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Abstract—This paper presents some work in progress on the
development of fast and accurate support for complex floating-
point arithmetic on embedded processors. Focusing on the case
of multiplication, we describe algorithms and implementations
for computing both the real and imaginary parts with high
relative accuracy. We show that, in practice, such accuracy
guarantees can be achieved with reasonable overhead compared
with conventional algorithms (which are those offered by current
implementations and for which the real or imaginary part of a
product can have no correct digit at all). For example, the average
execution-time overheads when computing an FFT on the ARM
Cortex-A53 and -A57 processors range from 1.04x to 1.17x only,
while arithmetic costs suggest overheads from 1.5x to 1.8x.

I. INTRODUCTION

Complex arithmetic is ubiquitous in scientific computing
and signal processing applications, and for recent embedded
processors with floating-point units it is in general supported
by the compiler via direct floating-point translations of the
usual formulas. For example, given four floating-point num-
bers a, b, c, d, the sum and the product of the complex numbers
a + ib and c + id are obtained by evaluating in floating-
point the real and imaginary parts of (a + c) + i(b + d) and
(ac− bd) + i(ad+ bc), respectively.

For complex addition this is entirely satisfactory: assum-
ing that the available floating-point units comply with the
IEEE 754 standard [1], both a+ c and b+d will be computed
with perfect accuracy as RN(a + c) and RN(b + d), with
RN denoting round to nearest. For complex multiplication,
however, evaluating ac− bd and ad+ bc as

RN(RN(ac)− RN(bd)) and RN(RN(ad) + RN(bc))

can result in one of these two quantities having no correct digit
at all. For example, in double precision, taking a = 1+2−51,
b = 1 + 3 · 2−52, c = 1− 2−53 and d = 1− 3 · 2−53 gives

RN(RN(ac)− RN(bd)) = 0,

while the exact result ac−bd equals 7 ·2−105 ≈ 1.72×10−31.
In other words, the computed real part has relative error 1 and
thus not even a single correct digit.

With a fused multiply-add (FMA) instruction, which eval-
uates expressions of the form ab + c with one rounding as
RN(ab+c), things can be even worse. Indeed, not only all the
digits of ac−bd but also its sign can be computed incorrectly,

depending on the product chosen to be fused. For example,
with the same inputs as before we now have

RN(ac− RN(bd)) = 1.11 . . .× 10−16,

RN(RN(ac)− bd) = −1.11 . . .× 10−16.

Our goal here is to propose to replace these conventional
schemes by ones which are proved to be always highly
accurate, and to show that the price to pay for such numer-
ical quality is, in practice, reasonably low. Specifically, we
have implemented in GCC two alternative complex multipli-
cation algorithms, CMULCHT and CMULKAHAN, capable
of producing both the real and imaginary parts with high
relative accuracy. These algorithms rely on the use of FMA
instructions for computing efficiently (some of) the rounding
errors of the products ac, bd, ad, bc, and then refining the
accuracy of ac − bd and ad + bc, as proposed by Cornea,
Harrison, Tang [2] and Kahan [3]. Although CMULCHT and
CMULKAHAN require 2.3x and 2x more floating-point opera-
tions than their conventional counterparts (without or with an
FMA, respectively), we show that for typical applications like
complex FFTs on ARM Cortex-A53 and -A57, the average
execution-time overheads range from 1.04x to 1.17x only.

The rest of the paper is organized as follows. After some
reminders about floating-point arithmetic in Section II, we
describe algorithms CMULCHT and CMULKAHAN in Sec-
tion III, together with their main numerical features. The
practical performances of these algorithms are demonstrated
and analyzed in Section IV. We conclude in Section V with
several extensions that this preliminary study suggests.

II. BACKGROUND

Hereafter, inputs and computed values will be floating-point
numbers in base 2 and precision p, that is, elements of the set

F = {0} ∪ {M · 2E : M,E ∈ Z, 2p−1 6 |M | < 2p}.

For simplicity, we shall ignore exceptions like underflow and
overflow by leaving the exponent range unbounded.

We write RN to denote round to nearest even, which maps
any t ∈ R to the unique f ∈ F satisfying the following
properties: f is nearest t and, in case of a tie, its integer signifi-
cand M is even. In the IEEE 754 standard [1], this corresponds
to the rounding-direction attribute roundTiesToEven and is the
default way of rounding in many applications.



We assume floating-point arithmetic over F, correctly
rounded according to RN. This means that for any a, b ∈ F
and op ∈ {+,−,×, /}, instead of returning the exact result
r = a op b, we return the floating-point number r̂ defined by

r̂ := RN(a op b).

Each basic operation is thus performed with high relative
accuracy. Indeed, it is well known that the exact result r and
its rounded value r̂ are related as follows (see [4, p. 232]):

r̂ = (a op b)(1 + δ), |δ| 6 u := 2−p.

This implies that the relative error |r̂−r|/|r| is upper bounded
by the quantity u, called unit roundoff, independently of the
values of a and b. For the usual IEEE 754 formats, u is tiny:
u = 2−24 ≈ 5.9× 10−8 for single precision, and u = 2−53 ≈
1.1× 10−16 for double precision.

Similarly, when an FMA is used to evaluate ab+c, we have

r̂ := RN(ab+ c) = (ab+ c)(1 + δ), |δ| 6 u.

Furthermore, since for a, b ∈ F the error e := ab − RN(ab)
is itself in F (see for example [5]), we see that a correctly-
rounded product and its exact error term can be obtained in
just two floating-point operations as follows:

c := RN(ab), e := RN(ab− c).

This is the key property underlying algorithms CMULCHT
and CMULKAHAN detailed in the next section (together with
the conventional ones).

III. COMPLEX MULTIPLICATION ALGORITHMS

We describe here the four algorithms we consider for our
experiments and recall their main accuracy properties.

A. Algorithm CMUL

This algorithm implements the classical scheme for complex
multiplication, which evaluates the real part R = ac− bd and
the imaginary part I = ad+ bc as follows:

R̂ := RN
(
RN(ac)− RN(bd)

)
;

Î := RN
(
RN(ad) + RN(bc)

)
;

Writing z = R+ iI and ẑ = R̂+ iÎ , it was shown in [6] that
the normwise relative error |ẑ − z|/|z| is at most

√
5u and

thus always tiny. However, we have seen in introduction that
the componentwise relative error, defined as the maximum of
|R̂ − R|/|R| and |Î − I|/|I|, can be 1, which means that all
the digits of R̂ or Î can be wrong.

B. Algorithm CMULFMA

Using the FMA operation, we can modify the previous
algorithm as follows:

R̂ := RN
(
ac− RN(bd)

)
;

Î := RN
(
ad+ RN(bc)

)
;

Of course, three variants are possible, depending on the prod-
ucts to which RN is applied. But without a priori knowledge

of a, b, c, d and due to the symmetry properties of F and RN,
the worst case error properties of these variants are the same
as for algorithm CMUL shown above. Consequently, we have
chosen to implement only this version.

Algorithm CMULFMA uses fewer floating-point operations
than CMUL, but its worst-case numerical behavior is essen-
tially the same: its normwise relative error is tightly bounded
by 2u (as shown in [7]), while its componentwise relative error
can be 1 or more (as seen in introduction). Again, this implies
that R̂ or Î can be totally inaccurate.

C. Algorithm CMULCHT

This algorithm is the accurate counterpart of CMUL and
consists of two calls to the CHT algorithm from [2]:

p1 := RN(ac); p2 := RN(bd);

e1 := RN(ac− p1); e2 := RN(bd− p2);
R̂ := RN

(
RN(p1 − p2) + RN(e1 − e2)

)
;

p3 := RN(ad); p4 := RN(bc);

e3 := RN(ad− p3); e4 := RN(bc− p4);
Î := RN

(
RN(p3 + p4) + RN(e3 + e4)

)
;

The rounding error analysis of the CHT algorithm implies that
|R̂−R| 6 2u|R| and |Î − I| 6 2u|I|; see [8]. Hence both R̂
and Î are computed with high relative accuracy.

D. Algorithm CMULKAHAN

If instead of CHT we use Kahan’s technique [3], we obtain
the following accurate counterpart of CMULFMA:

p1 := RN(ac);

R̂ := RN
(
RN(p1 − bd) + RN(ac− p1)

)
;

p3 := RN(ad);

Î := RN
(
RN(p3 + bc) + RN(ad− p3)

)
;

Again, three variants could be considered, depending on which
products are chosen to set up p1 and p3. Furthermore, it
follows from [9] that the relative errors of both R̂ and Î are
at most 2u.

IV. EXPERIMENTAL RESULTS

In this section we first describe the experimental envi-
ronments we use both in terms of hardware and software.
Then we illustrate the performance of our alternative complex
multiplication algorithms through the case study of some Fast
Fourier Transform (FFT) code. Performance measurements are
provided by hardware counters by means of GCC’s function
instrumentation facility and the PAPI [10] library.

A. Experimental environment description

We focus on ARMv8 hardware such as Cortex-A53 (CA53)
and Cortex-A57 (CA57), in the 64-bit AArch64 execution
state. CA53 is an 8-stage (up to 10) pipelined processor
with 2-way superscalar, in-order execution pipeline. CA57
is a 15-stage (up to 24) pipelined processor with 3-way
superscalar, out-of-order execution pipeline. Since there is no



1

1.05

1.1

1.15

1.2

1.25

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ex
ec

ut
ed

in
st

ru
ct

io
ns

ov
er

he
ad

log2(N) for the four main GCC optimization levels O0, O1, O2, and O3 (from left to right)

CMulCHT / CMul CMulKahan / CMulFMA

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ex
ec

ut
io

n
tim

e
ov

er
he

ad

log2(N) for the four main GCC optimization levels O0, O1, O2, and O3 (from left to right)

CMulCHT / CMul CMulKahan / CMulFMA CMulCHT / CMul (flops) CMulKahan / CMulFMA (flops)

Fig. 1. Overheads in terms of numbers of executed instructions and execution time implied by CMULCHT and CMULKAHAN in double precision on
a Cortex-A57 processor (for the four main optimization levels of GCC and for FFT of size N ∈ {23, 24, . . . , 218}). In the bottom figure, dotted horizontal
lines show the average values of execution time overheads, and dashed horizontal lines show the theoretical arithmetic cost overheads.

publicly available ARM documentation detailing these micro-
architectures, we consider that the CA53 and CA57 follow the
micro-architecture of their predecessors, the Cortex-A7 and
Cortex-A15, as alleged in [11, p. 476]. We use an ARM Juno
r1 development board to perform our measurements. On this
board, the CA53 (revision r0p3) runs at 850 MHz and has two
L1 caches of 32 KB and one L2 cache of 1 MB. The CA57
(revision r0p1) runs at 1.1 GHz, has one L1 instruction cache
of 48 KB, one L1 data cache of 32 KB, and one L2 cache of
2 MB. Moreover, the board gets 7.8 GB of DDR3.

The four algorithms of Section III have been imple-
mented in GCC and a new option has been introduced
(-fcx-lr-select=cht|default|fma|kahan), which
allows us to select one of them. The main contribution
concerns the complex multiplication expansion. It occurs when
GCC converts the high-level language representation (for ex-
ample, Complex data type in C) into its low-level intermediate
representation (GIMPLE).

The new option is valid in C and Fortran, and is only
available when the flag -fcx-limited-range is defined.
This flag allows the user to omit checking that the result of
a complex multiplication is NaN+ iNaN. This flag authorizes
the elimination of the special case checking otherwise required
by the C99 [12, Appendix G, 5.1] standard, leading to the
emission of efficient in-line code instead of a call to a library
function. Note that for all our experiments we shall compare
alternative complex multiplications to the default ones in this
“limited range” scope, but we could also apply them in a
strict C99 context. The rationale behind this choice is to be as

generic as possible and, therefore, valid for different versions
of different languages.

The GCC compiler considered here is built from the
sources provided by Linaro [13] (from the GIT’s tag
linaro-6.2-2016.11-rc2). It is built with glibc 2.24,
binutils 2.27, gmp 6.1.1, mpfr 3.1.5, mpc 1.0.3, and isl 0.16.1.
Moreover, we use the C language to write the programs used
in our experiments.

B. Fast Fourier Transform case study

We consider FFT as in Algorithm 1, which computes in
3
2N log2(N) complex operations a discrete Fourier transform
of size N = 2n defined by

X(j) =

N−1∑
k=0

A(k)ωjk, j = 0, 1, . . . , N − 1,

where the A(k) are given complex numbers and ω = e
−2πi
N ;

see [14]. Assuming that the complex exponential terms ωjk

are precomputed, this algorithm uses N log2(N) complex
additions and 1

2N log2(N) complex multiplications.
Figure 1 shows the performance overheads due to us-

ing CMULCHT and CMULKAHAN instead of CMUL and
CMULFMA, for double precision and on the CA57. Mea-
surements are done for N ∈ {23, 24, . . . , 218} and the four
main optimization levels -O0, -O1, -O2, and -O3 of GCC.

The top plots in Figure 1 show, not surprisingly, that the
larger N is, the more the instruction number overhead grows.
Although small, these overheads increase according to the



Algorithm 1 Pseudocode for the Cooley–Tukey algorithm.
procedure FFT(A,N, s)

if N = 1 then
X(0)← A(0)

else
X(0, . . . , N/2)← FFT(A,N/2, 2s)
X(N/2, . . . , N − 1)← FFT(A+ s,N/2, 2s)
for k = 0 to N/2− 1 do

X(k)← X(k) + e−2πik/N ·X(k +N/2)
X(k +N/2)← X(k)− e−2πik/N ·X(k +N/2)

end for
end if
return X(0, . . . , N − 1)

end procedure

optimization level. Therefore, the more code size is reduced
thanks to compiler optimizations, the more the extra floating-
point operations used by the accurate algorithms become
apparent. For example, in -O3 and for N = 210, the number of
executed instructions for CMUL is 202,074, while CMULCHT
executes 246,173 of them.

The bottom plots in Figure 1 show that, on the other hand,
the execution time overheads are quite reasonable. On average
(in the sense of the geometric mean), CMULKAHAN is only
1.04x slower than CMULFMA, and CMULCHT is only 1.17x
slower than CMUL. We remark that overheads constantly grow
until 28 6 N 6 210 and then do not vary much for larger
values of N . Indeed, for N ∈ [28; 210], the data size range
varies from 32 KB to 128 KB, the first values of N for
which data do not fit in L1 cache. Memory transfer costs,
for larger values of N , compensate part of the introduced
overhead. We also remark that these overheads observed in
practice are smaller than those suggested by mere flop counts.
For example, the theoretical overhead (in flops) of CMULCHT
over CMUL is 1.8x, while measurements expose overheads
ranging from 0.98x1 to 1.35x. This is mainly due to the
instruction-level parallelism exploited by the pipelines of the
CA57.

For this case study, the results we have obtained for single
precision and the CA53 are similar. Focusing on the execution-
time overhead, a global summary is given in the table below.
On average, we see that the overhead due to using CMULCHT
is of about 17%, while it is less than 1% for CMULKAHAN.

TABLE I
AVERAGE EXECUTION-TIME OVERHEAD (GEOMETRIC MEAN OVER ALL

OPTIMIZATION LEVELS AND ALL VALUES OF N ).

overhead CMULCHT / CMUL CMULKAHAN / CMULFMA
target Cortex-A53 Cortex-A57 Cortex-A53 Cortex-A57
single 1.1589 1.1660 1.0952 1.0759
double 1.1702 1.1740 1.0543 1.0480

V. CONCLUDING REMARKS

This work in progress shows encouraging results concerning
the overhead of highly accurate complex floating-point mul-

1Although very close to 1, this overhead must be considered > 1. Overhead
less than 1 are due to some inaccuracies during the measuring process.

tiplication. Accuracy improvement overheads are reasonable
thanks to FMA exploitation and code generation that GCC
provides. Overhead minimization is also partially due to the
instruction-level parallelism provided by the multi-pipelined
execution units of the CA53 and CA57. The FFT case study
illustrates that computing with more accuracy only slows down
the execution time by a factor from 1.04x to 1.17x on average.

In a future work, we aim to develop more accurate complex
arithmetic support, including complex division. We also plan
to reduce the overheads by providing still accurate but faster
specialized algorithms, as for example the multiplication of a
complex number by its conjugate (which can be done faster
than the original CMUL itself). Since all our algorithms are
implemented in GCC, we also plan to study their performances
on other architectures, notably the x86 64 one. Finally, these
improved multiplication algorithms are available as a patch
on top of the GCC compiler, along with specific test cases
and documentation. We intend to propose these changes to be
integrated upstream in the near future.
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