● ●

●

●●

●
●
●●

●

●
●
●

●
●

●●
●

●●●●
●
●●●●●●●●
●●●●●
●●●●●●●●●

●●
●●
●●●●●
●
●
●●
●●●●

●

●●●●●●●●●●●●

●

●●

●

●
●

●
●●●

●
●●
●●●●●●●●
●

●●●●
●
●●●●●●●●●●●●●●●●

●
●

●

●●
●●●
●●●●●●●●●
●●●
●

●

●●●●●
●

●

●●●
●●●●●●●●●
●
●●●

●
●●

●

●
●●●●● ●●●●●●●

●
●●
●

●
●

● ●●●●●

●

●
●●●●
●
●●

●
●●●●
●●●●●●

●

●●●●●●●●●●
●●●
●
●●●● ●●●●

●●●●
●

●●●●
●

●●
●
●●●●●●●●●●●●●●●●
●
●●●●

●

●

●● ●●●
●
●
●
●

●
●

●

●●●●●●●
●

●●●●●●●● ●●●
●
●●●●●●●

●

●●●●●
●

●●●●●●●
●●●●●
●●●
●●●●●●●

●

●●
●●●

●

●●●
●●●●●●
●●

●
●●●●●● ●●●●

●

●

●●●

●

●
● ●●●
●

●●●●●●
●

●

●
●●●

●●
●
●●

●●●
●●●●●●●●

●

●

●

●
●
●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●● ●●
●
●●●●●●

●
●●●

●●●●●●
●●
●
●●●

●

●● ●●●●●●●●
●●●
●

●●●●●●●●●
●

●

●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●

●● ●

●
●●●●

●●●●●
●●●●

●
●●●●●●●●●● ●
●

●

●●●

●

●●●●

●

●●●●
●

●
●●●●● ●●●●●

●
●●●
●
●●●

●●
●
●●●●●●●●

●
●●●● ●●●

●

●●
●

●

●●●●
●●

●

●
●●●

●

●●
●●●●●●
●●●
●●

●●
●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●

●●
●● ●●●
●●●
●
●

●

●
●

●●●●●●●●●●●●●
●●●●●●●
●

●●●●●●
●
●
●●●●●● ●●
●

●

●●●●●●
●●
●

●
●● ●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●
●●●●●●●●●

●

● ●●●●
●●

●● ●●

●

●●
● ●●●●
●
●●

●

●●
●

●
●

●
●

●
●

●

●
●
●

●
●

●●
●

●●●●●●●●●●●

●

●● ●●● ●●
● ●●●●●●●●

●●●
●● ●●●

●

● ●

●●●●
●
●●●●●

●

●
●●
●●

●

●
● ●

●

●●
●
●●●●
●●●●●●●●●●

●
●●●●●
●●●●●●●●●●●

● ●

●

● ●

●

●
●●●●●●●
●●●●●●●●●

●

●●●●● ●●●●●
●●

●●●●●
●
●●

●
●

●
●●●
●●●●●●●●●

●

●

●●●●●
●●●● ● ●●●●●●●●●

● ●
●●●●●●●●
●●●●

●
●

●

●
●●●
●●●●●

●

●●●●●●●●●

●

●

●

●
●

●
●

●●●
●●
●●●
●●●

●
● ●●

●
●

●
●●●●

●● ●●●
●

●●●●●●●●●●●●
●

●●
●

●

●●

●

●●●●●

●
●●

●

●●●●●
●
●●●●
●●●●●●●●●●●

●

●●
●●
●●●●●●●●

●
●●

●●

●
●

●
●
●

●

●● ●
●
●●●●●
●

●
●●●●●●
●●●●●●●
●●
●●

●

●● ●
●

●

●●●●●●●●●●●●●●●●●
●
●●●●

●

●●●●
●

●
●●
●●●●

●
●●●●●●●
●
●

●

●●●●●●●●●●●●●●●●●
●●

●
●●
●
●●●●
●●●●●●
●
●●●●●

●

●●●●●●●●●●●

●
●●
●●
●●
●●
●

●●●●●●●●●
●●●●●●●●●●●●

● ●●●

●

●
●

●
●●●●●
●

●●
●●●

●●
●

●

●

●

●●●●●●●
●●● ●●

●

●

●●●
●

●
●
●●●●●
●

●

●
●●●●

●●●●●
●

●●●●●●
●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●●
●

●
●●●●●●●●●●●
●
●●●

● ●●
●
●

●

●●●●●●●●
●

●●●
●

●●●
●
●●●●●●●●

●●●●●●
●
●●●
●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●

●
●●●

●
●
●●●●
●●

●

●●
●
●
●●

●

●
●

●

●●●
●

●

●● ●●●●
●

●●●● ●
●

●

●●●
●●●●●●●

●

●
●

●
●

●
●

●●
●

●●●●

●
●●●●●●

●
●●●
●

●●
●●●●●●●●●●●●●●●●

●
●

●

●

●

●●●●●●●
●●●●●●●●●●
●

●

●● ●●
● ●●●

●●●●●●

●

●●●●●●

●
●●

●

●●●●●●● ●●

●

●●
●●●●●
●

● ●

● ●
●

●●●
●
●● ●●

●
●●

●●●●●●●

●

●●●
●

● ●●●●
●

●
●

● ●●●●●●●●●
●●●●●●●●●●

●

●

●

●●●

●

●
●

●●●●●

●

●
●●●●●●●●

●
●●

●●

●
●●
●

●●●
●●●●●

●
●●●●● ●

●●
● ●●●●●●●●●

●

●●●●
●●
●●●●●●●

●
●

●

●
●

●

●

●●

●

●
●

●●●●●●
●●●●●●●●
●●●●●●

●●
●●●
●●●●●●●●
●●●
●
●
●

●

● ●●●● ●

●
●
●
●
●●●

●

●

●
●

●

●●
●

●●
●

●●●●●●●
●●●●●●●●
●

●●●●●●●●
●●●●●●

●
●

●●●●●
●
●●●

●

●
●

●

●
●
●●●●●●●
●●●●●●
●
●●●●●●●●●●●
●
●
●●
●●●●●●●●●● ●●●
●
●●●●●●●●●●●
●●●

●
●●●●●●●
●

●
●

●
●

●●●●●●●

●

●● ●●
●
●

●

●
●
●●
●
●●●
●
●●●●●● ●●●

●●●●●
●

●●●●●●●●●●●●●●●●●

●
●
●

●
●

●●●●

●

●
●●

●

●●●●●
●●
●●●

●
●
●

● ●●●
●●●●●●●●●●●●

●
●●●

●

●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●

● ●●●●●●●●
●
●
●●

●

●

●
●

●
●

●●
●

● ●●

●

●●
●●●●●●●
●●●●
●
●●●●●
●

●
●●●●
●

●
●●●

●

●

●

●●●●●
●●
●●● ●●●●●●

●

●
●

●●●
●

●

●

● ●
●

●
●●●●

●
●●●●●

●

●

●

●

●●

●●

●●●●●●●
●
●

●
●

●●●●

●

●
●

●
●●

●●●●

●

●●
●●● ●

●
●●●

●

● ●●
●●●●●●●●●●

●

●●●●

●

● ●
●

●●●●●●●
●

●

●
●
●●
●

●
●●●●

●●●●

●

●
●●●●●

●●

●

●
●

●
●

●

●
●●●
●●
●●●●●●●●● ●●●

●

●●●●●
● ●●

●

●●
●
●●●

●
●●●

●
●●●●

●

●●●
●●●

●

●●
●
●●●●●●●●

●
●●● ●●●

●

●●●●●●●●●
●
●●●●●
●

●●●●●●●●●
● ●●●●●

●●

●

●
●●●●●●● ●●

●●
●●●●●●●●●●
●●●
●●●●●●●●●

●
●●● ●●●●●●

●
●

●●●●●
●●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●

●●●●●
●●●●●

●
●
●
●
●●●●●
●
●●●●●●●
●● ●●●●●● ●●

●

●
●

●
●
●●

●
●●●●
●●●●●●●●

●
●
●● ●

●
●●●●●●●●●●

●

●●

●

●
●●●●●●●
●
●●●●●●●●●

●

● ●
●

●
●●●●●●
●●●●●

●
●●●●

●

●

●

●●●
●●●

●

●●●●●
●
●

●

●●
●●●

●
●●●●

●

●●●● ●●●●●●●
●
●
●
●●●●
●●●●
●
●●●●●●●

●

●●●●
●

●
●●●●●●● ●●●●●●●●

●
●●●●

● ●●●●●●●●●

●

●●●

●

●● ●

●
●●

●●●●

●

●●●●●
●●● ●●●●

●

●●
●●

●
● ●

●●
● ●● ●

●●●
●

●
●

●●●●●●
●
●●●●●●●●●●●●
●
●

●

●●●●●
●

●
●

●
●●●
●

●
●

● ●

●

●
●

●

●●

●

●

●
●●
●●●●●●
●●

●
●●

●

●●●●●●●●

●

●●●●
●●●●●●●

●●●●●

●

●●

●

●●●●●● ●●●●●●● ●●●●
●

●●
●●●

●

●●●●●
●●●
●
●

●●●●●
●●●

● ●
●

●

●

●

●
● ●●
●●

●

● ●●

●
●
●●●●●●●

●
●

●
●

●

●
●●

●

●

●

●

●●●●●●

●
●●●●●
●

●●

●
●

●
●●

●

●

●

●●
●

●

●
●

●●●●●
● ●●●

●●
●

●●

●

●●●●
●●●●●●●●●

● ●●●●●●●

●

●
●

● ●●●

●
●

● ●●●●●●

●

●●

●

●
●

●●

●

●●●●

●

●●

●
●
●●●●
●

●●
●

●

●●●●●
●●

●●●●●●●●
●●●●●●●●●●●

●
●●● ●

●
●●●●●●● ●●●●
●●
●●

●
●

●

● ●●
●

●
●●●
●●
●●●
●

●

●
●●●
●●●●

●

●●●●●●●●●
●

●●●●
●●●●●●●

●●●●●
●

●
●●●

●
●●●●

●

●●

●

●

●

●

●
●

●●●●●
●●●●●●●
●

●●
●●●●●
●
●●●●

●●

●●●●●●●●●●●
●
●●
●
●●●●●●●●●●

●
●●●●●●●●●●

●

●
●

●
●

●
●●●●

●

●●
●
● ●

●●

●

●●

●

●●●●●●●●
●●●●●●●

●

●
●

●

●●●● ●●●
●

●●●●●
●●●●
●●●●●●
●
●●

● ●
●

●
●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●
●

●

●
●

●●●
●
●

●
●●●●●

●●

●●
●
●●●●●●●●●●●●

● ●●●●●●
●●●●●●
●●●

●

●●●●●●
●
●●

●

●●●●●●●●
●●

●
●●●●●●●●●●●●●●
●
●●●●

●●●
●●●●●●●●

●●
●●●●●●
●

●
●●●●●●

●
●

●

●
●●●●●●●●
●
●●●●●●●●●●●

●

●●●●●
● ●

●

●
●
●●●●●●
●●●●●●●
●

●●●●●●●●●●●●
●

●
●●●●●●●●

●
●
●●●●●●

●●

●

●●●
●

●
●●●●●●●●

●
●●●●
●●
●●●●●
●
●●
●
●

●

●●●●●●●●●
●●

●

●
●●●●
●●● ●●●●

●

●●●●●●●●●●
●

●

●

●

●
●

●●
●
●●●●
●

●
●●

●●●●●

●

●●●●●●

● ●
●
●●●●●●●
●●●●●●●●●

●
●●●●●●

●
●●●●●●●●
●●●
●●

●

●●●
●

●●●
●● ●●

●
●●●

●
●

●
●●●●●●
●

●●
●

● ●●●
●

●●●●●
●●●
●●●●●●●●

● ●●●

●

●
●

●

●
●

●

●●●●●●
●

●
●●●●●●●●●

●

● ●●●●
●●●●●●●●●●●●
●
●
●●●●●

●
●●●●●●●●●●●●●●

●

●●●
●

●

●●●
●
●●●●
●●
●
●●●●●

●
●●●●● ●●●

● ●●●●

●

●●●●●●● ●●●●
●●●●●
●
●●●●
●●●●●●●●●
●●●●●●●
●

●
●●
●●●●●●●●
●
●●●●

●

●●●●●●
●●

●

●●●●●●●●
● ●

●●●●●●●●●●●
●
●

●●●
●

●●●
●
●●●●●●
●●
●

●
●
●●●

●

●●●●●●●●●●●●●●●●

●
●●●●

●
●

●
●●

●
●●●●●

●
●●●●●●●●●
●●

●
●

●
●●
●●●

●
●●●●●●●●●●●●

●●●

●

●
●●
●
●●●●●

●
●●●●●●●●

●●●
●
●●●●●●●

●
●●●●●●●●●●●

●

●●●
●

●●

●

●
●●

● ●●●●●
●

●
●●●●●●●●●●●
●●

●

●
●●●●

●●
●●

●

●
●●●●

●
●

●

●
●

●
●

●

●●●

●

●●
●●

●

●●●

●

●
●

●

●●

●●
●●●
●

●●

●
●

●●

●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●
●
●● ●●●

●
●
●●●●

●

●●

●

●
●

●●●●●●
●●●

●●●●●●●●●●●●
●●●●●●●●
●●

●
●

●
●●

●
●

●
●

● ●●

●

●
●● ●
●
●

●

●●

●

● ●●●●●

●

●
●

●
●●

●
●
●●
●
●

●
●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●

●
●
●
●●●●●

●

●●●
●

●

●● ●●●●●●●●●●
●

●

●

●

●●●

●

● ● ●●●●●●●●●●
●●

●

●●●
●

●
●

●●●

●

●
●● ●●

●

●●●●●●●●●
●

●
●●●

●

●

●●●●
●
●●●●● ●

●
●●●●

●

●●
●
●●●●●

●

●

●

●
●●

●●●●
● ●●●

●
●●●

●

●

●●
●

●●

●

●●●
●●●●●●●●●

●
●●

●
●●●
●
●
●●●●●

●

●●●
●

●●●●●●● ●●●●●●●

●

●
●●

●●

●

●
●●●
●●
●●

●

●
●●

●

●●●
●

●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●
●●●●●

●

●

●●●●●●● ●●●●●●●●●● ● ●●●

●●

●

●

●

●●●● ●●
●

●

●●●●●●
●

●●●●●

●

●
●

●
●
●●●

●
●●●●●

●
●●●
●

●
●
●●●●●●

●
●●●●●●●
●
●
●●●

●

●
●

●●●●●

●

●●

●
●

●●●●
●●●●

●

●●

●
●●

●
●●●●●● ●

●

●

● ●

●●
●
●
●

●

●

●●
●

●

●●●●●●

●

● ●● ●
●
●●●●

●●
●●
●

●

●●
●

●
●●●
●●
●

●●
●

●
●

●
● ●

●●
●●●●●●●●

●
●●●●●●●●
●
●●●●●

● ●●●
●●●●●●●●
●

●
●●●●●●●●●●●

●
●

●●
●●●●●●●
●

●
●●●
●●●

●

● ●●
●●
●●●●●●●●●●●
●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●●
●

●

●
●
●●●
●●●●●●

●

●●
●

●●●●●●●●●●●●
●
●●●

●
●

●
●●●●●●●
●
●●●●
●●●●●●
●

●●
●
●●
●

●●
●●●

●
●

●●●●●●●●●●●●
●●●●●●

●
●●●●●●

●

●●●●

●
●●●●
●
●●●●●●●●

●

●●
●●

●●

●●
● ●●

●

●●
●

●●
●●●

●
● ●●●●●●●

●● ●●●●
●

●●●●
●●●●
●●●●

●

●
● ●●●●●●●●●●

●●
●
●

●

●
●
●●

●●
●
●●●●●●●
●●●●

●
●
●
●

●
● ●●●●

●●●●

●

●●●●●●
●●

●
●●●●●●

●
●●●●●●
●
●
●●●●●●●●●●

●
●●

●

●

●
●

● ●● ●●●●
●

●●

●

●●●●●●●●●●

●
●

●
●●
●
●●●

●

●●
●

●●●●
●
●●●●●●
●

●

●●●●●●
●

●

●

●
●

●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●
●●

●
●

●
●●●●●●●●●●●●

● ●●●
●

●
●●●●●●●●●●
●
●●●●●●●●●●

●
●

●
●●●●●●●●●●●●

●●
●

●
●
●●●●●●●●●●

● ●
●
●
●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●
●

●
●
●

●●●●●●●●●●●●

●

●
●
●●●●●●●

●
●
●

● ●●●
●
●

●

●

●
● ●●

●

●
●

●

●

●
●●

●

●●
●●●●

●

●●●
●

● ●●● ●●●● ●●
●●●●
●

●
●●●

●●●●●
●● ●●

●
●
●●● ●

●

●●

●

●●●●●
●
●●●●
●
●●
●●

●●●●●

●

●●●●●●
●

●●
●
●●●●●●●
●
●●●●●●●●

●
●●●●

●
●●

●

●
●
●●●●●●●●●
●●●● ●●●●●●●●● ●●●●●●

● ●●
●
●●●

●●
●
●
●
●
●

●

●
●●
●

●
●

●●●●
●
●●
●●●●
●

●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●

●
●●●●●●●
●●●
●
●
●●
●●●
●●●●●●●
●
●●●●

●

●●●●●

●

●●●●●
●●●●●●●●

●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●● ●●●●●
●

●

●

●
●●
●●

●

●
● ●●●●●

●

●●●
●

● ●●●●●●●●
●●
●●●●●●

●●
●

●●●● ●●●●

●

●●
●

●● ●●●●●●●●
●

●●

●
●

●●●
● ●

●

●
●●

●
●

●●●
●

●
●●●●●●
●●●●

●
●

●●
●
●●

●
●●
●●●

●

●

●●●●●
●

●

●●
●

●●●

●●
●●●

●
●

●
●
●

●●

●

●

●●

●

●●
●

●

●

●●●

●

●●●●●
●●●●●●●● ●

●
●●
●

●
●

●●●●●
●

●●●●● ●

●

●
●
●●●

●●●
●●●●●●●●●●
●

●
●●●●●●

●

●

●●●
●

●
●●●●●●●●
●●●●●●●
●●●●●

●●

●●●●●●●●●●●●●●●●●
●

●●

●
●
●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●●

●

●

●
●

●●●

●
●●
●●
●●●

●

●●
●

●●
●●●●●●●

●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●
●
●●●●

●

● ●●●●●

●

●●●●●

●
●●

●

●

●●
●●●●●●●●●●●●●
●

●

●
●●● ●●●●
●●●●

●
●

●
●

●
●

●
●

●●●●●●●●
●●●●●●●

●●●●
●
●●●●
●●●●●●●
●●●●●●●●●●●●●●

●
●●
●
●●
●●
●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●

●

●●

●●

●
●
●●
●

●

●
●
●●●●●●●●●●●●
●●
●●●●●●●
●
●●●

●
●
●●●●
●
●●●●●●●●●●●

●

●●●●●●●●●
●
●●●●●●●●●●●●

●●
●

●
●●●●

●
●

●

●

●

●

●●●●●●●
●
●●●●●
●
●
●●●
●●
●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●

●

●

●
●
●

●

●

●

●
●●●●●

●●
●●

●

●
●●●●●●● ●●●

●●
●

●●●●●●●●●●●●●
●

●●
●●

●
●●
●●●●●●●●●●●
●

●

●●●●●●●●●●
●

●●●
●
●●

●
●
●

●
●●●●●●
●●●
●
●●

●

●●●●●●●●●
●

●
●●●●●●●

●
●

●●●●●●●●
●●●●●●●
●

●

●

●

●

●●
●●●

●
●
●●●●●●●
●
●●●●
●●
●●●●

●

●●
●

●●
●

●●●
●

●
●

●
●

●●●

●
●
●●●●●●●
●
●

●

●
●
●
●●

●

●
●●●
●

●
●●●●●●●●●●●●

●●●
●

●

●●● ●
●

●

●

●●

●

● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●
●●●●●
●●● ●●●●●●

●
●●●●●●●●●●●●●●
●●●●●

●

●●
●●●●

●
●

●
●●●●

●

●

●

●
●
●●●

●●●●●●●●●
●●●●●●●

●

●
●●

●

●
●

●
●

●●●●
●

●
●●●●●
●
●

●

●

●
●

●

●
●

●
●●●●●●●●

●

●
●●●

●
●

●

●●
●
●●●●

●

●

●●●●●●●●●●●●
●
●●●

●

●●●●●

●
●

●
●

●
●●●●

● ●●
●●
●●
●●

●

●

●
● ●

●

●●●●●●●●●●●●●●●
●●●●

●

●

●
●
●●●●●●●
●

●

●
●●●

●
●●●●●●●●●●●●

●
● ● ●

●

●●●
●●●●● ●●●

●
●● ●●
●
●●●●●●●

●
●●

●●●●●●

●

●
●●
●
●●●●●●●●

●●
●

● ●●●
●●

●
●●
●●●●●●●●●●●●●●●

●
●●● ●●●●●

●●
●
●●●●●●●

●

●

●
●

●●
●

●●
●
●
●●●●●●●
●●●●●●●
●

●

● ●●●●
●●●●●●●●●
●

●

●●●●●●●●●
●●

●●
●
●●

●

●●

●

●● ●●●
●

●●●
●●●●● ●●● ●

●●●●●
●

●●●
●

●
●

●
●
●●●●●●●●●●

●
●●

● ●
●
●●●●●

●
●

●

●●●●●●
●●

●●●●●●
●●●
●
●●●●●●●●●●

●● ●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●●●●● ●
●

●●●●●●●●●●●●● ●●●●●●
●
●

●●
●●

●●
●●●●●●●●●●●●●●
●
●●

●●
●

● ●

●

● ●●
●
●●

●

●●

●
●

●●●●

●

●
● ●

●
●

●

●

●●●●
●
●

●

●●●●●
●
●

●

●●●●●●●
●●●●
●●

●

●●
●

●●●●
●●

●●●●●●●●●●
●●
●

●
●●●

●
●

●●●
●

● ●●●
●
●●●●●
●
●●●●●●●●
●●●

●
●●●

●

●●●●●
●

●●
●
●

●

●●●●●●●●

●

●

●

●
●

●●

●

●●●●●
●●●●

●
●●●●●

●
●

●

●●
●●●●

●●

●

●
●●●●●●●●

●
●●●●

●

●

●
●●●●●●●
●●●
●● ●●●●●●●

●
●●●●

●

●●●●

●

●●●●●●●●●●●
● ●●●●●●●●

●
●

●●●

●

●●●●●●●
●

● ●●●

●
●●

●
●

●
●●●
●●
●
●●●●
●●●●●

● ●●●●

●●
●
●
●●

●

●●

●
●●

●

●●●●●
●●●●

●
●

●●●

●

●
●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●
●●
●●
●●

●

●
●●●●●●●●●●●●●
●

●
●
●●

●

●

●
●

●●●●●●●
●

●●●
●●●●●

●

●●●●●●●●●●●

●

●●
●

● ●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●
●

●
●●

●●
●●●●●●●●●

●●●●●●●
●
●

●●●●●

●

●●●

●

●●
●

●

●●
●

●●●●●
●
●●●●●●●●●●
●

●

●

●●
●
●
●
●

●
●

●●
●●●●
●●

●
●●●●●

● ●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●
●
●●●●●●● ●●●●● ●
●●●

●

●●●
●●●●●

●

●●
●
●●● ●●●●●●
●●●●●●●●
●●●

●

●
●
●●
●●●●●●●●●
●
●
●●●●●

●
●●●
●
●●

●●
●●●●●●●●●●

●
●●

●
●

●●●●●●●●●●●●●

●
●
●
●●
●
●●●

●
●●●
●●

●

●
●●●●●●
●

●●

●

●●●
●●●●● ●● ●

● ●●●●
●
●

●
●

●
●●●●

●

●

●●

●

●●●

●

●●●●●●●
●●

●

●
●

●
●

●
●

●

●●●●●●●
●
●
●
●

●
●●
●
●

●

●
●●

●
●● ●

● ●
●

●●●
●
●●●

●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●● ●●●●●●●●

● ●
●
●●

●
●

●

●

●●●●●●●●●
●

●●●●
●

●●
● ●●●●●●●

●
●
●

●

●
●●●

●

●
●● ●●●●●●●●

●
●●●●

●

●●●●●●●
●

●
●●●●●

●

●●●●●●
●●

●
●●●

●

●●●●●●

●

●●

●

●●●

●

●●●●●
●

●

●

● ●

●

●●
● ●

●●●●●● ●● ●●

●

●●

●

●● ●●

●

●●●●●

●

●

●

●● ●●
●

●●●●●●●●●●●
●●●●●●

●●●●
●

●
●
●

●

●
●●●
●●

●

●●●●
●

●

●
●

●

●
●
●●●
●

●
●●●●●●

●
●●

●●●●●●●●
●
●●

●
●●●●●●●

●
●●●●●●●●●●●
●●●●●●●●●●●

●
●
●●●● ●●●●●●●

●●●
●●
●

●
●●●●●●●●●●

●

●●●●●

●

●● ●●

●

●●●
●

●●●
●
●●
●●●
●●●●●●

●
●●●●●●●
●●

●

●
●

●

●●●●●
●
●●●●

●
●

●

●
●

●

●●
●●

●●

●
●●●● ● ●●

●

●●●

●

●
● ●●

●
●

●

●
● ●

●
●
●●●●

●
●●

●
●●
●
●●●

●●
●
●●

●

●
●●● ●●●●●●●●●●

●●●
●

●

●●
●●●

●
●●
●

●

●●
●
●●●●
●●●●●●

●

●●●●●●

●

●●●
●

●
●●●●●●●

●●●●●
● ●

●●●●●●
●●●● ●

●

●
●●●●

●

●●●●●●●
● ●

●

●●
●

●●●●●

●

●
●●●●●●●●●●●●

●
●●
●●●●●
●

●
●●

●

●

●

●

●●
●

●●

●

●

●

●
●●●●●

●

●
●
●
●●●●●●●●●
●●●●●●●
●
●●●●
●

●●●●● ●●●●●●●●●

●

●●●●●●●●
●

●●●●
●●● ●●●●●●●●

●
●●●●●●●●●

● ●●
●

●

●●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●
●●●●
●●●●●●

●●
●

●●●●●●●●●●●●● ●
●

●●●●●●●●● ●●
●
●

●●
●●●●●
●

●

●●
●

●●
●●●●●●
●●●●●●●●

●

●●●●●●●●●
●●●

●

●●
●

● ●●●●● ●
●

●
●

●

●●●●
●●●●●●

●●●●●●●●●●●●
●
●
●●
●●
●

●

●

●
●●

●
●●

●
●●●●

●

●
●●● ●●●

● ●

●

●●

●●●●
●
●● ●●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●●●●●●●●
●●

●

●

●●●●●●●●
●

● ●●●
●●

●
●

●

●

●

●●●●●●●●●●
●

●●●●● ●●●●
●

●●

●

●●●●
●
●●●●●●
●

● ●●●●●●●●●
●
●

●

●●●● ●●●●
●●●●●
●●●●●●
●●●●●
●
●
●

●
●●●●
●

●

●●● ●●●●●●●●●●●
●●● ●●●●●●●●
●●

●●
●

●●●
●●●● ●●●
●●●
●●

●●●●●
●

●●●

●●●●●●
●
●●●●●●●

●

●●●●●●
●
●

●●●

●

●

●

●
●●

●●●●●●
●
●
●

● ●
●

●
●●●●●
●●

●

●●●●●●
●

●

●●●
●

●●●●●●●●●●●●
●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●
●●●

●

●●●●●
●●

●
●
●

● ●●●

●

●●●●●●●
●●

●
●●●●●● ●

●
●●●

●
●

●

●

●

●●●●

●
●

●●

●

●●●●●
●●●

●

●●●●●●●●●●●●●●●
●
●●

●●●●●● ●
●
●

● ●
●

●

●

●●●●● ●●●●●●●●●
●●●●●●●●●●●
●●●●

●
●

●

●

●●●
●

●●

●

●●

●

●
●●●

●●
●●●●●● ●●

●

●
●
●●●●●●
●

●
●

● ●
●

●●●●
●●●●●●●
●
●●●●
●

●
●●

●

●●●●●
●

●
●●
●

●
●●
●

●

●
●

●●●●●●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●

●
●●●●●

●

●●●●●
●●
●●●

●

●●●●●
●

●

●●●●●●●●●
●
●●●●
●●

●
●
●●●●●●

●
●●●●●

●
●

●
●●●●●●●

●
●
●

●
●●

●
●●●●●●●●●●●●
●●●
●●●●
●●●●●●
●
●●●
●
●●

●

●●●
●

●●●

●

●
●
●
●
●

●

●

●●●●●

●
●

●●
●
●

●
●
●
●●●

● ●●
●●●

●

● ●●●●●●●●
●
●●●●

●
●●●●●●●●●
●●●

●
●●●●●●●●●●

●

●●●
●●

●

●●●●●
●●

●●

●
●●●

●

●

●●●●●●
●

●
● ●●●●●●●●●●●●●●●

●
●●●

●
●●●●

●
●●

●

●●●
●

●●●●●●●●●

●
●●●

●
●●●
●
●●●●●●●●
●
●●●●●

●●●●
●●
●●

●

●● ●●●●●●
●
●●●●●●●
●
●●●

●

●●●●●
●

●●
●●

●●●●●●●●
●

●●●
●●

●
●

●

●●●● ●●●●●●●● ●●●●●●
●

●●●
●

●
●
●
●
●●●●●●●●●●●
●●●
●
●●●●
●●●●

●●●●

●

●●●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●

●
●●●●●
●●●●●●●●●
●●●
●●●●●●
●
●●●●●●
●●●●●●
●●
●
●●●●●
●●●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●
●

● ●●● ●
●●●

●

●●●
●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●

●
●●●

●

●

●

●●●●●●●●●●● ●

●

●●●●

●

●●

●

●
●●
●●●●

●
●●●●●●
●●●●

●
●●●
●●
●

●
●
●●●

●
●●●●●

●
●

●
●●●
●
●●●●
●●

●
●

●●
●
●

●

●

●

●●

●

●
●●

●

●●●
●●

●

●
●

●

●
●

●●
●

●
●

●

●●●
●

● ●●
●●●●●●●

●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●

●
●●●●
●●●●●
●●●

●
●

●● ●●●●●
●

●●
●●●●●

●

●

●●●
●

●
●

●
●●●●●

●
●●●●●●

●

●
●
●●●●●●
●●●● ●●●●

●

●● ●●
●

●●●●●●●●
●

●

●●●●
●●●●●● ●

●●●●● ●●●●
● ●●

●
●
●
●

●

●● ●●●
●

●

●

●

●

●●●●●
●

●●●

●

●
●

●
●● ●●

●

● ●

●
●●

●
●● ●●●

●
●●●●

●

●●

●
●●●

●

●
●●

●

●●●

●

●●●●●●●●

●

●
●

●
●

●
●

●

●●
●●●●●●●●
●●●

●

●
●
●

●

●●●
●●●●●●●●●●
●●●●

●

● ●

●
●

●

●
●

●●●
●●●● ●● ●●●●●

●●●●●●●●● ●●●●●
●
●

●

●●
●

● ●●●●
●

●●●●●●

●

●
●
●

● ●●●

●

● ●

●

●

● ●

●

●
●

●●
●

●● ●
●●

●● ●●●●●●●

●

●●●
●●● ●●

●
●

●

●●●●
●●●●
●
●
●

●
●●●

●
●●

●●●
●
●

●
●●●●
●● ●●●●

●●
●●●● ●
●

●

●
●

●●●
●●●
●
●
●
●

●

●●●●●
●

●●●
●●●●●●● ●●

●

●

●

●●●●●●●●●●●●●●
●

●

●●●●●

●

●●●●●
●
●

●
●

●

●

●

●●●

●

●●●●●● ●●
●

●●●●●●●●●●●
●

●●

●

●●●●●●●●●

●
●
●●
●

●

●●●●

●

●
●●●●●●●●●●●●
●

●●●●●●●
●●●●

●●
●
●
●●●●●●●●●●●●●
●●

●●●●●
●●●●●●●●●●●●
●●●

●
●●●●
●●●●
●●●●●

●● ●●●●
●

●●●●
●

●●●●●●

●

●●●●●
●●●●●●● ●●●

●
●●●●●●

●

●●●
●●●●●●●●●●●●
●

●
●
●●●
●●●

●

●●●●
●●

●
●●●
●
●

●●
●●●

● ●●●
●●●
●●●●

●

●
●

●

●●●●

●

●

● ●

●●●

●

●

●

●●●
●●

●●

●

●●
●

●●●
●●
●

●
●●●●●●●●

●

●●

●

●

●

●
●

●

●

● ●
●

●●●
●

●
●

●●
●

●

●● ●●
●

●

●
●
●

●
●
●
●

●● ●●●●

●

● ●●●
●

●
●●

●
●●●●●●●

●
●
●●
●●●

●● ●
●

●

●●●●●●
●●●

● ●●●●●●●

●

●
●

●
●●●

●●●●
●
●

●●●

●

●●●●●● ●

●

●
●
●●●●

●

●

●

●
●

●●
●
●

●●

●●●
●●●●●

●●●
●

●
●●●●●●●●●●●●●●●●

●
●

●

●●●●●
●●●●●●●●●●●●
●●●●●
●
●●●

●

●
●● ●

●
●●
●

●●●●

●

●●●● ●● ●●

●

●●●●

●

●
●
●●●●● ●

●

●●
●

●●●●●●●●●●
●●

●

●
●●●●

●

●
●●

●●●●
●●●

●
●●●●

●
●

●
●●●●

●
●

●

● ●

●

●
●●●●●
●

●
●●●●●●●

●●
●●
●

●

●●●●
●

●●●●

●

●●

●

●●● ●●●●●

●

●●●●
●

●
●●●●

●
●●●●●●●●●●●

●
●●

●

●●

●●●●●●
●

●●●

●

●● ●● ●●●●
●●●●

●

●●
●

●●

●
●●●●

●
●●●●
●

● ●
●●
●●●

●

●●
●●●

●
●●●●●●

●

●●●●●●●
●

●
●

●
●
●●●

●

●●●●●●
●●●●

●
●●

●●

●

●●
●

●●●●
●

●●●●●
●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

● ●●
●●

● ●●
● ●●●●●●●●●

●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●●

●

●● ●●●●●●●●

●

●●●

●

●●●
●

●

●

●
●●●●●●

●●

●

●●
●●

● ●● ●●●● ●●
●

●●●
●

●●●●
●

● ●●
●●●●

●

●
●

●●●
●

●●●●●●●
●●●●●●●●●●●●●

●
●

●
●●●●●●●●●
●
●
●●
●●

●
●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●
●
●●●●●●●●

●●
●●●●●●● ●●●●
●
●●●●●●●

●

●

●

●●●●●●● ●●●
●●

●●●
●●●

●
●
●
●●
●

●
●

●●●
●
●●
●●●

● ●●●●●●●●●
●

●●●●●●●●
●●●●●●●
●●● ●●●
●
●●●●●●●●●●●●
●●●●●●●●●

●
●●●●●
●●●●●●●●●
●
●●●●●●●●●●●
●

●●
●●

● ●●●●●

●

●
●●●●●●●●●●●●●●●

●

●●●●●
●
●●●●●●●●
●

●
●

●●
● ●●●●●●

●
●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●

●●

●
●●●●

●

●

●
●

●●
●●●●●●●● ●

●

●●
●
●●●●●
●●

●

●●●●

●

●●●●●●●●●●●
●
●●●●●●●

●

●
●
●

●

●
●●●●
●

●

●
●

●●

●

●

●

●
●

●
●●●

●

●
●●●

●
●

● ●
●●●
●●●●
●

● ●●

●
●●●●

●

●●●●●

●

●
●

●●
●

●●●●●●
●
●
●●
●●●●●●●●

●
●●

●

●

●●●●●●●●●●

●
●●●●●●●

●

●●●●●●●●●●●●●
●●
●●

● ●●
●

●
●●●●● ●●

●
●●
●●●●

●

●

●●●
●

●
●
●● ●

●

●
●

●●●
●

●●●●

●

●●●● ●●●●
● ●●●●

●
●

●
●●●●●● ●●
●●

●
● ●

●
●●●

●

●●●
●●
●●

●

●●●●●
●

●
●

●●●●

●

●
●
●●

●

●●●●
●

●
●

●
●●

● ●
●●●●

●

●
●●●●

●

●●
●

●
●

●
●●●

●
●

●●
●

●

●

●
●●

●
●

●● ●

●

●
●●●●

●

●●●● ●

●

●●●●
●

●
●

●
●

●

● ●
●

●
●

●
●●

●
●●●

●●

●●

●

●
●● ●●● ●●
●

●●●

●

●
●

●
●●

●
●●

●

●●
●
●●●
●● ●● ●●

●

●
●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●
●

●
●●●●●●●●●●●●●
●

●
●●●●●●

●

●
●
●
●
●

●
●●●●●●
●
●●●
●
●●●●●●●●●
●● ●●●●●●●●●●

●

●●●●●●●
●

●●●●
●
●●●

●
●●●●●●●

● ●
●

●
●
●

●

●
●●●●●●

● ●
●●●●
●

●
●●
●●●
●●●●●

●

●●●●●●
●
●

●●●
●● ●●●●●●●●

● ●
●●
●●●●

● ●●●●

●
●●●
●●●

●

●●●●
● ●●●●●●●●● ●

●●●●●●●●
●●●
●

●

●

●●●●
●●
●

●
●●●●●●●●●●●

●●●●●●●●●●
● ●

●

●●

●

●●●
●

●●
●
●●●●●●●
●

●

●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●

●
●●●●●●●●●●●●

●

●
●
●●●●●

●

●●●●●
●
●●●●●

●

●●
●●●

●
●●●
●●●●

●●●
●

●
●●●●
●
●●●
●●●●●●●●●●●

●
●●●●●●●

●

●
●
●●●●●
●●
●●●●● ●●●●●●
●●●●●●●

●●●
●●●●●●●●

●
●●

●
●●●

●

●●●●
●
●●●

● ●●●●●●●●●●●●●

●

●●
●●●●
●

●
●●●●●●●●●●

●
●

●
●
●●●●●●●●

●
●●●●●●●
●● ●
●
●

●
●●●●
●●●●●●●

●

●

●

●●●
●●

●
●

●● ●●●●●●
●●

●●
●

●

●●●
●

●

●●● ●●●●

●

●

●
●

●
●

●
●●●●●●●●●
●●●●●●●

●
●●●●●

●

●
●●●●

●

●●

●

●●
●●

●
●●●● ●●

●

●

●●
●

●●
●

●●
●●

●

●●
●●●●●●●●

●
●●●●●

●
●●

●

●●●●●●●●●●
●
●●●●●●

●

●●

●

●●

●

●

●

●●
● ●●
●

●●●● ●●●●●
●●●
●●
●
●●●●●
●
●●

●●●●●●●●●
●
●

●●●●●●●●●●●●
●

●●
●

●●●
●●
●●●●●●
●
●
●●●●●●●●●●●●●●

●
● ●

●●●●●
●

●●●●●●●●●●●
●●●
●●

●

●●●

●

●●●●●
●●●●●●●
●●●●●●●●

●
●●●●

●
●
●

●

●

●

●●●●●●
●●●●●●●

●
●●●●●
●●●●●●●●●

●

●

●●●

●

● ●●
●

●

●
●

●
●

●●
●

●● ●●●●
●●

●
●

●● ●●●●●●●●●
●●●

●●●●●
●●
●●●●●●●
●●

●
●●●●●●●●●
●●●

●●
●●●●

●●
●●● ●●●●●

●

●●
●
●●
●●
●

●
●

●
●

●
●●
●●●●

●
●●●●

●
●●●● ●●●●●

●
●

●

●●●

●

●●
●
●●●●●●

●

●
●

●

●

●

●●●

●
●
●
●●

●
●
●●●●
●
●

●
●

● ●●

●
●

●●
●
●

●
●●

●
●
●●●●●●●●
●
●●

●
●

●
●●
●

●
●●●●●●●

●

●

●●●

●

●●●●
●

●

●●

●

●

●
●

●

●●
●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●
●●●●●●●●●
●●
●●

●
●●●
●●

●

● ●
●●●●●●●●●●●

●
●
●●●●●●●●● ●●●●

●
●●●

●

●●

●●●●

●

●
●
●●
●●●●●●

●●●
●●

●
●●●●●

●

●●●●●●●●
●●
●
●●●

●●
●
●●● ●●

●

●●●
●
●●●

●●●
●●
●●●●●●●●
●●●●●
●
●

●

●●●●

●

●●

●

●
●

●
●

●●●●
●

●
●●

●

●
●●

●
●
●●●●●●●● ●●●●
●
●●●●●●●

●
●●●●
●●

●●
●

●

●●●
●

●
●

●
●●●●

●●● ●●●●●
●

● ●●●
●

● ●

●
●●●●●●
●●●●●●●●
●●●●●●
●●●●
●●

●

● ●
●

●●
●● ●●●●●

●
●●

●

●
●●

●
●

●●
●

●
●●● ●●● ●●●

●

●●
●● ●●●
●

●

●●
●

●●●●●●
●●●

●

●●●●●●●
●

●●
● ●●●●●●●●●●

●
●
●●●●●●

●
●●●●

●

●●
●
●

●
●

●

●●
●
●●

●

●

●

●

●

●

●

●

●● ●
●●

●

●●
●●

●
●●●●●

●●●
●

●

●
●●

●
●●●
●

●
● ●

●

●

●

●●●●●●●●●●●●●●
●
●●●●●●

●
●●●●●●●●
●●
●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●
●●
●●●
●
●●●
●

●

●●●
●

●●
●●●●●●●●●●●●●●●●
●●●

●●●●●●
●●

●

●

● ●

●●
●●●●

●
●●

●

●
●

●
● ●●

●
●
●

●

●

●
●

●
●

●

●●

●

● ●
●

●
●●●●●
●
●●

●

●
● ●●●●

●●●●●
●●●●●●●● ●●●●

●
●●
●

●
●●●●●●●●●●●●●●

●
●●●●

●●
●●●

●

●
●●●●●●●

● ●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●

●●
● ●

●●●
●

●
●
●●
●●●

●
●
●●●●●●●
●●●●●●
●

●●●●●●●●
●
●●●●●

●●●●●●

●
●

●●●●●●●●●
●●●●
●●●●●●●●

●
●●●●

●
● ●●●

●●

●

●●
●●●●●●●●

●
●●● ●●●●●
●

●

●

●●●

●

●●●
●

●●●●●●

●
●●●●●
●

●

●●●

●

●

●●●
●
●●●

●
●●●●● ●●●●●●●●

●
●●●●●●

●
●

●
●

●●
●●●●
●
●●
●●

●
●●● ●

●

●

●
●

●●●●●●

●

●

●

●
●

●●
●●
●●●

●●

●
●●●●●●●●●●●●

●
●●

●

●
●●

●
●●
●●●●

●
●●●●
●●●●●

●
●●●

●●●●
●●●●●●● ●●●●

●
●●●●

●

●●●

●

●
●●
●●●●●●
●●●●●●●

●

●
●●
●
●●● ●

●

●
●●
●●●●●●●●●●●●●●●

●
●●●●

●

●

●●●
●

●●●●
●
●●●

●

●●●
●●●
●

●

●●

●
●
●●●

●●
●●●

●

●
●

●
●

●
●●●
●
●●●●●●●●●
●
●●●●

●

●

●

●●●●●●
●●
●

● ●
●●●●●●●●●●

●●
●●
●●●

●

●●●●●

●

●●
●
●
●●●●

●
●●

●
●

● ●●●●●●

●

●●●●●●●●●●●

●

●
●●

●
●

●●●

●

●●

●

●● ●
●●

●
●●● ●
●

●

●

●

●

●●● ●●

●

●
●●

●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●
●

●●
●

● ●●●

●

●
●●

●

●
●●●

●
●

●● ●
●

●

●

●

●●●●

● ●

●●●●

●

●
●●●

●●●● ●●
●●●

● ●●●●●

●

●●●
●
●

●●
●

●
●●●●●●
●●

●

●●●●●●

●

●●
●●●●●●●

●

●●●
●
●●●●●●●
●●●●
●●●●●●

●
●●●

●●
●
●●●

●

●●●●●●●●
●●●

●
●●●●●●●●●●●●●
●●●

●●
●
●●●

●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●
●●●
●●
●●●

●
●●

●

●●●
●●
●●●●●●●
●
●●●●

●●
●

●● ●●●●●●●

●

● ●●●●●●●●●
●●●●●●●

●

●
●●●

● ●●

●●●
●●●●

●
●

●

●

●
●

●●
●●●●●●●●●
●
●●●

● ●
●●
●●

● ●●●●●●
●

●
●
●

●●

●

●●●●●●
●

●●●●●●●●●●●● ●●●●●●●●●●
●

●●● ●

●

●
●

●

●
● ●●●●●●

●
●
●●●

●

●
●
●●●●●●●●●
●●●
●●●
●
●

●

●●●●●●●●●●●● ●
●
●●●●●

●●● ●
●●●●●

●

●
●
●●●●●●●
●

● ●●
●

●

●●●●●●●●●●●●
●●●●●

●
●●●●●

●

●●
●●●●●●●●
●●●●●

●
●●●●●●●●●

● ●● ●

●

●

●●●●●●

●

●●
●●
●

●
●●● ●●

● ●
●

●
●

●
●●●●

● ●
●●●●

●
●●●●

●
●

●

●●
●

● ●●●●

●

●
●
●
●

●
●
●

●
●
●
●●● ●●●●● ●

●
●

●
●●

●●

●●

●●

●

●

●

●●●●●●●
●●●●

●

●●●●● ●

●

●●●●

●

●
● ●
●

●
●

●
●

●●
●

●
●●●

●

● ●
●●●●

●
●●

●

●
●

●●

●
●

●

●

●●

●

●

● ●

●●●●

●

●●
●

●
●●●

●
●
●
●●

●

●
●

●●●●●●●
●
●●●

●

●●●●●

●

●●
●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●
● ●

●
●●

●

●
●

●●
●
●●●●●●●●

●
●●●●●●●●●
●●

●●●●●●●●● ●●●
● ●●●●●●●●●●●●●●●●● ●●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●

●

●●
●●●●●●
●

●●●●●●●●●●●●●●●●●
●●

●

●●●●●
●

●
●

●

●● ●●
●●

● ●

●

●
●●●●●
●
●

●
●●●●●

●
●

●●●●●●
●

●●●
●

●●●●
●●●
●

●

●●

●

●

●

●
●●●

●

●●●●●●●
●

●
●●●

●

●●●●
●●

● ●

●

●
●●
●

●

●●●
●

●●
●

●
●

●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

● ●●●●●
●●
●●●●●●
●

●●●
●
●●●●●●●
●●●●●●●●●●●

●

●●●
●●●●●●●●●●

●●●

●

●●●
●

●
●●●●●●●●

●

●

● ●
●
●●●●●● ●●●

●

●

●●●
●●

●
●●●●●●●●●
●●

●

● ●●●●●●●●●
●●●●●

● ●
●●●●●●●●●●●●
●

●

●
●

●●●
●

●
●

●

●●●●
●●

●
●

●
●●

●
●●●●

●●●●

●

●● ●
●●●●

●
●●
●●

●
●

●
●●●●●

●
●

●

●

●●●●
●
●

●

●●

●

●

●

●
●
●

●

●

●

●●●●●●
●●●●●●

●
●●●●●●● ●●●●●●●●

●
●●●●

●
●●●●●●●

●
●●●●

●
●● ●●●●●●●●

●

●●
●●
●
●●●●

●●●●●●●●●

●

●●●
●
●

●

●●●●●
●

●●●●●
●

●●●●●●●● ●●●

●
●●●●

●●●
●
●

●●
●
●●●●●●●●●●●

●●
●● ●●●●●●●●●●●●●●●●●

●
●
●●
●●●●●●●●

●
●●●●
●●●●●●

●

●●●●●●●
●
●●●●

●
●●●

●

●●
●
●

●
●●●

●
●

●●
●●● ●

●

●
●

●●
●

●
●●●●

●

●
●●●

●
●●●●●●●●

●

●

●

●●
● ●●●● ●●●

●
●●●●●●●

●

●

●

●
●
●

●
●

●

●

●

● ●●

●
●●
●●

●

●●●●● ●●●●
●

●●●●

●
●
●
●
●●●
●
●
●

●

●
●●●● ●●●●

●

●●●
●● ●●

●

●●
●●●●●

●
●

●
●
●

● ●●●●●●●●
●
●●

●

●

●
●●●

●●●
●●●●●●●●
●
●●●●
●●●●●

●
●
●

●
●●
●●●●●●
●●●●●

●●●●● ●●
●

●●

●●

●●●●●
●●

●

●

●

●
●

●

● ●●

●

● ●
●
●

●

●

●
●●●

●

●

●
●

●
●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●●●●●●●●● ●
●●●●●●

● ●

●●

●

●
●

● ●

●

●

●

●

●
● ●●

●
●

●
●●

●

●
●

●
●●●● ●

●●●
●

●●●●
●

●
●●●●●

●
●● ●

●
●●●
●●●●●●●●●●●●●●●

●● ●●●

●

●●●●●●●●●●●●●●

●

●
●

●

●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●
●
●●●●●●

●

●●●● ●
●

● ●

●
●
●●●

●
●●
●●●● ●●

● ●●●
●

●
●

●●●●
●
●
●
●●●●●●

●
●●●

●
●
●● ●●●
●●●
●●

●●
●

●

●●●●●●●●

●

●
●●

●

●●●● ●●

●
●●●●●●●

●
●

●●●
●●●●●●●
●

●●●●

●

●
●

●

●●●●
●

●●

●

●●
●

●
●●
●●

●
● ●●

●

● ●●
●●

●●●
●●

●

●

●

●
●●
●●●●●●● ●●●●● ● ●●

●

●●●

●

●●
●●

●

●●●●●
●●●●●●●
●●●

●●
●●

●
●●●●●●●●
●●

●
●
● ●●●
●●●●●

●
●

●●●●●●●
●●●●

●●

●

●●●●●●●
●

●

●●●●●
●●●

●

●
●● ●●

●

●●●
●

●●
●●●●●●●●●

● ●●
●●
●●●

●
●● ●●●

●
●
●●

●

●

●

●

●

●●

●

●●●●●●●
●

●●●●●●●●●●●●●●

●

●
●

●●● ●●●●●●●●
●●●●●●●

●

●
●

●
●●●

●

●

●●

●

●● ●●●●
●●●●●●●●●●●●●●

●●
●●●● ●●

●
●

●
●

●
●●●●●●

●
● ●●●●●●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●● ●●●●●●
●
●●●●
●●
●
●
●

●
●●●●●●●●●
●
●●●
●

●●●● ●●●●●●●●
●

●●●
●●●●●●●●●●
●●

●
●●●●●●

●
●●●
●●●●●●●●●●●

●
●

●
●●●

●●

●
●
●●

●●
●●●●●●●●●●●

●●● ●●●●●●●● ●●●●●
●●

●

●●●●●●
●

●●●●●●●●●
●●

●
●
●●

●

●●●●
●●
●●●●
●●●●●●●●●●

●●●
●

●●
●

●

●●●●●●●●
●
●●●●

●●●

●

●
●
●●
●●

●
●●●●●
●

●

●
●

●
● ●● ●●● ●●

●

●
●●●●●

●
●●●●

●●

●●●●●
●●
●●●●●
●●

●

●
●

●
●

●

● ●●●
●●●●●

●
●● ●

●

●

●

●●●●
●●

●●
●●●●
●●
●
●●
●●●●●
●

●
●●●●●●●●●

●
●●●●●●

●
●●●●●●●●●●
●
●●

●
●

●

●●●●●●
●
●
●

●●
●●●●
●●

●
●●●

●

●●
●

●
●
●●●●

●
●
●●●●●●●●●●●●●●
●●
●
●
●●●●

●
● ●●●●●●●

●●●●●
●

●
●●●

●
●

●
●●●●●●

●
●
●●●

●
●

●

●
●●●●●

●
●●●●●●●●

●
●

● ●
●

●
●
●●

●
● ●●

●

●●
●

●

●●●

●
● ●● ●

●●
●●●

●

●●
●

●●●●●
●

●●●●

●
●● ●● ●●●●●

●

●
● ●

●
●

●
●●
●

●●
●●

●

●
●
●

●
●

● ●●●●●
●

●
●●●

●●

●●●●●●
●

●
●●●

●

●
●

●
●●●

●

●●●●●

●

●
●

●● ●

● ●

●●●● ●

●

●
●●●●

●

●
●●●

●

●
●

●
●

●●●
●●●●●

●

●●
●● ●

●
●● ●

●

●

●
●

●
●●●●●●●

●●●●
●●●●●●●●●
●
●●●●●●●●
●

●●
●

●
●●
●●●
●
●●

●

●●
●●●●
● ●●

●
●

●
●●●●

●

●
●

●
●●●

●●

●●
●●
●●

●

●
●

●
●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●

●
●●

●

●●
●

●
●●●

●

●●●
●
●

●

●●

●●

●

●
●
●

●

● ●●
●●●
●●
●

● ●

●
●●● ●●●●●

●
●

●
●●●

●
●

●

●

●

●●●● ●●
●●

●●●
●
●
●●
●

●

●●
●
●● ●●●

●
●●

●

●●●●
●●●

●
●

●●
●●●●

●
●●●●

●
●●●●●●

●
●

●●●●●●●●●
●●●

●●●
●●●

●
●
●●●●●●●●
●
●●●●
●
●
●●●●
●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●
●●●
●●●

●
●●●

●
●●●●●●●●●
●●

●

●
●

●●●● ●

●
●●●
●
●●●

●

●●
●●●●●●●●●

●
●●●

●

●
●●●
●●●●●
●●

●
●●●●●●●●●●

●
●●

●●●●●●●

●

●●
●●●●

●●●●●●●●●●
●●●
●●●●●●●●●●● ●●●●
●

●●
●

●

●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●

●●●●●●●●●●
● ●●●●

●
●
●●●●●

●

●●●●●●●
●
●●
●●●●●
●

●
●●●●●●●●
●●●●
●
●●

●

●

●
●●●
●●●

●
●●●●●●●●●
●
●●●●

●

●●●●
●

●●

● ●●● ●●●●●
●●

●
●●●●●●●●

●
●●●
●
●●●

●

●
●●

●
●

●

●
●●●●

●
●

●
●

●
●

●●

●
●

●●●●●●●●●●●●
●

●● ●●●

●
●

●
●●●●

●
●●●●●●
●
●●

●

●

●
●●●●
●●●●●●●●
●●

●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●● ●
●●●●●

●●●
●●●●

●
●●●●●●●
●
●●●

●
●●●●

●
●● ●●●●●●●

●
●●●●●

●
●

●
●●●●●●●

●
●●●●

●
●●●●●

●
●●●●●●

●

●

●
●

●●●●
●●●●●●●●
●●

●
●●●
●

●●●●●●●●●●●●
●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●
●●

●
●●●●●●
●●●

●

●

●●●●●
●
●
●●●
●

●●●●●● ●

●

●
●●●●●●

●●●● ●●●●●● ●●●● ●●
●●●●●●●
●
●●●●●●●●

●
●●●●●

●●
●●●●●
●●
●

●

●●●●●
●●
●●
●
●●

●●●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●

●

●●●●●
●●

●

●●●●●
●●●●●●●●
●●
●●
●●●

●

●
●

●● ●●●●

●
●
●●

●

●

●
●

●●
●

●
●●

●

●●●●●●●●●●●
●●●

●
●●●

●
●●●
●
●

● ●
●●●●●●●●●●●●●●
●
●

●
●

●●●

●

●●
●●●●●●●●●●●●
●
●●●●●●●●●
●●

●

●●●●●
●●●●●●●●

●
●

●●
●●●
●●●●

●

●

●

●
●
●
●●●●●

●
●●●●●●●●

●
●●●

●

●

●
●

●

●
●

●
●

●●●●●●●●●●●●
●

●
●
●●

●

●●●●●●●●
●
●●●●
●●●●●●●
●
●●●●
●
●●●●
●●●●

●

●●●●
●●●●●●●

●●●●●●●●
●
●

●●
●●●●●●●●●

●
●●●●●●●●●●●●●
●●●

●●●●●
●
●●●●●● ●
●

●
●
●
●●

●
●

●
●●●
●

●
●● ●

●
●●

●

●
●●●
●●

● ●●●

●

●●●● ●●
●●
●

●

●
●●●●●●●●●●●●●

●
●●●●●
●●●●
●

●

●
●●

●
●●●●●●● ● ●

●●●
●

●

●●●●●●●●●
●

●●●●●●●●●●●●
●●●

●

●●●●●
●
●●●

●

●

●

●●●●

●

●
●●
●
●●●

●

●
●●●●

●
●

●●●
●

●

●

●
●●

●

●

●●●●●
●

●●●●
●●

●

●●
●●●●●●● ●●●●●
●
●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●●●

●●
●●●●●
●
●●
●●●●

●

●
●●●●●●●●

●

●
●

●
●
●

●
●●
●●●●●●●
●
●●●●●●●●●●●●●
●●●● ●●●●
●●●●●●●●

●
●●●●●●●●
●●●●●●●●

●
●

●
●●

●
●●●●●●●●●●●●
●● ●●●

●
●●●

●

●

●

●●●●●●●●●●●
●
●●
●●●●
●●●●●●●●

● ●●●●●●●
●●●
●
●●●●●●

●●●●
●

●●●●● ●●●●●● ●●●●●●
●●●●●●●
●●●●●
●●●●●●

●

●●●●●
●
●●●●●●

●
●

● ●●●●●●
●●●●

● ●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●●●
●●●●●●●

●

●●●●●
●

●

●
●●●●●

●
●●
●

●
●●●●●●●

●

●
●

●

●●●
●●●
●●

●
●●●
●●

●

●

●●●
●●●●●

●
●●●●●●

●
●●●●●

●
●●●●●●●●●●●

●

●●●●●●●●
●

●

●

●
●
●●●●●●●●●●●
●
●●●●●●●●●
●

●
●●●●●

●
●●●●●●
●●

●

●
●●●
●●●

●
●
●●●●●●●

●
●●●

●

●●●
●●●

●

●

●●●●●
●

●
●●

●●

●●

●

●
●

●
●●●●●
●

● ●●
●

●●
●

●

●●●
●

●

●

●

●●●

●

● ●●●
●

●
●
●
●

●

●
●

●●
●●●●●●●
●●●●●●●●
●
●●●●●
●●●

●
● ●●●●

●

●

●

●●●●●●
●●● ●
●●●●●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●●
●
●

●

●

●

●
●
●●●

●
●●●●

●

●

●

●

●
●

●

●
●

●

●

●
● ●●

●
●

●
●

●●●●●●●●●●●
●●

●
●●●●
●●●

●

●●●●
●●

●
●●

●

●●●●●●●●●●●
●●●●
●●

●
●

●
●

●

●

●
●
●●
●●●●●
●●●●●●
●●
●
●●●●●●
●

●●
●●●●●
●●

●
●●●
●●
●●
●●●
●●●●●●●●●●

●

●●
●

●●●●●●●●●●
●●
●●●
●

●
●●●●●●●●●

●
●
●●●●

●
●●●●
●●

●

●●●
●

●

● ●●●●●●
●●●

●
●

●

●●●●●●

● ●

●●●
●

●
●●●●

●

●●

●

●

●
●●●
●

●

●●●●

●

●
●
●●●●●●●
●●● ●

● ●
●

●●
●

●●●●● ●
●

●●
●
●●

●
●

●
●●

●
●●

●
●
●●●●●●

●●●
●

●●
●

●●
●●●●●
●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●

●●●
●●●●●●●●

●

●●
●

●●●●●●
●●●●●
●
●●●

● ●●●●●●●●●
●
●●

●●●●●
●●●●●●●● ●

●

●

●

●
●●●●●●●●● ●

●
●●●●
●●●●●●●

●

●

●

●

●● ●●
●

●●

●

●
●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●●● ●●●
●●
●●●

● ●●●
●
●
●●

●●

●

●●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●
● ●●

●●●●●●●●
●●

● ●

●●●
●●●●
●
●●●●●

●
●●

●
●

●
●●

● ●
●

●
●

●●●
●
●●●●●●●

●●●●●●●●
●●●●●●

●
●

●●●●●●●●●●●
●
●●●●

●

●

●●●●●
●
●●●●●●●●●●●●●●●●● ●●●●●
●●●●●●●

●
●●

●
●

●●
●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●
●●●

●●●●●●
●
●●

●●●●●●●

●

●●●●●●●●●
●

●

●●●●●●
●●●●●●●

●●
●●●●●
●
●●●●●

●

●●
●●●●●●●
●●●●●
●

●●●●
●●●●

●●
●●●●●
●●●

●
●●●●●●●
●●●●●
●
●●● ●●●●●●●●●●●

●

●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●
●●●●●●

●●

●
●●

●

●
●●●

●
●●●●●●●●

●

●

●

●●●●
●

●●●●●●●
●

●
●●●●●●●●

● ●●●
●
●

● ●
●

●
●● ●●

● ●
●●

●
●●●●
●
●●●
●●●

●
●●●●

●
●●●●

●
●●●●●
●

●

●
●

●●
●

●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●
●●
●●
●
●
●●
●

●

●
●

●

●●●●●●●●●●●●●
●●●
●

●

●●●●●
●●●

●
●

●

●
●
●●●●●●●●●●

●

●●●●
●

●

●

●●●●●●●●●●

●

●
●●●● ●● ●
●
●●●

●
●

●
●●●

●

●●

●●

●●
●
●●●●●●●●●●●●●

●●

●●●●
●●●●●●●●●●●●●

●

●●
●
●●●●
●●

●

●●●●●●●●●● ●●
●

●●●

●

●

●●
●

●●
●●●●●●●

●
●
●●

●●

●

●

●
●●●

●

●●●
●●●

●
●

●

●

●●

●

●●
●

●●●●

●

●●
●●

●●●
●●●

●●
●●●●●
●
●●●
●

●
●
●●●●●●

●● ●●●●●●●

●

●●●●
●

● ●
●

●
●●●●

●
●●●●

●

●●
●

●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●●
●●●●●

●
●●
●●●●●●

●

●
●

●●●●●●●●●

●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●

●
●●
●

●
●●●●●●

●

● ●●●●●●●
● ●●●●●●●● ●

● ●●●●●●●●
●

●
●
●●
●
●●

●
●●●

●
●●●

●

●●●●●●●●●●●●●
●●●●●●●●

●
●●●●● ●●●● ●●●●●●●●●● ●●●●●
●
●●●●●
●
●●●●●●●

●
●

● ●●●●●●●●●●●
●
●●●●● ●●

●

●
●
●●
●●●●●●●●●●●●

●

●●● ●●●●●●●●
●
●●
●
●●●●

●
●●●●●●●●●
●

●
●

●
●

●
●●●

●
●●●●
●●●●
●
●●
●

●
●●
●●
●●●●●

●●●●●●●●●
●
●●
●●●●●●●●●

●
●●●●●●
●●

●●●●●
●●●●●●●●●

●

●●●●●

●

●●
●

●
●

●●●
●●
●●●●

●
●

● ●●●●●●
●
●●
●●●

●
●●

●
●
●●●●●
●●

●
●

● ●●●●●●
●●

●
●●
●

●

●●●●●

●

●●●●●●●
●●

●

●●●●● ●●
●●●
●
●●●

●
●●●●●●

●
● ●

●●

●
●

●
●● ●●

●

●
●

●●

●

●●●●●●
●

●●●●
●●●●●●●

●
●●● ●●● ●●
●●●

●●●
●●

●
●●●●●● ●●

●

●

●
●

●●

●

●●●●●●●●●
●

●
●

● ●●●●
●
●
●

●●
●●●●●● ●●●●●●●●●
●

●

●

●●●●●●
●●●

●●●●●●

●

●●●●●
●●
●●●●●●●●●

●●
●

●
●● ●●●●●●

●

●
●●●●●●●●●●●●● ●●

●
●

●●
●●●●
●●

● ●●
●●
●
●●

●
●

●
●●●
●●●●
●●●●●●●
●

●
●●● ●● ●●●●●●●●●● ●●● ●●

●
●●●
●
●●●

●

●●●●●●
●

●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●
●●
●
●
●●●●●
●●
●

●

●
●●●
●●●●●

●●●●
●

●

●
●
●●

●

● ●●●●●●●
●

●

●●●●●●●●●●
● ●

●
●●●●●

●●
●●

●

●
●

●
●
●●●●●

●
●

●
●●

●

●

●●

●

●●● ●●●●●●●●●
●●

●

●

●●

●

●●●
●

●
●●

●

●

●

●

●
●

●

●

● ●●●

●

● ●
●●●●●
●●●●
●

●
●

●

●●

●

●●
●
●●●●

●

●●●
●

●
●
●●

●●●

●

●

●

●●●●●
●●

●

● ●● ●●●
●●●●●●●●●●●●●

●●●●●
●
●●
●

●●●●

●

●●

●

●
●

●
●●

●

●●

●

●● ●

●
●●●

●
●●

●

●
●●●●●●

●

●●●●●●●
●

●●
●●

●
●●●●●

●
●●●
●

●
●●●

●

●●
●
●●

●
●●●●
●●

●
● ●

●
●

● ●●●

●

●●
●●●

●

●
●● ●●

●
● ●●●●●

●
●●●●
●●●●●●●●●●●●

●

●● ●●●●
●

●

● ●
●

●●
●●
●
●
●●●

●

●●●

●

●
●●●●●

●

●●●●●
●●●

●
●
●
●●
●●●●

●●●●●●
●●●
●●●●●●
●
●●●●●●●●●

●
●
●●●●●
●●

●●●●●
●●●
●●

● ●●●
●

●

●

●●●●●●●
●
●●●●●●●●●
●

●
●

●
●

●●●
●●●●●●●●

●
●●

●
●●
●●●

●

●●●●●
●●
●
●
●●●● ●

● ●

●

●
●

●
●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●
● ●●●●●●●

●

●●●●●● ●●●●●●●●●●
●

●
●●

●

●●●●
●
●

●●

● ●●●●
●●●● ●●●●●

●
●●●●●●
●

●

●

●●●●

●

● ●
●

●●●●●●●
●●
●
●

●
●●● ●●
●
●● ●

●

●

●●●●●●●●●

●

●●●●●●●● ●●●
●
●●
●●●●●

●
●●●●

●
●●●●●●●

●
●

●
●

●
●●

●●
●

●●●

●

●●

●
●

●●●
● ●●●●●●●●●●

●

●●●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●
●
●
●●●●●

●
●●●●●●●●
●●●●●●●●●●
●

●●●
●●●●●●●●

●

●

●
●●●●●●

●
●●●●●●●●●●
●●●●●●●

●●●
●
●●●●

●

●

●●
●

●●●●●●●●●●●●●
●●

●●●
●●●●●●

●

●●●●

●

●
●●
●

●

●●
●

●●●●●●●●●
● ● ●●●●

●●●●
●

●

●

●●●●●
●

●●●●●
●

●●●
●
●●●
●●●

● ●
●

●
●●

●●●●●●●
●●●

●

●●
●●

●

●●● ●●

●

●
●

●●●●
●
●●●●
●

●

●●●
● ●

●●●●●
●

●
●●
●

●
●
●●
●

●●
●

● ●

● ●

●●●
●

●
● ●●

●●
●●
●●●

●
●●●●●
●

●
●

●

●●

●

●●●●●●
●●
●
●●
●●●●●●●●

●

●● ●
●
●

●
●●●●●
●●●●●●
●●●●●
●

●●●●●
●●●

●
●●●●●

●

●
●

●
●●

●
●● ●●●●

●

●●●●●●● ●●●●●● ●●●
●

●
●●●
●
●●●●

●
●●

●

●●●●●●
●●●
●●●●

●●●●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●
●●●●●

●●●

●

●
●●

●

●

●
●●
●●

●
●

●●●
●●

●
●

●●●
●●
●●
●●●●

●
●●

●
●●●●●

●

●
●
●●●
●
●●
●●●●

● ●●●●
●

●
●

●●
●

●●●●●●●●
●

●

●●●
●
●●●

●

●

●

●●●

●

●

●●
●●●

●●● ●
●●
●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●

●

●
●●●●●●●●

●
●●●●●●●●●●●

● ●
●●●●●●●●●

●

●●●●
●

●●●●●●
●

●●●●●
● ●

●

●
● ●

●

●

●

●
●
●●●●●●●●

●
●
●●●●●●●●●●●●●●
●●●●●
●●●

●
●●●
●

●
●●●●●●

●●
●●●●●●

●
●●●●●●

●
●
●
●
●●
●●●

●

●●
●

●●●●●●
●●

●
●
●●
●

●
●

●

●●●●●●
●●
●
●●●
●

● ●
●
●

●

●
●●

●
●●●●●
●
●●●●

●●●●●
●●●●●●●
●

●●●●●●●●●●●
●

●

●

●●●●●●●●●●
●●●●

●
●●●●
●

●

●● ●●●
●

●●●●●●●
●●●●

● ●
●

●
●
●●●●
●●

●

●
●●
●

●●
●

●
●●●●

●

●●●●● ●●●●
●●

●

●● ●
●
●●●●●

●

●●

●●
●●

●
●

●●●●●●
●●

●

●●
●●●

●
●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●● ●●●

●
●●●●
●●● ● ●
●
●●●●● ●●

●
●●●●
●●●

●

●

● ●

●
●●●●●
●

●
●

●●●●
●
●

●
●●

●

●●●
●

●

●
●
●

●
●●
●
●●
●
●

●
●●●●

●

●
●
●

●
● ●●

●

●●

●

●

●●

●●

●
●

●

●●●
●

●
●●

●

●●●
●

●●●●●●
●
●

●
●●●●●

●

●●
●
●●

●

●

●●●● ●●●

●

●●
●
●●●

●
●●●●●

●

●

●●
●●●●●●

●

●
●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●

●
●●●

●●
●●●
●●●●
●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●
●
●
●
●●
●
●●●●● ●●●●
●
●●●

●

●●●●●●
●●●●●

●

●

●●
●●

●

●●●●●●
●●●●●●●● ●●●

●
●●●●
●●●●●●●●
●●●●
●
●●●
●●●●●
●

●●●●
●●●●

● ●●●●●●●

●

●●
●

●

● ●●●●●●
● ●●●●
● ●●●●●●

●
●●

●
●●
●●●●●

●
●
●●●●●●●●●●
●●●●
●●●●●●
●

●●●●●●
●●

●

●●● ●●●●●
●

●
●●●
●

●
●●●●●●●●●●●●●●●

●

●
●

●
●●●●●

●●●●●●●●●●●
● ●●●

●

●

●

●●●●●●●●●
●●●

●
●●

●●●●●●●
●

●

●●●●●●●●●●●●●●●●● ●
●

● ●●●●
●●●
●●

●
●●

●●
●●●●●
●

●

●●●
●

●●●
●●●●
●●●●●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●
●
●●
●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●
●●●

●

●●●●●●
●

●

●
●

●

● ●●●●
●● ●●●●●●●●

●●●●●●●●●●●
●

●
● ●●

●●●●●●●● ●
●●
●●●●●●●

●
●

●

●
●●

●●● ●

●

●●
●

●●
●

●●●●●

●
●●

●

●●●●●
●

●●● ●●●
●

●
●●

●

●

●

●

●●●●●●●
●●●●●
●●●
●

●

●●
●●●●●●●●●●●●●

●
●●●●●●
●●●

●

●

●
●●●

●
●

●
●
●●●

●

●

●

●

●

●
●●

●

●●
●
●

●

●●●●●●
●

●●
●
●●

●
●
●

●

●

●
●●●●
●

●
●

●●

●●●●
●●
●

●
●

●●
●

●

●
●

●
●●

●

●

●

●●●
●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●
● ●

●

●●

●

●

●●
●●●●

●●

●

●●●
●
●

●●
●

●●

●
●●
●●●●

●

●
●

●

●●
●●●● ●●

●
●●●

●

●
●

●
●

●
●●

●

●●

● ●

●
●●

●
●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●

●
●

●●
●

●

●
●

●

●

●
●●

●
●●

●

●
●

●●●●●●
●●
●●●●●●●●

●

●

●

●●● ●●●●●●
●

●●●●
●●

●

● ●
●●●

●
● ●●●●●●●
● ●

●
●●●

●
●●●●●●●●●●●
●
●●●●
●
●

●
●
●
●
●

●

●
●●●●

● ●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
● ●

●●●●
●
●●

●
●●●●●●

●
●●●●●
●

●

●
●●●●●

●

●●●● ●
●●

●

●●
●
●●●●●●●

●
●●●●● ●●
●●

●●●●●
●●
●●●●●●

●
●
●●

●

● ●●●●●●
●
●●●●●●●●●●●●●●●●●

●●
●●●●● ●●●●
●
●

●

●●●●●●●●●●●●
●
●
●●

●

●

●●● ●

●●

● ●
●●●●

●
●●● ●

●

●●

●

●●
●

●

●

●

●

●●●●●

●

●●

●

●● ●●
●

● ●
●

●

●

●
●

●●●
●● ●●●

● ●●

●

●●●

●

●●●●●●●●
●

●
●●

●●●●●●

●

●

●

●●●
●●●

●●●

●
●

●●
●●
●●●●●●●●

●

●
●●●●●●●●●●●●●●
●●●

●●●●●●●●
●●
●
●●●●●

●
●●●●●
●
●●●●
●
●●
●
●●●●●●●●●●

●
● ●●●●●●

●●●

●

●●
●

●

●

●●●●
●●●●●●●●●●
●
●●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●
●●

●
●●●●●●●●

●
●●

● ●
●●●●●●

● ●
●●●●●

● ●
●

●

●

●
●●●

●

●
●

●
●●

●
● ●●●

●

●●● ●●●●●●●●●● ●

●

●
●●●●●●

●

● ●● ●
● ●●

●●●●●●

●

●●●
●● ●●●●●●●●●●●●●●●
●

●

●●●●●

●
●
●
●●

●
●●
●●●●

●●●●●●●
●●●●

●

●●●
●
●●●●

●

●●●●●●
●
●●●●●●

●

●●
●●
●●●●●●● ●●●●●●
●

●●●●●●●●●●●●●
●
●●●●
●

●●●●
●●●●

●●

●
●●●●●
●

●●
●●●●
●
●●●●●●●●●●

●
●●

●
●

●●
●●●● ●

● ●●
●
●●●●●

●
●

●
●
●
●●●●

●

●●●●●●
●●●●●●●●

●

●

● ●
●●
●●●●●

●
● ●●●●●

●●●●●
●●●●●●●●●●●

●●
●●●●●●●

●
●●

●
●

●

●

●

●
●

●●● ●●●●●●●●● ●●●●●
● ●●●

●
●

●

●
●●
●●

●

●●●●
●

●●

●

●●

●

●
●

●●
●
●●
●

●
●●●●●
●
●●
●

●
●

●●
●●

●
●●●●●●●●

●

●●
●●●●●●●●●●●●
●
●●●

●●
●

●●
●
●●●●●●●●●●●●●●●
●●●●

● ●
●
●●●●●●●●●
●

●●●●●●●●●
●
●

●
●●●
●●●●
●
●●●●

●
●

●●

●
●●●

●●●●●
●● ●●

●

●

●

●
●

●
●●●●●
●●●●●●

●●●● ●●●●●●●●●●●●●
● ●●●

●

●●●●●
●

●
●●● ●●
●●●●●

●

●
●

●
●●●●●●●●●
●
●●●●●
●●

●
●● ●●●●● ●
●

●
●
●

●
●●●●●

●

●●

●

●●

●

● ●●
●●●●●●●●●

●
●●
●

●
●● ●

●●
●
●

●

●
●

●
●●

●
●

●●●●
●
●
●●

●

●●●●●●●●●● ●
●●●

●●
●●

●
●●●

●

●

●

●

●
●●●

●
●●

●

●
●

●● ●●●

●

●●●●●●●●●●●● ●

●
●

●
●●

●●●●●●●●●●●●●●●●
●●
●

●

●
●
●●● ●●●●●

●
●●

●
●

●

●●●●●●●●
●●

●
●

●
●●●●●●●●
●●

●
●
●●●●

●●

●

●●●●●●●●
●

●
●
●

●

●
●

●
●●
●
●●●●●●●

●
●●●●●●●●●●
●●●●●●

●

●

●●

●

●●●●●

●

●
●

●

●
●

●●
●

●
●●

●

●
●●●●
●

●

●
●
●●●

●
●●●
●
●●●●●●●
●●●●●

●

●●
●

●● ●●

●

●
●

●●●

●

●●
●

●

●●

●
●

●●
●

●●●●

●
●

●●

●

● ●●

●

●

●
●
●●●●
●

●
●

●●●●●
●●

●

● ●
●

●
●

●
●

●●●●●●
●

●●
●●●●●
●●●●●●

●●●●●●●●●●●
●
●● ●●●●●●
●● ●●

●●
●

●●
●

●●
●●●●●●

●

●●●●●●●●
●
●
●
●
●

●
●●●

●
●●●

●

●

●● ●●●●
●●●●
●●●●
●
●●●●●●●●● ●●●●●●●●●●●●●
●

● ●●●●●
●●

●

●●
●●●●●● ●
●

●

●

●
●●●●

●

● ●● ●●

●
●

●●●●●●●●●
●

●
●●
●●

●●

●

●●●
●

●●●●
●●

●●
●

●

●●●●●
●

●
●●●●●●●

●
●●

●

●
●●●●●
●●●

●
●●●●●
●●●●●●

●
● ●● ●

●
●●●●●●●
●
●

●
●
●

●●●●●
●
●●●●●●●
●●●●●●●●

●

●●●●●●●
●

●

●

●● ●●
●
●
●

●
●●●●●●●
●●●●●●●●●●●●
●

●●
●●●●●
●●●
●

●
●●

●●●●

●
●●

●

●●
●

●●●●●●●●●●
●●●●●●●●●●●●●
●●
●
●●●
●●●●

●●●●●●●●●

●

●

●

●

●●●●●●●●
●●●●●

●
●●

●

●●
●●●●
●
●●●●●
●

●●
●●●●●●●●●●●●●
●●

●
●●●●

●
●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●

●●
●

●●●●
●●
●
●●●●●●●●
●
●●●●

●
●● ●●●●●●

●
●●

●●
●
●

●● ●●●●●●●
●

●

●
●●●●

●
●●●
●
●●
●

●●●
●

●●●●●●
●●
●●●●
●●●●
●●●●●

●

●
●
●
●●●

●
● ●

● ●●●●●●●●

●

●●●
● ●●●●●

●

●
●
●●
●●●●
●

●●●●●●●
●●

●●●●●
● ●●●●●●

●●
●

●●
●●
●●●
●

●
●

●●●●●
● ●

●●
●
●●●

●●●●●●●●●●
●●

●●●●
●

●
●

●

●
●●
●

●

●●●●
●

●
●● ●

●

●
●

●

●
●●●

●
●
●●
●●●●

●●
●●●●●
●●●●●● ●

●
●●●
●
●
●

●●●●

●

●●●●●●
●●●●

●
● ●●●●●●●●●●

●

●●●●
●●
●●

●
●●●
●●
●●
●●●●●●●●●

●

●

●●

●

●

●●●
●●●●

●

●
●

●●●●●●●●●●●●●●●●●
●

●
●●●
●●

● ●●●
●
●●●
●
●
●●●●
●

●●●
●●●●●

●

●●●●●
●●●
●

●
●
●●●●

●

●●
●

●

●●● ●●●●
●

●●●

●
●
●
●●●●●●● ●●●●●●●●
●●●●●●●●
●●●●●●

●
●●●● ●● ●●●
●●●●●

●

●●●●●●
●

●●
●●●●●●●●●●●●●●●●●
●

●●●● ●●●●
●●
●

●
●● ●●●

● ●●
●

●●

●

●●●●●●●●●●●●
●

●●●●●●●
●●●●●●●

●●●●

●

●●
●

●
●

●
●●●●●●●
●
●●

●
●●

●
●●●
●●●●●●●●●

●

●
●●
●●●●●●●●
●
●●●●● ●●●●●

● ●
●●

●
●

●●●●●●●●●●●●●
●
●●●

●
●●●●●●●●●●●●●●●●●

● ●

●
●●●●
●●

●
●●●●●●

●

●●●●●●●●●●●●
● ●●●●●●●

●
●
●

●●●●●●●●●●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●
●

●●●●
●●●●●●●●●●
●

●●●●
●●

●
●

●●
●
●

●
●●●●●●●●

●●●●●●

●
●●● ●● ●

●
● ●●●

●
●●
●●

●
●●●●●

●●

●
●●●

●

●

●
●●
●●●●

●●
●●●

●

●●

●
●●●

●●●●●●●●●●● ●●
●●
●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●
●●

●●●●●●
●●●
●

●

●●●●●●●●●

●

●
●
●●● ●

●●●●●●●●
●

●
●

●
●

●

●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●

●
●●● ●●●

●

●●●●
●
●●●●
●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●
●● ●●● ●●●●●●●
●●●●

●

●
●
●●●

●
●●●

●

●
●●
●●

●
●
●

●

●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●
●

●●
●●

●

●●●●
●

●
● ●●●●●●●●●●●

●●●●
●

● ●
●
●●
●●

●
●●●●●●● ●●●●●●●●●

●

●●●●●

●
●
●●●

●
●●●●●●
●

●
●●●●●●●

●●●●●●●●●
●

●
● ●●●●

●
●

1

2

Figure 6: Cluster Results: average Silhouette width change (left) ; Silhouette width for two clusters (center) ; and Pro-
jection of the data points and clusters on two dimensions (right)

4.4.2 Patterns of the Clusters

We obtain the patterns characterizing the behavioral classes by mining CFSs and LFSs in the corresponding clusters. For
this purpose, we use the same methods as in Section 4.3, but with a restriction to the considered cluster. Table 5 lists
some representative results. We get many similar patterns, with small differences, not only in terms of sequence, but also
support Sup(s) and growth rate Gr(s). For the sake of simplicity, we only give the most representative ones in the table.

Like before, we observe certain similarities between the datasets. For the Clusters 1, the CFSs are exactly the same as
the ones found for the whole graph (cf. Table2). Thus, despite their very high support, they are not characteristic of these
clusters. This is confirmed by their growth rate, which is lower than 1 and therefore indicates that the patterns are frequent
not only in Cluster 1, but also in Cluster 2. The identified LFSs have, of course a much lower support. They are also less
reminiscent of the ones found for the whole network (Table 3), although they display a similar general form. Their growth
rate is low, which means they are not specific to the Clusters 1 neither. But the interest of LFSs is to identify long trends,
not necessarily highly supported ones. When focusing on the properties of the nodes supporting these long patterns, we
identify two situations. On the one hand, in LastFM they have a very high Silhouette width, and therefore constitute the
core of Cluster 1. When looking more thoroughly at these nodes, we can observe the events described by the pattern are
generally caused by the creation/deletion of single links. On the other hand, in DBLP and Enron, their Silhouette width
is very low, i.e. they are at the periphery of Cluster 1. Compared to the first situation, the events are caused by important
changes in larger groups of nodes. Put differently, the second situation corresponds to nodes whose neighborhood is more
unstable than for the rest of the cluster. This illustrates that LFSs can be used to characterize both the core or the periphery
of such clusters.

Turning to the Clusters 2, we see much larger growth rates for all identified patterns, which means they are particularly
typical of these clusters. The support is 1 for all listed CFSs, meaning they are supported by all nodes in the concerned

15 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

Table 5: Patterns found for the clusters
Network Cluster Pattern s |S (s)| Sup(s) Gr(s)

ID Type

DBLP
1 CFS 〈(B)〉 1995 0.95 0.95

LFS 〈(B,D)(E)(E)(E)(E,C)(E)(C)〉 32 0.01 0.07

2 CFS 〈(B,E)(E)〉 46 1.00 5.20
LFS 〈(E)(E)(E)(E)(E,C)(C)(E)(E)〉 18 0.39 821.35

LastFM
1 CFS 〈(D)〉 1513 0.90 0.003

LFS 〈(B,D)(B)(D)(D)(B)〉 67 0.04 0.048

2 CFS 〈(S,C)(E)(S)(E)(E)〉 17 1.00 561.33
LFS 〈(B,D,S)(M,E)(B)(D)(D)(B)(B)〉 12 0.70 ∞

Enron
1 CFS 〈(B,D)〉 28574 0.99 0.99

LFS 〈(B,D)(B)(D)(B)(B)(D)(B)(D)(D)〉 2372 0.082 0.086

2 CFS 〈(B,D)(D)(C)(B E)(B,E)(B,D,E,C)(B,D)〉 75 1.00 60.21
LFS 〈(B,D)(D)(D)(E,C)(B,E)(B)(B,D,C)(B,D)〉 75 1.00 55.99

clusters. For DBLP, Cluster 2 is a small active group of nodes whose neighborhoods are increasing through expansions
and births. For LastFM, the neighborhoods tend to expand too, but also to split. For Enron, the trend is long and include
many births and deaths, as well as a few expansions and contractions. The LFSs also have a very large support, except for
DBLP where it is less than half the nodes. For Enron, it is very similar to the CFS, so it does not bring much additional
information. For LastFM, we get an infinite growth rate, which means the pattern is completely absent from Cluster 1.
This pattern contains a variety of events, including split, merge and expansion. It is consistent with our observation from
the previous subsection, in that it describes a behavior involving more neighborhood changes, compared to Cluster 1. For
instance, the split reflects the fact that, for a user of interest, a group of friends separated in two groups with distinct music
consumption habits, while keeping certain other habits similar to the user’s.

Interestingly, for DBLP, the LFS is quite similar to that of Cluster 1, representing a long trend of expansion. Moreover,
other nodes from Cluster 2 follow similar patterns, although not exactly the same. They all form a group of 24 researchers
often changing their coauthors. A detailed analysis reveals that most of them undergo at least 3 events at each time
slice, for an average total of 29 events over the whole period, and that their ASW is 0.53. In other terms, this group is
active and representative of Cluster 2. It includes important senior researchers such as Jiawei Han, Rakesh Agrawal and
Hongjun Lu. These are authorities of their domain, and all obtained their PhD degree before the 90s. The main qualitative
difference between the LFSs of Cluster 1 and 2 is that the former starts with births and deaths. Further analysis shows
most of the nodes supporting this Cluster 1 pattern undergo no event at all during the first time slice of the period, i.e.
no neighborhood change in 1990-1996. They then undergo births and deaths during the next time slice (1992-1998) and
expand their neighborhoods during the rest of the period. Some of the nodes supporting this pattern represent important
researchers: Charu Aggarwal and Kaushik Chakrabarti. Their common point is they usually are very active but relatively
young, all PhD students during the 90s. It seems these two groups of researchers follow similar patterns, but at different
ages. Detecting such patterns could therefore help detecting promising researchers.

5 Conclusion
In this work, we proposed a new method to characterize the evolution of dynamic networks at a local level. We defined the
notion of neighborhood event, which corresponds to one among 6 different changes in connectivity in the neighborhood
of a node. We described a method to identify these events, and proposed to use sequential pattern mining to study them.
We experimentally validated our tools on three real-world networks (DBLP, LastFM and Enron). First, we showed that
counting the occurrences of the different types of events can give some insights on the global evolution of the network:
all three networks are very different according to these descriptors, and we were able to catch historically significant
periods in the case of DBLP and seasonal ones for Enron. Second, we used frequent pattern mining to identify certain
trends among the nodes at the level of the network. The Enron trends reflect the routine of sporadically sending/receiving
emails, whereas those of LastFM and DBLP describe a similar life cycle for ego-components: creation, growth and
decline. Third, we performed a cluster analysis which allowed us to identify two types of behaviors appearing in all three
networks: a very large cluster of nodes have a relatively stable neighborhood, whereas it undergoes much more diverse
and frequent changes for a small cluster. We studied these clusters separately through pattern mining. It turns out the
larger cluster is not homogeneous enough to be characterized, but parts of it can, such as core and periphery nodes. On
the contrary, the smaller cluster is very homogeneous, and can even be described as a whole by LFSs possessing a very
high support.

Our work can be seen as a first attempt to develop a tool allowing to characterize the evolution of dynamic networks at
the local level of the node neighborhood. We believe it can be extended in various ways. From the theoretical perspective,
we adopted a qualitative approach to define and study node neighborhood evolution: first because we used various types of

16 / 19

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

events, but also because we considered them in terms of presence/absence when mining the sequential patterns. However,
as shown in our cluster analysis, it is also possible to consider node neighborhood evolution in a quantitative way. So
a first extension will be to design new topological nodal measures based on quantities such as the number of event
occurrences by event type, the size of the ego-components undergoing them, and to adapt measures previously defined
to describe community evolution (Palla et al. 2007; Toyoda and Kitsuregawa 2003). Incidentally, the evolution of such
measures would be computationally easier to analyze. A second extension will be to mine patterns defined not only in
terms of community events, but including also other descriptors such as nodal topological measures (e.g. centralities) and
attributes, as previously done to study communities in (Orman et al. 2015). The third extension concerns the evaluation
of the significance of the detected events. This could be done by using a null model, which would allow comparing the
number of events of a given type observed in the studied networks, with its expectation in the random model. Fourth, our
tool was designed for a descriptive task, but it could be used, either alone or in conjunction with some other descriptors, for
inference. In particular, if the dynamic of the studied system can be characterized at the level of the node neighborhood,
the event sequences could be used to perform link prediction.

6 Acknowledgment
This article is supported by the Galatasaray University Research Fund (BAP) within the scope of the project number
14.401.002, and titled "Sosyal Ağlarda Küme Bulma ve Anlamlandırma: Zamana Bağlı Sıralı Örüntü Uygulaması".

References
Aggarwal, C. and K. Subbian (2014). “Evolutionary Network Analysis: A Survey”. In: ACM Computing Surveys 47.1,

10:1–10:36. DOI: 10.1145/2601412 (cit. on pp. 1, 2).
Akoglu, L., M. McGlohon, and C. Faloutsos (2008). “RTM: Laws and a Recursive Generator for Weighted Time-Evolving

Graphs”. In: 8th IEEE International Conference on Data Mining, pp. 701–706. DOI: 10.1109/ICDM.2008.123 (cit.
on p. 2).

Asur, S., S. Parthasarathy, and D. Ucar (2009). “An event-based framework for characterizing the evolutionary behavior of
interaction graphs”. In: ACM Transactions on Knowledge Discovery from Data 3.4, p. 16. DOI: 10.1145/1631162.
1631164 (cit. on p. 3).

Aynaud, T. and J.-L. Guillaume (2010). “Static community detection algorithms for evolving networks”. In: 8th Inter-
national Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 513–519. URL:
http://ieeexplore.ieee.org/document/5520221/ (cit. on p. 2).

Backstrom, L., D. Huttenlocher, J. Kleinberg, and X. Lan (2006). “Group Formation in Large Social Networks: Mem-
bership, Growth, and Evolution”. In: 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 44–54. DOI: 10.1145/1150402.1150412 (cit. on p. 2).

Bajardi, P., A. Barrat, F. Natale, L. Savini, and L. V. Colizza (2011). “Dynamical patterns of cattle trade movements”. In:
PLoS One 6.5, e19869. DOI: 10.1371/journal.pone.0019869 (cit. on p. 3).

Berlingerio, M., F. Bonchi, B. Bringmann, and A. Gionis (2009). “Mining graph evolution rules”. In: Machine Learning
and Knowledge Discovery in Databases, pp. 115–130. DOI: 10.1007/978-3-642-04180-8_25 (cit. on p. 3).

Blonder, B., T. W. Wey, A. Dornhaus, R. James, and A. Sih (2012). “Temporal dynamics and network analysis”. In:
Methods in Ecology and Evolution 3.6, pp. 958–972. DOI: 10.1111/j.2041-210X.2012.00236.x (cit. on p. 1).

Bost, X. (2016). “A storytelling machine? Automatic video summarization: the case of TV series”. PhD. Thesis. Université
d’Avignon et des Pays de Vaucluse. URL: https://tel.archives-ouvertes.fr/tel-01402549 (cit. on p. 4).

Braha, D. and Y. Bar-Yam (2009). “Time-Dependent Complex Networks: Dynamic Centrality, Dynamic Motifs, and
Cycles of Social Interactions”. In: Adaptive Networks: Theory, Models and Applications. Ed. by T. Gross and H.
Sayama. Springer Berlin Heidelberg, pp. 39–50. DOI: 10.1007/978-3-642-01284-6_3 (cit. on pp. 2–4).

Clauset, A. and N. Eagle (2007). “Persistence and periodicity in a dynamic proximity network”. In: DIMACS Workshop
on Computational Methods for Dynamic Interaction Networks. URL: http://arxiv.org/abs/1211.7343 (cit. on
pp. 2, 4, 9, 10).

Desmier, E., M. Plantevit, C. Robardet, and J.-F. Boulicaut (2012). “Cohesive Co-evolution Patterns in Dynamic Attributed
Graphs”. In: International Conference on Discovery Science, pp. 110–124. DOI: 10.1007/978-3-642-33492-
4_11 (cit. on pp. 3, 9, 10).

Fournier-Viger, P. (2010). SPMF: A Sequential Mining Framework. URL: http://www.philippe-fournier-viger.
com/spmf/ (cit. on pp. 8, 11).

Fournier-Viger, P., A. Gomariz, T. Gueniche, E. Mwamikazi, and R. Thomas (2013). “TKS: Efficient Mining of Top-K
Sequential Patterns”. In: International Conference on Advanced Data Mining and Applications, pp. 109–120. DOI:
10.1007/978-3-642-53914-5_10 (cit. on p. 8).

Giorgino, T. (2009). “Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package”. In: Journal
of Statistical Software 31.1, pp. 1–24. DOI: 10.18637/jss.v031.i07 (cit. on p. 9).

17 / 19

https://doi.org/10.1145/2601412
https://doi.org/10.1109/ICDM.2008.123
https://doi.org/10.1145/1631162.1631164
https://doi.org/10.1145/1631162.1631164
http://ieeexplore.ieee.org/document/5520221/
https://doi.org/10.1145/1150402.1150412
https://doi.org/10.1371/journal.pone.0019869
https://doi.org/10.1007/978-3-642-04180-8_25
https://doi.org/10.1111/j.2041-210X.2012.00236.x
https://tel.archives-ouvertes.fr/tel-01402549
https://doi.org/10.1007/978-3-642-01284-6_3
http://arxiv.org/abs/1211.7343
https://doi.org/10.1007/978-3-642-33492-4_11
https://doi.org/10.1007/978-3-642-33492-4_11
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
https://doi.org/10.1007/978-3-642-53914-5_10
https://doi.org/10.18637/jss.v031.i07

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

Grindrod, P., M. C. Parsons, D. J. Higham, and E. Estrada (2011). “Communicability across evolving networks”. In:
Physical Review E 83.4, p. 046120. DOI: 10.1103/PhysRevE.83.046120 (cit. on p. 3).

Gupta, M., C. C. Aggarwal, and J. Han (2011). “Finding Top-k Shortest Path Distance Changes in an Evolutionary
Network”. In: 12th International Conference on Advances in Spatial and Temporal Databases, pp. 130–148. DOI:
10.1007/978-3-642-22922-0_9 (cit. on p. 2).

Holme, P. (2005). “Network reachability of real-world contact sequences”. In: Physical Review E 71.4, p. 046119. DOI:
10.1103/PhysRevE.71.046119 (cit. on p. 3).

Holme, P. and J. Saramäki (2012). “Temporal networks”. In: Physics Reports 519.3, pp. 97–125. DOI: 10.1016/j.
physrep.2012.03.001 (cit. on pp. 1–3).

Kas, M., K. M. Carley, and L. R. Carley (2013). “Incremental Closeness Centrality for Dynamically Changing Social
Networks”. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1250–
1258. DOI: 10.1145/2492517.2500270 (cit. on p. 2).

Kashtan, N. and U. Alon (2005). “Spontaneous evolution of modularity and network motifs”. In: Proceedings of the
National Academy of Sciences of the USA 1.02, pp. 13773–13778. DOI: 10.1073/pnas.0503610102 (cit. on pp. 1,
2).

Kempe, D., J. Kleinberg, and A. Kumar (2002). “Connectivity and Inference Problems for Temporal Networks”. In:
Journal of Computer and System Sciences 64.4, pp. 820–842. DOI: 10.1006/jcss.2002.1829 (cit. on p. 2).

Krings, G., M. Karsai, S. Bernhardsson, V. D. Blondel, and J. Saramäki (2012). “Effects of time window size and pla-
cement on the structure of an aggregated communication network”. In: EPJ Data Science 1.1, p. 4. DOI: 10.1140/
epjds4 (cit. on p. 9).

Kuhn, F. and R. Oshman (2011). “Dynamic Networks: Models and Algorithms”. In: ACM SIGACT News 42.1, pp. 82–96.
DOI: 10.1145/1959045.1959064 (cit. on p. 1).

Lahiri, M. and T. Y. Berger-Wolf (2007). “Structure prediction in temporal networks using frequent subgraphs”. In: IEEE
Symposium on Computational Intelligence and Data Mining, pp. 35–42. DOI: 10.1109/CIDM.2007.368850 (cit. on
p. 3).

Lerman, K., R. Ghosh, and J. H. Kang (2010). “Centrality Metric for Dynamic Networks”. In: 8th Workshop on Mining
and Learning with Graphs, pp. 70–77. DOI: 10.1145/1830252.1830262 (cit. on p. 3).

Leskovec, J., J. Kleinberg, and C. Faloutsos (2005a). “Graphs over time: densification laws, shrinking diameters and
possible explanations”. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 177–187. DOI:
10.1145/1081870.1081893 (cit. on pp. 1, 2).

Leskovec, J., D. Chakrabarti, J. Kleinberg, and C. Faloutsos (2005b). “Realistic, Mathematically Tractable Graph Gene-
ration and Evolution, Using Kronecker Multiplication”. In: European Conference on Principles of Data Mining and
Knowledge Discovery, pp. 133–145. DOI: 10.1007/11564126_17 (cit. on p. 2).

Mabroukeh, N. R. and C. I. Ezeife (2010). “A taxonomy of sequential pattern mining algorithms”. In: ACM Computing
Surveys 43.1, pp. 1–41. DOI: 10.1145/1824795.1824798 (cit. on pp. 3, 8).

Magnien, C. and F. Tarissan (2015). “Time Evolution of the Importance of Nodes in Dynamic Networks”. In: IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining, pp. 1200–1207. DOI: 10.1145/
2808797.2809322 (cit. on p. 3).

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon (2002). “Network motifs: simple building
blocks of complex networks”. In: Science 298.5594, pp. 824–827. DOI: 10.1126/science.298.5594.824 (cit. on
p. 3).

Moody, J. (2002). “The importance of relationship timing for diffusion”. In: Social Forces 81.1, pp. 25–56. DOI: 10.
1353/sof.2002.0056 (cit. on p. 3).

Nicosia, V., J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V. Latora (2012). “Components in time-varying graphs”.
In: Chaos 22.2, p. 023101. DOI: 10.1063/1.3697996 (cit. on p. 3).

Nicosia, V., J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora (2013). “Graph Metrics for Temporal Networks”.
In: Temporal Networks. Ed. by P. Holme and J. Saramäki. Springer Berlin Heidelberg, pp. 15–40. DOI: 10.1007/978-
3-642-36461-7_2 (cit. on pp. 2, 3).

Orman, G. K., V. Labatut, M. Plantevit, and J.-F. Boulicaut (2014). “A Method for Characterizing Communities in Dy-
namic Attributed Complex Networks”. In: IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining. DOI: 10.1109/ASONAM.2014.6921629 (cit. on pp. 3, 4).

— (2015). “Interpreting communities based on the evolution of a dynamic attributed network”. In: Social Network Ana-
lysis and Mining 5.1, 20:1–20:22. DOI: 10.1007/s13278-015-0262-4 (cit. on pp. 8–10, 17).

Palla, G., A.-L. Barabási, and T. Vicsek (2007). “Quantifying social group evolution”. In: Nature 446.7136, pp. 664–667.
DOI: 10.1038/nature05670 (cit. on pp. 3, 7, 17).

Pan, R. K. and J. Saramäki (2011). “Path lengths, correlations, and centrality in temporal networks”. In: Physical Review
E 84.1, p. 016105. DOI: 10.1103/PhysRevE.84.016105 (cit. on p. 3).

Riolo, C. S., J. S. Koopman, and J. S. Chick (2001). “Methods and measures for the description of epidemiological contact
networks”. In: Journal of Urban Health 78.3, pp. 446–457. DOI: 10.1093/jurban/78.3.446 (cit. on p. 3).

Rossi, R., B. Gallagher, J. Neville, and K. Henderson (2012). “Role-dynamics: Fast Mining of Large Dynamic Networks”.
In: 21st International Conference on World Wide Web, pp. 997–1006. DOI: 10.1145/2187980.2188234 (cit. on p. 2).

18 / 19

https://doi.org/10.1103/PhysRevE.83.046120
https://doi.org/10.1007/978-3-642-22922-0_9
https://doi.org/10.1103/PhysRevE.71.046119
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1145/2492517.2500270
https://doi.org/10.1073/pnas.0503610102
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1140/epjds4
https://doi.org/10.1140/epjds4
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1109/CIDM.2007.368850
https://doi.org/10.1145/1830252.1830262
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1007/11564126_17
https://doi.org/10.1145/1824795.1824798
https://doi.org/10.1145/2808797.2809322
https://doi.org/10.1145/2808797.2809322
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1353/sof.2002.0056
https://doi.org/10.1353/sof.2002.0056
https://doi.org/10.1063/1.3697996
https://doi.org/10.1007/978-3-642-36461-7_2
https://doi.org/10.1007/978-3-642-36461-7_2
https://doi.org/10.1109/ASONAM.2014.6921629
https://doi.org/10.1007/s13278-015-0262-4
https://doi.org/10.1038/nature05670
https://doi.org/10.1103/PhysRevE.84.016105
https://doi.org/10.1093/jurban/78.3.446
https://doi.org/10.1145/2187980.2188234

G. K. Orman, V. Labatut & A. T. Naskali – Exploring the Evolution of Node Neighborhoods in Dynamic Networks

Rousseeuw, P. (1987). “Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis”. In: Journal
of Computational and Applied Mathematics 20.1, pp. 53–65. DOI: 10.1016/0377-0427(87)90125-7 (cit. on p. 9).

Spiliopoulou, M. (2011). “Evolution in social networks: A survey”. In: Social Network Data Analytics. Springer. Chap. 6,
pp. 149–175. DOI: 10.1007/978-1-4419-8462-3_6 (cit. on p. 1).

Sulo, R., T. Berger-Wolf, and R. Grossman (2010). “Meaningful Selection of Temporal Resolution for Dynamic Net-
works”. In: 8th Workshop on Mining and Learning with Graphs, pp. 127–136. DOI: 10.1145/1830252.1830269
(cit. on p. 9).

Tang, J., M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia (2010a). “Analysing information flows and key mediators
through temporal centrality metrics”. In: 3rd ACM EuroSys Workshop on Social Networks Systems. DOI: 10.1145/
1852658.1852661 (cit. on p. 3).

Tang, J., S. Scellato, M. Musolesi, C. Mascolo, and V. Latora (2010b). “Small-world behavior in time-varying graphs”.
In: Physical Review E 81.5, p. 055101. DOI: 10.1103/PhysRevE.81.055101 (cit. on p. 3).

Toyoda, M. and M. Kitsuregawa (2003). “Extracting evolution of web communities from a series of web archives”. In:
14th ACM conference on Hypertext and hypermedia, pp. 28–37. DOI: 10.1145/900051.900059 (cit. on pp. 3, 7,
17).

Yan, X., J. Han, and R. Afshar (2003). “CloSpan: Mining Closed Sequential Patterns in Large Datasets”. In: SIAM Inter-
national Conference on Data Mining, pp. 166–177. DOI: 10.1137/1.9781611972733.15 (cit. on p. 8).

19 / 19

https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/978-1-4419-8462-3_6
https://doi.org/10.1145/1830252.1830269
https://doi.org/10.1145/1852658.1852661
https://doi.org/10.1145/1852658.1852661
https://doi.org/10.1103/PhysRevE.81.055101
https://doi.org/10.1145/900051.900059
https://doi.org/10.1137/1.9781611972733.15

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Neighborhood Evolution Events
	3.1.1 Preliminary definitions
	3.1.2 Notion of Neighborhood Event

	3.2 Processing of Neighborhood Events
	3.2.1 Event Detection
	3.2.2 Sequential Pattern Mining

	4 Experimental validation
	4.1 Data Description
	4.1.1 DBLP Network
	4.1.2 LastFM Network
	4.1.3 Enron Network

	4.2 Event Distribution
	4.2.1 DBLP
	4.2.2 LastFM
	4.2.3 Enron

	4.3 Sequential Patterns of the Network
	4.3.1 Closed Patterns
	4.3.2 Longest Patterns

	4.4 Cluster Analysis
	4.4.1 Description of the Clusters
	4.4.2 Patterns of the Clusters

	5 Conclusion
	6 Acknowledgment
	References

