
HAL Id: hal-01512694
https://hal.science/hal-01512694

Submitted on 24 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized data management systems and scientific
information

Organisation de Coopération Et de Développement Économiques (ocde)

To cite this version:
Organisation de Coopération Et de Développement Économiques (ocde). Generalized data man-
agement systems and scientific information. [Research Report] Organisation de coopération et de
développement économiques (OCDE). 1978, 347 p. �hal-01512694�

https://hal.science/hal-01512694
https://hal.archives-ouvertes.fr


R P  ( z ?

GENERALIZED
DATA
MANAGEMENT
SYSTEMS

AND

SCIENTIFIC
INFORMATION
Report of a specialist study

SYSTÈMES DE 
GESTION DE 
BASES DE 
DONNÉES

ET

INFORMATION 
SCIENTIFIQUE
Rapport d'étude de spécialistes

Published by/Édité par 
OECD NUCLEAR ENERGY AGENCY 

AGENCE DE L’OCDE POUR L’ÉNERGIE NUCLÉAIRE
38 bd. Suchet, 75016 Paris France

1978



NEA WORKING GROUP ON NUCLEAR ENERGY INFORMATION
GROUPE DE TRAVAIL DE L’AEN SUR L’INFORMATION 

DANS LE DOMAINE DE L’ÉNERGIE NUCLÉAIRE

GENERAUZED DATA MANAGEMENTSYSTEMS 
AND SCIENTIFIC INFORMATION 

SYSTÈMES DE GESTION DE BASES DE DONNÉES 
ET INFORMATION SCIENTIFIQUE

report of the specialist study on computer software  
rapport d ’étude de spécialistes sur le logiciel d ’ordinateur

The use of Generalized Data Management Systems 
for handling Scientific Information

L’utilisation de systèmes de bases de données généralisés pour 
le traitement de la documentation et des données scientifiques

jointly organized by/organisé conjointement par 
OECD NUCLEAR ENERGY AGENCY 

AGENCE DE L’OCDE POUR L’ÉNERGIE NUCLÉAIRE 
and/et

UNITED STATES DEPARTMENT OF ENERGY
in cooperation with/en coopération avec 

U.S. NATIONAL BUREAU OF STANDARDS
Chairman/Président 

A. SHOSHANI, LAWRENCE BERKELEY LABORATORY
Secretary and Editor 

N. TUBBS, OECD NUCLEAR ENERGY AGENCY

published by/édité par 
OECD NUCLEAR ENERGY AGENCY 

AGENCE DE L’OCDE POUR L’ÉNERGIE NUCLÉAIRE 
38 bd. Suchet, 75016 Paris France



The Organisation for Economic Co-operation and Development (OECD) was set up un
der a Convention signed in Paris on 14th December, 1960, which provides that the OECD  
shall promote policies designed:

— to achieve the highest sustainable economic growth and employment and a rising 
standard o f living in Member countries, while maintaining financial stability, and 
thus to contribute to the development o f the world economy;

— to contribute to sound economic expansion in Member as well as non-member 
countries in the process o f economic development;

— to contribute to the expansion o f world trade on a multilateral, non-discriminatory 
basis in accordance with international obligations.

The Members of OECD are Australia, Austria, Belgium, Canada, Denmark, Finland, 
France, the Federal Republic of Germany, Greece, Iceland, Ireland, Italy, Japan, Luxem
bourg, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, 
Turkey, the United Kingdom and the United States.

The OECD Nuclear Energy Agency (NEA) was established on 20th April 1972, replac
ing OECD's European Nuclear Energy Agency (ENEA) on the adhesion of Japan as a full 
Member.

NEA now groups all the European Member countries of OECD and Australia, Canada, 
Japan, and the United States. The Commission of the European Communities takes part in 
the work of the Agency.

The primary objectives of NEA are to promote co-operation between its Member 
governments on the safety and regulatory aspects of nuclear development, and on assessing 
the future role of nuclear energy as a contributor to economic progress.

This is achieved by:
— encouraging harmonisation of governments' regulatory policies and practices in the 

nuclear field, with particular reference to the safety of nuclear installations, 
protection of man against ionising radiation and preservation of the environment, 
radioactive waste management, and nuclear third party liability and insurance;

— keeping under review the technical and economic characteristics of nuclear power 
growth and of the nuclear fuel cycle, and assessing demand and supply for the 
different phases of the nuclear fuel cycle and the potential future contribution of 
nuclear power to overall energy demand;

— developing exchanges of scientific and technical information on nuclear energy, 
particularly through participation in common services;

— setting up international research and development programmes and undertakings 
jointly organised and operated by OECD countries.

In these and related tasks, NEA works in close collaboration with the International 
Atomic Energy Agency in Vienna, with which it has concluded a Co-operation Agreement, as 
well as with other international organisations in the nuclear field.

LEGAL NOTICE

The Organisation for Economic Co-operation and Development assumes no liability 
concerning information published in this report

© O E C D , 1978
Queries concerning permissions or translation rights should be addressed to:

Director of Information, OECD  
2, rue André-Pascal, 75775 PARIS CEDEX 16, France.



L’Organisation de Coopération et de Développement Économiques (OCDE), qui a été 
instituée par une Convention signée le 14 décembre 1960, à Paris, a pour objectif de 
promouvoir des politiques visant :

— à réaliser la plus forte expansion possible de l’économie et de l’emploi et une 
progression du niveau de vie dans les pays Membres, tout en maintenant la stabilité 
financière, et contribuer ainsi au développement de l’économie mondiale;

— à contribuer à une saine expansion économique dans les pays Membres, ainsi que 
non membres, en voie de développement économique;

— à contribuer à l’expansion du commerce mondial sur une base multilatérale et non 
discriminatoire, conformément aux obligations internationales.

Les Membres de l’OCDE sont : la République Fédérale d'Allemagne, l’Australie, 
l’Autriche, la Belgique, le Canada, le Danemark, l’Espagne, les États-Unis, la Finlande, la 
France, la Grèce, l’Irlande, l’Islande, l’Italie, le Japon, le Luxembourg, la Norvège, la 
Nouvelle-Zélande, les Pays-Bas, le Portugal, le Royaume-Uni, la Suède, la Suisse et la Tur
quie.

L "Agence de l’OCDE pour l'Énergie Nucléaire (AEN) a été créée le 20 avril 1972, en 
remplacement de ¡’Agence Européenne pour ¡’Énergie Nucléaire de l’OCDE (ENEA) lors de 
l ’adhésion du Japon à titre de Membre de plein exercice.

L ’AEN groupe désormais tcus les pays Membres européens de l’OCDE ainsi que 
l ’Australie, le Canada, les États-Unis et le Japon. La Commission des Communautés 
Européennes participe à ses travaux.

L ’AEN a pour principaux objectifs de promouvoir, entre les gouvernements qui en sont 
Membres, la coopération dans le domaine de la sécurité et de la réglementation nucléaires, 
ainsi que l’évaluation de la contribution de l’énergie nucléaire au progrès économique.

Pour atteindre ces objectifs, l'AEN :
— encourage l’harmonisation des politiques et pratiques réglementaires dans le 

domaine nucléaire, en ce qui concerne notamment la sûreté des installations 
nucléaires, la protection de l’homme contre les radiations ionisantes et la 
préservation de l’environnement, la gestion des déchets radioactifs, ainsi que la 
responsabilité civile et les assurances en matière nucléaire;

— examine régulièrement les aspects économiques et techniques de la croissance de 
l’énergie nucléaire et du cycle du combustible nucléaire, et évalue la demande et les 
capacités disponibles pour les différentes phases dv cycle du combustible nucléaire, 
ainsi que le rôle que l’énergie nucléaire jouera dans l’avenir pour satisfaire la 
demande énergétique totale;

— développe les échanges d’informations scientifiques et techniques concernant 
l’énergie nucléaire, notamment par l’intermédiaire de services communs ;

— met sur pied des programmes internationaux de recherche et développement, ainsi 
que des activités organisées et gérées en commun par les pays de l’OCDE.

Pour ces activités, ainsi que pour d ’autres travaux connexes, l’AEN collabore 
étroitement avec ¡’AgenceInternationale de ¡’Énergie Atomique de Vienne, avec laquelle elle a 
conclu un Accord de coopération, ainsi qu’avec d ’autres organisations internationales opérant 
dans le domaine nucléaire.

AVERTISSEMENT

Les informations publiées dans ce rapport n’engagent pas la responsabilité de FOrgani- 
sation de Coopération et de Développement Économiques.

OCDE, 1978
Les demandes de reproduction ou de traduction doivent être adressées à : 

M. le Directeur de l’Information, OCDE
2, rue André-Pascal, 75775 PARIS CEDEX 16, France



LIST OP PARTICIPANTS IN THE STUDY
Meetings held at OECD, Paris, 11.th-13th January 1977 

and Lawrence Berkeley Laboratory, USA, 5th-7th October 1977

Austria
Dr. A. Nevyjel, SGAE Wien 
Prance
M. G. Martin, CISI Saclay
Pederal Republic of Germany 
Dr. H. Behrens, ZAED Karlsruhe
Japan
Dr. T. Yamamoto, Univ. of Tokyo 

(also representing ICSU/CODATA)
Netherlands
Dr. H. Rietveld, ECN Petten 
United Kingdom
Mr. K. Montgomery, UKAEA Risley
United States
Dr. E. Birss, LLL
Dr. A. Brooks, ORNL
Dr. D. Deutsch, NBS
Dr. C. Dunford, BNL (NNDC)
Ms. P. Fuja, ANL
Dr. W. Gersbacher, Battelle

United States (continued)
Ms. G. Hair e, LBL
Dr. V. Hampel, LLL
Dr. J. Hilsenrath, NBS
Dr. H. Honeck, Savannah River Lab.
Dr. K. Hsu, Battelle
Mr. T. Hughes, Library of Congress
Dr. E. Jones, LLL
Dr. D. Knoll, NODC
Dr. D. Richards, LBL
Dr. D. Ries, LLL
Ms. J. Robinson, LBL
Dr. A. Shoshani, LBL (Chairman)
Dr. P. Stevens, Cal Tech
Dr. J. Suich, Savannah River Lab*
Dr. K. Szczesny, Battelle
International Organizations
CERN Geneva : Dr. G. Moorhead 
CEC/JRC Ispra : Dr. S. Perschke

Dr. J. Petrie 
Mr. J. Powell 

IAEA/NDS : Ms. P. Attree

Sponsoring organizations
U.S. Department of Energy : Dr. C. Gottschalk 

OECD Nuclear Energy Agency : Dr. P. Johnston, CCDN Saclay
Dr. A. Schofield, CCDN Saclay 
Dr. W. Schuler, CPL Ispra 
Dr. N. Tubbs (Secretary)

ACKNOWLEDGEMENTS

The organizers wish to thank the above participants for their 
contributions, whether in written form or in discussion, and 
to acknowledge many personal contributions to the logistics of 
the study, as well as that of Lawrence Berkeley Laboratory in 
hosting the second meeting. Particular mention is due to 
Mr. T. Hughes, now at the Library of Congress, who has been 
personally involved with the study from its early planning 
stages.

- 4- -



CONTENTS

General Introduction 11
PART I : AN INTEGRATED APPROACH TO DATA MANAGEMENT
1. An introduction to Generalized Data Management Systems 15G. Moorhead, N. Tubbs
2. Characteristics of existing Database Management Systems 27D. Deutsch, E. Pong

- Candidate software packages (appendix) 43- GDMS commercially available in Japan (T. Yamamoto) 49
3. Cost considerations for Database Management Systems 50D. Deutsch, E. Pong, J. Collica
4-. An APL approach to Data Bases 71G. Martin
PART II : GDMS POR SCIENTIFIC DATA : REQUIREMENTS AND SPECIALIZED SYSTEMS
5. The structure of R and D information - some observations 93

A. Brooks
6. The capabilities required in a Generalized Data Base Management System for Handling Scientific and Technical Data 106K. Szczesny, W. Gersbacher
7. Requirements for the design of a Scientific Data Base Management System 111

V. Hampel, D. Ries
8. Scientific Data Base Management at Lawrence Livermore 

Laboratory : needs and a prototype system 132E. Birss, S. Jones, D. Ries, J. Yeb
9. An overview of BDMS : the Berkeley Database Management System 14-5D. Richards
10. Extensions to the JOSHUA GDMS to support environmental science 

and analysis data handling requirements 151J. Suich, H. Honeck
11. The manipulation of scientific data for nuclear energy calculations (the COSMOS database) 160

K. Montgomery
PART III : GDMS APPLICATIONS POR HANDLING SCIENTIFIC DATA

A. Experience of GDMS use
12. Status of Data Base Management Systems at Argonne National 

Laboratory 167P. Fuja, A. Lindeman
13. The Particle Data Group : using a GDMS to solve data handling 

problems in particle physics 173P. Stevens, A. Rittenberg
14. Use of a GDMS for high-energy reaction data 180G. Moorhead
15. The world Nuclear Power Plant data base of the FrenchAtomic Energy Commission 184J. Leralle, G. Martin

Page

- 5 -



16. Laboratory Animal Data Bank - Environmental husbandry factors,
hematology, and clinical chemistry files 201K. Hsu

22717* The use of TOTAL at the Netherlands Energy Research Foundation 
(ECN)h> Rietveld

18. Use of DBMS-10 for storage and retrieval of Evaluated Nuclear
Data files 232C. Dunford

1 9• A large data “base on a small computer : Neutron physics dataand bibliography under IDMS 239A. Schofield, L. Pellegrino, N. Tubbs
B. Forward planning for GDMS use, and potential GDMS 

applications
20. Databank for the Prototype Fast Reactor 250K. Montgomery
21. Design of a Solar Heating and Cooling data centre 257D. Deutsch
22. SDI-programs for small computers using the INIS database 263A. Nevyjel
23* Scientific data handling : needs and problems at the Zentral-stelle fttr Atomkernenergie-Dokumentation (ZAED) 265

W. Bau, H. Behrens
24. Problems of a Nuclear Data centre in an international network 268P. Attree
25* The NEA Computer Program Library : A possible GDMSapplication 276W. Schuler
26. Computerized data handling in the Environmental ChemicalsData and Information Network 288J. Petrie, J. Powell, ¥. Town
PART IY : THE DIRECTION OF GDMS DEVELOPMENT
27. The rationale of a standard Interchange Format 297A. Brooks
28. Future directions in GDMS development and database conversion 302

A. Shoshani
Epilogue : The composition of the study, and its conclusions 309
Appendix : A selection of references to GDMS literature 314

N. Tubbs
PART Y : FRENCH TRANSLATIONS
- Introduction genérale 321
- Introduction aux Systémes de Bases de Données Generalises 324
- Considerations finales : l1etude et ses conclusions 553

Author index, with addresses of participants 344

- 6 -



TABLE DES MATIERES

Introduction générale
Page

version anglaise 11
version française 321

PREMIERE PARTIE : UNE STRATEGIE INTEGREE DE GESTION DE DONNEES
1. Introduction aux Systèmes de Bases de Données GénéralisésG. Moorhead, N. Tubbsversion anglaise 15

version française 324-
2. Caractéristiques des SGBD actuellement disponibles 27

D. Deutsch, E. Fong
- Produits-programmes à prendre en considération (Appendice) 4-3
- SGBD disponibles sur le marché japonais (T. Yamamoto) 4-9

3. Considérations de coût pour les SGBD 50D. Deutsch, E. Fong, J. Collica
4-. Une approche APL aux bases de données 71

G. Martin
DEUXIEME PARTIE : SGBD POUR DONNEES SCIENTIFIQUES : BESOINS ETSYSTEMES SPECIALISES
5- La structure des données pour la recherche et le développe

ment - quelques observations 93A. Brooks
6. Desiderata d'un Système de Gestion de Bases de Données pourla manipulation de données scientifiques et techniques 106

K. Szczesny, W. Gersbacher
7. Cahier des charges pour un SGBD scientifique 111

V. Hampel, D. Ries
8. La Gestion des bases de données scientifiques au Lawrence Livermore Laboratory : besoins et un système prototype 132

E. Birss, S. Jones, D. Ries, J. Yeb
9. Résumé du système BDMS : le Berkeley Database Management

System ^D. Richards
10. Extension du SGBD "JOSHUA" pour les besoins en gestion de 

données des sciences et de l'analyse de l'environnement 151J. Suich, H. Honeck
11. La manipulation des données scientifiques pour les calculsdans le domaine de l'Energie Nucléaire (la base de données 160COSMOS)

K. Montgomery
TROISIEME PARTIE : APPLICATIONS DES SGBD A LA MANIPULATION DE

DONNEES SCIENTIFIQUES
A. Les SGBD à l'usage

12. L'utilisation actuelle des SGBD à Argonne National Laboratory 167
P. Fuja, A. Lindeman

- 7 -



13. Le "Particle Data Group" : une solution SGBD aux problèmes 
de manipulation de données dans la physique des particules 
élémentairesP. Stevens, A. Rittenberg

14. L'emploi d'un SGBD pour les données de réactions à hautes 
énergies

G. Moorhead
15« Da base de données mondiale du GEA français sur les 

centrales nucléairesJ. Leralle, G. Martin
16. La "Laboratory Animal Data Bank" : éléments d'environnement de l'élévage, hématologie, et fichiers de chimie cliniqueK. Hsu
17. L'utilisation de TOTAL à la Fondation Néerlandaise pour la Recherche Energétique (ECN)

H. Rietveld
18. L'utilisation de DBMS-10 pour stockage et recherches sur 

les fichiers de données nucléaires évaluéesC. Dunford
19. Une grande base de données sur un petit ordinateur : donnees et bibliographie de physique neutronique sous IDMSA. Schofield, L. Pellegrino, N. Tubbs

B. Planification pour l'introduction de SGBD, et applications potentielles de SGBD
20. Banque de données pour le "Prototype Fast Reactor" britanniqueK. Montgomery
21. Projet d'un centre de données sur le chauffage et la réfrigération par énergie solaireD. Deutsch
22. Programmes pour la dissémination sélective des informations 

H3TS, utilisant de petits ordinateurs
23. La gestion des données scientifiques : besoins et problèmes de la Zentralstelle fttr Atomkernenergie-Dokumentation (ZAED)W. Bau, H. Behrens
24. Problèmes d'un Centre de données nucléaires dans un réseau 

internationalP. Attree
25. La bibliothèque AEN de programmes de calcul : application possible d'un SGBDW. Schuler
26. La gestion sur ordinateur des données du "Environmental Chemicals Data and Information Network"J. Petrie, J. Powell, W. Town
QUATRIEME PARTIE : LE DEVELOPPEMENT DES SGBD DANS L'AVENIR
27. La justification d'un format standard pour l'échange de bases de donnéesA. Brooks

173

180

184

201

227

232

239

250

257

263

265

268

276

288

Page

297

- 8 -



Page
28. Directions d® avenir dans la développement des SGBD et dulogiciel de conversion de bases de données 302

A. Shoshani
Considérations finales : llétude et ses conclusions

version anglaise 309version française 338
Appendice : Bibliographie restreinte des SGBD 314- N. Tubbs

CINQUIEME PARTIE : TRADUCTIONS FRANÇAISES
Introduction générale 321
Introduction aux Systèmes de Bases de Données Généralisés 324-
Considérations finales : 1*étude et ses conclusions 338

Répertoire des auteurs, avec les adresses des participants 344

- 9 -



GENERALIZED DATA MANAGEMENT SYSTEMS
Note on the English terminology

In discussions on scientific information, the stock of information 
to "be handled is often called a Data Base. By extension, programs for 
managing the data collection are sometimes loosely referred to as a data hase management system. However, such specialised program systems do not 
in general constitute a generalized Data Base Management System (DBMS) in the sense in which this term is widely used in computing technology.
To avoid confusion in the English text, and to emphasize the important 
distinction between a DBMS and a set of specialised programs to manage a particular (file-structured) collection of data, we have preferred to use 
the term Generalized Data Management System (GDMS) throughout the present study. The expression 'Data Base1 is normally used in the narrow sense, to mean 'an integrated collection of data managed by a GDMS1.

The term used in French is 'Système de Gestion de Bases de Données' (SGBD), andin this report 'Système de Bases de Données Généralisé' (SBDG), as a more direct translation of GDMS. We believe that no confusion exists about their meaning in French.

AVAILABILITY OF THIS REPORT

A limited number of copies of this report are available for distribution free of charge. Requests should be addressed:
for the United States to : Dr. C. GOTTSCHALK

Office of Technical Information 
Department of Energy 
Washington, D.C. 2054-5 USA

for other OECD Member countries to: Dr. N. TUBBS
OECD Nuclear Energy Agency 
38 Boulevard Suchet 
75016 Paris France

DISTRIBUTION DU RAPPORT

Un nombre limité d'exemplaires de ce rapport est destiné à la distribution gratuite. Les demandes doivent être adressées :
pour les Etats-Unis à : , Dr. C. GOTTSCHALK

Office of Technical Information 
Department of Energy 
Washington, D.C. 205^5 USA

pour les autres pays, membres Dr. N. TUBBS
de l'OCDE, à : Agence pour l'Energie Nucléairede l'OCDE

38 boulevard Suchet 75016 Paris France

- 10 -



GENERAL INTRODUCTION
This report is aimed at people with scientific background, such as physicists, 

chemists, biologists, etc. as well as management personnel. Its purpose is to stimulate 
scientists of all disciplines to consider the advantages of using a generalized data 
management system (GDMS) for storage, manipulation and retrieval of the data they col
lect and often need to share. The report should also be of interest to managers and 
programmers who need to make decisions on the management of scientific (numeric or non
numeric) data. Another goal of this report is to expose the features that a GDMS should 
have which are specifically necessary to support scientific data, such as data types and 
special manipulation functions.

It is hoped that the way the report is organized, starting with basic concepts and 
the terminology of GDMS, then discussing the requirements of GDMS for scientific data, 
and describing case studies, will be of value to people who have not been exposed to GDMS 
before. At the same time, the reader more familiar with GDMS can benefit from guidance 
on available systems, from discussion of other users’ experience, and capabilities in 
GDMS helpful in handling scientific data. More specifically, the report will:

a. Give a clear introduction to what GDMS are, why they may be useful, and what 
computing hardware is needed.

b. Include a list of the capabilities required in a Generalized Database Manage
ment System for handling scientific data. Presented at a time when consider
able effort is being invested in GDMS software development, such an inventory 
may be in time to influence the specifications of this third generation of 
Data Management Systems.

c. Compare possible alternatives: do-it-yourself software, APL, file management 
systems.

d. Show by case studies of a variety of existing and potential GDMS applications 
to scientific data (in different fields, with more or less numerical content) 
what is involved in GDMS use, and what advantages may result.

e. Survey the direction of development work in GDMS: hardware development trends, 
software development trends, distributed Database systems, and database 
conversion.

A GDMS is a system that provides generalized tools for the purpose of defining a 
database structure, for loading the data, for modification of the data, and for organiz
ing the database for efficient retrieval and formatted output. A data management system 
is ’’generalized" when it provides a user-oriented language for the different functions, 
so that it is possible to define any new database, its internal organization, and to 
retrieve and modify the data without the need to develop special purpose software 
(program) for each new database. The main purposes of a GDMS are quoted from a recent 
survey [1]:

• to make an integrated collection of data available to a wide variety of users;
• to provide for quality and integrity of the data;
• to ensure retention of privacy through security measures within the system; and
• to allow centralized control of the database, which is necessary for efficient

- 11 -



data administration.

From the user point of view GDMS should provide:

• data independence, i.e. that application software does not need to be modified 
when data or data structures are changed

• languages and facilities to perform the spectrum of data management functions: 
data definition, data entry and updating, conditional search and data retrie
val, and data output and report generation. These facilities could be avail
able in on-line or batch mode depending on the needs of the application.

• the representation and access of both numerical and literal data.

The above points will be discussed in more detail in the next section of the 
report.

The advantages of using a GDMS are numerous, but for scientists and other users who 
are not computer specialists (and who cannot afford the time to become expert program
mers) the main advantage is the immediate availability of a system for database handling. 
If their data handling requirements are relatively simple, these may perhaps be satisfied 
without further programming by use of the query language/report writer facilities of a 
suitable GDMS. Where user requirements are more complicated, applications programs in a 
high-level ’host language* (such as COBOL or FORTRAN) may be linked to the database by 
embedding GDMS Data Manipulation Language statements in those programs. The available 
programming effort can be concentrated on the specific problems in hand.

The generality of GDMS can sometimes degrade the efficiency of an application com
pared to a specially developed program, but this consideration is usually outweighed by 
the savings in software development time and cost, by the availability of the data for 
numerous applications, and by facilities providing integrity and security and easy 
modification and manipulation of the data. Database management, like the use of high- 
level programming languages instead of assembler, is the latest in a long series of 
compromises in which increased user convenience is traded against computer efficiency. 
Although initially these trade-offs are expensive, hardware and software have historical
ly tended to evolve in a way which reduces the cost of convenience.

Recognizing that scientific data may have different characteristic? from ’’commer
cial” data, it is the aim of this study to explore the differences and point out systems 
that have features amenable to the handling of scientific data. Therefore, the people 
involved in the study were selected both from the scientific community and the computer 
field. In particular, cases where GDMS were used for the handling of scientific data 
are described.

The report introduces first the spectrum of GDMS approaches, techniques and ter
minology. This is done at a level which describes the functionality of GDMS without 
going into the details of how it is achieved. Then a survey of (mostly commercially) 
available systems is given, together with comparative features. This is followed by a 
discussion of requirements and capabilities needed to deal with scientific data and a 
description'of several data management systems designed specifically to handle scientific 
data. In the next sections several example scientific applications that use GDMS 
successfully are described, followed by examples of potential applications now under consideration. 
Finally, a discussion of future trends in the development of GDMS and related areas is given so that 
the reader may consider their possible effect on his environment. In the conclusion section (part of 
the epilogue) we summarize the viewpoints of participants relative to when should GDMS be used 
and what to expect in using them.

REFERENCE______
fl] James P. Fry and Edgar H. Sibley, ’’Evolution of Data-Base Management Systems," 
Computing Surveys, Vol. 8, No. 1, March 1976, (this entire issue is devoted to Data 
Base Management)

- 12 -



PART I
AN INTEGRATED APPROACH TO DATA MANAGEMENT

PARTIE I
UNE STRATEGIE INTEGREE DE GESTION DE DONNEES





M  INTRODUCTION TO GENERALIZED DATA 
MANAGEMENT SYSTEMS

G. Moorhead, CERN, Geneva 
N. Tubbs, OECD/NEA, Paris

I. WHAT IS A DATA MANAGEMENT SYSTEM ?
1. Scientific data handling by computer

Scientific and engineering programs handle data from diverse 
sources. The process by which data generated in experiments is refined for ultimate use in technology typically covers three stages. Raw data is first collected from experimental equipment, then later analyzed by the individual experimenters for publication. In the final “evaluation* 
stage, experimental results are reviewed, compared and aggregated into a final recommended data set, which may be used as the input data for cal
culations in many different technological applications, and is called "evaluated9 data. A scientific data handling application may be required to accept source data at any one of these stages, and on one or more of 
a variety of media. They may originally have been punched on cards or paper tape, keyed in at an interactive terminal, or have been read out directly from an experiment on to magnetic tape. At some stage, the data ends up in computer files and an analysis program will read these 
files to produce a set of results which may be histograms, graphs, com
puted values or simply listings.

All major computers have a file manager as part of their operating system allowing the programmer to declare named logical files and specify on which physical storage devices they are to reside. The system 
will organize the physical space and write data to it or read data from 
it when requested to do so by a user program. A typical analysis program will be written in FORTRAN, and the layout of data in the files will be reflected in its FORMAT statements. This approach causes no problems where the files are created only once, and then used in a single program 
or slight variants of it.

However there are many situations in which logically interrela
ted files may be accessed by several different programs. Matters will be complicated further if these files are frequently updated; they may also be subject to independent modification by several authorised users.

It is in such cases that the Generalized Data Management System (GDMS) approach can be of great utility, and there are now many examples 
of its successful use in scientific or engineering applications. What a GDMS offers is, essentially, a high level language for describing and

- 15 -



manipulating data to complement programming languages such as PORTRAIT(which is designed primarily for performing calculations), COBOL orPL/1 in maintaining an integrated and logically consistent data base for 
use in a variety of different applications.
2. The function of a GDMS

A Generalized Data Management System appears to the user as a 
software interface separating him and his programs from the operating 
system and the external storage hardware, in respect of all access to a centrally controlled and integrated data collection, shared by a number 
of users and referred to as a Data Base. The system provides tools for defining the physical structure of the data base and the logical relations 
within it, for loading and modifying the data, for protection of the data base against accidental damage and unauthorised access, and for efficient data retrieval. Good special-purpose systems may provide many of these 
facilities. A data management system is "generalized" when it provides a user-oriented command language for all these different functions, applicable to any new data base regardless of its internal organisation, 
thus removing the need to write new data handling programs for each new data base.

When a file is read by a conventional analysis program, usually one r̂ecord9 is read from it at a time where a record is a collection of 
9items1 of logically associated information, such as the measurements made at one location and/or at one particular time, during a scientific investigation. A file usually contains only records of the same form, and which can, for example, be read by similar PORTRAIT statements. The files 
to be integrated in a data base may represent an equal number of different record types, each containing data items with varying formal attributes (integer, floating point, character data...). A GDMS offers facilities for handling these records and data items individually or in sets, using 
data manipulation commands dependent only on the logical structure of the data base. The division of records into files, and the actual disposition of records and files on the physical storage devices, is almost invisible to the user.

It should be remarked that a software package providing most of the basic GDMS facilities described below can itself be written in a higher-level language such as PORTRAIT, making use of the standard interface for file-handling provided in that language. Typically, such a package can be developed with a few man-years of effort, but may be found lacking in generality, reliability and efficiency.

II. THE FACILITIES OFFERED BY A GDMS
3. Data independence of user programs

A GDMS allows the user to refer to and retrieve individual items 
in a record directly by name, without the need to declare the record structure in the user program. The structure of the data base (record 
structures, names of data items and the relations linking different record types) is declared independently from individual programs, for all appli
cations, in an initial phase known as Data Definition.

Once a data base exists and contains data, a particular user has only to be concerned with the names of those items which are of interest 
to him, and an application program need only refer to those items which it needs. This facility is by no means negligible as can be seen in a real

- 16 -



life GDMS application for oceanographical research where each record con
tains no less than 73 items ranging from the latitude and longitude to 
percentages of different minerals in samples brought up.* The same information could of course’ have been split between several overlapping files 
of shorter records, but such a split would bring with it the need to administer, by program and by the inclusion of link; information, the relations between corresponding records in the different files. This is in itself a major function of a GDMS.

The removal of explicit information about the physical and logical structure of the data from the user programs to a central schema accessed through the GDMS is said to confer a degree of 9data independence 9 on the user programs. It will be seen from later articles in this 
study-report that data independence is far from complete in most presently available systems.
4. Updating facilities

The data management system provides updating facilities for storing, modifying or deleting data from the data base. When the data base is updated either by inserting completely new records or by modifying the 
values of items in existing records, the system automatically validates 
and converts the data according to the formal attributes of the item, which are usually supplied by the user when the item is named for inclusion in the schema of the data base. An item may be of the type Integer, Character (i.e. alphanumeric text), Date, Real, etc. As an example of validation, 11A34l would not be accepted in place of 1234 as the value of an item named LENGTH and described as Integer. Some systems also allow the user to specify a range or set of acceptable values for an item, or even more general validation conditions.

Rapid retrieval of specified data items, whether from a classi
cal file or from a data base, usually requires the data to be kept physi
cally on a random access storage device (currently discs). One of the more difficult problems in programming data update operations for random 
access files is to ensure that the file can be recovered if it is corrupted during update following a program error or a computer breakdown. In a GDMS which permits several users to work in'parallel updating the data 
base, it is important not only to be able to correct errors due to one of them, but also to do this without rubbing out the work done in the mean
time by the other users. Many GDMS provide utilities for data base 
recovery following an accident to one of the constituent files, or the 
inclusion of invalid data. These facilities may be obtained by taking 
periodic copies of the whole base, supplemented by the logging of all update transactions.
5* Data retrieval

The most important function of a GDMS is to allow the retrieval 
of data according to prescribed criteria. At its simplest, retrieval may consist of obtaining, in an application program, a single record containing specified values in particular items which have been declared as key items, for example, Item PARTICLE = PROTON and Item PLAB = 1260. An easy 
variant of this is to retrieve all records satisfied by a range of key item values, for example, PARTICLE = PROTON, and PLAB between 12000 and 
13000, the successive records being supplied to the application program on request. However, some useful systems limit the number of possible key items to one, which could simply be an identification number for the record.
Centre National pour 1’Exploitation des Oceans, Centre Océanographique de Bretagne, Brest.

- 17 -



It is easy to see that a file can he organized so that records may he retrieved efficiently by declared keys. Indeed, file organizations such as "indexed sequential" or "random access" are provided for this 
purpose by most operating systems. However, the advantage of a GDMS is 
that the user has simply to state which of his named items are to be used 
as keys, and the GDMS takes care of a non-trivial amount of housekeeping in order to set up the files and organize the updating and retrieval.

In addition, a GDMS offers the possibility of easily posing questions of a kind which may or may not have been envisaged when the 
data base was created. One obvious way of doing this, though not the 
easiest, is to pass through all the records of a given type in turn 
looking at the values of some items. The required items would be fetched using CALL®s to the GDMS, and the tests would be made using the IF state
ments of the "host language" such as FORTRAN, from which the CALLs are made. Most GDMS allow records of several different types to be scanned 
simultaneously, thus allowing the equivalent of multi-file retrieval. Another feature of some systems is free-text search, or examination of an alphanumeric item character by character, looking for a particular sub
string in ito

The more advanced GDMS provide, in addition, a high-level 
query language for expressing retrieval criteria in a natural manner.This same language may be used for making updates. The retrieval condi
tions usually consist of simple predicates in which items are compared to a constant (e.g. PARTICLE e PROTON) or linked together by logical operators, as in (PARTICLE = PROTON OR PARTICLE = ANTIPROTON) AND PLAB 
GE 12000 AND PLAB LE 13000. As well as retrieving individual records, 
the GDMS often provides basic statistical functions such as means, variances, regression analysis or even presentation in histogram form of 
the results of a search.

Privacy of data may be ensured by limiting a userfis access to 
certain files (or record types), or to a logical subset of the data base, which in some GDMS is referred to as a subschema. The degree of discri
mination between users which can be imposed by these privacy locks depends on the system : several systems can allow a user access to specified data items only within a given record type.

Sometimes the user is allowed, essentially, to declare beforehand the type of question he expects to ask frequently, and the system 
then creates "access paths" for faster retrieval at the expense of updating time and storage space. However, the possibility of asking unfore
seen questions without writing and testing a special program is one of 
the more pleasant features of GDMS.

For commercial applications, presentation of the retrieved output in formatted and sorted reports with headings and subheadings, footings, summaries, sub-totals, etc., is a very important requirement.
The fact that sophisticated report generators are available in some form 
or other with standard GDMS may not matter for the majority of scientific applications, but it can be extremely useful in a few cases where printed 
compilations are required. Unfortunately graphical output, which is obviously desirable for scientific applications, is not usually available 
with report generators, but clearly a host language which interfaces to both a GDMS and a graphics package offers this possibility at the cost of 
some coding.

- 18 -



6* Control of redundancy “between data
A data “base carries, in more or less integrated form, the data 

which would otherwise be dispersed over a number of overlapping files.
In the case of the files, their logical overlap is expressed by recording the same values for various data items in two or more files. Within the data collection seen as a whole, and stored in an integrated data base, these repeated data may be seen as redundant. The structural information 
expressed in the overlapping files by repetition of data values is now handled by the GDMS, and may appear as address pointers or cross-indexing 
transparent to the user.

One reason for avoiding the inclusion of redundant information in the data base is that it wastes storage space. A more important one (since many data bases occupy more storage space than the files they 
replace) is that redundancy which is not controlled by the GDMS itself may 
result in errors which will seriously corrupt the data base. At the level 
of data items redundancy can be reduced by limiting the number of times a given item is recorded in the data base : system structural information 
linking the different record types referring to the item will replace re
petition of the item. Another method at the item level is to store once only any long text which appears many times as the value of an alpha
numeric item, or any set of values of different items which are always associated with a particular value of one other item, for example the 
properties of a chemical compound. The important feature for the user is that he need keep in only one place the full descriptive data concerning, for example, a particle or a chemical compound which is known 
elsewhere in the data base by a short name or code. A reduction in 
quantity of data stored may bring an improvement in quality.
III. DATA STRUCTURES

The basic facilities which are provided by the majority of GDMS have now been outlined. In descriptions of current GDMS, much emphasis is usually placed on the kind of logical structure in which the 
user is allowed to store his data. In present-day practice, this logical structure is inextricably bound up with the physical structure or accessing methods used. The logical structures offered by various GDMS may differ sufficiently to influence the choice in favour of some rather 
than of others for a particular class of applications, but not usually 
enough to invalidate the use of any given GDMS altogether.
7• Hierarchical structure within a single record

A common kind of logical structure is the intra-record hierarchy in which items within a record are organized in a hierarchy or tree 
structure. This may be restricted to be a two-level tree in which an item at the first level may consist of an indefinite number of sub-items, 
rather like a vector, at the second level. More generally, some systems 
allow a multilevel hierarchy in which sub-items themselves can consist of 
sub-items, and so on; for example, an elementary particle can decay into 
several particles, any one of which may decay into other particles, etc. 
Naturally, the system looks after all the internal pointers needed to implement such a hierarchy and the user searches through the tree in an application-oriented manner. Historically, intra-record structures of this type formed the basis of early GDMS because the records could be 
maintained in a sequential file on magnetic tape. The main problem was 
that the entire file had to be copied when an update was performed (necessary anyway for tape files), while a search might likewise require the whole file to be read.

- 19 -



Examples of systems using intra-record, hierarchies are the early INEOL system, still used for scientific applications in CERN and origi
nally written by T.W. Olle around 1965? and the Oak Ridge ORCHIS system. 
Eig. 1 shows an intra-record hierarchy; references to individual systems 
discussed will be found in the list at the end of this report.
8. Hierarchies of records

As falling costs made it possible to store large data bases on 
rotating mass storage devices such as disks or drums, with their semi
random access capability, retrieval from an intra-record hierarchical structure became more efficient because (provided one knew where to look 
for it) finding an individual record no longer involved a search of the whole file. It became possible to allow GDMS to handle several files as 
a single data base, with user access in milliseconds to any item in any one of them. The use of disc storage led to the development of more 
powerful structures, increasingly oriented by user requirements rather 
than machine constraints.

An extended hierarchical structure, as implemented in SYSTEM 
2000 and shown in Eig. 2, may be supplemented by inverted indices allowing 
specified data items to be accessed directly at the disc address given in 
the index rather than by following the hierarchy down from the top. Different levels in the logical hierarchy are represented by distinct sets of records (called r̂epeating groups5) rather than by items in one 
record. Such a hierarchical structure does not permit direct links 
between items or records in different hierarchies.
9* Network structures

Logical network structures are based on the concept of inter
locking 9 sets9 each consisting of an owner record and one or more member records. A set can be implemented as a circular linked list, and may 
be searched in logical sequence by entering at the owner record and accessing members in succession until the required member record is 
identified.

Depending on whether a given record may be both owner of one 
set and member in another, it may or may not be possible to represent a 
hierarchy directly using only sets of this type : Eig. 3 makes the point clear. The very widely-used TOTAL system allows records to be owners or 
members in many sets, but not to be both owner and member. Although more levels can be represented indirectly, direct representation is thus limited to a two-level hierarchy. Systems conforming to CODASYL specifica
tions (see Section 13 below; do not have this restriction, and can 
represent full hierarchies.

The greater power of networks, as compared to hierarchical structures, lies in the possibility of associating one record type with (almost) any other. Rather than adapting the data base structure to the 
limited set of associations permitted by a hierarchical structure, the 
user may start by defining the record types of interest to his application, and then express in the data base schema all the associations that 
exist between them. A pure hierarchical structure can be seen as a degenerate case of a network, in which no record may be a member in more than one set.

- 20 -



10. Relational data bases
The relational model, developed later and so far implemented 

in a number of experimental systems, is a more user-oriented approach to 
data base structures. In this model, a data base is viewed as a collec
tion of n-ary relations or homogeneous tables, each row of which is analo
gous to a record containing n items, none of which can have multiple occurrences. When defining relations, consistency and non-redundancy can be guaranteed by following a set of formal rules which ensure that the relations are all in so called Third Normal Form.

There is a closed algebra of operations called join, projection 
etc., which can be performed on relations, and interrogation of a rela
tional data base consists in applying this algebra. The user is freed from specifying access paths when defining relations, though access paths 
are indeed used when making joins, and cannot be entirely ignored. No relational GDMS is yet commercially available. Fig. 4- shows schematically 
how a hierarchy may be represented by a collection of relation tables in which data are stored.
11. Physical storage of data

It must be made clear that the logical structures which can be expressed by a GDMS need not be directly reflected in the way in which data records are stored on disc. In systems based on network structures, for example, records accessed by their logical keys are often distributed 
at apparently random disc addresses within a system-defined file. These disc addresses are often obtained from the logical keys by a 'hashing' algorithm and the aim of this procedure is to ensure even distribution of data over the available disc space. In SYSTEM 2000 the structural 
information which constitutes the hierarchy is stored in 'hierarchical 
location tables' (indices) separate from the data records themselves, which are stored on disc in approximately the order in which they are 
loaded. Sets (in network systems) and hierarchical structure are usually expressed by address pointers, and sets or hierarchies may well be physically intermingled and disordered as compared to the logical order 
expressed by the system-generated pointers.

Although the physical layout of the data base may not be very similar to the logical structures it represents, the performance of the system may still be very much affected by the way the data storage is 
'tuned' to match the logical structure and the commoner user program paths through the data base. Conversely, it may degrade performance to 
represent a data base directly as the logical view of the user, while 
performance of a particular program may in any case be degraded when the 
data base structure is designed to satisfy the overall performance 
requirements of multiple applications.
IV. NOMENCLATURE

Some further features of, present-day GDMS will now be considered in order to introduce terms which will be used later in this report.

- 21 -



The innovations in data base structures which became possible 
with the use of disc storage have been discussed in Sections 8-11 above. 
Data stored in random access disc files may be reached directly by obtaining the disc location (its 9 address8) through a randomizing algorithm 
(^hashing1) or from an index (an index is a directory in which a logical 
key value may be looked up to find the physical locations of the records 
in which that key value occurs and which may be implemented internally in 
various ways, including hashing). Pointers in a data base context refer to 
addresses generated by the GDMS and embedded in the data base records to 
give directly the physical location of the adjacent records in the logical structure. Pointers were already used in the intra-record hierarchies of the early tape storage GDMS, and are the main support for the implementation of CODASYL networks.

12. An example of early GDMS : INFOL
Most of the important characteristics of current GDMS can be 

found in the later versions of the simple INFOL system mentioned in 
Section 7* INPOL is an entirely self-contained system with its own query update language. In contrast to most later systems, it cannot be accessed by CALL statements from a host language such as COBOL or FORTRAN.
These user languages allow commands at a 'high level8 of logical abstrac
tion, in contrast to 8low level1 languages (such as assembler language), much closer to the machine language of the computer in use. Although 
the original INPOL was written in assembly code for CDC J600/3800 compu
ters, it has acquired portability by being rewritten in standard PORTRAN. Another new feature is the possibility of its being used interactively (that is from a terminal with keyboard) as well as in batch mode I that is using card reader and line printer).

INPOL was designed for tape storage, and has a sequential file 
structure with an intra-record hierarchy. The data is described by the user in an establishment phase using what would now be called a Data 
Description Language (DDLj . The data description, which in this case 
consists only of logical descriptions of items in a record is stored in the file separately from the data itself. Only one item in the record 
can have the privilege of being a key item, and records in the file are 
ordered according to the value of that item. An item may be declared to 
be multiple (more generally called repeating); that is it may have an indefinite number of occurrences.

The initial loading of data into an empty data base is known as population of the data base. In the case of INPOL, this may be done in 
the updating phase, in which data already loaded may also be modified or 
deleted. Items are checked or validated before being inserted. An example of automatic validation in INPOL is that a date is checked to see 
if it is a proper calendar date, even taking into account leap-years. 
Because updating is performed by copying the complete sequential file, 
a back-up copy is usually available, and thus integrity is easily ensured, at the expense of computer efficiency.

Retrieval is performed in an interrogation phase, using a query 
language, in which search criteria can be specified, as already described 
above. As an INPOL record has only one key item and as the file is sequential anyway, virtually any query is an unforeseen question and implies an 
examination of all the records in the file. When the desired records have 
been retrieved, they can be displayed partially or completely, in an easily 
prescribed manner using a modest report generator, which lacks the full

- 22 -



spectrum of facilities for page layout provided by more sophisticated 
report generators.

Finally INFOL allows restructuring by change of description of 
existing items, or by addition of new items. This is facilitated by the 
fact that after any change to data or description, the entire data base 
is copied.
13. CODASYL systems

The 1971 report of the CODASYL Data Base Task Group defined stan
dards for a GDMS to be used primarily with COBOL as the host language.
It proposed the use of a network structure (see Section 9) to model the relations between records in the data base. Hierarchical relationships are a simple special case of a chain of network sets, and so can also be 
represented.

The report gives the detailed syntax for a Data Definition 
Language (DDL) , and a Data Manipulation Language (DML) for inclusion in 
the COBOL language. A Data Base Description is called a schema, and the 
view of the schema which an individual COBOL user needs, or is allowed to 
have, is called a sub-schema. In the DDL the user is allowed a choice of 
accessing methods for records in sets and by record type, and thus can 
take account of efficiency for foreseen retrievals. Using the DML, the 
COBOL programmer figuratively navigates through the network as he moves 
from set to set.

No query language is proposed in the CODASYL report, while the question of multi-user interaction is dealt with to some extent. Rules are prescribed for avoiding the conflicts which can arise when two users try to update simultaneously the same or closely related data. Also 
security at all levels is provided for restricting access to information m  the data base.

Some well-known CODASYL systems are IDMS (Cullinane Corp., for IBM, I CL and other computers), DMS 1100 (Univac), DBMS-10 and -11 (DEC), and IDS-II (Honeywell).
14. Future GDMS development

Relational GDMS were discussed in Section 10, and it is this data model which is currently receiving the most attention in new systems development. Independently of the data model used, it was felt important to establish a broad outline of standards for future GDMS designs. The 
1975 ANSI SPARC proposals, which have been widely accepted, foresee a 
clear separation between (a) the external schema through which the data is accessed by user programs, and which may be relational, network or which
ever interface is more natural to the user, (b) the conceptual schema which carries the intrinsic structure of the enterprise being modelled, 
and (c) the internal schema which controls the physical storage in the data base. The internal schema can be tuned, for example by adding or 
removing access paths, to match data base use. A system which starts to approach this design is EDMS (by CDC, Brussels, and some universities).

Future GDMS can be expected to have user interfaces allowing queries to be made in more or less natural language, or in a powerful 
formal language according to convenience. The data bases themselves may be distributed over many computers in a communications network.

- 23 -



25

Atomic Atomic 
number weight life life

Fig. 1: An intra-record hierarchy of 3 levels: one record per element. 
The example shows part of a record for manganese, Z = 25.
The arrows show the logical structure.

Fig. 2: A full hierarchial structure showing more nuclear structure
details. Each box on the left defines a repeating group, and 
the example on the right shows how one Z branch of the hierarchy 
might be populated.

- 24 -



a) Example of a limited network structure

b) Example of a full network structure

Fig« 3: Examples of network structure, showing further nuclear structure 
details.

- 25 -



Domain Z A 1 life

Tuple 1 25 50 1.76 min ...
2 25 51 46.2 min
3 25 52

Domain Z A E-level Spin Parity

Tuple 1 25 50 El
2 25 50 e2 ...
3 25 51 e3 ... ...
4 25 51

Domain Z A E-level Gamma

Tuple 1 25 50 Ei Til • . .

2 25 50 e2 Ï21 • • •
3 25 50 e2 y 22 • • •

4 25 50 e3 y 3i • • •

Fig. 4: Parts of relations representing the nuclear structure details 
of Fig. 2. The Ej_ and yjj would be actual values in a real 
data base.



CHARACTERISTICS OF GENERALIZED DATABASE MANAGEMENT SYSTEMS

D. Deutsch and E. Fong

Institute for Computer Sciences and Technology 
National Bureau of Standards* 
Washington, DC 20234 U.S.A.

Generalized database management systems are complex and 
diverse software products that are used increasingly by organi
zations of all types. While many applications of database 
technology are highly successful, others do not meet expecta
tions. An important determinant of success appears to be a 
close match between application requirements and database 
management system capabilities. This paper describes charac
teristics that differentiate database management software pack
ages and presents in an appendix a list of software products and 
the computer systems on which they are available.

Key words: Acquisition sources? feature description; GDMS? 
generalized database management systems? product
characteristics? software.

1. INTRODUCTION

The complexity and diversity of modern Generalized Database Manage
ment Systems (GDMS) make them difficult to characterize. An understanding 
of the current state of GDMS technology is important, however, for those 
considering the use of these powerful software tools.

Database management systems are software products used for implement
ing application systems. The increasing use of GDMS packages attests to 
the success of many database applications. Unfortunately, many others do 
not achieve desired levels of performance within expected resource expen
diture levels. Often unsuccessful systems utilize GDMS software that is 
not well matched to application requirements. This paper is aimed at 
those whose interest in the application of GDMS technology exceeds their 
knowledge of these new software tools. The following sections review 
database management acquisition sources and characteristics of GDMS

*This work was supported in part by the U. S. Department of Energy 
(formerly Energy Research and Development Administration) under In
teragency Agreement No. EA-77-A 01-6010, Task No. A050-TI. A CONTRIBU
TION OF THE UNITED STATES GOVERNMENT, THIS NATIONAL BUREAU OF STANDARDS 
PRODUCT IS NOT SUBJECT TO COPYRIGHT.

- 27 -



currently available in the marketplace. The appendix contains a list of 
commercially available GDMS and related software packages and the hardware 
on which they are operable.

Specific database management products and their vendors are identi
fied for illustrative purposes in the following sections and in the appen
dix. Inclusion or omission of specific systems should not be construed as 
a judgement, endorsement, or recommendation by the National Bureau of 
Standards.

2. GDMS ACQUISITION SOURCES

Database management software can be acquired in several ways and from 
many sources. Acquisition methods include lease (rental) and purchase 
agreements where GDMS products are considered separate from other system 
software, and "bundled" arrangements where GDMS software is paid for as 
part of a complete package of hardware and software. GDMS providers in
clude: hardware vendors, software vendors, computer services, universi
ties, and other sources. Each of these sources is discussed in turn 
below. Tables listing a few GDMS packages available from each of the 
source types are presented for illustrative purposes.

2.1 Hardware Vendors

Computer hardware suppliers have traditionally provided operating 
systems and support software to their customers. GDMS software is also 
marketed in this way. Like other software products, GDMS packages are in 
some cases priced separately and in others "bundled" with the hardware. 
In either case, the hardware vendor is also responsible for GDMS software 
support. Many users believe that dealing with a single vendor eliminates 
possible conflicts and clarifies responsiblity. Conversely, detractors of 
this acquisition method claim hardware vendors have a vested interest in 
developing software that "locks-in" users. That is, GDMS as well as other 
software products may be developed in a manner that makes it difficult to 
transport applications to other hardware systems. Some GDMS provided by 
hardware vendors appear in Table I.

Table I - GDMS Provided by Hardware Vendors

1 PACKAGE NAME HARDWARE VENDOR | MAINFRAME |

1 DMS-II Burroughs Corp I B6700/7700 1

1 DMS-170 Control Data Corp.| CDC 6600 1

1 DMS-110 0 UNIVAC 1 UNIVAC 1100 Series |

1 IDS-II Honeywell | Honeywell 60/600/6000 |

I IMAGE/3000 Hewlett Packard | HP3000 CX 1

1 IMS IBM 1 IBM 360/370 1

- 28 -



2.2 Software Vendors
The complexity and level of support required by a modern GDMS makes 

this type of software a likely candidate for development as a proprietary 
package. Software vendors provide support including installation, train
ing, documentation and sometimes assistance in application design. Pro
ponents of independent software organizations believe they are more 
responsive to user requirements because of competitive pressures than are 
hardware vendors. Many independently developed GDMS packages are avail
able for IBM hardware; fewer are available for other hardware. Examples 
of GDMS offerings by software vendors are listed in Table II.

Table II - GDMS Provided by Software Vendors

1 PACKAGE NAME SOFTWARE VENDOR
■ 1---------------------1
1 MAINFRAME | 
■ 1 - -

1 ADABAS Software Ag

1 1 
i i 
1 IBM 360/370 1 
1 Siemens 4004 | 
1 UNIVAC 70 series I 
■ i I

1 IDMS Cullinane Corp
1 1 
1 IBM 360/370 1 
1 UNIVAC 70 series | 
■ 1 1

1 INQUIRE Infodata System, Inc. 1 IBM 360/370 1 
■ 1 1

1 MODEL 20 4 Computer Corporation 
of America

1 IBM 360/370 1
1 1 . i i

1 System 2000 MRI System Corp. 1 IBM 360/370 1 
I CDC 6000 series | 
1 UNIVAC 1100 seriesl .|---------------------i

2.3 Computer Services

Access to GDMS software can be acquired through the purchase of com
puter services. The user pays for on-line and/or batch access to a 
hardware system that provides one or more GDMS packages (often at an addi
tional charge). This type of arrangement is sometimes advantageous: it 
allows access to GDMS software without acquisition of specific hardware; 
the burden of installation and maintenance of the GDMS software falls on 
the computer service organization rather than on the user; and a prototype 
application can be developed prior to a total commitment to a specific 
GDMS. A disadvantage can be cost; time-sharing (on-line) and service- 
bureau (batch) charges often exceed those of in-house GDMS installations. 
Some organizations do not like to be dependent on outside computer service 
firms because they believe it reduces their control over critical applica
tions and information.

GDMS provided by computer time-sharing and service firms vary with 
the hardware systems used. Table III shows some GDMS packages provided by 
major domestic U.S. computer service organizations.

- 29 -



Table III - GDMS Provided by Computer Service Organizations

I GDMS PACKAGE NAME 1 COMP SERVICE 
— 1 — —

MAINFRAME |

1 System 
I DML 
1 ALADIN

2000

1
1
1 INFONET
1
1I _ _

UNIVAC 1108 |

I System 2000
1 -
1 Cybernet _ 1 _________ CDC 6600 |

1 DMS-2
1 — --
1 GE MARK III 1 _ __ Honeywell 6088 |

1 System 2000 
I System 1022 
I INQUIRE 
I RETRIEVE

1 —
1 Tymshare
1
1
1
11

IBM 370/158 | 
PDP 10 | 
IBM 370/158 | 
SIGMA 9 |

2.4 Universities

Many of today's commercial GDMS packages began as research projects 
in universities and other laboratories. Several state-of-the-art systems 
are currently available from their developing institutions. While these 
systems generally employ innovative techniques, they are rarely as com
plete and as fully tested as those available commercially. The systems 
are frequently distributed free or with only a nominal charge, but test
ing, maintenance and support can not be expected to meet commercial stan
dards. The systems are therefore typically of interest primarily to other 
research installations. Examples of GDMS implemented by universities and 
available for a nominal fee appear in Table IV.

Table IV - GDMS Implemented by Universities

1 PACKAGE NAME IMPLEMENTER
1-------------------------------- 1
1 MAINFRAME |I I

1 INGRESS U. of California 
Berkeley

1 1 
1 1 
1 PDP-11 1
1 1 
1 - - - 1

I ZETA U. of Toronto
1 1 
1 PDP-11 1 
1 - - - 1

1 UNIBASE U. of Florida
1 — 1 
1 IBM 360/370 or any machine | 
1 with full ANS Cobol 74 | 
1-------------------------------- 1

2.5 Other Sources

GDMS are also available from sources other than those listed above. 
In the United States a number of GDMS have been developed with Federal 
government funding, and are therefore in the public domain. Some of these 
systems are available at no charge, but like the university developed sys
tems they may lack even rudimentary maintenance and updating support. 
Other, however, are available through software vendors? these are

-  30 -



typically priced and supported like proprietary software. Table V in
cludes representative systems developed initially under U. S. government 
contract.

Table V - GDMS implemented with U. S. Federal Funding

| PACKAGE NAME IMPLEMENTER MAINFRAME |

I GIM 2 TRW IBM 360/370 | 
PDP-11 |

I NIPS Defence Intelligence 
Agency

IBM 360/370 |

I MIDMS Defence Intelligence 
agency

IBM 360/370 | 
Honeywell 6000 series |

I WWDMS Honeywell Honeywell 6060 |

I MIRADS National Aeronautics 
& Space Administration

UNIVAC 1108 |

3. FEATURES OF GDMS SOFTWARE

Despite the universality claimed by many GDMS software vendors, all 
current systems favor one pattern of use over another. A method for 
describing and classifying GDMS software is necessary so that capabilities 
can be matched to application requirements. Unfortunately, there is no 
taxonomy for GDMS that is both comprehensive and unambiguous.

This paper discusses some of the features that characterize and dif
ferentiate GDMS software packages. It is recognized that specific GDMS 
products may not be easily described in this framework; some may seem to 
fit in several classes while others may not be properly described by any. 
The feature analysis approach, however, does appear to be useful for 
understanding the nature of any differences among currently available GDMS 
software packages.

The feature list approach for description of database management
software is not new. Two previous efforts were widely distributed and
provided the framework for this analysis: the CODASYL Technical Report of
May 1971 [1], and NBS Technical Note 887 issued in November 1975 [4].

The features of GDMS software are described below under five major 
headings: computer environment, secondary storage structures, user inter
faces, security features, and implementation orientation. Each heading is 
further subdivided as necessary to describe more detailed capabilities and 
functions.

- 31 -



Whenever a GDMS is acquired it must be carefully matched to the com
puter environment in which it will be used. GDMS packages are generally 
designed to operate on a specific manufacturer's hardware and to interface 
with particular operating systems, telecommunications packages, and the 
like. Some important considerations regarding computer hardware and sys
tems software are discussed below.

Hardware. Database management systems are generally developed for 
one or more specific mainframes or family of central processors. With the 
exception of systems designed by hardware vendors specifically for their 
own equipment, GDMS packages are most often developed to operate on IBM 
equipment because of the large number of IBM installations. Nevertheless, 
an increasing number of these software packages are developed specifically 
or converted for use on hardware manufactured by other vendors. Even when 
a GDMS will be used on hardware produced by a specified vendor, the confi
guration must be adequate to support the GDMS software. Some hardware 
characteristics that impact GDMS software are:

* Mainframe

—  manufacturer and model

—  minimum main memory requirement

—  required optional features

* Secondary Storage

—  media and speed

—  minimum capacity

* Input/Output Capabilities (e.g. terminals supported)

Systems software. GDMS packages must be closely linked to systems 
software; indeed, it is sometimes useful to think of a GDMS as an exten
sion of the operating system. This close working relationship causes the 
GDMS to be very sensitive to apparently minor (from the user's perspec
tive) differences in systems software. Types of systems software that 
must be carefully matched to specific versions required by candidate GDMS 
include:

* Operating System

* Communications/Teleprocessing Interface

—  terminals supported

—  re-entrant versus self-modifying (see 
implementation orientation below)

* Input/Output Access Methods

* Language Translators (Compilers/Assemblers)

—  for GDMS source code

—  for programs interfacing with GDMS

3.1 Computer Environment

- 32 -



3.2 Secondary Storage Structures

Database management systems are concerned with storing, maintaining 
and retrieving large quantities of data. To accomplish these objectives, 
GDMS provide mechanisms for structuring data on mass-storage devices. Two 
conceptual views of data characterize modern GDMS packages: the logical, 
or user's view, and the actual physical representation of data in computer 
storage. Each is discussed below.

Logical view of data. The logical view of data deals with the 
users' perception of data without concern for how data items are physical
ly stored. The sum of all aspects of the logical view of data for a GDMS 
is sometimes referred to as the applicable "data model". Characteristics 
of logical data views are listed below.

* Basic Units

—  fields/attributes

—  records/tuples

—  files/relations/realms

* Operations

* Data Types

—  character/fixed point/floating point

—  fixed versus variable length

* Logical (Data) Structure

—  flat

—  hierarchial (tree) 

-- network (plex)

—  other
• relational
• set-theoretic

Physical representation of data. Physical organization and 
representation of data on mass-storage is an important determinant of GDMS 
efficiency. The user need not be intimately aware of the details of phy
sical data representation; indeed, a single logical data view can be im
plemented using various physical representations. However, physical 
storage strategies differentiate alternative GDMS packages and are the 
result of major design decisions and trade-offs. An understanding of as
pects of physical organization such as those listed below is useful.

* Basic Unit of Stored Data

—  character

—  computer word

—  field/attribute value

—  record/tuple

- 33 -



* Physical (Storage) Structure
—  sequential
—  indexed sequential
—  random

* Degree of Physical Separation of Data and Relationships
* Treatment of Redundancy

—  redundant recording of data at all 
levels

—  exploit redundancy to reduce database size:
• at field/attribute level
• across records/tuples in 

files/relations
• across entire database

3.3 User Interfaces

The interfaces between users and GDMS vary greatly both with respect 
to capabilities that can be invoked and ease of use. Five aspects of user 
database interface are discussed below: data definition, external link
ages, database maintenance, data retrieval, and user aids.

3.3.1 Data definition. Generalized database management systems provide a 
facility for data definition that is separate from data manipulation pro
cedures. Data definition languages (DDL) take different forms; some are 
highly tabular, others have positional (card column) orientations, and a 
few are relatively free form. A DDL is used for specifying names, types, 
and special characteristics for data entities. Relationships among data 
item classes are usually communicated through the DDL, for example, which 
fields are to function as selection "keys." Security and integrity res
trictions may also be specified with the DDL. The resulting definition is 
sometimes called a "schema".

3.3_.2 External Linkages. User written programs often require access to 
data maintained by a GDMS. Some GDMS provide an external programming 
language interface as the sole or primary access mechanism. In addition 
to these "host language" GDMS, some systems which are "self-contained" (in 
that they have their own query language) also provide procedural language 
interfaces. External linkages usually take the form of subroutine calls 
that can be embedded in programs written in languages such as COBOL, FOR
TRAN, PL/1 or assembly language. Some host language systems provide GDMS 
macros that are inserted in user programs and translated into the ap
propriate subroutine calls by a preprocessor. Some GDMS provide no inter
face at all to external programming languages.

3.3̂. 3 Database maintenance. Database maintenance refers to the initial 
loading of a database, database restructuring, and updating existing data
bases. These three maintenance tasks are described and features charac
terizing alternative GDMS products are listed in the following paragraphs.

- 34 -



Database Loading - provides the initial instance of the database. This 
process is sometimes termed "population" as it involves filling out the 
data framework established by the Data Definition Language with an actual 
"population" of data instances. Aspects of population facilities include:

—  nature of data source
• media (i.e., cards, tape, disk)
• organization (usually sequential)

—  data integrity features
• data type checks

(numerical versus alphabetical, e.g.)
• range checks

(age between 21 - 65, e.g.)
• match to value list

(items must appear on a list of 
permissible items)

• procedural checks
(right user, right time, etc.)

—  data conversion
• encryption
• character translation
• encoding/decoding

Database Restr uctur ing - is the modification of the data definition for an 
existing database. Possible modifications include adding or deleting data 
elements and changing relationships among data item classes. The most 
straightforward way to restructure is to unload the database, change the 
definition, and populate the database using the modified schema. Some 
GDMS products provide utility programs for assisting the user in the res
tructuring task. Others allow limited restructuring without going through 
the tedious and costly unloading and repopulating process. A few GDMS 
software packages offer extensive restructuring capabilities that are au
tomatically invoked via a structure modification language.

Database Updating - is concerned with changing the data contents of an ex
isting database without modifying the data definition. Data instances are 
added, changed and deleted using GDMS updating features. GDMS packages 
having their own query language often have a similar language for updat
ing. Other systems allow updating from high-level language programs. Some 
aspects of database updating facilities are listed below.

—  level where update may occur
• individual data items/attribute values
• data records/tuples
• files/relations
• entire databases

—  pointer consistency assurance 
(system automatically adjusts pointer
references when necessary)

—  Integrity constraints
(validation of updates similar to that 
provided for database population)

- 35 -



—  security features (see below)
—  lockout (protection against 

simultaneous update by 2 or more users)
• level of lockout (record, file, etc.)
• type of access precluded (update only, 

update and query access, etc.)
—  restart and recovery

(see section 3.4.3., below)

Data retrieval. Retrieval features of GDMS packages allow users to 
select and extract data from a database, to order and perform calculations 
on that data, and to format and display the results. Data retrieval capa
bilities vary widely in available GDMS software. Characteristics of data 
retrieval mechanisms are listed below.

Selection - is concerned with identification of the specific data items 
that are of interest to the user. The selection process may be specified 
in a "host" programming language through calls to the GDMS, or may be com
municated to the GDMS through a "query" language. In the latter case, 
several query language features that should be considered when evaluating 
alternative GDMS include:

—  general language format
• system prompted, with "menu" choices
• English-like, with keyword commands
• programming language-like

—  specification of selection criteria
• conditional expressions 

(e.g. AGE GREATER THAN 32)
• logical operators

(SALARY EQ 10K AND AGE LE 65)
• range searching

(e.g. AGE BTWN 20, 50)
• testing for presence/absence
• alphanumeric selection aids

(e.g. partial strings, "don't care" 
characters, multiple word phrases)

—  predefined queries
• storage
• retrieval
• modification

—  range of query targets
• single file
• multiple file

- 36 -



Output - involves the extraction and presentation of selected data in
stances. While all GDMS packages provide some output facilities, their 
capabilities range from standard "unformatted" displays to sophisticated 
report writers. Some GDMS require that user written programs do all out
put. Many GDMS offer an array of output facilities. Features of output 
facilities include:

—  method of obtaining output
• user written programs
• selection among options - i.e., response 

to system prompted dialogue
• standard "unformatted" output

—  display media flexibility
• primary system 1/0 device 

(e.g. , terminal)
• on-line printer
• off-line printer
• graphic display
• other, e.g. photocomposition devices

-- machine readable files produced
• media
• format

—  report formatting
• titles
• headers
• totals and subtotals

Computation - facilities usually in the form of arithmetic and statistical 
functions allow users to process retrieved data. Built in capabilities 
most often include the determination of totals, averages, counts, maxima 
and minima. Some systems also provide limited statistical functions such 
as calculation of variances and standard deviations. Of course, many GDMS 
allow user programs to access databases; when these systems are employed, 
any computation possible in the host (user program) language can be done 
on data retrieved from the database.

Sorting - is the ordering of retrieved data in a specified sequence using 
one or more data items as "sort keys". Some GDMS provide sorting facili
ties that can be invoked on-line; others are available only to batch 
users. When a GDMS does not have an integral sorting capability, one is 
often available as a utility program in the operating system library. 
Features that differentiate available GDMS sorting facilities include:

—  mode of access
• on-line
• batch

—  sort key formulation
• number of data items
• requirement for sort keys 

to be indexed

- 37 -



—  sequence options

—  user specified collating sequences

3.3.5 User aids. User aids include features designed to assist in search 
formulation and other aspects of GDMS usage. Types of user aids and their 
characteristics are listed below:

* Search formulation aids including:

—  phonetics, i.e., same sounding but 
differently spelled data names 
recognized in search requests

—  synonyms

—  access to (display of) data 
element dictionary

—  "natural English" recognized

* Other GDMS usage aids such as:

—  "HELP" or "EXPLAIN” command

—  on-line documentation

—  "browsing" feature to scan data

3.4 Security Features

GDMS security features provide mechanisms for selectively limiting 
access to the database, for identification of legitimate users, and for 
backup, restart and recovery. Each of these security functions is dis
cussed below.

3.4._1 Database protection. Modern GDMS packages provide security "locks" 
at various levels; that is, classes of users may be allowed to reference 
specified portions of the database and precluded from accessing others. 
Some GDMS can differentiate according to type of activity, allowing, for 
instance, retrieval but not update. Important characteristics of GDMS 
protection capabilities are described in the following paragraphs.

Protection level - is concerned with the logical levels at which users can 
specify access controls. Many GDMS permit the user to define security 
locks at several different levels including: for the entire database; for 
specific files, relations or realms; and for specific data elements or at
tributes. More advanced systems may be able to differentiate among 
records or tuples according to the contents of data fields; for instance, 
allowing mid-level managers to retrieve personnel records for all those 
under their supervision but not for their superiors.

Activity differentiation - is the ability to differentiate among classes 
of users and to provide different database access privileges to each user 
class. Some users may be allowed only to retrieve, some to retrieve and 
modify, others to create and delete data, and a few to restructure and de
fine databases.

-  38 -



Authorization mechanisms. Database management systems use different 
strategies for identifying legitimate users and determining access 
privileges. Active and passive mechanisms are employed. Active security 
schemes generally use passwords to differentiate among classes of users. 
Passive mechanisms recognize and differentiate users based on unique iden
tifiers known to the system software and hardware; frequently used passive 
identifiers include those maintained by the system accounting/log software 
and unique identification numbers embedded in remote terminal hardware.

3̂ _4._3 Backup, restart and recovery. To protect against system failure due 
to physical equipment or software error, most GDMS provide backup facili
ties and procedures for restart and recovery of lost transactions and 
database entries. Backup mechanisms also provide the audit trail needed 
for proper accountability and internal control. Types and characteristics 
of backup, restart and recovery facilities that differentiate GDMS 
software are listed below.

* Log tape (audit trail)

—  record all transactions against 
database

—  record only database changes

* Session restart

—  system maintained working data set

—  automatic versus user coded procedures

—  "check point" recording of database 
and procedural status

* Database recovery

—  user coded

—  GDMS provided procedures

* Restart

—  automatic restart and recovery

—  user invoked restart and recovery

3.5 Implementation Orientation

This final feature class is a catch-all for GDMS characteristics that 
do not fall in the previous four categories. The heading, implementation 
orientation, refers to the fact that many of the features describe imple
mentation details and design decisions that impact the orientation of a 
GDMS; that is, they affect the type, mode and level of usage for which the 
systems are most suited. Included in this potpourri of system charac
teristics are the items discussed below.

3.5.1 Host language versus own language. Most GDMS currently available 
were initially developed as either host language or self-contained systems 
with their own user interface language (see "user Interfaces - External 
Linkages" above) . Today many host language systems offer query language 
processors and many own language GDMS provide procedural language

- 39 -



interfaces. Nevertheless, the initial orientation of the GDMS often is 
indicative of system strengths and weaknesses.

3.5.2 Mo(3e of use. Closely related to the host versus self-contained di
chotomy is the orientation of GDMS toward batch or on-line usage. Host 
language systems tend to be batch oriented while own language GDMS are 
designed primarily for on-line query processing. Because GDMS are embed
ded in and closely tied to operating system hosts they share many of the 
same performance characteristics including any orientation toward on-line 
or batch operation.

Available systems differ with respect to the capabilities that are 
available to the on-line user and those that can be performed in batch 
mode. Few GDMS provide all system facilities on-line. GDMS capabilities 
that may be either on-line and/or batch include:

* Data definition

* Database maintenance

—  population

—  update

—  restructuring

* Data retrieval

3_.5.2 Re-entrant versus self modifying. When software is implemented so 
that it does not modify itself it is termed re-entrant. Single copies of 
re-entrant GDMS program modules can simultaneously serve multiple users. 
Conversely, if GDMS software is not re-entrant, each active user must have 
a copy of the database programs resident in main memory.

_3._5._4 Teleprocessing mode. Data communications software provides the link 
between the remote terminal user and the system. If the data communica
tion system used by a GDMS is single-thread, it serves only one user at a 
time; when the teleprocessing interface software receives a transaction it 
serves only that user until all requirements have been satisfied and the 
result is returned to the user. Multi-thread communication software al
lows for convenient use by more than one user.

3.5._5 Centralized versus dispersed. GDMS have traditionally been designed 
to maintain one or more large databases at a central processing location. 
This is contrasted to distributed database environments where data and/or 
processing facilities are distributed among multiple hardware systems. 
Distributed databases are receiving increasing attention in universities 
and research laboratories. While all of the implementation problems asso
ciated with distributed processing have not been solved or even identi
fied, it is evident that database software must bear a substantial part of 
the burden imposed by dispersed storage and processing of data [7].

3.5.6 Design trade-offs. When the array of available GDMS packages is re
viewed, it is important to recognize that all systems represent design and 
implementation compromises. Two important GDMS software design trade-offs 
are described in the following paragraphs.

- 40 -



Update versus retrieval speed - Fast response to queries is generally 
achieved through complex data structuring that requires substantial 
machine resources and time to update. The converse is also generally true; 
rapid updates can occur only when the data structuring used to speed re
trieval is relatively simple and easy to modify.

Response time versus mass-storage utilization - the complex data relation
ships necessary for fast response to user commands generally require sub
stantial amounts of secondary storage; one modern GDMS generates an object 
database that is seven to eight (7 to 8) times as large as the source data 
when all fields are inverted (indexed). On the other hand, one research 
system that achieves a data explosion factor of less than one by exploit
ing redundancy does so at the cost of increased processor time and slower 
response to some user demands.

4. SUMMARY

Many database management systems have been developed in recent years. 
The proliferation of these software tools makes the selection of GDMS for 
specific applications difficult. The previous sections presented informa
tion designed to assist the potential user of GDMS technology by surveying 
acquisition sources and describing important features that characterize 
and differentiate GDMS products. These general guidelines are applicable 
to specific database management software evaluation and selection tasks.

-  41 -



REFERENCES

1. CODASYL Systems Committee, Feature Analysis of Generalized 
Data Base Management Systems, CODASYL Systems Committee 
Technical Report, May 1977.

2. Datapro Research Corporation, A Buyer 1s Guide to Data Base 
Management Systems , Datapro Feature Report, Delran, New Jer
sey, Sept 1976.

3. Fife, D. W. et.al, A Technical Index of Interactive 
Information Systems, National Bureau of Standards, Technical 
Note 819, March 1974.

4. Fong, E., J. Collica, and B. Marron, Six Data Base Management 
Systems: Feature Analysis and User Exper iences, National 
Bureau of Standards, Technical Note 887, Nov. 1975.

5. Koehr, G. J., et. al., Data Management Systmes Catalog, MITRE 
Corporation Report MTP-139, Jan 1973.

6. International Computer Programs Inc., A Catalog of Saleable 
Software, ICP Quarterly, Indianapolis, Indiana, 1973.

7. Rothnie, J. and N. Goodman, A Study of Updating In a 
Redundant Distributed Database Environment, Technical Report 
CCA-77-01, Computer Corporation of America, February 1977.

8. UCLA Extension Program, Comparative Data Base Management 
Systems Conference, Course Notes, University of California, 
Los Angeles, California, 1975.

- 42 -



APPENDIX: CANDIDATE SOFTWARE PACKAGES

The list of software systems contained in this Appendix was compiled 
over a period of years at the U. S. National Bureau of Standards. Every 
attempt was made to make this compendium comprehensive and error-free. 
Because of the dynamic nature of the database management field, however, 
errors and omissions are inevitable. Any such deficiencies are solely the 
responsibility of the authors.

The compilation and maintenance of the list was motivated by the 
desire to assist potential users of database management and related 
software by providing a catalog of available products. To serve a variety 
of users, the criteria for inclusion of software systems were broad, and 
consisted of the following:

1. The software system had to be classified either as a database 
management system, as a retrieval and report formatting sys
tem, or as a bibliographic and text searching system.

2. The software system could not have been designed solely for 
in-house use; it had to be available to the general public.

3. The software system had to be applicable to a range of infor
mation processing problems; that is, it had to be generalized 
rather than designed for a special processing purpose.

4. The software system had to be operational.

It should be noted that these criteria allowed the inclusion of 
software not strictly classified as generalized database management sys
tems. Included in the list are software products that are correctly 
described as bibliographic and text searching systems, or as retrieval and 
report writing systems. An attempt has been made to label in the 're
marks' column systems falling in these categories to differentiate them 
from true GDMS. Systems that are available only for minicomputer instal
lation are also noted.

The decision to be inclusive rather than limiting the entries in this 
appendix to only products fitting some narrow definition for GDMS was 
motivated by the belief that potential users are not concerned with wheth
er a specific system is strictly defined as a GDMS; what they want is 
knowledge of candidate software from which they can select tools for solv
ing their particular problems. It is in this spirit that the list is 
presented.

System trade names, vendors or other system sources, and descriptive 
remarks appear in tabular form in the following listing. Inclusion of a 
system in no case implies a recommendation or endorsement by the National 
Bureau of Standards. Similarly, the omission of a system does not imply 
that its capabilities are less than those of included systems. The infor
mation presented was obtained primarily from existing literature and new 
products announcements [1-6,8].

- 4-3 -



Package Name 

ADABAS

AKSESS

ASAP

ASI-ST

BASIS

BRS

CULPRIT

DATA CENTRAL

DATACOM

DBMS-10

DBMS-11

DIALOG

Supplier 

Software Ag

Response Technology 
Inc,

Information Associates, 
Inc,

Applications Software, 
Inc.

Battelle Memorial In
stitute

Bibliographic Retrieval 
Service

Cullinane Corp.

Meade Technology, Inc.

Computer Information 
Management Co.

RAPIDATA

Digital Equipment Corp. 

Lockheed Research Lab.



Computer Remarks

IBM 360/370 
Siemens 4004 
Univac 70 and 9000

Burroughs B5500 
Burroughs B5700

IBM 360/370

IBM 360/370
UNIVAC 70/40 UP Report Writing System

CDC 6000 Series
UNIVAC 1100 Series Bibliographic Text-Searching 
Sigma 7 & 9 System
DEC PDP 10 & 20

IBM 360/370 Bibliographic Text-Searching
System

IBM 360/370 
UNIVAC SERIES 70

Report Writing System

IBM 360/370 Bibliographic Text-Searching 
System

IBM 360/370

DEC PDP-10

DEC PDP-11

IBM 360/370 Bibliographic text-searching 
system



4>Ul

DMARS

DML

DMS 1100 

DMS 170 

DMS-II

DMS-2

DS/3

Package Name

DYL-260

EASYTRIEVE

EDMS

EXTRACTO

GIM

First Data Corporation 

Computer Sciences Corp 

Sperry UNIVAC 

Control Data Corp. 

Burroughs Corp.

General Electric Time
sharing Service

System Development 
Corp.

DYLAKOR Computing Sys
tems

Pansophic Systems, Inc

Xerox Information Sys
tems Group (XDS)

AQUILA BST (1974) LTD. 

TRW Systems Group

Supplier

GIS IBM Corporation



Computer Remarks

DEC PDP-10

UNIVAC 1108

UNIVAC 1100 Series

Cyber 17 é

Burroughs B6700/7700 
Burroughs B1700

Honeywell 6088

IBM 360/370

IBM 360/370 Report Writing System

IBM 360/3*70 Report Writing System

XDS SIGMA 6/7/9 
XDS SIGMA 560

IBM 360/370 
Honeywell 
UNIVAC 
SIEMENS 
UNIDATA

Report writing System

IBM 360/370 
UNIVAC 1100 Series 
DEC PDP/11

IBM 360/370



IDMS

IDS-II

IMS

IMAGE

INQUIRE

INGRES

1RS

MAGNUM

MANAGE

MASTER
TROL

MARK IV

MARS VI 

MDBM

Package

Cullinane Corp.

Honeywell Information 
System

IBM Corporation

Hewlett-Packard

INFODATA Systems, Inc.

University of Califor- 
nia, Berkeley

SIGMA Data Computing 
Corporation

TYMSHARE Time-Sharing 
Service

Xerox Data Systems 

CON- Lawrence Livermore Lab.

Informatics, Inc

Control Data Corp. 

Honeywell

Name Supplier



IBM 360/370 
UNIVAC Series 70 
DEC PDP-11 
ICL 2900

Honeywell 60 
Honeywell 600 
Honeywell 6000

IBM 360/370

HP2000/3000

IBM 360/370

DEC PDP-11

IBM 360/370

IBM 360/370

SIGMA 5/6/7 

CDC 6600, 7600

IBM 360/370 
UNIVAC Series 70

CDC 6000 Series

Honeywell Series 60

Computer Remarks

Mi ni-computer DBMS

Retrieval and Report Writing 
System

Bibliographic Text-Searching 
System

Retrieval and Report Writing 
System



Package Name 

MIRADS

MODEL 204

MULTIBASE

NOMAD

OLIVER

ORBIT

QUERY 5/QUERY 
3

Qwick Qwery

RAMIS

REALITY

RECON

SCORE

Supplier

NASA Marshall Space 
Flight Center

Computer Corporation of 
America

Computer System Inter
national, Inc.

National CSS Inc.

On-Line Systems, Inc.

System Development 
Corp.

AZREX, Inc.

Consolidated Analysis 
Centers, Inc.

Mathematica, Inc.

Microdata Corporation

NASA, Science and 
Technical Information

Programming Methods 
(GTE)



Computer

UNIVAC 1108

IBM 360/370

IBM 360/370

IBM 360/370

DEC PDP-10 and Up

IBM 360/370 Bibliographic Text-Searching
System

IBM 360/370 Retrieval and Report Writing
DEC PDP-10 system
CDC 600 and CYBER 
Burroughs B3500

IBM 360/370 
UNIVAC 1108 
CDC 3150, 6600 
Xerox SIGMA 5 
Honeywell 600/6000

IBM 360/370

REALITY

IBM 360/370

IBM 360/370 
Burroughs 
Honeywell 
CDC
UNIVAC
NCR

Mini-computer DBMS

Bibliographic Text-Searching 
System

Retrieval and report writing 
system

Remarks



SPIRES

STAIRS

SYSTEM

SYSTEM

TOTAL

UL/1

Package Name Supplier

Stanford University

IBM Corporation

1022 TYMSHARE Time-Sharing
Service

2000 MRI System Corp.

CINCOM Systems, Inc.

UNIVAC Division, Sperry 
Rand Corporation

UNIBASE U. of Florida



Remar ks

Bibliographie Text-Searching 
System

Bi bl iographic Text-Searching 
System

CDC 6000 Series 
UNIVAC 1100 Series

IBM 360/370 
CDC
Honeywell 
UNIVAC 
VARIAN 
DEC PDP-11 
IBM S/3

UNIVAC 70/45F 
UNIVAC 70/55F 
UNIVAC 70/60F

IBM 360/370 or any 
machine with full 
ANS COBOL 74

Computer 

IBM 360/370

IBM 360/370

DEC PDP-10

IBM 360/370



GDMS commercially available in Japan (January 1977)

T. Yamamoto 
University of Tokyo

Reference : Joho Shori (Information Processing Society of Japan),
Vol. 17, No. 10 (Oct. 1976, a special issue on database systems)

A. Domestic machines, supplied by a mainframe manufacturer
Company Name of DBMS Name of Computer System Nature of DBMS (Origin)

Toshiba(TOSBAC) IDS/II ACOS.77 series CODASYL DBTG

Nippon Elec
tric (NEC) ADBS ACOS.77 series CODASYL DBTG

IDS ACOS.77 series Network (Honeywell)
UNI VAC Japan DMS/190 OUK 9400 

OUK 90 series CODASYL DBTG

Hitachi(HITAC)
ADM H8000 series M series Hierarchical (IMS)

PDM H8000 series M series Network

Fujitsu(FACOM) INIS 23O series (Hierarchical?)
AIM M series Network

Mitsubishi(MELCOM) EDMS COSMO/7OO-9OO CODASYL DBTG
DMS-5 COSMO 5OO CODASYL DBTG subset

B. Poreign machines, supplied by a mainframe manufacturer
Burroughs (DMS-II)
CDC (DMS-170)IBM (IMS/VS)UNIVAC (DMS1100)

C. Independent packages (known to T.Y.)
AD ABASBASISIDMSSystem 2000 TOTAL

- 49 -



COST CONSIDERATIONS FOR GENERALIZED DATABASE MANAGEMENT SYSTEMS

D. Deutsch, E. Fong, and J. Collica

Institute for Computer Sciences and Technology 
National Bureau of Standards* 
Washington, DC 20234 U.S.A.

One important factor that must be considered when evaluat
ing whether generalized database management software should be 
used is cost. A methodology and a framework based on the appli
cation life cycle for estimating costs associated with potential 
applications of these new software tools is proposed. Important 
classes of costs are identified and discussed. The problem of 
comparing costs for database oriented versus traditional 
software systems is also considered. Finally, budget guidelines 
for estimating total life cycle costs for generalized database 
management applications appear in an appendix.

Key words: Application; cost; database management; GDMS; life 
cycle; methodology.

1. INTRODUCTION

1.1 Motivation

The proliferation of Generalized Database Management System (GDMS) 
packages in recent years has been accompanied by an especially dramatic 
increase in use of GDMS for diverse applications in organizations of all 
types. The large number of available GDMS products and range of their ap
plications merely add to the compexity of the management decision of 
whether to use traditional or database oriented software tools. The 
determination of costs and benefits associated with the use of database 
mangement software is a necessary step in evaluating whether GDMS technol
ogy should be applied. While some literature does address cost-benefit 
aspects of GDMS software [1], there is no accepted methodology for 
evaluating potential GDMS applications. This paper addresses the cost 
component of the GDMS application evaluation problem.

*This work was supported in part by the U. S. Department of Energy 
(formerly Energy Research and Development Administration) under In
teragency Agreement No. EA-77-A 01-6010, Task No. A050-TI. A CONTRIBU
TION OF THE UNITED STATES GOVERNMENT, THIS NATIONAL BUREAU OF STANDARDS 
PRODUCT IS NOT SUBJECT TO COPYRIGHT.

- 50 -



1.2 Scope

A thorough analysis of a potential GDMS application requires 
knowledge of both costs and benefits for the proposed system. Further
more, determination of the relative trade-offs between GDMS and tradition
al software development approaches requires analyses of costs and benefits 
for non-GDMS based systems as well. The size and complexity of the cost- 
benefit analysis problem for GDMS versus non-DMS based systems preclude 
development of a complete solution here. A necessary first step, the ca
taloging of cost factors, and an overview of a methodology for estimating 
GDMS application costs is presented in the following sections.

The question of benefits derived from GDMS versus non-GDMS based ap
plications is not considered. The reader should be aware, however, of the 
importance of the benefits dimension when evaluating potential uses of 
GDMS technology. While costs of GDMS based systems may exceed those for 
applications using traditional software, database systems often provide 
information that would not be produced by traditional software. Indeed, 
the most important determinant of success is often the benefits derived 
from the GDMS application. Costs must be within reasonable limits, of 
course; but, many database management applications that cannot be justi
fied on the basis of reduced costs are considered overwhelming successes 
because of the additional information and flexibility they provide.

1.3 Overview

The following sections describe a proposed GDMS cost evaluation 
methodology based on identification of GDMS life cycle functions and re
lated cost factors. First an overview of the costing methodology is 
presented. Then the GDMS application development life cycle is discussed. 
Next functions associated with each of the life cycle phases are listed. 
Cost characteristics and a framework for costing GDMS applications are 
presented in the following section. Finally, hypotheses pertaining to 
costs for GDMS versus traditional software systems are discussed. The ap
pendix contains budget guidelines for estimating GDMS application costs 
derived from the authors' experience with several actual systems and ap
plications.

2. PROPOSED GDMS COST EVALUATION METHODOLOGY

Any methodology for evaluating costs must identify specific factors 
contributing to total cost. A well established approach is to describe 
the process for which costs must be determined first at a high level, and 
then in increasingly greater detail until quantifiable cost factors have 
been identified [2]. Such an approach is proposed for evaluating GDMS 
costs.

The proposed cost evaluation methodology starts with a GDMS applica
tion life cycle description of the phases, from perception of need to 
operation, that all database applications go through. For each life cycle 
phase, functions are identified. Then, specific cost factors are associ
ated with each function. Finally, units of measure and important parame
ters for describing cost factors are incorporated in functional relation
ships suitable for deriving cost estimates.

- 51 -



Figure 1 graphically depicts the proposed GDMS application cost 
evaluation methodology. Also included on the figure are references to the 
subsequent sections of this report. The dotted line separates the topics 
addressed by this paper from those left for future work; no attempt is 
made to determine quantifiers, parameters or functional relationships, nor 
to present a comprehensive example of the cost evaluation methodology. The 
following three sections consider the nature of the GDMS application life 
cycle, a preliminary list of functions performed within each of the life 
cycle phases, and approaches to the GDMS application costing problem 
respectively.

COST ESTIMATES

GDMS APPLICATION COST EVALUATION METHODOLOGY 
(With Reference to Report Sections)

Figure 1

- 52 -



3. GDMS APPLICATION LIFE CYCLE

The life cycle concept is widely accepted and used for understanding 
and controlling software application systems. Although there is no agree
ment on specific phases and terminology, there is a consensus regarding 
the essential characteristics of life cycles [3,4]. The life cycle phases 
illustrated in Figure 2 are both consistent with others appearing in the 
literature and descriptive of GDMS applications throughout all stages of 
their existence.

tools

GDMS APPLICATION LIFE CYCLE PHASES 

Figure 2

- 55 -



The GDMS application life cycle is initiated by a perception of need 
and passes through four other phases: analysis, system engineering, appli
cation development, and operations. Each phase is discussed briefly 
below.

3.1 Perception of Need
The application life cycle begins when there is a recognition of an 

information processing problem or need for information. This recognition 
must be at an organizational level that is sufficiently high to commit the 
resources required to develop a problem solution. When there is a 
predisposition toward one solution technique this phase may include a 
study to determine the feasibility of the proposed approach. Once an in
formation requirement is recognized, this life cycle phase is concerned 
with establishing a mechanism for developing a system to satisfy the need.

3.2 Analysis and General Design
The analysis and general design phase deals with surveying informa

tion requirements and preparing general specifications for processing sys
tems to satisfy these requirements. This life cycle phase includes sys
tems analysis and general design activities similar to those carried out 
in traditional (non-GDMS based) software development efforts. Information 
and processing requirements are documented in sufficient detail to support 
subsequent design, acquisition and development decisions.

3.3 System Engineering
System engineering is concerned with identifying and acquiring the 

software and hardware capabilities necessary for satisfying requirements 
identified during the analysis and general design phase. Activities oc- 
curing during this phase are all directed toward providing the tools re
quired to solve the information processing problem. For database oriented 
systems, acquisition of the most suitable GDMS software tool can be a com
plex and costly problem that has no parallel in non-GDMS based software 
development projects.

3.4 Application Development
The application development phase includes all of the activities 

necessary to build an information processing system. Using the hardware 
and software tools acquired during system engineering, this phase is con
cerned with the design and implementation of a GDMS application system. 
Tasks carried out include the creation of data dictionary/directory en
tries, design and definition of logical and physical database structures, 
and construction and integration of the application system. Embodied in 
this phase are the traditional "programming" tasks of coding, debugging, 
testing and documenting.

3.5 Operation
The last life cycle phase includes all of the activities related to 

the day-to-day use of the application system. Operation is concerned 
also with maintenance and modification of the application system. Mainte
nance must be performed because imperfections ("bugs") are present in even 
the best software. Modifications are required because organizations and

_ 54 _



their environments are dynamic; the systems that serve them can not be 
static.

Throughout the life of an information system, continual maintenance 
and modification is necessary in order to respond to changing requirements 
and to retain an acceptable performance level. Note that the essence of 
the life "cycle" concept is reflected by the arrow from operation to per
ception of need in Figure 2. When changes that are necessary to maintain 
performance and/or to meet changing requirements become too difficult or 
costly, the cycle begins again with a new perception of need.

4. GDMS APPLICATION LIFE CYCLE FUNCTIONS

The proposed cost evaluation methodology requires the identification 
of specific functions performed within the framework of the GDMS applica
tion life cycle. The objective is to catalog activities for which costs 
are incurred. Then, the function list can be used as a guideline for 
those evaluating costs associated with existing or proposed GDMS applica
tions .

In the following sections, functions are listed and briefly discussed 
for each of the five life cycle phases defined above:

4.1 Perception of Need Functions

4.1.1 High-level recognition of problem. Top management must be aware of 
an information processing deficiency and must be willing to commit the 
resources required for developing a solution. While this recognition 
function may not require any resource expenditures, many organizations 
establish procedures and managerial committees for monitoring information 
processing activities. A primary reason for establishing this type of 
oversight mechanism is to recognize deficiencies before they become criti
cal .
,4.1.2 GDMS feasibility study. Often, in addition to recognizing an infor
mation processing deficiency, there is a predisposition for employing a 
particular solution mechanism. A feasibility study attempts to determine 
the gross feasibility of a particular solution approach through a cursory 
review of system requirements and their match to the capabilities of the 
proposed solution. Feasibility studies are frequently carried out for po
tential GDMS applications. When an existing system made up of traditional 
software is straining under the load of continually changing requirements, 
there is often a strong inclination to gain the needed flexibility though 
the use of GDMS technology.
4.1.3 Establish system development mechanism. After recognizing an infor
mation processing problem, making a commitment to find a solution, and 
determining gross feasibility, this life cycle phase is concerned with es
tablishing a problem solving mechanism. This task may require no 
resources other than the time to schedule and assign in-house personnel. 
On the other hand, if assistance is required from outside the organiza
tion, some costs may be incurred selecting preferred consultation arrange
ments .

-  55 -



4.2.1 Determine information requirements. The analysis and specification 
of application requirements is an important and time consuming task. In
formation requirements must be specified and documented to provide a basis 
for subsequent design decisions. The resulting requirements specifica
tions must indicate what information is required, when and how frequently 
it must be provided, and must include quantitative and qualitative 
descriptions of the desired information products.

4.2.2 Develop processing specifications. Based on the information re
quirements, a general design for a hardware/software system is produced. 
That is, a processing system capable of satisfying the identified informa
tion needs is defined. For database oriented applications, this function 
includes the specification of necessary GDMS characteristics and features; 
if a competitive acquisition process is anticipated, GDMS feature descrip
tions can take the form of a formal Request for Proposal (RFP).

4.2 Analysis and General Design Functions

4.3 System Engineering Functions

4.3.1 Hardware/software acquisition. Selecting and acquiring 
hardware/software systems from among candidate configurations is the first 
step in the system engineering phase. The specifications prepared during 
the analysis and general design phase are matched to potential processing 
tools. Database management system feature requirements are compared to 
capabilities of available software packages.

The acquisition task can vary from a cursory review of existing 
resources to a full-fledged competitive hardware and software acquisition. 
Where hardware resources are fixed, it is important to recognize that GDMS 
packages frequently require specific hardware features and capacities and 
operate only under certain versions of operating systems and support 
software. Consequently, the decision to use any GDMS software that is not 
currently installed and operational must be considered carefully. A pru
dent approach is to both install and use, possibly on a prototype applica
tion, a new GDMS to assure its viability (see "installation and testing" 
below).

4.3.2 Documentation and training. Hardware/software tools must be sup
ported by adequate documentation and knowledgeable support personnel. Da
tabase management software frequently requires a sizeable investment for 
training of technical personnel. Instruction and materials may be paid 
for separately or they may be "bundled," that is included in the cost of 
the GDMS software. Even when there is no additional charge for training, 
a substantial commitment of personnel time is required.
4.3.3 Installation and testing. Installation of database management 
software is a complex task that often requires time, personnel and machine 
resources similar to those necessary for installing a new operating sys
tem. Indeed, installing a database management system frequently requires 
major modifications in the existing operating system and other support 
software. Even after an apparently successful GDMS installation, the 
capabilities of the newly installed software must be thoroughly tested. 
It is prudent to prepare a benchmark or prototype application to test the 
range of GDMS capabilities; vendors' claims and promises cannot be substi
tuted for demonstrated performance in the new computer environment.

-  56 -



4.4 Application Development Functions

4.4.1 Data dictionary/directory development. The bridge between informa
tion requirements and a GDMS based solution is a comprehensive Data 
Dictionary/Directory (DD/D) describing all data elements in the database. 
Ideally, a DD/D is prepared at the beginning of the application develop
ment phase or even earlier. [5,6,7] Regardless of the life cycle phase in 
which it occurs, a data dictionary/directory development effort requires 
substantial amounts of time and of machine and personnel resources. En
tries are required for each identifiable data element? the number of ele
ments in a database of even moderate size is surprisingly large.
4.4.2 Database design. The database design task is concerned with speci
fying the data structures and storage structures that will be used for the 
application. Data structures are logical relationships among data items 
that reflect the users1 perception of the database. Storage structures 
are physical mechanisms used for recording data on secondary storage. The 
database design process must determine the logical and physical structures 
that will provide the greatest flexibility and efficiency for current and 
future applications. Of course, data and storage structures must be 
chosen from among those supported by the selected GDMS.

4.4.3 Data definition. Data definition is the formal encoding and record
ing of the database design using the data definition facility provided by 
the GDMS. Most GDMS have a Data Definition Language (DDL) that is similar 
to definition facilities in high-level programming languages such as 
COBOL? DDL's are considerably more powerful, however. After DDL declara
tions are formulated, they are input to the GDMS definition module. Er
rors detected by the GDMS are corrected and the processing is repeated in 
a manner analogous to the compilation of a computer program.

Data definition is complete when the GDMS is ready to accept raw data 
instances as input. (see "Database population" below). It should be not
ed that data definitions are not necessarily static. As requirements 
change and experience is gained, the data definition must be modified to 
satisfy new requirements and to increase efficiency.
4.4.4 Database population. Database population is concerned with the ac
tual loading of raw data. This initial bulk loading is distinguished from 
data entry and update facilities. The latter are intended for handling 
relatively smaller amounts of data after the database has been esta
blished. Raw data instances must be recorded in machine readable form be
fore they can be used for population. Many GDMS require specific input 
formats and/or ordering of source data. Sometimes it is necessary to 
write custom programs for validating the data and invoking the GDMS popu
lation facilities. Database population can be extremely costly in terms 
of both elapsed time and machine resources. Indeed, for some commercially 
available GDMS the initial bulk loading facility provides the greatest 
single limitation on database size.
4.4.5 Application construction. After the database has been defined and 
populated, specific output requirements are addressed. Construction in
volves the development of procedures required to produce desired outputs. 
These procedures may take the form of application programs written in 
high-level languages such as COBOL, FORTRAN or PL/1 or they may be written 
entirely in GDMS user language. In either case, "programming" activities 
including coding, debugging, system testing and documenting are part of 
application construction. The magnitude of the construction task is 
dependent on the nature of the application and the GDMS employed. Some 
applications merely require the establishment of a database that can be 
queried using a GDMS query language facility. Others have output

-  57 -



requirements that can be satisfied only by developing complex procedures. 
Because many applications have a range of requirements they employ both 
ad-hoc and predefined procedures.
4.4.6 Application integration. After its construction, a database appli
cation is integrated into the human activities that it was developed to 
serve. Supporting manual procedures are designed and documented. Person
nel are trained to operate and use the application system. The inevitable 
"bugs" that become apparent during the initial shakedown period must be 
purged from both manual and automated procedures.

When database management technology is used for the first time, the 
training of application system users can be a costly and time consuming 
task. This is especially true when users are expected to interact (possi
bly for the first time) directly with the computer system. Of course, as 
personnel become more familiar with the computer and with the GDMS inter
face they will require less training for each subsequent application sys
tem.

4.5 Operation Functions
4.5.1 Data entry. New data must be entered into the database as they be
come available. For many GDMS based systems, the data entry process is 
similar to that employed for traditional software systems, involving off
line key stroking and verifying followed by a batch updating process. 
Other GDMS provide facilities for on-line data entry. On-line data entry 
is especially useful when the insertion of data points into the database 
is desirable as soon as they occur. The resources necessary for this task 
depend on the volume of data and the mode of data entry.
4.5.2 Retrieval. Retrieval activities account for a substantial portion 
of the resources required for operating a GDMS based application system. 
Retrieval may be primarily a machine function as in the case of periodic 
reports generated by COBOL or other high-level language procedures. On 
the other hand, on-line retrieval using a query answering GDMS can be ex
tremely labor intensive requiring substantial amounts of both personnel 
and machine resources.

4.5.3 Database Maintenance. A database requires substantial effort to as
sure that its contents are current and correct. Database maintenance in
cludes the updating of stored data instances to reflect changes. The up
date capability may be separate from or integrated with the data entry 
function. Database maintenance is also concerned with guaranteeing the 
continuing availability of the database. This objective is achieved 
through the use of restart and recovery procedures and the maintenance of 
transaction logs and audit trails. Both machine and personnel resources 
are needed to assure that lost database entries and transactions can be 
recovered.
4.5.4 Application Maintenance. Application systems change as the organi
zations they serve change. Manual and computer procedures are modified to 
reflect changing needs. For GDMS based applications, database restructur
ing is included in the application maintenance function. Logical and phy
sical database organizations are modified to reflect changing requirements 
and to improve operational efficiency.

-  58 -



5. COSTING GDMS APPLICATIONS

The next step in the proposed cost evaluation methodology is to iden
tify specific cost factors associated with the life cycle functions 
described above. To accomplish this objective, characteristics that dif
ferentiate and describe costs incurred throughout the GDMS application 
life cycle are first discussed. Then, a framework and worksheet for 
determining total life cycle cost for existing or proposed GDMS applica
tions are presented. Finally, some guidelines for applying the proposed 
cost evaluation methodology appear.

5.1 Cost Characteristics
Total GDMS application cost can be broken down in several ways. Two 

important classifications are concerned with the recurrence of costs over 
time and with the dichotomy between personnel and other costs. Each clas
sification is described briefly below.
5.1.1 One-time versus continuing costs. Some costs are incurred only once 
while others recur, usually periodically, over time. One-time costs are 
generally incurred prior to the operation phase; consequently, they are 
sometimes termed "front end" costs. One-time costs include: costs asso
ciated with analysis, design and implementation activities; expenditures 
to purchase hardware and proprietary software products; outlays for 
training and documentation; and, any other non-recurring expenditures such 
as those for preparation of physical facilities.

Continuing costs include: yearly or monthly payments for proprietary 
software; costs for day-to-day hardware usage and software maintenance; 
and other repetitive costs such as those for supplies. Continuing costs 
must be evaluated carefully to determine the actual burden that must be 
carried by a new application. Hardware and proprietary software costs are 
often step functions; that is, up to a certain activity level there is no 
increase in cost. For example, basic hardware charges are frequently on a 
prime-shift basis with extra costs incurred only when usage exceeds eight 
hours per day. Similarly, GDMS and other proprietary software packages 
may be priced such that there is no increase in cost unless they are made 
available on processors other than those for which they were originally 
procured.

It should be recognized that many costs can not be classified as 
strictly one-time or continuing, but have both one-time and continuing 
components. An example of this phenomenon is training. There is both a 
one-time requirement for training technical personnel in the use of a new 
GDMS package, and a need for continuing training to enhance personnel 
skills and to absorb software changes. It is important that the re
currence of costs over time be understood and used when determining total 
life cycle costs.
5.1.2 Personnel versus other costs. An increasing share of total computer 
related costs is attributed to personnel. As hardware becomes cheaper and 
more powerful, this trend is likely to continue. Indeed, the use of tools 
such as generalized database management systems is often motivated by the 
desire to substitute machine and software resources for the labor inten
sive application development activities that occur when traditional 
software tools are employed. Other non-personnel costs include charges 
for software and hardware, e.g., computer processor and secondary storage 
utilization. Costs such as those for supplies and energy, and fees for 
professional assistance and training also fall in this category.

-  59 -



Computer hardware and support software costs are some of the most im
portant non-personnel expenditures. While total monetary outlays are usu
ally known, allocations of costs to specific users and/or applications are 
difficult to determine. Most computer system charging algorithms are to a 
large degree arbitrary and dependent upon installation policy regarding 
overhead allocation [8,9]. Computer costs can be misleading. For in
stance, organizations owning their own computer hardware may treat the fa
cility as being essentially "free" when it in fact represents a large in
vestment in capital and personnel. On the other hand, computer time
sharing service charges may seem exhorbitant if one overlooks the support 
functions included in their costs that do not have to be borne by their 
customers.

As with the one-time versus continuing cost dichotomy, some costs 
have both personnel and other non-personnel components. For instance, ap
plication construction generally requires substantial amounts of both 
technical personnel time and machine resources for computer procedure 
(program) translation, debugging, and system testing. Because in-house 
personnel costs often have substantially larger overhead factors associat
ed with them than other non-personnel expenditures, it is important that 
they be recognized when determining total life-cycle costs for GDMS appli
cations .

5.2 Framework for Costing GDMS Applications
Using the life cycle functions and the cost categories described 

above, a mechanism for determining total life cycle cost for GDMS applica
tions is presented. A worksheet for recording quantities and extending 
cost factors appears in Figure 3. The worksheet illustrates the various 
dimensions of total GDMS application cost. It is intended as an example 
of the proposed cost analysis procedures, not as a definitive statement of 
cost factors. Worksheet entries are described below.
5.2.1 GDMS application life cycle. The first work sheet column enumerates 
the life cycle phases and functions described in previous sections of this 
report. The entries are presented as representative of the type of ca
tegories that must be considered. While the life-cycle phases and func
tions appearing on the illustrative worksheet do describe many GDMS appli
cation system development efforts carried out by or known to the authors, 
they are not the only ones nor are they necessarily the best descriptions 
for all applications. Indeed, it is expected that life-cycle phase and 
function categories will be modified as practitioners gain experience with 
the proposed cost estimation methodology. Organizational and procedural 
differences should be reflected in the phases and functional descriptions 
used for estimating total life cycle cost.
5.2.2 Cost factors. Cost factors are enumerated for both personnel and 
other classifications. The number of man-months is specified for person
nel; numbers and descriptions are entered for other cost units, e.g. 
machine hours, 1000 disk blocks, etc. Unit costs are specified for en
tries in both the personnel and other categories. Amounts represent ex
tensions of man-months or other units by their corresponding unit costs. 
Note that for recurring items these amounts represent single period costs 
only.
5.2.3 One-time or continuing. Costs are identified as either one-time or 
continuing. For recurring expenses, the number and period (e.g. weekly, 
monthly, quarterly, etc.) of repetitions is specified.

-  60 -



GDMS APPLICATION LIFE CYCLE COST FACTORS ONE TIME VS 
CONTINUOUS

PV

FACT
OR

TOTAL

COST

Phase/Functi on
Personnel Other one conti nuous

no man 
months

uni t 
cost

amt descr ipt ion no 
uni ts

uni t 
cost

amt t ime no
pds

pd

PERCEPTION OF NEED

High-level recognition of problem 
GDMS feasibility study

1
1
1
1
1
1

ANALYSIS AND GENERAL DESIGN

Determine information requirements 
Develop processing specifications

I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I

1 1 
1 1 
1 1 
1 1 
1 1 
1 1

SYSTEM ENGINEERING 

Acqui si tion
Documentation and training 
Installation and testing

I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I

1 1 
1 1 
1 1 
1 1 
1 1 
1 1

APPLICATION DEVELOPMENT

Develop data dictionary/directory 
Database design 
Data definition 
Database population 
Application construction

I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I  
I I I  I I I_____ „1______I______ I____ ____ ______ I_______I __ __I__ ___

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1

OPERATION

Data entry 
Retr ieval
Database maintenance 
Application maintenance

I I I  I I I
I I I  I I I
I I I  I I I
I I I  I I I
I I I  I I I
I I I  I I I
I I I  I I I
I I I  I I I  i t i  i l i

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1

TOTAL LIFE CYCLE COST

GENERALIZED DATABASE MANAGEMENT SYSTEMS 
APPLICATION COST EVALUATION WORKSHEET

F i g u r e  3



5.2.4 Present Value (PV) factor. Because of inflation and the cost of 
capital, costs that will be paid in the future cannot be compared with 
current expenditures. For continuing expenses and for one-time costs that 
will be incurred in the future, a present value factor is specified. This 
is a coefficient that converts one or more future payments into current 
year equivalent amounts. The PV factor should be 1 for a one-time current 
year expenditure, less than 1 for a single payment in some future year, 
and greater than 1 but less than 2 for two future payments.

5.2.5 Total cost. Total life cycle costs for each function are deter
mined by multiplying cost amounts by their corresponding present value 
coefficients. The sum of the resulting products represents a total life 
cycle cost stated in terms of current year monetary units.

5.3 Guidelines for Applying the Proposed Methodology
The worksheet provides a framework for identifying and quantifying 

important factors that determine total life cycle cost for GDMS applica
tions. It should be useful as a checklist to assure that pertinent costs 
are not overlooked.

Any cost evaluation methodology must be applied carefully. Only 
relevant costs need be considered; sunk costs, that is past expenditures, 
are not pertinent. For example, costs incurred in the past to acquire, 
build and/or maintain a particular GDMS are irrelevant; only future costs 
for using that product versus some other GDMS are relevant. Similarly, 
costs that are invariant regardless of how the system is implemented 
should not be considered. Only discretionary costs, those which can be 
controlled by the relevant decision makers, need be considered.

Finally, it is important to recognize that factors other than cost 
analyses are instrumental in determining system development approaches. 
Managerial prejudices, market conditions, and budgetary mechanisms all may 
impact system development decisions. One contribution of the life cycle 
approach may be to provide a perspective. Because acquisition costs are 
only a small part of total cost, an apparently expedient acquisition of a 
GDMS that is not well matched to system requirements may be more costly 
than other alternatives.

6. COSTS FOR GDMS VERSUS TRADITIONAL SOFTWARE

The most frequently asked questions pertaining to costs for GDMS- 
based systems are concerned with their magnitudes relative to those for 
applications using traditional software. Two factors make these questions 
almost impossible to answer. Most important is the fact that GDMS based 
systems perform functions that are not provided when traditional software 
is used; thus, any direct cost comparisons are for different application 
products. This is still another demonstration of the close relationship 
between costs and benefits. A second complicating factor is related to 
the concept of data independence. The essence of the database approach is 
the recognition of data as a resource with value that is neither dependent 
on nor derived from the procedures that reference the data. This concept 
of separation between data and procedures, termed data independence, is 
not reflected in traditional software. Consequently, comparisons of GDMS 
based systems to traditional software applications must be in terms of

-  62 -



specific sets of procedures; any results would appear to be strongly 
biased in favor of traditional software because one of the most 
significant contributions of GDMS technology is ignored.

6.1 Cost Relationship Hypotheses

In spite of these barriers and with the caveat that no empirical data 
will be cited to support the conjectures, we present four hypotheses, la
beled HI - H4, about the relationships among GDMS and traditional software 
costs. These hypotheses were developed over several years of experience 
and observation of GDMS application. They are largely intuitive and cer
tainly do not represent a consensus of any group other than the authors.
6.1.1 HI: GDMS costs are concentrated in early life cycle phases. Costs 
for GDMS based systems are heavier in the the early life cycle phases and 
lighter in subsequent phases when compared to applications developed using 
traditional software. This skewed cost curve has been observed for 
several application systems when their underlying GDMS software was being 
used for the first time. The concentration of costs in the early life cy
cle phases decreases rapidly for subsequent applications using an already 
installed GDMS (See H4 below). Figure 4 graphically illustrated this 
shift in GDMS based system costs to the earlier life-cycle phases. The 
relatively higher front-end costs for GDMS applications can be attributed 
to the complexity of GDMS technology. A GDMS feasibility study is often 
required. Analysis and design tasks must be pursued in greater depth and 
often by more highly trained personnel than would be required for tradi
tional software based systems. System engineering includes costly activi
ties related to acquiring, installing and training technical personnel to 
work with a new GDMS.

Traditional software

G D M S based systems

percept, analysis system applic. 

of need and engin. develop, 

design

Operation— ►

Figure 4

-  63 -



On the other hand, once the GDMS has been acquired and installed, ap
plication development often requires less personnel and other resources 
than traditional software development projects. Application construction, 
where the bulk of programming for traditional systems occurs, may require 
little or no effort once the database has been established. This is the 
case, for example, when a question answering system is established using a 
GDMS that has its own query language.
6.1.2 H2: GDMS based systems have lower continuing costs. Operation phase 
costs are lower for GDMS based systems than for those developed using 
traditional software. This observation, also illustrated in Figure 4, is 
based on the belief that maintenance and modification activities are more 
easily accomplished in a database environment than when custom programs 
must be altered and possibly rewritten. We are emphasizing personnel re
lated operation phase costs and implicitly assuming that non-personnel 
costs do not differ significantly between the two system development ap
proaches. Some claim that computer hardware and support software costs 
are substantially greater for GDMS based systems than for alternative 
software designs. The trend toward cheaper hardware and the increasing 
portion of total cost attributable to personnel indicate that personnel 
costs should become increasingly important.
6.1.3 H 3 : GDMS based systems have an extended life cycle. Because GDMS 
facilitate maintenance and modification, an application developed using a 
GDMS should serve an organization longer than a similar system developed 
in a conventional manner. Traditional software will, after several itera
tions of modification, fall in disrepair and/or require such major revi
sion that a new system must be developed. GDMS based applications are 
beter able to respond to changing requirements than other systems. Conse
quently, use of a GDMS postpones the time when an application has to be 
rebuilt. Figure 5 graphically illustrates the observation that a single 
GDMS based application may serve an organization over a time period that 
would requre several life cycles for systems based on traditional 
software.

Traditional software

EXTENSION OF LIFE CYCLES OVER TIME FOR 
GDMS VS TRADITIONAL SOFTWARE APPLICATIONS

Figure 5

-  64- -



6.1.4 H4: GDMS costs descrease over time. Even the most avid proponents 
of database technology would not claim cost advantages relative to tradi
tional custom software for a single application requiring the acquisition 
of a new GDMS. It is the fact that they are generalized that makes GDMS a 
valuable software development tool. The first application of a particular 
GDMS may cost more than corresponding traditional software. However, 
subsequent applications do not have to absorb the substantial front-end 
costs for specifying, selecting, acquiring and installing the database 
software. Consequently, total system cost decreases for each subsequent 
application of a GDMS. Figure 6 illustrates this relationship among GDMS 
and traditional software costs.

This observation points out the deficiencies inherent in evaluating 
GDMS costs on an application basis. While each traditional software ap
plication system can be viewed as a logically separable entity, GDMS based 
systems typically span several applications. As noted previously, cost 
comparisons based on specific sets of procedures (i.e., applications) ig
nore data independence and the underlying concept of data as an asset? 
furthermore, cost comparisons on this basis are biased in favor of tradi
tional software systems.

COST PER APPLICATION FOR GDMS VS TRADITIONAL SOFTWARE

Figure 6
6.2 Empirical Results

One reason hypotheses like those presented in the previous section 
have not been proven or contradicted is the lack of empirical data. Rare
ly is the same application implemented using both traditional and GDMS 
software. Although database oriented systems frequently replace tradi
tional software, the new system is generally greatly enhanced, and there
fore not comparable to the original. Even in the rare case when directly 
comparable GDMS and traditional systems are implemented, data are not col
lected about relative system costs.

- 65 -



The authors wanted to test their GDMS cost hypotheses on an actual 
application. A National Bureau of Standards (NBS) project for another 
Federal agency presented a unique opportunity; a system that was initial
ly implemented in COBOL, was reproduced without substantive functional 
changes using a self-contained query answering type GDMS. Because all 
work for both implementations was done either by our own staff or by an 
NBS contractor, we were able to gather comparative cost data. The appli
cation characteristics and cost comparison data are described below.
6.2.1 Application Characteristics. The application is a grant analysis 
and reporting system implemented entirely using the COBOL language. Data 
describing grant recipients and funded projects are validated, loaded, re
formatted, updated, extracted, sorted and displayed in the form of hard 
copy reports. The system went through several iterations of modification 
and enhancement to produce reports described by project sponsors.

The prospect of continuing requests for special report outputs pro
vided an incentive for a separate but related effort. The loaded machine 
readable data was used for populating a database; an interactive query 
oriented GDMS was employed for this redundant system. Once established, 
the database facilitated quick response to queries from top level adminis
trators and legislators.

The interactive capability was so well received that an attempt was 
made to replicate, using the GDMS, all of the outputs produced by the cus
tom COBOL programs. With minor exceptions in the area of printer format, 
this endeavor was successful. Thus, we had two systems that performed 
essentially identical functions for which cost data was available.
6.2.2 Comparative Cost Data. Indicators of cost were collected for both 
systems. Most costs were attributable to either one implementation or the 
other. In those cases where COBOL facilities served the GDMS system as 
well, costs were allocated to both implementations. While the resulting 
figures summarized in Table I are inconclusive, they do show some in
teresting relationships.

TABLE Is COST COMPARISON OF COBOL VERSUS 
GDMS IMPLEMENTATION

1---------------------------------- 1.
I COST FACTORS 1 
1 1 
1 1 1 _ _ _ _ - 1 -

IMPLEMENTATION |
COBOL GDMS |

1 1 
1 1 
I TOTAL PERSONNEL TIME | 1 1 63 MAN-DAYS 69 MAN-DAYS |
1 1 
I SECONDARY STORAGE REQUIRED | 1 1 171K bytes 520K bytes I
1 1 
I COMPUTER CHARGES I 
1 1 |---------------------------------- |-

$8K $6K |

The most surprising finding was that total personnel time in man-days 
did not differ significantly between the COBOL and GDMS implementations. 
This can be attributed to the fact that the COBOL validation and load fa
cilities were required by the GDMS implementation as well. Furthermore, 
although it had been physically installed, this was the first usage of the 
particular GDMS package.

-  66 -



The size of secondary storage requirements reflects the query answer
ing orientation of the GDMS software. In order to answer queries rapidly, 
complex secondary indices are maintained by the GDMS? this trade-off 
between response speed and secondary storage utilization is typical of 
modern GDMS products.

Finally, computer costs were also surprising. Included in GDMS 
costs are charges for on-line retrieval, a feature invoked by numerous 
users. COBOL costs, on the other hand, cover many compilations and test 
runs and include charges for repetitive data entry, update and report gen
eration cycles.

6.3 Conclusions: GDMS Versus Traditional Software
The lack of empirical cost data about comparable GDMS and traditional 

software systems precludes definitive general conclusions. Even when data 
are available, the lack of functional comparability between GDMS based 
systems and the traditional software applications they replace complicates 
the cost analysis problem. The hypotheses presented above represent the 
authors' best intuitive feelings about the relative costs, but they are 
not proven. Unfortunately, the limited expirical study carried out for 
this study yielded inconclusive results. The only safe conclusion is that 
each potential GDMS implementation represents a unique situation that must 
be evaluated to determine its costs and benefits relative to alternative 
implementation approaches.

7. SUMMARY

An important prerequisite to the development of a methodology for 
evaluating costs and benefits associated with the use of generalized data
base management systems is the identification of pertinent cost factors. 
The cost identification problem is considered in this paper. A methodolo
gy for evaluating GDMS application costs using a life cycle perspective is 
proposed. The nature of the life cycle is discussed. A preliminary list 
of functions associated with each of the life cycle phases is presented. 
Descriptions of cost characteristics and a worksheet for evaluating GDMS 
application costs also appear. Comparisons among costs for GDMS based 
systems and those for applications developed using traditional software 
techniques are considered. Some hypothesized relationships between GDMS 
and traditional software costs are presented. Empirical data collected 
for this study is described? the results neither confirm nor disprove the 
hypothesized relationships. Additional work is required both to better 
define the cost evaluation methodology and to gather conclusive empirical 
data about actual system costs.

-  67 -



REFERENCES

1. Selected Literature on Cost Accounting and Cost Control 
prepared for Automatic Data Processing - A Bibliography for 
the GAO Task Group Project on Management Guidelines for Cost 
Accounting and Cost Control for Automatic Data Processing Ac
tivities and Systems, Jan 7, 1976.

2. Goldstein, Robert C., Henry H. Seward, and Richard L. Nolan, 
A Methodology for Evaluating Alternative Technical and 
Information Management Approaches to Privacy Requirements Na- 
tional Bureau of Standards Technical Note 906, June 1976.

3. Fife, D. W ., Computer Software Management: A Primer for 
Project Management and Quality Control National Bureau of 
Standards, Special Publication 500-11, July 1977.

4. Benjamin, R. I., Control of the Information System 
Development Cycle, Wiley-Interscience, a division of John Wi
ley and Sons, Inc. New York, 1971.

5. Teichroew, D. and E. A. Hershey III, "PSL-PSA: A Computer- 
Aided Technique for Structured Documentation and Analysis of 
Information Processing Systems" IEEE TRANSACTION ON SOFTWARE 
ENGINEERING, Jan 1977, Vol SE-3, No. 1 pp 48-48.

6. Sibley, E. H. and H. H. Sayani, "Data Element Dictionaries 
for the Information Systems Interface", Proceeding of FIRST 
NATIONAL SYMPOSIUM ON THE MANAGEMENT OF DATA ELEMENTS IN IN
FORMATION PROCESSING at National Bureau of Standards, COMM 
74-10700, Jan 1974, pp 285-304.

7. Leong-Hong, B. and B. Marron, Technical Profile of Seven Data 
Element Dictionary/Directory Systems National Bureau of Stan
dards Special Publication 500-3, Feb. 1977.

8. Cotton, I. W . , "Microeconomics and the Market for Computer 
Services" COMPUTING SURVEYS, Vol. 7, No. 2, June 1975, pp 
95-111.

9. Cotton, I. W . , "Cost-Benefit Analysis of Interactive Systems" 
Proceedings 2nd JERUSALEM CONFERENCE ON INFORMATION TECHNOLO
GY, Jerusalem, Israel, July 29 - Aug. 1, 1974, pp 729-46.

-  68 -



APPENDIX - BUDGETING GUIDELINES FOR GDMS APPLICATIONS

The Institute for Computer Sciences and Technology (ICST) of the Na
tional Bureau of Standards is charged with providing other U.S. Federal 
Agencies with technical assistance and consultation to facilitate the ef
ficient use of computer resources. In this role, the authors have gained 
experience with several GDMS packages and have participated in and ob
served many Federal system development projects. Based on this experience, 
budgeting guidelines have been prepared to assist potential GDMS users in 
estimating life cycle costs. Of course, no amount of experience can be 
substituted for knowledge of a particular application.

Life cycle costs for GDMS applications are influenced by many vari
ables. Some of the most important determinants of cost throughout the 
life cycle included:

1. Size and complexity of database
• number of data item classes
• complexity of logical structure
• number of data instances

2. Degree of change from existing processing
3. Level of previous experience with GDMS
4. Pervasiveness of applications within organization
5. Volatility of database
6. Processing mix - query response versus report generation

Because of these and other variables, GDMS application costs can vary over 
a wide range. Cost estimators must carefully consider each potential ap
plication on an individual basis.

Table A-I summarizes cost ranges for each of the life cycle phases 
based on NBS/ICST experience over the past several years. The reader is 
cautioned that these data merely reflect NBS experience and are not neces
sarily applicable to other GDMS applications. Nevertheless, the table 
does consolidate cost figures from a number of GDMS implementation pro
jects. It can, if used carefully, provide a starting point for developing 
and evaluating cost estimates.

-  69 -



TABLE A-1 : GDMS BUDGETING GUIDELINES

i GDMS APPLICATION 
| LIFE CYCLE PHASE

RANGES FOR MAJOR COST FACTORS | COMMENTS |

I Perception of need 1/2 - 2 person months | More time required when I 
GDMS feasibility study | 
included I

I Analysis and general design 1 - 6  person months | Extremely dependent on I 
complexity of system. Major I 
organization-wide projects I 
may take many person-years. |

1 System engineering $60,000 - $150,000 for | 
GDMS software I

$0 - $20,000 for installation I 
training and documentation |

Some GDMS packages bundled | 
with hardware and other | 
software. Others available I 
without charge from I 
universities and US Government I

3 - 1 2  person months for j 
in-house technical personnel I

Costs smaller for I 
subsequent users of already I 
installed GDMS than for I 
first application. I

I Application development 1 - 12 person-months I It is not uncommon for large I 
projects to require I 
many person-years. I

I Operation 1% - 100% of machine resourcesl 
1/2 - 3 full time staff over I 
life of system I

Major project many require I 
database administration I 
staff of up to 10 people. I



An APL Approach to Data Bases

G. A. Martin
Compagnie Internationale de Services 

en Informatique, France

ABSTRACT
APL (A Programming Language) was developed primarily as a system 

of notations for describing Data Processing algorithms. It is now a 
Programming language on many computers but it is also a system and a 
methodology for programming. Some APL concepts are today fulfilling some 
of the requirements for tomorrow’s Generalized Data Management Systems. 
This paper will attempt to show how APL can be used either directly in 
Data Base construction, or as a complement to existing Data Base Manage
ment Systems. It is hoped that the controversial way in which some points 
are made will help the reader to feel adequately the complexity of the 
problems posed by any integrated approach to data handling. There are no 
magic solutions.

CONTENTS
1. Introduction to the APL language
2. Introduction to APL systems
3. APL methodology
4. Some features typical of APL Data Bases

4.1. Basic data structures
4.2. Directories
4.3. Binary access tables (for queries)
4.4. Some data reduction techniques
4.5. Automatic generation of programmes

5. Conclusions

-  71 -



1. INTRODUCTION TO THE APL LANGUAGE
Let us consider a set of individuals (employees) with four charac

teristics: name (up to 20 characters), age. number of children and salary. 
One may see this set of informations (file) individual by individual 
(file = sequence of records) or characteristic by characteristic.

In a tabular represen
tation, each individual would 
be a row (record) and each 
characteristic a column (file). 
The first point of view is 
classical in business and 
scientific applications 
(sequential files), while the 
second is more suitable for 
retrieval and computations, 
allowing a global formulation 
of problems. The representa
tion by characteristics will be 
called inverted (or dual or 
transposed) compared to the one 
by individuals.

- y

7L

n a m e

/ /
/  / /

a 3 e child,

F iu e .
incUvidua.£

c.K<arci c h e f  \s
Let us define the values of the above characteristics for five 

individuals by APL expressions directly executable at an APL terminal 
without previous declarations (the symbol^«is read as ARE or IS):

AGES <- 25 32 45 30 50
CHILDREN < - 0 1 2 2 3
SALARIES 1800 5500 12000 8000 10000
NAMES MAT ’JOHN, SMITH, X, Y, Z'
AGES, CHILDREN and SALARIES are vectors (lists) of numbers 

(integers). NAMES is an array (matrix) of characters, each row represen
ting a name (MAT is an APL function, copied from a public system library, 
and which transposes a string onto a rectangular array).

The Data (Base) being loaded, one may directly proceed to enquiries 
and computations

- How many employees?
It is the number of salaries 
N p SALARIES

- What is the sum of salaries?
It is the reduction (/) by + (sum) of the file 
S <—  + / SALARIES

- Mean salary?
It is the sum of salaries divided by the number of salaries 
M < —  (+/ SALARIES) -t- y  SALARIES

-  72 -



The operation MEAN being recognised as usual, one may define a 
function MEAN with the same syntax as primitive functions, i.e. we extend 
directly and simply the semantics of APL by adding new user oriented 
primitives

V  R <*— MEAN X
/ F  R < -  (+/X) T p x  V
One may now directly compute the mean salary by 

M MEAN SALARIES
If we recognise that the word OF is simply used as a conjunction 

linking other words, we may introduce the semantic dummy function OF 
which corresponds to a transfer of information

V  R OF A
/T7 R «—  A V
We may now construct our sentence in plain English:

M < -  MEAN OF SALARIES
Changing the names of functions and variables, without changing 

the semantics, allows us to express this expression in plain French:
M 4—  MOYENNE DES SALAIRES

If now we are interested by people more than 30 years old, the 
expression AGES > 30 will return the value 1 if the individual answers to 
this description and 0 otherwise. In an example we get the vector
0 1 1 0  1. This vector is said to be logical or binary. The salaries of 
these individuals will be the result of the reduction by the binary vector 
(mask) of the file SALARIES:

(AGES > 3 0 )  / SALARIES
---------------------------v --------------------------  .  --------------------- y -----------------------

condition = mask T file
reduction

The natural formulation being 
SALARIES FOR AGES > 30 

one may invert the previous construction by defining the APL function FOR
' » R ^ - A  FOR B

/T7 R * -  B/ j T f  A v
where the reduction is done along the first dimension for the case where 
A is an array (e.g. NAMES); the dimension specification is irrelevant 
for a vector.

The mean salary of these individuals is simply 
M ■*—  MEAN OF SALARIES FOR AGES >  30

For those people who find the symbol >  too mathematical, one may 
define the function GREATER THAN.

-  73 -



To understand better some APL Data Base Systems, it is interesting 
to show the direct APL formulation of the above expression:

where MASK/SALARIES defines a restricted access to the file SALARIES.
Binary vectors and arrays (masks) are often used in APL because 

of the efficiency in processing: a binary number is represented as a 
single bit of memory and logical operations (AND, OR, NAND, NOR, NOT...) 
are very fast. On the other hand, it is natural to introduce a separation 
between search and computation, if only in order to avoid unnecessary 
computations.

Updating our Data Base will be easy to do by using direct APL 
expressions or natural language formulations, e.g.

»SALARIES1 BECOME (SALARIES + 200) WHEN 
(CHILDREN ^ 3) AND (SALARIES < 10 000)

When an expression has been entered, the user gets an answer 
immediately: the correct result or an error message. The APL language 
was designed to run in an interactive environment: APL expressions are 
interpreted at execution time, and all entities are accessed through 
descriptors. This principle will be used for APL Data Bases to ensure 
Data Independence: files (in core or on external devices) will be 
described by tables and the various tables will be related by common 
roots (logical names, rather than physical addresses). This is the 
general approach of Relational Data Bases JT J , and the basic relational 
operators (JOIN, DIVIDE, ...) are easy to implement in APL.

The interpretative structure of APL is well illustrated by the 
primitivei(Execute) which allows dynamic execution of expressions. 
Combining this with the primitives OCR (canonical representation of a 
function, i.e. a character form) and QFX (fixing a canonical representa- 
tion onto a function), it is possible to record on files not only data 
(variables) but also programmes (functions) so as to record actions.
These actions may correspond to 1hooks1 in the main programme, initiating 
predefined action when given situations arise0

It is not our purpose to introduce all the concepts and primitives 
of APL, even in the context of a Data Base.

It is enough to say that APL contains a rich set of primitives: 
arithmetic ( + , -, x,-4-, circular, exponential ...), relational ( = ,^t,
<,$ , € .. *), logical (and, or, nand, nor ...), selection (indexing, 
take, drop ...), structural (grade up and down, transpose, rotate <,..). 
These primitives operate on (rectangular) arrays.

The semantics of APL being so rich, it will be difficult to choose 
the right way to implement a given system (the same is true of a good 
GDMS). The most important choice concerns the data structures /2/. In 
our previous example, we have chosen a representation by characteristics,
i.e. by a set of vectors managed in parallel. In some other circumstances 
'  ̂ ' ?nt, inventory ...) an array representation is more

1. we first compute the mask
2. we check how many individuals
3. we compute the desired value

MASK «—  AGES > 30 
N +/ MASK

M «—  (+/ MASK / SALARIES) N

- 74 -



Trees and lists are not usual in APL because they need normally to 
be processed element by element, which may lead to long running time: 
loops are not natural in APL. However, lists can be very useful in con
junction with recursive functions, and by definition any APL function may 
be recursive. Such structures are used in graphics (databases of images), 
system description (hardware configurations, plants, reliability, net
works, ...) and so on. But genuinely recursive structures are not so 
frequent as is supposed by too many database specialists. In any case, 
they are easy to implement in APL /T+7 and seem not to be primitive notions.

In building APL databases, we try to keep in mind the basic virtues 
of APL: uniformity, brevity, generality, simplicity and familiarity /57. 
Starting from good data structures, it is very easy to construct a set of 
primitive notions (APL functions and variables) directly related to the 
user (in management, econometry, crystallography, reliability, etc.) 
instead of forcing the end-user to apply general (EDP) concepts not 
directly related to his daily problems. The dialogue will be adapted to 
the user, or personalized: a set of primitives, natural language, 
prompting, computer aided instruction, ...

Keeping compatibility with APL (syntax and data structures) will 
allow us directly to use the APL libraries within database systems: 
plots, graphics, data analysis, linear algebra, ...

Since APL is interpreted, it can be chosen as a machine language. 
Various APL microcodes are already implemented on minicomputers such as 
the MCM or the IBM 5100, or on larger size computers like the IBM 370/148. 
The most recent improvement to APL was the introduction in 1973 of Shared 
Variables. Shared Variables allow the description of concurrent processes, 
and provide an interface with resources external to APL. Their use will 
be illustrated in the following sections.

The computers to be built in the near future (gigasystems) will 
require hardware languages to describe architectures based on array 
processing and multiple processors. One can imagine that (an extended)
APL would provide a solution.

2. INTRODUCTION TO APL SYSTEMS
Let us take as our example the APL-SV system (IBM) used at the 

French Atomic Energy Commission (CEA). Basically, an APL system is 
composed of three (logical) parts: a terminal control system, an APL 
interpreter and a workspace manager.

To each active user is 
attached a workspace containing 
its data and functions.

Workspaces are organized 
in (public and private) libraries.
Normally, two active users may 
exchange informations only through 
system commands (LOAD, COPY,
SAVE) outside the control of the 
APL interpreter (i.e. system 
commands are not part of the 
language). The need for external 
support (files) was recognized 
very early: a file system,
APL*PLUS, was made available in

r
T<zrmi na.1 
C o w V r o L

In ferpre-tt-r 
Vsfocks jxxce*

a-cA-ive.
Msrorkspo.M.C^') I

es

L ’>^ rcwrve-S 
+ SWft.p

-  75 -



1970 by commercial firms (I.P. Sharp and STSC), In 1973 an important 
extension of APL was made available: the Shared Variables, a general 
mechanism to exchange information between two processors, APL users or 
internal processors. An APL (SV) system may be viewed as consisting of 
the previous basic components extended by a Shared Variable Processor 
(SVP;, controlling communications between the concurrent processors and 
a set of internal processors called Auxilliary Processors (AP).

One such auxilliary processor, 
called TSID, is provided with APL-SV 
to assess external files (tapes, 
disks, printers) or O.S. resources 
(batch submission).

bo-sic A ^ L .

S  v p

T J S i O

A P L - S A S  P

A P L - F o r t

At the French CEA, we run an 
APL-SV system on a dedicated machine, 
and have developed an AP providing 
an interface with the CEA network 
(IBM 360/91, 370/168, 2 x 370/158,
CDC 7600, 6600, CYBER 173 ... 
implemented around Europe) which 
allows the APL user to enter data 
or produce results at any node of the 
network. To improve the efficiency 
of our system, we have also implemen
ted an AP, called APL-FORT, to link 
directly under APL some FORTRAN 
routines; this was done mainly to 
avoid a tremendous effort in conver
ting existing routines: matrix 
inversion, eigenvalue computations,
FFT, data analysis and so on. All
these existing facilities will be used in conjunction with databases 
New developments are under study for graphics and specific database 
functions.

F o R t R A K

One should notice that the APL dedicated machine is directly 
linked channel-to-channel to another IBM computer (the 360/91) and that 
they share their disk drives.

With such a configuration it is possible to combine conversational 
(APL) programmes and batch processing in order to achieve good performance. 
Of course it is transparent to the end-user, who will simply use APL 
functions put in public libraries. For example, to submit a FORTRAN job

-  76 -



contained in the file FORT for execution on the CDC 7600, the user will 
copy the required function from the library 4 APLSASP

)C0PY 4 APLSASP SUBMIT
and enter the command

SUBMIT »FORT, DESTINATION = 7600»

Workspace limitations: direct use of files
In the CEA system, the size of workspaces is limited to 80,000 

bytes. This is not enough to manage data bases. Coming back to our 
example of a personnel database, one may define the characteristics of 
an employee as the result of a read operation from an external file. 
Suppose we have constructed the file PERSON as a set of records, the 
first giving the ages, the second the salaries, and so on. Using the 
file in direct access, one may define the functions AGES and SALARIES by

All the expressions we have developed (such as MEAN OF SALARIES FOR AGES 
>30) remain valid. Within a workspace of 80K it is then possible to 
handle a large amount of data with the same simplicity as with pure APL 
data, any information (characteristics) being loaded (read) only when 
necessary.

Exchange of information between users
Two or more users may exchange information through shared variables 

or shared files. Although control on shared variables is easy to implement 
(by using APL primitives), it is not so easy to control the sharing of 
files, which must be protected against simultaneous read and write opera
tions. In this case, the shared variables can offer a very elegant 
solution either used as semaphores or as the basis for an APL written 
auxilliary processor /¿/ 77/.

Another way to control file access is to put in the file a special 
record which will be dynamically executed during the opening of the file 
(restriction to specific records,"authorisations to users, etc.).

Security and integrity
Any APL application is implicitly a multi-user application.

Several protection levels are provided by the system
- a password may be associated to the sign-on number
- a password may be associated to each workspace to protect LOAD 

and COPY operations
- a function may be locked so that the semantics are unchanged but 

the code cannot be visualised: for example, we may protect the 
SALARIES function by testing whether the current user has been 
authorised to access it

V R  4r- AGES JTJ R «r- GET 1 V ZI7 R7 r SALARIES *r— GET 2 V

-  77 -



ZI7 
ZI7 
ZI7 
Z57

-- > 0 IF*o QA1 /Î7 €  1224 2048 2100
R 4—  GET 2

where we give an empty answer if the user, known by his accounting 
numberQAI /T7\ is not a member of a list of authorised users. The 
function being locked #)» nobody will know, except the file administrator, 
what kind of checking is done.

It is then easy to have users with different profiles: one is able 
to update while another is limited to read specific files or records.

Extending the capabilities of APL for use with Data Bases
Any APL system with shared variables (in particular the IBM 

systems) is extensible by auxilliary processors. There are several 
examples of DBMS under APL /OT or in conjunction with APL like the IBM _ 
bridge between APL and IMS 79/ or the model for Relational Data Bases ¿1 0 J .

the APL primitives either on rectangular arrays or on arrays from which 
elements may be arrays. Such structures are obviously important for 
databases, where they may represent trees, lists or hierarchies. For 
example, an inverted file may be seen as a vector of vectors. One may 
hope that such extensions will be made available before 1980 (several 
models are already operational).

Under the new time-sharing system VSPC of IBM, it is possible to 
have virtual workspaces, i.e. to run large workspaces up to 16 millions 
of bytes (this possibility was available earlier under VM-CMS). In such 
a context, a direct APL approach may be better than any DBMS. For 
example, using virtual workspace is (10 times) faster than using external 
files. One may also notice that the new IBM access method VSAM will be 
fully accessible through an auxilliary processor under APL, including 
(up to 14) alternate indices.

3. APL METHODOLOGY
Building a Database is not just a question of organising data or 

using a given GDMS. A Database system cannot be dissociated from its 
use: it is a tool within a problem solving environment and one has to 
follow rules in its use as with any other function of the related problem. 
One may recall here the Scientific Problem Solving approach ¿ 1 5 / as 
presented in /27

(1) Preparation - Phase 1 (Brainstorming)
- Deciding on objectives
- Analysing problems 

Gathering information

-  78 -



(2) Preparation - Phase 2
Organising information 
Inducting

- Simulation model (evaluation)
(3) Realisation

- Programming (implementation)
- Documentation (in parallel)

with continuous feedback and feedforward.
In a recent Database implementation /167, we were faced with an 

interesting point of view, classical in chemistry: any plant realisation 
has to go through a 3 steps evaluation process, similar to the one above.

1. laboratory experiment
2. prototype
3. factory
The »factory* in this analogy would be a system for information 

retrieval and data analysis on a very large historical commercial file 
(50 millions of bytes for 2 years). The approach was the following:

1. Demonstrations of DBMS capabilities on a reduced set of 
informations. A special APL DBMS was built within a week 
(using APL libraries), and designed to ensure good perfor
mance. A proposal was made to the customer with estimations 
of exploitation costs.

2. A decision was taken to use this APL solution for a limited 
period of time (6 months) and a subset of the file of the 
whole firm. An operational system was implemented within
2 months (for an effort of 3 man-months) with all DBMS 
facilities: security, integrity and privacy, in a multi-users 
environment. Our initial cost estimates have proved very 
accurate. We are now investigating the possibility of inter
facing this DBMS with the BMDP statistical package (written 
in FORTRAN).

3. The decision on full-scale implementation will be taken in 
October 1977.

A methodical approach of this kind can help in avoiding many 
mistakes in choosing and implementing a Data Base Management System.

In Rational Programming, conception, formulation, resolution and 
interpretation (of results) are four steps of the same Problem Solving 
process. They will obey the same general rules as above, and will lead 
to a functional decomposition of any complex problem onto a subset of 
simpler problems. Conception and Programming will naturally be conducted 
top-down.

Problem 
(input)

Function name
formulation

- analysis
- approximation 

explicit resolution

Solution 
(output)

-  79 -



For example, a complex Database will be decomposed onto simpler 
interconnected Databases. The decomposition will continue until elementary 
structures (for the GDMS) are reached. The implementation of a given 
elementary Database will be decided on practical, economical and human 
criteria: manual or computerized, on local or central computer, real time 
or not, conversational or not, using APL or another system ...

When deciding the separation onto subsystems, one has also to 
define the interface (data convention and communication protocol). The 
final integration will define the Database structure to be implemented.

With such a picture in mind, which is the way we implement our 
APL Databases, it is easy to achieve important requirements for GDMS: 
security (each DBA may choose his own protection rules), data coherence 
(each DBA will have the responsibility of his own Database) , performances 
(each Database will be implemented with the_best suited techniques). A 
more detailed discussion will be found in [ v £[. It is also easy to 
personalise each elementary Database.

Interconnection between Databases will be achieved by Relational 
Models in relation with files of actions (APL functions). Indirect 
access to an elementary Database will generally be made possible through 
predefined queries (macros) which are the direct result of the various 
query languages.

-  80 -



4. SOME FEATURES TYPICAL OF APL DATA BASES
4.1. Basic data structures
The elementary Databases mentioned in section 3 will be represented 

by parallel arrays depending on data types (binary, integer, real, 
character). Each array will be represented by a direct file (individual 
by individual) and an inverted file (characteristic by characteristic), 
the first being used for sequential processing (visualisation of one 
individual, sorting, lists ...) and the second for information retrieval 
and global computations.

DVracfc fcke- ( vncUv‘\ c W f c  m c \ W ;  )

J InvtrVecl
( cV\afacVer'^V\C

enVrvj. (3) e>£ firoCeSS\w^ : N  *—  N  +- P

It is simple to explain the update mechanism:
1. Adding new data

the input data are checked (conversational) and added sequen
tially to the direct file (1)

- the inverted file is extended characteristic by characteristic
(2)
the counter N is incremented (3 )

In case of failure, the process may be very simply restarted at 
the interruption or at a previous level.

2.. Removing information
For a large amount of data, it is not realistic to compress the 
file each time an individual data element is removed. One will 
associate to the file a binary vector indicating by 1 if the 
individual is active (present; and by 0 if passive (removed or not 
yet created). The next input data element will take the first 
free space available.

- 81 -



3. Replacing information: this is done by indexing.
In most cases (unless it is justified for economic reasons) we do 
not need to keep both files, and the data will be represented by 
the set of inverted files only. The extent area of the sequential 
files will be retained as a buffer for data entry.
Such an organisation requires only sequential and direct access 
methods which are directly provided by APL-SV. To improve perfor
mance, we have implemented in Saclay a Fixed Block Access Method 
in which a physical block (set of records) is read into memory and 
used for input/output operations (with some optimisation). As 
long as this block contains all the information needed, it is kept 
in core. Swapping is done when another block is needed. This 
technique is very efficient when we need to access simultaneously 
several elements of the file.
4.2. Directories
Keyed access will be done through directories. The physical 

support may be seen as a set of blocks (e.g. tracks) of a given length.
Some blocks will contain the association tables (key, address of element) 
and are referenced as "level 1 directory". Each block will be ordered 
by increasing keys. To describe the physical implementation of these 
blocks, one needs another association table

(key minimum, address of level 1 block)
where "key minimum" is the first key in the corresponding block. Such 
an association table will be referenced as part of the "level 2 directory". 
The "key min." are also ordered by increasing values.

One may have as many directory levels as necessary to address all 
elements in the file. The manipulation of directories is easily done 
with APL primitives.

-  82 -



Removing or replacing an element or a key is a trivial operation. 
Adding new elements is also simple: we read the level 1 block concerned 
and add (catenation) the new couples (key, address). The resulting array 
is ordered by increasing keys. If the number of rows is smaller than the 
capacity of a block, the updated block is written back on the disk. 
Otherwise, we split the block into two (half) blocks, one taking the 
place of the old one and the second the first place available in the 
system. The level 2 directory is then updated.

If BUF contains the new couples (key, address) and LEVEL is the 
sequence of the block numbers for the levels 1, 2, ... directories, the 
following APL (recursive) function carries out this operation, and offers 
a more formal description of it:

V BUF UPDATE L E V E L ;T ;KEXMIN 

C l ]  +0 ZZ  0 = p LEVEL

[ 2 ]  B U F + B U F , C l ]  GET LEVELl 1]
[ 3 ]  B U F + B U F l b B U F l i l h ]

C 4 ]  K E Y M I N + B U F l l ; 1 ].LEVELill

—  C 5 ]  -+UPDT IF CAPACITYZl+pBUF

C 6 ] J^L0„5xl + pSi/i’
[ 7 ]  NEXTBLOC S E T ( I , 0 )iBUF

7 £ 8 ] KEYMIN*- 2 2 pKEYMIN,BUFi J + l ; 1 ] .NEXTBLOC

C 9] NEXTBL0C+NEXTBL0C+1

C I O ]  B U F + B U F l i J ; ]

'— C l l ] UPDT:LEVEL  C l ]  SET BUF

C 1 2 ]  KEYMIN UPDATE liLEVEL

V

The optimisation of this programme is left as an exercise to the 
reader (e.g. don't update level 2 if the keymin is not changed ...)

4.3. Binary access tables (queries)
With very large databases / I 67» it is possible to avoid scanning 

all the database by associating to each file (characteristic) a 
corresponding set of binary indicators.

i W o V  '\t r̂ >roca40

CcvV«-yv<xV\ e>r\ 
lAolrt-

%  itQ cvwc^tr 
•VcoV exceedcc\

rse\AT a d c W w  Vree. \Jloc. 

A-eyloucje ^ o c
Litauer, Le TLCjtt JSpjioO

-  83 -



N1

The file is structured by blocks. To each block is associated a 
binary value (Block indicator) to show whether the block contains 
relevant information or not. The set of block indicators related to a 
given query is represented as a column of the Block Indicators Table 
or BIT. For a given column (i.e. a query), each 1 will correspond to a 
binary mask for accessing the information in the related block of the file. 
Each binary mask will be represented as a row in the Selection Indicators 
Table or SIT. The number of rows associated to a given query is exactly 
the number-of active blocks (i.e. the number of binary Is in the corres
ponding column of BIT). A special record (query number 99999) will be 
associated with the-current active selection. This record is initialized 
by any selection (query) through a decision tree (definition of the 
initial domain of a selection). The arrows in our figure are not real 
pointers because the relative locations of elements in arrays are implicit 
pointers in APL.

-  84  -



The result of any selection (text and binary mask) may be recorded 
in that system. Two results may be combined directly by logical operations 
(AND, OR, NAND, NOR, =,?£...) to produce a new result without reformulating 
the original queries. This operational access method /.16/ was fully 
written within one week and has proved to be very efficient.

4.4. Some data reduction techniques
The original purpose of data reduction is obvious: to save storage 

space and often computer time. For example, 5 characters may be coded as 
one integer (4 bytes), some statistical series may be represented by 
their Pearson's coefficients (/*, , or their first cumulants
(Kendall’s expansions), a rectangular array may be reduced to its limited 
singular values decomposition (which is widely used in Data Analysis).

In general, these techniques are transforming a set of data of a 
given type into another set of data of another type, the transformation 
being nearly inversible.

An interesting paper / 2 0 j considers the representation of verbal 
information as unique numbers. When this paper was published (1972), no 
emphasis was put on distributed computing. Using the proposed techniques 
allows teleprocessing to be used in a very efficient way by implementing 
on both sides (emission and reception) common dictionaries instead of 
full verbs, while relatively small dictionaires are enough for many 
applications. Such a technique may ensure good data privacy and be 
implemented cheaply using new technologies. The technique could be very 
useful for some Databases.

A more promising method of data reduction is the representation of 
complex data structures by programmes which may be dynamically executed.
Let us give a typical example. To compute the reliability factor of an 
electronic component you may use an analytic model or an approximate 
table /2l/. Let us consider an analytic model for a condenser, 
equivalent to the two pages of data shown in Fig 1 (Annex).

To compute a given factor A you have to know 8 parameters and to 
do the proper computations. If PAR designates a vector with 9 components, 
the first value giving the condenser type and the 8 others being the 
computation parameters, the required value may be obtained by

LAMBDA <—  i  TYPE, "¥ PAR
where TYPE contains the literal 'COND* and ^  transforms a numeric 
vector onto a character string. The result is got by executing (j£) the 
constructed executable expression. If now the variable TYPE is used as 
a key for accessing the proper APL function, one may get the result by

LAMBDA <—  ±  (QFX KGET TYPE,^ PAR /l/); >
PAR

where FX is used for fixing a function represented as a matrix of 
characters (canonical form). The APL function (model) corresponding to 
the two preceding pages is simply:

- 85 -



7 R+C0NP19 P i MP i MS ; (?; A ™ ;n  J 0
i n  w o + i
m  r ^ ( p [ u ] + i  . u m x p r  5 ] ) * p m
[3 1 A T+-1 0 x 2 •  1 f 1 0 0 x ( P [  ) x ( l 0 0 0 0 * i r p r 8 l ) * - 0 .  6
T 4 ]  P « - l P ~ 1 0 x ( l  + ( C * 0 . U ) * 5 ) x * (  (PT  31 + A7t+ 2 7 3 . 1 6 ) t 3 8 0 ) * 2 0
[ 5 ]  /¿P«- 1 1 . 1  2 4 i* 4 15 18 20 o . x  3 1 0 . 3  0 . 1  0 . 0 3
[ 6 ]  MS+ 0 0 . 1 0 . 2 1 1 1 5 6 1 0
[7] /?^(i/?"9x/f5rpci]i )+/?x^prpnn spr2]]xp[7]

7

which takes exactly 384 bytes of disk storage.

4.5. Automatic Generation of Programmes
The most tedious tasks in Data Processing are data input and 

output. There are several ways to automatize them: Data Definition 
Languages, Report Generators ...

After writing several similar applications, one may recognise 
that some operations are similar. One may define generalised programmes 
(e.g. macros) to assist the user and built-in Programme Libraries (or 
packages) adapted to a specific range of applications.

Another approach is to use some kind of definition to generate 
directly the programmes performing the required functions. One may use 
two types of definition: dialogue /22/ and decision tables J 2 ^ J . With 
the first approach, the user has to call a programme and the dialogue 
will be conducted (and assisted) by this programme to produce the 
required APL code. The code generated may then be used directly or 
adapted to similar situations. It is interesting to note that the 
generated programmes are free of bugs. Two "automata” are available: 
one for entry, the second for reports.

In the second case, one has to define the decision table associated 
to the required function. An APL written translator will produce code in
3 possible languages: APL, PL/1 or COBOL J2J±J.

A similar approach was used to simulate microprocessors and 
produce automatically microcode from APL models /25/. This may be useful 
in the context of distributed Data Bases.

-  86 -



5. CONCLUSIONS
In the author's opinion, APL has proved to be the major 

contribution to Data Processing of the last decade. It is not the 
solution to all problems, but it does seem to offer a valid approach 
to solving day-to-day problems, and an important tool for defining 
the solution to larger ones.

The usefulness of APL for data management will depend on the 
user’s systems environment as well as on the nature of his problem. 
The full range of options likely to be of interest is :
- Programming in a high level language such as COBOL, PL/1 or 

FORTRAN, using the file management facilities of the operating 
system.

- Programming as above, but using a 'host language' GDMS.
- Programming in APL, using the operating system file manager.
- Use of APL as the host language interfaced to a GDMS (which 

may or may not itself use APL;.
- Use of a self-contained GDMS.
(i) An integrated approach to data handling. Whatever the data 

handling problem, there are lessons to be learned from the 
approach to data management represented by GDMS : a collection 
of related data should be stored in an integrated way, and its 
structure shown explicitly ; the system should allow flexibi
lity in the use of data for purposes not foreseen when the files 
were constituted; control of security and integrity must be 
programmed into the system; data redundancy should be avoided 
where possible, and in any case controlled by the system.

(ii) Availability of APL. Although APL interpreters are available
on many computer's (.notably IBM and Burroughs) GDMS facilities in 
APL or linked to it are in practice so far generally available 
only as part of the APL service offered by commercial networks. 
They are offered in Europe by several other bureaux as well as 
CISI, and in North America most notably by STSC (Scientific 
Timesharing Corporation).

(iii) Should you use a GDMS at all ? Below a certain threshold of 
logical complexity, size and requirements for flexibility and 
simultaneous time-shared access in updating or retrieval, the v 
benefits offered by a GDMS may not be worth their extra cost. 
Rather than try to accommodate your problems within a closed 
package (GDMS or other) it may be better to use:

- a good methodology
- a good programming language, and why not the most productive, APL?
- good system support allowing all necessary extensions
- the appropriate program libraries, which may be written, as with 

the CISI APL system, in a mixture of various languages

-  8? -



and adapt the EDP facilities to your problems. In some cases
the use of APL may imply choosing a link to a time-sharing service
rather than "buying your own smaller computer.

(iv) When do you need a GDMS ? The most obvious need is in a context 
similar to the business environments for which GDMS have been 
developed : for a data base which is frequently updated, especially 
where updating is done 'simultaneously', on-line, by several users. 
It takes a relatively sophisticated GDMS to provide the privacy 
protection and data base error protection and recovery facilities 
(['security and integrity1) which this use demands. Their centra
lised Data Definition facilities are useful in avoiding data incon
sistencies and programming errors in a complex data base, or one 
where structure is often modified.

(v) What are APL's particular advantages, alone or as a host language ?
- Host language flexibility. This question becomes critical when 
we look at the host language environments available for use of 
CODASYL systems (such as IDMS) in a scientific environment. COBOL 
in particular is scarcely a good programming language for scien
tific applications. Rather than listings, what is required are 
graphics, data analysis (principal components analysis, corres
pondence...), or data comparisons (variance analysis, forecas
ting....), all easier to program. in APL than in COBOL.

- Speed of implementation. A comparison extremely flattering to APL 
can be found in • improvements in programmer productivity are 
claimed by a factor of 3 relative to PL/1 or 4 relative to COBOL.
This can be important where non-standard ■ questions are frequently 
asked of the data base : scientists may be just as impatient 
as managers, and unless such new questions can be answered quickly 
the questioner may lose interest in the reply before it is 
available.

- Performance. As part of a recent congress /Tgi7 a competition was 
held to compare various DBMS on a Financial Administration problem. 
Only three of the systems invited agreed to compete : Tel§- 
systdmes with COMPOSIT 77» CSS with NOMAD, and CISI using APL with 
direct access files.
The total time to solve the problem was the same for the three 
systems. The time to load and check the data was shorter in APL 
(with programs specially written for that application) than with 
the two DBMS (with their Data Definition Languages). The CPU time 
for executing specific search questions was between 5 and 10 times 
smaller in APL than with the two GDMS : a strong argument in 
favour of using APL if the application had to be run on a daily 
basis.

-  88 -



REFERENCES

m
m

Z27

iw

ZÏ7
ZI7
n i
m

m

L W

un
UÜ
UÏJ

zw
zw
zw

E. F. CODD "A Relational Model of Data for Large Shared Data 
Banks" - CACM - Vol 13 - n° 6 - June 1970

P. BRAFFORT and G. MARTIN "Rational Programming: an introduction" - 
Proceedings of the SEAS Spring Technical Meeting - 
AALBORG (Denmark) - April 1975

M. F. O'BRIEN "Inventory Management using APL/SV" - Proceedings 
of the SEAS Spring Technical Meeting - ST. ANDREWS 
(Scotland) - April 1974

H. KATZAN "Representation and manipulation of Data Structures
in APL" - ESA microfiches L 2494 (indexed in the 
NASA system) - 1971

A. D. FALKOFF and K. E. IVERSON "The Design of APL" - IBM J. Res. 
Develop. - July 1973

R. H. LATHWELL "System formulation and APL shared variables" - 
IBM J. Res. Develop. - July 1973

S. BARON: "Utilisation des Variables Partagées" - Journées
APL de l'AFCET - PARIS (France) - June 1977

J. VERCAMMEN "APL and Database: Problems and Solutions" - SEAS -
GUIDE APL Technical Conference - BRUSSELS (Belgium) - 
March 1977 - Publications of the Ministry of 
Economic Affairs

W. L. ALLISON "APL and IMS, and interactive approach for the user 
and his Database" - Proceedings of the SEAS STM - 
ST. ANDREWS (Scotland) - April 1974

M. BERGEN and others "An Environment for the interactive
evaluation of Scientific Data" - Project Report - 
IBM Heidelberg Sc. Center (Germany) - January 1975

J. A. BROWN "A Generalization of APL" - PhD Thesis RADC - TR - 
73-182 Tech. Report - June 1973

Z. GHANDOUR and J. MEZEP "General Arrays, Operators and Functions" - 
IBM J. Res. Develop. - Vol 17 - n° 4 - July 1973

S. BARON "An Experimental approach to new APL Data Structures"
- Proceedings of the SEAS Anniversary Meeting 74 - 
ZUERICH (Switzerland)

W. E. GULL and M. A. JENKINS "Recursive Data Structures in APL" - 
Submitted to CACM - 1977

K. GREGORY "The Management of Intelligence" - McGraw Hill - 1967
R. GAUDELAS, D. CARON and G. MARTIN "SVP: Un système d'interroga

tion en temps réel d'une banque d'informations 
commerciales" - Journées APL de l'AFCET - Paris 
(France) - June 1977

-  89 -



¿Jl7J Y. LEBORGNE "APL: A Productive Personal Language" - Proceedings
of the SEAS Spring Technical Meeting - AALBORG 
(Denmark) - April 1975

JÏQ J JIIA - X - PARIS (France) - June 1977 - Report to be published in
September 1977 in 01-Informatique

J V £ [ J. C. LERALLE and G. MARTIN "The World Nuclear Power Plant Data
Base of the French Atomic Energy Commission" - in 
this report (BERKELEY Meeting - Oct. 1977)

¿207 W. HAGAMEN and others "The representation of verbal information
as unique numbers in APL 360 - IBM System Journal - 
n° 4 - 1972

J J Ü  RECUEIL DE DONNEES DE FIABILITE - Centre de Fiabilité - C.N.E.T. -
LANNION (France)

7 D. CARON "Automata in Business Programming" - Proceedings
of the SEAS Anniversary Meeting - ZUERICH 
(Switzerland) - Sept. 1974

/2l7 H. J. MYERS "Compiling Optimized Code from Decision Tables" -
IBM J. Res. Develop. Vol. 16 - n° 5 - Sept. 1972

¿247 IBM I.W.P. 5796 PJB "APL Decision Table Processor" - Program
Description & Op. Manual - SH 201924

¿£¿7 L.P.A. ROBICHAUD and others "INTERACTIVE tools for Research and
Education in Micro-Programming" - EUROMICRO - NICE 
(France) - June 1975 - and UNIVERSITE LAVAL-QUEBEC.

- 90 -



a t 3 - COx:;>:r»:UTKt?i' * 
dielectric;-: (x y l a r)

CCTU i K<ant 
Modèle i lisant

yiASïLiTE ccttp.olee
MIL « 14157 * 
Mudèle 1 CPV

—  USITE de VALU ITE —-

2 Ì Z
5! i
: n

£ i *■li

I
i

•;t*erclit*«

V«

La oourbe oi-oontre est une 
limite que l'on ne doit pas 
dépasser.
La tension alternative de 
orfiti + la tension continue 
no doit pas dépaeser la 
tension oontinue nominale 
■oit

+ ÏÏC < îl U,

TTfc
Max. ' CN

:x soo 4M SOC 6CC 700 0 0 0  

Ter.si.on continue noslnale
•loco noo -neo

vO
ïiTtâu de fiabilité Taux d* ¿«fai11ano 

cerrsapcndant Tire
- Î02CC . 10*Vh 3

r. 10C00 . l0"9/h 1

s 1000 . iO"9/h 0.3
a 100 . 10"9/h 0.1
s *0 . 1C'9 'h 0.03

Dimensions du Eoîtier
« 8Diamètre Longueur

nx j Pouoe ma ! Pouoe
7 j 0,275 1? 0,75

j 0,27.9 i 0 , 4 0 0 22,2 0.875
10.1 i 0.400 22,2 ! 0.875

10.1 i 0.400 34,9 -.>75
h j14.3 ! 0,562 41.3 1,625

17 | 0.670 41,3 1 625

!■
1? i 0.750 54 2,125

19,3 j 0.780 60,3 2.375
Bottiers rectangulaires ou 
oylindrleiues plus grand* 2.

Ttô

Ajouter la température oorreepondant 
au domaine considéré de oet abaque à 
la température ambiant* pour obtenir 
la température de fonctionnement

- T.. A T Abaqu« A*

x> JO 5C 1X ¿30 JÛC 190 *î *>0C 29* SOC« JX» *00

- rssaTEscs -
Circuit ouvert 

Court circuit
5 J6 
95 *

F l G u R ;



rwmmrw;'; - covfiKK'urinjii k rn.w 
DISLECTRIÛOE (MYLAR) 

■ Fiabilité contrôlée -
Mil : C 1 4 1 5 7 ft 
Modèle C P V

PARAMETRES NECESSAIRES -

- Température de fonctionnement
- Tension appliquée
- Valeur crête de la tension alternative applljuée
- Tension noœinale 

Dimension du boîtier
- Niveau de fiabilité
- Environnement

CALCUL DU TAüX DE DEFAILLANCE

X — x [TTfc X 7îpC x1fl{r J +■

Temp.fonctionnement

ENVIRONNEMENT E f - e *

Laboratoire 1 0

Satellite (en orbite) 1 . 1 0 , 1

Au sol (fixe) 2 0 , 2

Au aol (portable) 4 1

Au aol (mobile) 4 1

Avion (en habitacle) 4 1

Avion (hors habitacle) 15 5

Satellite (au lancement] 18 6

Missile 2 0 1 0

5 0 7 5 1 0 0 1 2 5 1 5 0 * 0

Xb en fonction de la température de 
fonctionnement et du facteur de charge p

FACTEÜR DE CHARGE p
Tension continue appliquée + Valeur crôte de la tension alternative appliquée

* V T , 1
Valeur nominale

-4_ MODELE MATHEMATIQUE de Xb

xb= 1 - -if* y*-)5* 1 ] e & 20
T : Temp.de fonctionnement en *K



PART n
GDMS FOR SCIENTIFIC DATA: REQUIREMENTS 

AND SPECIALIZED SYSTEMS

PARTIE II
SGBD POUR DONNEES SCIENTIFIQUES : BESOINS 

ET SYSTEMES SPECIALISES



THE STRUCTURE OF R&D INFORMATION —  SOME OBSERVATIONS

A. A. Brooks

Computer Sciences Division 
at Oak Ridge National Laboratory 

Union Carbide Corporation, Nuclear Division* 
Oak Ridge, Tennessee, USA

ABSTRACT

This paper is intended for the potential DBMS user who is not 
knowledgeable in the area of information and data structures. A simple 
pictorial but hopefully useful approach is taken which discusses the 
structure of information from the point of view of the user problem. 
These structures are then related to some simple considerations of data 
models. Any reader who wishes to pursue the subject of data models 
further is referred to Date as.a straightforward text and to Chen as a 
more advanced reference. Knuth is a reference for graphs and trees.

INTRODUCTION

This paper presents a simplified discussion of the structure of R&D 
information from the view of the information use or user rather than 
from the view of computer processing. It contains a discussion of

*Prime contractor for the Department of Energy.



structure which is logically inherent in the information or which is 
deemed as a pragmatic "natural" organization by the user. An attempt is 
made to lead the user through a simple exposition on structures and 
relate them first to examples and then to the nature of a DBMS which 
might be required to meet his needs. All examples of uses are taken 
from experience at the Department of Energy installations in Oak Ridge 
which include the Oak Ridge National Laboratory and the R&D projects of 
two high-technology production plants.

In addition to the inherent logical structures and pragmatic 
organizational structure, the influence of the query language, access 
methods and analysis algorithms on the structures is also discussed. 
Since a specific DBMS may process only one information structure, the 
paper discusses how the more complex structures may be represented as 
simpler structures likely to be found in a general data base management 
system (GDBMS). The effect of the use of structures in user processing 
modules is discussed. A number of secondary considerations such as the 
influence of structure on data base size and processing times are 
mentioned.

No effort is made here to deal with the data storage structures 
except as they may pose problems for the user in retaining and 
processing his inherent structures. In this we limit ourselves to data 
base models which are generally available - hierarchical, relational and 
network.

1. 0 Inherent and Pragmatic Structure
1.1 Inherent structure is the logical associations which exist between

actual entities of a problem. It cannot be changed without 
misstating the problem or at least stating it incompletely. The 
system chosen to process such a problem must preserve this 
structure in the sense that all its properties are recoverable as 
these are essential to the solution of the problem.

1.2 Pragmatic structure is the logical associations created between
entities in a problem for the convenience or efficiency of its 
solution. The pragmatic structure used may be one of several 
alternatives, but it must enable the system to preserve the 
inherent structure. Pragmatic structures, due to the nature of 
computers and other reasons, are often combinations of simpler 
structures accompanied by rules for reconstruction of the 
original structure.

1.3 The next section describes structures which may be either inherent
or pragmatic.

2.0 Mathematical Structures

Greatly simplified, structure is the pairwise logical association 
between "things". These things are called entities, and they 
must have a well-defined membership in a disordered collection, 
called an entity set. The pairwise logical association or 
relationship between entities may be nondirectional or 
directional. Thus, a simple association may be pictorially 
represented as a line segment connecting two nodes (or points), 
i.e.

- 94 -



Nondirectional Directional
Information items known as attribute values may be associated 
with either entity (node) or with the relationship (segment).
Rather than develop formal definitions of information structures, 
we shall define and illustrate pictorially a variety of 
structures which may express the logical associations inherent in 
the user problem or pragmatic to the organization of his data. 
We shall speak of nodes and segments rather than entities and 
relationships.

The most significant attribute of a node is its identification or 
label; of a segment, its direction if any. Additional attributes 
of nodes are also referred to as labels while attributes of 
segments are known as weights. Segments are identified by the 
labels of the involved nodes with an implied direction where 
required.

We now define and pictorially illustrate a variety of structures.
2.1 Cyclic Structures

2.1.1 A graph is a set of nodes, S, and a set of pairs of nodes from S,
P(S), i.e. segments.

G = <S,P(S)>
S = A,B,C,D,E (nodes)

P ( S ) = A B ,B C ,D C ,D B ,D E ,E B ,AE (segments)

Figure 1

A graph is planar if it can be drawn in a surface topologically 
equivalent to a plane without intersecting segments, for example:

Figure 2

-  95 -



2 . 1.2

A path is a set of connected segments between two nodes and a 
circuit is a closed path. A region is an area encompassed within 
a circuit of a planar graph, i.e. BCDB in Figure 1. For each 
planar graph, there exists a unique dual graph expressing in its 
segments the adjacency of the regions of the original graph.

A directed graph or digraph is a graph whose segments have a 
preferred orientation and is defined by a set of nodes (S) and a 
binary relation on S, R(S). (A binary relation is a set of 
ordered pairs of elements (nodes).)

D = <S,R(S)>
S = A,B,C,D,E 

R(S) = A B ,B C ,D C ,D B ,D E ,E B ,AE

Figure 3

The graph and digraph represent the 
entities.

structure among a set of

2.1.3 The labeled graph or digraph is introduced in order to include the 
attribute values of the entities.

G = <S , P (S ) ,L(S)>
S = A , B , C

P(S) = A B ,B C ,CA
L(S) = L(1,A) , L (2,A)

L(1,B) , L (2,B)
L(1,C) ,L(2,C)

L(n,A)

Figure 4

We have illustrated a rather simple set of values as the label 
and others of arbitrary complexity are permissible. Generally 
speaking, the labels have logical associations among their own 
elements, usually one of the simple structures depicted later.

2.1.4 The weighted graph or network is introduced in 
attribute values of the segments.

order to include

-  96 -



A

N = <S,P(S),W(P)>
S = A,B,C

P(S) = AB,BC,CA
W(P) = W(1,AB),W(2,AB)

W(1,BC),W(2,BC)
W (1,CA),W(2,CA)

Figure 5

Again we have depicted rather simple weights for each segment, 
and more complex ones may be required for a specific problem.

2.1.5 Labels and weights may be applied simultaneously to a graph or a 
directed graph. An example of a labeled, weighted, planar 
digraph is the following:

D = <S,R(S) ,L (S) ,W(R)> 
S = 1,2,3,4 

R (S) = 12,23,34,41 
L( S ) = x (1),y(l),a(1) 

x (2),y(2),a(2) 
x (3),y(3),a (3) 
x (4) ,y (4 ) ,a (4 )

W(R) = W ,M ,P(W),P 
N,M,P(N),P 
E , M , P (E ) ,P 
S,M,P(S),P

N, Pn

W, Pw

2:X2, Y2 , a2

1:X4iY4i o<

S, Ps

3 : x3'y3* °3

E, Pe

Figure 6

The dashed lines separating quadrants have not been specified in 
the definition for the purpose of simplicity. The figure could 
well represent a small geopolitical unit with regions M, N, E, S, 
and W having populations P, P(N), P(E), P (S) and P(W) with 
latitude, longitude and altitude at each node. Geopolitical 
boundaries, geographical boundaries, and linear features such as 
rivers, roads, canals, and transmission lines have produced the 
most sophisticated and largest, although planar, structures.

-  97 -



Examples of nonplanar graphs in data management have been
production process flows, food chain kinetics, and
stereoisomerization of cyclic compounds. These problems
generally are not considered for processing by a GDBMS due to
their highly specialized nature; but as they become more commonly 
used, it may be desirable to incorporate management of such data 
within a more general system.

2.2 Acyclic Structures
Acyclic structures are graphs which have only one path between 
any two nodes. Their occurence in experimental data is far more 
common than that of the cyclic structures of which they are a 
specialized case. We illustrate several below.

2.2.1 A free tree is a nondirected graph having only one path between 
nodes.

T = <S,P(S)> Unique Path Between Nodes
S = A,B,C,D,E,F 

P (S) = AB,BC,DB,F B ,AE

Figure 7

2.2.2 An oriented tree is a free tree with oriented (directed) segments 
between nodes. Such a tree is shown in Figure 8. It can express 
"one to many" and "many to one" relationships between nodes.

T = <S,R(S)>
S =A,B,C,D,E 

R (S) = A B ,B D ,B E ,CB

Figure 8a

2.2.3 The rooted oriented tree is an oriented tree with only one 
incoming path per node and a unique root node which has no 
incoming paths. It can express only "one to many" relationships 
which is often a serious limitation for some problems. It is 
also called a hierarchy and is the most common irregular 
structure found in data base systems.

T =
S =

R(S) =

C D

<S,R(S)> a) Unique Root Node
A ,B ,C ,D ,E b) One Incoming Path/Node
A B ,B C ,B D ,B F ,AE

Figure 8b

-  98 -



Trees must be labeled and weighted in order to carry attribute 
values for nodes and segments. The subtrees may be ordered, 
usually counterclockwise, about the node? and the order may be 
indicated by a top down left branch first (preorder) traversal 
sequence of nodes.
The rooted tree structure is accommodated directly or indirectly 
by most DBMS. Some systems may permit multiple hierarchical 
descriptions of the same set of nodes which pragmatically may 
remove the "many to one" restriction.

Regular Structures
Many R&D data bases have very regular structures; namely, vectors 
and multiply-dimensional arrays. These can be viewed as regular 
trees.

Array (as regular rooted tree)

Vector (as a simple rooted tree)

•— •— •-- •

Vectors and arrays are so legion in R&D data that no examples are 
necessary. It should be sufficient to say that most large 
computational problems deal with these regular structures.

Collections of Structures

All of the above structures, graphs, trees, arrays and vectors, 
may occur as collections of separate (i.e. disjoint) structures 
which have no connections and no specific order between the 
isolated subgraphs. Some problems, such as contour lines, do 
impose some secondary association between disjoint structures. 
Two examples of disjoint graphs are shown.

Again, these are usually processed by special software systems, 
not by a DBMS.



2.4.2 Many experimental or observational data bases can be organized 
into a collection of rooted trees. This occurs frequently when 
information is uniquely associated with independent conceptual 
individuals which form a population. Such a collection is termed 
a forest.

Forest - A Set of Trees

Figure 9

The occurrence of this form is rampant in science, perhaps because 
it coincides with the statistical view of a population of 
individuals. Some examples are: field observations,
experimental animals, sample analyses, bibliographic files, and 
card catalogs.

2.4.3 A simpler case is the n-ary relation or collection of vectors.
•— •— •— •— •
•— •— +— •— •

etc.

This structure is the basis of the relational data base model.

2.4.4 The simplest case is a collection of atomic data elements which is 
called a set and could be represented without structure as:

Note that a set in general may consist of nonatomic elements and 
that all the collections shown here are indeed sets.
Our enumeration of structures is at an end. The user should be 
able to relate the structure of his problem to one or more of 
those presented. There is opportunity for great complexity. 
Fortunately, most complex structures can be expressed in 
equivalent simpler structures which can be used to produce the 
same results given the necessary algorithm. In fact, the 
ultimate structure of most computers is linear with some artifice 
used to represent more complex structures.

- 100 -



3.0 Atomic Data Elements
Atomic data elements are representations of attribute values 
which have no structure in the sense they cannot be subdivided 
without loss of meaning. Scientific data management requires 
several kinds especially if both display and computations are to 
be carried out. We list without comment several which seem 
necessary: text strings, numeric strings, machine words (binary 
integers and floating point), bytes, bits and bit strings. 
Atomic data elements may be fixed length or variable length and 
both are desirable if not essential in a scientific data base 
management system (SDBMS).

4.0 Simple Representation of Complex Structures
It is readily apparent from the definitions of complex structures 
in terms of simple structure, i.e. associated pairs, that 
complex structures can be represented by simple structures. It 
is important, however, that the simple structure be chosen so 
that the inherent features of the complex structure can be 
maintained or readily reconstructed from the simple structure.

4.1.1 The basic process for reducing the complexity of a structure is to 
break a segment and place the name of one node as a label in a 
data field of the other node. In this manner a graph can be 
reduced to a tree or collection of trees and a tree to a 
collection of vectors which form one or more relations. This 
latter process, called normalization, results in recording the 
identifying labels of the complete path from root to data node 
along with all data at the node. This process tends to inflate a 
data base in size but has desirable attributes with respect to 
data base update. For a very deep hierarchy (rooted tree), this 
inflation may be a serious problem for large data bases.

4.1.2 Structure within a data base can exist within a single record, 
between a few records or a single structure for an entire data 
base. Often this distinction in the data base model is not made 
clear. Structure within a single record is almost always 
expressed as a relative address within memory. Structures 
between records (which are usually simple structures, i.e. 
vectors) are usually expressed as device address links to the 
next logical record. Records stored in single large hierarchies 
usually use nested directories or indices. The network data base 
model provides for multiple links to express alternate 
hierarchical representation but constraints exist upon the 
owner-member relationships. Thus the user must consider how the 
structure of his problem maps into the structure of the system 
used and the algorithms available to "reconstitute" the inherent 
structure of his problem.

4.2 Processing Algorithms and Queries

4.2.1 The processing algorithms of a DBMS include the processing of 
queries and usually some other simple standard services. The 
collected demands of the many autonomous scientific users of a 
system probably must be satisfied through a user-interface which

- 101 -



enables attachment of user software modules. This may also be 
required to process special queries which are not readily 
expressible in the standard query language. In any case, 
consideration of the ability of the data base system structure to 
support these extracurricular needs is important if the system is 
to be satisfactory. For example, if the structure of the problem 
is a forest of rooted trees and each query demands that this 
structure be "recreated" from a relational or network model, then 
this may be more costly than keeping a rooted tree record 
structure. Specialized computational needs may require the 
storage of vectors or large arrays within one record. The user 
interface and module are a solution only if the data base 
structures are suitable to the user algorithm. Stated another 
way, a good SDBMS will probably permit vector, array, and rooted 
trees within a logical record stored within the data base 
structure.

4.2.2 The visual display of structure (i.e. maps) will require 
algorithms which reconstruct the complex structure. When such 
displays involve many "elements", special storage of data may be 
necessary for efficiency of processing. Again, in addition to 
the user module, the data may have to be stored in a 
user-determined structure which can be described for retrieval 
and referenced easily in the SDBMS for the user. In addition to 
display, other computational procedures may require referenced 
user files.

4.2.3 The complex structures of a problem may exist to facilitate 
structure-oriented retrieval, for example the search for a tree 
of special characteristics within a forest. One may wish to 
examine only certain subtrees, ignoring the rest. Such a query 
may be simple to express with a tree-structured record but 
complex within a relational data base. The user must be assured 
that not only is a query possible with simple structures but that 
it is also reasonable to phrase it in the query system provided 
by the DBMS.

4.2.4 The query language supported by the DBMS may be low-level such as 
Boolean expressions, higher level such as predicate calculus, or 
a "natural" language. Since a language which is natural for one 
user may not be "natural" for a different type of user, the need 
for an extensible language should be considered. The examination 
of the relational model with the various language levels proposed 
will prove illuminating as an example of a simple basic structure 
combined with the powerful but awkward predicate calculus as a 
query language. The potential user should realize that few DBMS 
have been designed to serve the broad range of scientific users.

4.2.5 Data base management systems usually provide for both real-time 
processing and batch processing. Real-time processing requires 
some form of random access to the data base in order to have a 
suitable response time. Usually some form of index is 
constructed or threads are drawn through the data base. The user 
must be assured that whatever process is used, it can support the 
structure of his data and that essential associations are not 
lost. When queries cannot be restricted to certain data fields,

- 102 -



then total indexing (i.e. file inversion) may be required. Even 
so, associations can be destroyed. When real-time response is 
not absolutely necessary and queries can be "stacked", there is a 
lot to be said regarding sequential access to a collection of 
inherent structures. In even small- to medium-sized data bases 
(10 bytes), real-time response will often preclude sequential 
access; and the user must accept any limitations that the system 
places on his structure.

5.0 Data Base System Characteristics
DBMS reflect or should reflect the environment which nutured them 
and the needs of the users in that environment. Therefore, it is 
not surprising that a SDBMS should be different than the DBMS 
developed for a different environment. This section lists some 
facets of the R&D environment, some features of 
currently-available DBMS and some desirable features of a SDBMS.

5.1 R&D Data Base Environment
The following is a list of some attributes of the R&D data base
environment which should affect the structures of a SDBMS.
1. Users are many, autonomous and often small.

2. Sophisticated and simple queries are required and are 
unpredictable.

3. The same is true for analysis (processing) requirements.
4. Has elaborate inherent structures and variable length data; 

many vectors, arrays and rooted trees.

5. Has numerous independent collections of data about 
independent individuals.

6. Requires "research reports" including graphics and plotting.
7. Has users1with independent subject-oriented files, some very 

large (10 bytes) but also many small and ephemeral.

5.2 Currently Available DBMS

Most currently available DBMS were not developed for the 
scientific community and have the following characteristics:
1. Assume a universe of coordinated users.
2. Assume fixed field data in simple structures.

3. Process simple queries with atomic operands.

4. Have simple analysis queries but no extensive user module 
interface.

5. Have "fiscal" report generators.

6. Require a staff of surrogates and consultants.

“ 103 -



5.3 Some Essential Characteristics of SDBMS

The following is a partial list of characteristics required of a 
SDBMS:
1. Data Elements - Display and computation-oriented; variable 

length.

2. Structures - Atomic, vector, array, rooted trees, cyclic 
structures represented by simple structures.

3* Queries - Boolean, predicate calculus, natural language; 
structured operands.

4 * Analysis - Statistics; FORTRAN, & PL/I interfaces.
5. Mode - Batch and online.

6. Output - "Manuscript" generation, tables, graphics.
7. Model Rationale - Content independent.

10 48. Data Bases - Large (10 bytes) to small (10 ); must manage
special files effectively.
Data Base Manager - Understands science.

10. Open-Ended - Multiple user schemas.

6.0 Caveats
The user should be reminded that these observations have been 
made in a large R&D environment and represent the collective 
needs of many potential users. A single project will often be 
served by a less comprehensive system. Nonetheless, a system 
should be sought which will meet the expanded needs of, say, five 
years in the future.

CAVEAT EMPTOR

-  104 -



REFERENCES

1. Date, C. J., "An Introduction to Data Base Systems," 
Addison-Westley Publishing Company, London, 1975.

2. Chen, P. C., "The Entity-Relationship Model —  Toward a Unified 
View of Data," ACM Transactions on Data Base Systems, Volume 1, 
No. 1, March 1976.

3. Knuth, D. E., "The Art of Computer Programming —  Volume 1," 
Addison-Westley Publishing Company, London, 1968.

-105 -



THE CAPABILITIES REQUIRED IN A 
GENERALIZED DATA BASE MANAGEMENT SYSTEM 

FOR HANDLING SCIENTIFIC AND TECHNICAL DATA

K. F. Szczesny and W. M. Gersbacher

Information Systems Section 
Computer, Information Systems, and Education Department 

Battelle Columbus Laboratories 
Columbus, Ohio 43201

-  106 -



A. Introduction

A complete specification of the capabilities required in a Generalized Data 
Base Management System (GDMS) for handling of scientific and technical data is very 
difficult due to the number of ways in which such a system might be used. Different 
applications require different data handling capabilities. Indeed, the capabilities 
of a GDBMS found important in one application may be of little or no importance in 
another application. As a result, a GDBMS cannot hope to satisfy all requirements 
for data handling in all situations. A GDBMS can, however, greatly ease the task of 
data management in most situations and provide a framework on which specific 
applications can be developed.

The capabilities of a GDBMS outlined in this paper are not intended to be an 
all inclusive specification for such a system. The intent was to list what was 
thought by the specialists to be the most important requirements that should be 
present in a GDBMS. These requirements have been divided into two sections for 
purposes of presentation. The first section deals with the capabilities required of 
a GDBMS for handling scientific and technical data. The second part addresses 
general features often found in a GDBMS which are also required in data 
applications.

B. Handling Scientific and Technical Data

Scientific and Technical Data present a number of special requirements that are 
not usually supported by the current data base management systems. In this section 
we present a number of requirements that should be present in a GDBMS if it is to 
handle this type of data effectively. Much of the data in a scientific application 
may be numeric while other types of data may be descriptive. A GDBMS should be able 
to support both types of data in an optimal manner. Specific requirements for 
numeric and non-numeric data are given here.

1. Requirement for Numeric Data

(a) Data Element Representation. A GDBMS for scientific data should be 
able to handle several forms of data. In order to gain a high degree 
of precision (and compression in storage), it is desirable that the 
GDBMS support the storage of binary data. Four forms of binary 
representation should be supported: (1) Fixed Point, (2) Floating 
Point, (3) Double Precision, and (4) Bit String. In general the 
system should be flexible enough to allow whatever representation one 
needs (binary or textual). It should be possible to introduce new 
data forms (for example, physical constants) and the facilities for 
handling them as the need arises.

(b) Numeric Data should be easily searched (using data ranges and 
relational operators) and easily manipulated.

(c) The GDBMS should support the storage of MxN matrics of data values. 
This must be done efficiently for both dense and sparse matrices. One 
must be able to address individual elements of the matrix using vector 
notation (subscript notation), e.g., M(l,2,3). The GDBMS should allow 
the user to retrieve the entire matrix with one call to the system.

(d) It is very important that the GDBMS be capable of handling very large 
quantities of data. The GDBMS must provide fast and efficient access

-  107 -



(e) The GDBMS should provide the facility of validating incoming data and 
perhaps converting external representations to the desired internal 
representation. This may be accomplished by allowing a "hook11 to user 
written special routines or via host language facilities.

(f) Many complex interrelationships will be present in scientific data. 
It is important that the GDBMS have flexibility so scientists can 
experiment with many relationships that seem to be present without 
high overhead in data base restructuring. The interrelationships 
among the various data elements should be Msoftlf in the data base so 
that many "views'1 of the data base can be accommodated without 
restructuring the data base.

(g) A high degree of compression of the data is very important. The use 
of variable occurence and variable length data elements is very 
common.

2. Requirements for Non-Numeric Technical Data

(a) The qualitative descriptions and explanations of scientific methods of 
investigation are often present with scientific data. These 
descriptions vary a great deal in length. Therefore a GDBMS must 
support variable length data elements and must allow numeric and 
non-numeric data elements to be present in the same data base.

(b) Textual descriptions present a number of information representation 
problems that must be taken care of by the GDBMS. The use of textual 
descriptions must be carefully controlled so that these descriptions 
can be used in a precise manner when searching the data base. It is 
desirable that the GDBMS support many of the capabilities used by 
information scientists to carefully control the problems that occur in 
human languages. The system should support validation, 
classification, and the use of a thesaurus.

(c) Using human languages to communicate technical ideas leads to 
unavoidable problems that result from differences in education, 
experience, background, environmental conditioning, and linguistic 
facility among originators, indexers, retrievers, and potential users 
of information. Expressed specifically in terms of a functioning 
information system, the problem is this - "How can the information 
presented in a physical document be indexed for retrieval so that the 
identity of its content will not be distorted or obscured by 
differences in intellectual qualifications and linguistic facility 
among originators, indexers, searcher, and users?." This problem must 
be solved to assure that stored information has an acceptable 
potential of retrievability.

There are imperfections in paths of communication which make it 
virtually impossible for possessors of knowledge to create written 
records which will carry to users exactly or even approximately the 
intended meaning. Imperfections in communication arise from the 
essential richness and complexity of language, linguistic factors, and 
human factors. The linguistic factors manifest themselves in the 
problems of semanatics, generics, and syntactics, while the human

to this large volume of data,

-  108 -



factors pertain to the problem of viewpoint. Effectiveness of 
retrieval will be directly proportional to the adequacy with which the 
problems of viewpoint, generics, semantics, and syntactics had been 
solved.

A technical thesaurus functions as a word-reminder list. It enables 
indexers: (1) to describe information being indexed by as many terms 
as appropriate or necessary to provide for the different points of 
view from which the information in the document might be regarded; 
(2) to describe information in synonymous or nearly-synonymous terms 
where appropriate; and (3) to relate narrower concepts to more 
inclusive concepts on generically high levels. The consistent, 
conscientious utilization of a thesaurus in indexing will assure that 
technical information will be stored with maximum potential for 
retrievability.

(d) The GDBMS should support validation of textual fields by using 
facilities such as code controls, authority lists, and dictionaries. 
Very large dictionaries (10,000-20,000 entries) should be accommodated 
by the system.

(e) The GDBMS should allow one to store a compact code in a data field 
that can be expanded to a longer textual description when desired. 
This improves storage efficiency and maintains control of precise 
textual description of technical data.

(f) The system must be able to handle large volumes of textual data.

(g) Sophisticated indexing and searching facilities should be supported 
that allow textual fields to be used in a powerful manner for 
retrieval.

(h) Special symbols should be available in the character set used by GDBMS 
to represent scientific notation (e.g., greek symbols).

C. General Features Often Found in a GDBMS
That are Required to Handle Scientific and 
Technical Data

1. Portability. Because much scientific work involves collaboration among 
individuals at several institutions, it is highly desirable that the GDBMS 
be easily transportable to machines of different vendors.

2. The system should have a very easy to use general purpose interface that 
allows it to present information in a data base to external programs such 
as statistics packages and other programs written in high level languages.

3. It is desirable that the system support a host language interface in 
FORTRAN and other high level languages.

4. The system should be easily used by non-programmer people. The GDBMS must 
provide software that can be directly used on any data base under system 
control that allows users to search for and manipulate the data. One 
should not need to write a program every time the data base is used.

-  109 -



5. The ability to use the GDBMS for interactive access to a data base is 
desirable.

6. If updates to the data base are made on-line in an interactive mode, then 
it is very important that adequate logging of transactions be done. One 
should be able to nroll back” and "roll forward11 transactions applied to 
the data base.

7. Accessing versus Updating. A choice has always to be made between fast 
retrieval and easy updating. In a scientific data base, there will 
normally be less updating as compared, for example, with an order-entry 
program, and emphasis can be placed on retrieval efficiency. Most updates 
will be additions of new material with some corrections to old data.

8. The ability to search on data elements not specifically organized to 
facilitate searching (i.e., they are not primary search elements) should be 
possible.

9. It is desirable that the GDBMS support extensive Report Generation and also 
that it, perhaps, supports Graphical output.

10. The GDBMS should have a fair degree of tunability. That is, one should be 
able to adjust the system easily to weight some requirements over others. 
An example may be to give up updating efficiency to improve retrieval 
efficiency.

11. One should be able to tailor-make a set of applications to the specific 
needs of the end-user by using facilities provided in the GDBMS.

12. One should be able to archive unused portions of the data base off-line and 
bring them back on-line when required.

13. It is desirable that the indexes to large volumes of data could be 
available on-line with the actual data off-line. One can narrow down a 
search on-line and retrieve the data off-line in batch.

14. One should be able to permanently store regularly used requests.

15. A capability for restricting access to sensitive data is desirable. The 
use of encoding and decoding algorithms would be one possible technique for 
accomplishing this.

16. The system should be designed in a open-ended fashion to allow new features 
to be added with little difficulty.

- 110 -



REQUIREM ENTS FOR THE DESIGN OF A 
SCIENTIFIC DATA BASE MANAGEMENT SY ST E M

(.Derived fro m  Experience with different program m atic data bases at LLL)

by

Viktor E. Hampel and Daniel R. Ries

Data Management Group 
Lawrence Livermore Laboratory 

Livermore, California, 94550

September 30, 1977

ABSTRACT

F i r s t ,  we d i s c u s s  p r o b a b l e  c a u s e s  f o r  t he  a b s e n c e  o f  a p o r t a b l e ,  

g e n e r a l i z e d  d a t a  b a s e  management  s y s t em f o r  scientific d a t a  a t  t he  DOE N a t i o n a l  

L a b o r a t o r i e s :  The d i f f i c u l t y  i n a s s e s s i n g  t he  m o n e t a r y  v a l u e  o f  a c c u r a t e  

u p - t o - d a t e  i n f o r m a t i o n  and d a t a  as  a c o r p o r a t e  o r  n a t i o n a l  r e s o u r c e ;  t he  g r a d u a l  

e v o l u t i o n  o f  h i g h l y  e f f i c i e n t ,  s o l e - p u r p o s e  and i n s t a l l a t i o n  d e p e n d e n t  s y s t e m s  

whe r e  v e r y  l a r g e  amo un t s  o f  d a t a  a r e  i n v o l v e d ;  t he  h i s t o r i c a l  t r e n d  o f  j u d g i n g  

t he  power  o f  c o m p u t e r s  p r i m a r i l y  by t h e i r  c a I c u I  a t i o n a I  s p e ed ;  t he  c o n s e q u e n t  

d e l e g a t i o n  o f  d a t a  management  t o a s e c o n d a r y ,  p i g g y - b a c k  r o l e  on t he  l a r g e  

m a c h i n e s ;  t he  d i f f i c u l t y  o f  p r o v i d i n g  t he  s c i e n t i s t  o r  e n g i n e e r  w i t h  d a t a  i n  h i s  

c u s t o m a r y  n o t a t i o n ;  t he  a p p r e h e n s i o n  o f  t he  c a s u a l  u s e r  h a v i n g  t o  l e a r n  t he  

p e c u l i a r i t i e s  o f  home- g r own  s y s t e m s ;  and f i n a l l y ,  t he  a b s e n c e  o f  a c o m p r e h e n s i v e  

body  o f  c o m p u t e r - r e a d a b l e  s c i e n t i f i c  d a t a  t h a t  i s  a u t h e n t i c a t e d ,  i n  t he  p u b l i c  

d o m a i n ,  and w h i c h  c o u l d  a c t  as  an i n c e n t i v e  f o r  l o c a l  u s e .

S e c o n d ,  we i d e n t i f y  a d m i n i s t r a t i v e  and t e c h n o l o g i c a l  r e q u i r e m e n t s  t h a t  seem 

n e c e s s a r y  and d e s i r a b l e  f o r  t he  d e s i g n  o f  a g e n e r a l  Scientific Data Management

• P r e p a r e d  f o r  t h e  U . S .  E n e r g y  R e s e a r c h  &  D e v e l o p m e n t  A d m i n i s t r a t i o n  under 

c o n t r a c t  No.  W - 7 4 0 5 0 E n g - 4 8

- 111 -



System (SDMS) i n  s u p p o r t  o f  t he  new l y  e me r g i n g  n a t i o n a l  p r o g r a m s  c o n c e r n e d  w i t h  

e n e r g y  and t he  e n v i r o n m e n t :  A u t h o r i z a t i o n  and f u n d i n g  f o r  SDMS mus t  c l e a r l y  

come f r om t op DOE management ;  o n l y  t hen  can  we hope  t o  r e d u c e  t he  r e d u n d a n t  

d e v e l o p m e n t  o f  s p e c i a l ,  home- g r own  s y s t e m s  and t h e i r  c o s t l y  m a i n t e n a n c e ,  i n  

s u p p o r t  o f  s m a l l  b u t  a c t i v e  s c i e n t i f i c  p r o g r a m s .  A SDMS s h o u l d ,  t h e r e f o r e ,  no t  

be p r o p r i e t a r y  s o f t w a r e .  I t  s h o u l d  be r e a s o n a b l y  p o r t a b l e  f o r  u s e  on b a c k - e n d  

m i n i - c o m p u t e r s  and t he  more  p o w e r f u l  m a c h i n e s ;  i t  s h o u l d  be s e l f - g u i d e d  t o  h e l p  

t he  c a s u a l  u s e r  f i n d  h i s  way .  From a t e c h n i c a l  p o i n t  o f  v i e w ,  t he  s y s t e m  s h o u l d  

wo r k  e q u a l l y  e f f i c i e n t l y  v e c t o r s ,  m a t r i c e s ,  a r r a y s ,  c o m p l e x  v a r i a b l e s ,  s p a r s e  

d a t a  and t e x t .  I t  s h o u l d  be c a p a b l e  o f  s t o r i n g  and d i s p l a y i n g  d a t a  w i t h  mos t  o f  

t he  c u s t o m a r y  s c i e n t i f i c  n o t a t i o n s  and a t t r i b u t e s  i n  d i f f e r e n t  u n i t s  o f  

me a s u r e me n t .  The u s e r  s h o u l d  be a b l e  t o use  t he  s y s t e m  as  a p r o g r a m m a b l e  

c a l c u l a t o r  f o r  s i m p l e  m a t h e m a t i c a l  t a s k s ,  and he s h o u l d  be a b l e  t o  e x t r a c t  and 

t r a n s f e r  d a t a  t o h i s  mode l  or  a p p l i c a t i o n  p r o g r a m  f o r  more  d i f f i c u l t  

c a l c u l a t i o n s .  The s y s t e m  s h o u l d  p e r m i t  common a c c e s s  t o  a l i b r a r y  o f  

i n t e r  —reI  a t e d  d a t a  b a s e s  and r e f e r e n c e  t a b l e s .  In t h i s  s e n s e ,  t he  SDMS s h o u l d  

p e r m i t  e x p a n s i o n  t o an Integrated Information System on c o m p u t e r  n e t w o r k s  w i t h  

d i s t r i b u t e d  r e s o u r c e s .  Mo s t  i m p o r t a n t l y ,  t he  u s e r  s h o u l d  be g i v e n  a r e a s o n a b l e ,  

E n g l i s h - l i k e  command l a n g u a g e  to s t a r t ,  bu t  he s h o u l d  a l s o  have  t he  o p t i o n  t o  

c r e a t e  h i s  own d i a l e c t s  and e x t e n s i o n s  o f  t he  s y s t e m  f o r  h i s  p e r s o n a l  and 

p r o g r a m m a t i c  n e ed s .

1. INTRODUCTION

"Why Another Data Base Management System?"

T h i s  q u e s t i o n  i s  no t  new. I t  has  p e r s i s t e d  a t  mos t  AEC /ERDA/ DOE  

L a b o r a t o r i e s  and c o mp u t e r  c e n t e r s  d u r i n g  t he  p a s t  d e c a d e .  As  we a r e  c o n s i d e r i n g  

a f u t u r e  G e n e r a l i z e d  D a t a  Management  S y s t e m  ( G D M S ) , t h a t  m i g h t  s e r v e  t he  

s c i e n t i f i c  c o mmun i t y  a t  l a r g e ,  i t  seems p e r t i n e n t  t h a t  we e x a m i n e  t he  r e a s o n s  

why an a d e q u a t e  s y s t e m  f o r  g e n e r a l i z e d  s c i e n t i f i c  d a t a  d o e s  no t  e x i s t  t o d a y .  By 

r e v i e w i n g  t he  h i s t o r i c a l  e v o l u t i o n  o f  d a t a  management  i n  an adm i n i s t r a t i ve and 

t e c h n i c a l  s e n s e ,  we s h o u l d  be b e t t e r  p r e p a r e d  no t  t o  r e p e a t  t he  m i s t a k e s  o f  t he  

p a s t .

The s t a t e  o f  t he  a r t  of  b u s i n e s s - o r i e n t e d  d a t a  management  i s  w e l l  

d o c ume n t e d  i n  t he  r e c e n t  l i t e r a t u r e .  A v a i l a b l e  f e a t u r e s  and t h e i r  

i m p l e m e n t a t i o n  t e c h n i q u e s  a r e  summer i zed by t he  Comparative Data Management 
Systems s e m i n a r s ,  g i v e n  t h r o u g h o u t  t he  y e a r  by t he  U n i v e r s i t y  o f  C a l i f o r n i a  

E x t e n s i o n  D i v i s i o n  a t  L o s  A n g e l e s .  A t  L L L ,  we have  w o r k e d  w i t h  a l a r g e  number  

of h i g h l y  d i v e r s i f i e d  t e c h n o l o g i c a l  and s c i e n t i f i c  d a t a  b a s e s ,  r a n g i n g  from 
m a t e r i a l  p r o p e r t i e s ,  a i r - p o I  I u t i o n  d a t a ,  e c o l o g i c a l  d a t a ,  a t o m i c  and molecular 
data, laser p a r a m e t e r s ,  and t he  Table of Iso topes.[1-4] We have also studied and 
developed data management  s y s t e m s  and c o mp u t e r  t o o l s  for data validation and 
display. [5] For the purpose of  this r e p o r t  it will suffice that we point out

- 112 -



o n l y  t h o s e  a s p e c t s  w h i c h  we b e l i e v e  t o  be  u n i q u e  a n d  s i g n i f i c a n t  f o r  s c i e n t i f i c  

w o r k  :

1 . D a t a  t y p e s

Additional Scientific F e a t u r e s : 

Scientific attributes are mandatory

2 . F i l e  S t  r u e  t u r e s Vectors , m a t r i c e s , a r r a y s , etc.

3 . F i l e  C r e a t i o n With scientific validation

4. U s e r  I n t e r  f a c e Self-guidedy higher user dialects

3. Re t r i e v a  I Sc U p d a  t e In different units of measurement

6. S e c u r  i t y In the Interest of national defense

7 . R&D A p p l i c a t i o n  P r o g r a m m i n g Control of Input and Output

8 . R e p o  r t i n g Forrttuulae , scientific notations , etc

9 . C o m p u t e r  C o m m u n i c a t i o n Among evaluators  &  users of data

10. D i s t r i b u t e d  R e s o u r c e  S h a r i n g Among Labs  &  data evaluation centers

1 1 . A c c e s s  Sc T r a n s a c t i o n  C o n t r o l Use of distributed resources

12. I n t e g r a t e d  I n f o r m a t i o n  S y s t e m s Scientific Reference D ata Banks

D e p e n d i n g  u p o n  t h e  p a r t i c u l a r  i n s t a l l a t i o n  a n d  w o r k i n g  e n v i r o n m e n t ,  o n e  o r  t h e  

o t h e r  o f  t h e s e  f e a t u r e s  w i l l  be  e m p h a s i z e d  o r  l e f t  o u t .  F o r  t h e  OCTOP US  s e c u r e  

o p e r a t i n g  s y s t e m  a t  L L L ,  f o r  e x a m p l e ,  i t  w o u l d  be  a d d e d  b a l l a s t  t o  c a r r y  a l o n g  

t h e  o v e r a l l  s e c u r i t y  p r o v i s i o n s  n e c e s s a r y  s o m e w h e r e  e l s e ,  a l t h o u g h  s e l e c t i v e  

a c c e s s  c o n t r o l  t o  i n d i v i d u a l  d a t a  f i e l d s  w o u l d  be  d e s i r a b l e .  O f  p a r t i c u l a r  

i m p o r t a n c e  f o r  o u r  w o r k  w i t h  s c i e n t i f i c  d a t a  i s  t h e  a b i l i t y  t o  a n n o t a t e  d a t a  

w i t h  q u a l i f i e r s ,  o r  a t t r i b u t e s ,  t h a t  s u p p o r t  t h e  d a t u m .  B o t h ,  f o r  m e a s u r e d  and  

e v a l u a t e d  p r o p e r t i e s  o f  m a t e r i a l s ,  t h e  f o l l o w i n g  a t t r i b u t e s  a r e  s i g n i f i c a n t :

Attributes of Scientific Data

1 . Va I ue

2. U n c e  r t a  i n ty

3 . U n i t s  o f  M e a s u r e m e n t

4. No r ma  I i z a t  i on

5 . Va I i d i t y  Doma i n

6. M e t h o d  o f  M e a s u r e m e n t

7. C o n d i t i o n s  a n d  C o n s t r a i n t s

8 . T y p e  o f  D a t a

9 . S o u r c e  o f  D a t a

10. B i b l i o g r a p h i c  R e f e r e n c e

1 1 . Commen t s

12. P r o p r i e t a r y  S t a t u s ,  C l a s s i

- 113 -



The  r e q u i r e m e n t  t o  s t o r e  s o  l a r g e  a nu mbe r  o f  a t t r i b u t e s  p e r  datum,  o r  f o r  

a s e t  o f  d a t a ,  p o s e s  a c o n s i d e r a b l e  o v e r h e a d  b u r d e n .  A t  L L L ,  we i n t r o d u c e d  

u s e r - d e f i n a b l e  d i c t i o n a r i e s  t h a t  l i n k  t h e  a t t r i b u t e s  t o  a b i t  o r  b y t e  p a t t e r n ,  

s o  t h a t  e a c h  f u l l y  a n n o t a t e d  datvm  may r e q u i r e  o n l y  1 - 2  a d d i t i o n a l  c o m p u t e r  

w o r d s  o f  o v e r h e a d .  Man y  d a t a  s e t s  c a n  be  q u a l i f i e d  a s  a g r o u p ,  o f  c o u r s e .  The  

r e l a t i o n a l  d a t a  b a s e  s t r u c t u r e s  a r e  q u i t e  s u i t a b l e  f o r  t h e s e  t y p e s  o f  

a n n o t a t i o n s ,  w h e r e  n e e d e d .

I n  g e n e r a l ,  s c i e n t i s t s  w o r k  w i t h  m u l t i p l e  d a t a  b a s e s  a n d  w i t h  f i l e s  o f  

d i f f e r e n t  l a y o u t ,  w i t h  r e f e r e n c e  d a t a ,  t a b l e s  o f  p h y s i c a l  a n d  c h e m i c a l  

p r o p e r t i e s ,  c o n v e r s i o n  m a t r i c e s  f o r  u n i t s  o f  m e a s u r e m e n t ,  a n d  l i b r a r i e s  o f  

e v a l u a t i o n  p r o g r a m s .  I n  a d d i t i o n ,  e n g i n e e r s  a n d  s c i e n t i s t s  w i s h  t o  h a v e  t h e  

r i g h t  t o  w o r k  w i t h  t h e i r  own b e s t  v a l u e s  f o r  s ome  o r  f o r  g r o u p s  o f  d a t a .  The  

r e s e a r c h e r  e x p e c t s  t h e  c a p a b i l i t y  t o  c r e a t e  a n d  t o  u s e  t e m p o r a r y  f i l e s ,  o r  

scratch-files,  n o t  u n l i k e  t h e  y e l l o w  n o t e p a d s  u s e d  i n  d a i l y  w o r k .  T he  SDMS 

s h o u l d ,  t h e r e f o r e ,  p r o v i d e  a c o n v e n i e n t  o p t i o n  t o  e x t r a c t  a n d  t o  c o m b i n e  w h o l e  

t a b l e s  o f  d a t a ,  o r  p a r t i c u l a r  r ows  and  c o l u m n s .  T h i s  i m p l i e s  t h a t  t h e  SDMS 

s h o u l d  a l s o  f u n c t i o n  a s  an e f f i c i e n t  a nd  v e r s a t i l e  h a n d - c a I c u I  a t o r . I t  s h o u l d  

l e n d  i t s e l f  t o  c o n t r o l  t h e  i n p u t  t o  c a l c u l a t i o n s ,  a n d  h e l p  w i t h  t h e  s t o r a g e  a n d  

a n a l y s i s  o f  a g r o w i n g  v o l u m e  o f  c a l c u l a t e d  r e s u l t s .  To  t h e  p r o g r a m  m a n a g e r ,  t h e  

e s s e n t i a l  q u e s t i o n  m i g h t  be  w h e t h e r  t h e  SDMS  i n c r e a s e s  p r o d u c t i v i t y  a n d  i s  

c o s  t - e  f f e c  t i v e .

The  c r i t e r i a  t h a t  a n y  u s e r  m i g h t  a p p l y ,  c o n s c i o u s l y  o r  s u b - c o n s c i o u s I y , by  

e a s e - o f - u s e ,  c o n v e n i e n c e ,  a n d  t h e  a c c u r a c y  and  q u a l i t y  o f  r e s u l t s .  We e x a m i n e  

t h e  a b o v e  p o s t u l a t e d  r e q u i r e m e n t s  f o r  a SDMS  i n  r e t r o s p e c t .

2 . HISTORICAL BACKGROUND

A t  m o s t  o f  t h e  l a r g e r  N a t i o n a l  L a b o r a t o r i e s ,  i n  t h e  U n i t e d  S t a t e s  a n d

a b r o a d ,  t h e  d e m a n d s  f o r  c o m p u t e r - a s s i s t e d  d a t a  m a n a g e m e n t  e x i s t e d  i n  f o u r  

we I I - d e  f i n e d  a r e a s :

* B u s i n e s s  D a t a  P r o c e s s i n g

* S e a r c h i n g  o f  b i b l i o g r a p h i c  c i t a t i o n s ,

* M a n i p u l a t i o n  o f  l a r g e ,  s p e c i a l i z e d  n u m e r i c  f i l e s ,

* M a n i p u l a t i o n  o f  s m a l l ,  d i v e r s i f i e d  n u m e r i c  f i l e s .

2.1 B u s i n e s s  Da t a  P r o c e s s i n g

B u s i n e s s - ,  p r o c u r e m e n t - ,  a n d  p e r s o n n e I - r e  I a t e d  f i l e s  h a v e  b e e n  m a n a g e d  p r i m a r i l y  

by c o m m e r c i a l  s o f t w a r e  s i n c e  t h e  e a r l y  d a y s  o f  e l e c t r o n i c  d a t a  p r o c e s s i n g .  T h e  

s o f t w a r e  p a c k a g e s  a r e  t a i l o r e d  t o  t h e  d a y - t o - d a y  b u s i n e s s  t r a n s a c t i o n s  a n d  may 

be l i n k e d  t o  a p a r t i c u l a r  m a c h i n e .  Only t h e  l a r g e  i n s t a l l a t i o n s  h a v e  f o u n d  i t  

necessary t o  d e v e l o p  t h e i r  own r o u t i n e s  f o r  s p e c i f i c  a d m i n i s t r a t i v e  t a s k s .  M o s t

- 114 -



b u s i n e s s  c o m p u t e r  p r o g r a m s  o p e r a t e ,  e v e n  t o d a y ,  i n  t h e  b a t c h  mode  a n d  a r e  n o t  

r e a d i l y  a d a p t a b l e  t o  s c i e n t i f i c  n e e d s .

2.2 Searching of Bibliographic Citations

C o m p u t e r —a s s i s t e d  s e a r c h i n g  o f  t h e  w o r l d  l i t e r a t u r e  h a s  b e c o me  b i g  b u s i n e s s .  I t  

i s  an  e s s e n t i a l  p a r t  o f  t h e  r e s e a r c h  a c t i v i t i e s  a t  N a t i o n a l  L a b o r a t o r i e s . S i n c e

1 9 6 7 ,  c i t a t i o n s  t o  n e a r l y  e v e r y  f i e l d  o f  human e n d e a v o r  h a v e  b e c o m e  a v a i l a b l e  on 

ma g n e  t i c  t a p e  . [ 6 ]

T h i s  h a s  p e r m i t t e d  m a c h i n e  s e a r c h i n g  o f  p r o g r a m a t i c a I  Iy r e l e v a n t  f i l e s  a nd  

h a s  b e e n  u s e d  t o  k e e p  t h e  p r o f e s s i o n a l  s t a f f  i n f o r m e d  on d e v e l o p m e n t s  i n  t h e i r  

f i e l d  o f  i n t e r e s t .  O n g o i n g  r e s e a r c h  h a s  b e e n  k e p t  u p - t o - d a t e  by  s u b s c r i p t i o n  t o  

t h e  S e l e c t i v e  D i s s e m i n a t i o n  o f  I n f o r m a t i o n  ( S D I ) ,  w h i l e  i n - d e p t h  r e t r o s p e c t i v e  

s e a r c h i n g  h a s  b e e n  i n i t i a t e d  t o  g e t  new p r o g r a m s  s t a r t e d .

The  m a r k e t  f o r  t h i s  t y p e  o f  i n f o r m a t i o n  i s  s u f f i c i e n t l y  s t r o n g  and  s u p p o r t s  

a n u mb e r  o f  l a r g e  a n d  d i v e r s i f i e d  i n f o r m a t i o n  s e r v i c e s .  H e r e ,  t h e  b i g  v o l u m e  o f  

c o m p u t e r —r e a d a b I e , b i b l i o g r a p h i c  c i t a t i o n s  ma k e s  i t  no l o n g e r  a d v a n t a g e o u s  t o  

s u b s c r i b e  t o  t h e s e  m a g n e t i c  t a p e s  f o r  t h e  p u r p o s e  o f  p l a c i n g  t h em a s  a g g r e g a t e  

c o l l e c t i o n s  on i n - h o u s e  c o m p u t e r s .  I n s t e a d ,  c o n t r a c t s  w i t h  v e n d o r s  o f  t h e  

s e c o n d a r y  l i t e r a t u r e  p e r m i t  b r o w s i n g  a n d  s e a r c h i n g  by  d i a l - u p  f r o m  r e m o t e  

t e r m i n a l s .  [ 7 ]  T h i s  i s  b e i n g  d o n e  o v e r  c o m p u t e r  n e t w o r k s ,  o r  o v e r  r e g u l a r  

t e l e p h o n e  l i n e s  i n  an i n t e r a c t i v e  m a n n e r .

O n l y  a t  l a r g e  i n s t a l l a t i o n s ,  e . g . ,  t h e  Oak  R i d g e  N a t i o n a l  L a b o r a t o r y  

( O R N L ) ,  o r  t h e  L a w r e n c e  L i v e r m o r e  L a b o r a t o r y  ( L L L ) ,  h a s  i t  b e e n  c o s t - e f f e c t i v e  

t o  p r o c e s s  t h e  g r e a t  nu mbe r  o f  SDI  s e a r c h e s  w i t h  l o c a l l y  d e v e l o p e d  s o f t w a r e  

i n - h o u s e .  [ 8 ]  M o s t  o f  t h e  b i b l  i o g r a p h i c  s e a r c h  p r o g r a m s ,  w h i c h  a r e  i n t e r a c t i v e  

a n d  g e a r e d  t o w a r d  l a r g e  v o l u m e s  o f  i n f o r m a t i o n ,  a r e  s p e c i f i c a l l y  a d a p t e d  t o  t h e  

m a n i p u l a t i o n  o f  d e s c r i p t i v e  t e x t .  T h e y  a r e  n o t  s u i t a b l e  f o r  n u m e r i c a l  d a t a  

man i pu I  a t i o n .

F e d e r a l  a g e n c i e s ,  a nd  t h e  N a t i o n a l  S c i e n c e  F o u n d a t i o n  i n  p a r t i c u l a r ,  h a v e  

s u p p o r t e d  t h e  d e v e l o p m e n t  o f  t h e s e  c o m p u t e r  p r o g r a m s  o v e r  many  y e a r s .  B u t  f ew 

a r e  t o d a y  e n t i r e l y  i n  t h e  p u b l i c  d o m a i n .  O f t e n ,  wh en  G o v e r n m e n t  s u p p o r t  wa s  

p r o v i d e d  a f t e r  t h e  b e g i n n i n g s  o f  a p r o g r a m  had  c ome i n t o  e x i s t e n c e ,  o r  w h e r e  

s u c h  s u p p o r t  b e c a m e  i n t e r r u p t e d  i n  t i m e ,  t h e  f i n a l  p r o d u c t  wa s  o f t e n  f o u n d  t o  

c o n t a i n  i n t e r t w i n e d  p r o p r i e t a r y  r o u t i n e s  w h i c h  r e n d e r e d  t h e  f i n a l  s o f t w a r e  a l s o  

p r o p r i e t a r y ,  o r  i n c o m p l e t e  a n d  u s e l e s s  wh e n  r e q u e s t e d  by  o t h e r  a g e n c i e s .  [ 9 ]  I n  

o t h e r  c a s e s ,  w h e r e  t h e  s o f t w a r e  may h a v e  b e e n  i n  t h e  p u b l i c  d o m a i n ,  

h a r d w a r e / s o f t w a r e  i n c o m p a t i b i l i t i e s  r e n d e r e d  t h e  t r a n s f e r  a n d  u s e  o f  t h e  

p r o g r a m s  d i f f i c u l t  o r  i m p r a c t i c a l .

2.3 Manipulation of Large. Specialized Numeric Files

Large volumes of numerical data are best manipulated even today with 

sole-pupose, highly efficient programs. These data are usually required in

- 115  -



s u p p o r t  o f  m a j o r  p r o g r a m m a t i c  o b j e c t i v e s .  D a t a  f o r m a t s  a n d  o p t i o n s  a r e  d i c t a t e d  

by  t h e  c h a n g i n g  d e ma n d s  i n  an i m p r o m p t u  m a n n e r .  D a t a  f i l e s  may t h u s  b e c o me  an  

i n t e g r a l  p a r t  o f  t h e  d a t a  m a n i p u l a t i o n  p r o g r a m s ,  w h i c h  may n o t  e v e n  e x i s t  i n  an  

i d e n t i f i a b l e  s t a n d - a l o n e  f o r m  and a r e  o f t e n  s i m p l y  an  o p t i o n  o f  t h e  mo d e l  o r  

a p p l i c a t i o n  p r o g r a m .  I n  m o s t  c a s e s ,  t h e  d a t a  a r e  p r o c e s s e d  i n  t h e  b a t c h  mo d e .  

E v e n  f o r  t h e  i mmen s e  l i b r a r i e s  o f  n e u t r o n  c r o s s  s e c t i o n s ,  s h a r e d  a mong  t h e  

n a t i o n a l  a n d  i n t e r n a t i o n a l  c e n t e r s ,  t h e  c o r r e s p o n d i n g  d a t a  m a n i p u l a t i o n  p r o g r a m s  

a r e  s p e c i a l i z e d  a n d  d i f f e r  f r o m  i n s t a l l a t i o n  t o  i n s t a l l a t i o n .  T h e  a d a p t a t i o n  o f  

t h e s e  s o l e - p u r p o s e  p r o g r a m s  t o  g e n e r a l - p u r p o s e  s c i e n t i f i c  d a t a  h a s  s e l d o m  b e e n  

a t t e m p t e d .  ( F i g u r e - 1 )

2 . 4  Man i pu l a t i o n  of  Sma l l ,  Di ver s i f i ed  N u m e r i c  Fi l es

The  r e q u i r e m e n t  f o r  t h e  m a n i p u l a t i o n  a n d  a g g r e g a t i o n  o f  i n t e r d i s c i p l i n a r y  d a t a  

i n  s u p p o r t  o f  e n e r g y  and  e n v i r o n m e n t a l  r e s e a r c h  h a s  b r o u g h t  a b o u t  i n  r e c e n t  

y e a r s  a r e n e w e d  i n t e r e s t  i n  g e n e r a l i z e d  d a t a  m a n a g e m e n t  s o f t w a r e .  H o w e v e r ,  

b e c a u s e  o f  t h e  a b s e n c e  o f  a s t r o n g  p r o g r a m m a t i c  f u n d i n g  f o r  t h e  c o n s i d e r a b l e  

n u mb e r  o f  r e l a t i v e l y  s m a l l  d i f f e r e n t  p r o j e c t s ,  t h e s e  n e e d s  w e r e  u s u a l l y  me t  by  

l o c a l l y - d e v e l o p e d  s y s t e m s ,  some o f  w h i c h  a c q u i r e d  i n  t i m e  a c o n s i d e r a b l e  d e g r e e  

o f  f l e x i b i l i t y  a n d  u s e f u l n e s s :  F o r  t h e  ERDA/ DOE  N a t i o n a l  L a b o r a t o r i e s  we n o t e  

p r e d o m i n a n t l y  on CDC and  I BM h a r d w a r e :

BNL CDC BDMS [ 1 0 ]

L A S L CDC G I R L S ,  MASTER  CONTROL  [ 1 1 , 1 2 ]

L BL CDC BDMS,  S T O F I ,  S E E D I S  [ 1 0 , 1 3 , 1 4 ]

L L L CDC MASTER CONTROL ,  SDBMS [ 1 2 , 1 5 ]

ORNL IBM OR C H I S ,  ORRMI S ,  RECON [ 1 6 - 1 8 ]

PNL CDC R e mo t e  a c c e s s  t o  L B L  a n d  BNL

SRL IBM J OSHUA [ 1 9 ]

T h e s e  s y s t e m s  and  t h e i r  u s e  h a v e  b e e n  d e s c r i b e d  i n  t h e  l i t e r a t u r e .  T he  

l i s t  i s  i n c o m p l e t e .  T h e r e  a r e  c e r t a i n l y  o t h e r  s y s t e m s  a t  t h e  N a t i o n a l  

L a b o r a t o r i e s ,  e s p e c i a l l y  on m i n i - c o m p u t e r s .

The  f u l l y  d e v e l o p e d ,  g e n e r a l i z e d  s y s t e m s  l i k e  O R C H I S ,  J O S H U A ,  a n d  MA S TE R  

CONTROL  a r e  6 - 1 0  y e a r s  o l d ,  a r e  r e l a t i v e l y  l a r g e  i n  s i z e  a n d  c o u l d  n o t  r e a d i l y  

be  t r a n s f e r r e d  t o  o t h e r  i n s t a l l a t i o n s ;  e x c e p t  w h e r e  t h e  h a r d w a r e  a n d  o p e r a t i n g  

s y s t e m s  w e r e  c o m p a t i b l e .  ( MASTER  CONTROL  wa s  t r a n s f e r r e d  i n  t h i s  m a n n e r  t o  

L A S L , BDMS t o  B N L , a n d  p a r t s  o f  J OSHUA t o  O R N L . )

T h e  mo r e  r e c e n t  d a t a  ma n a g e me n t  s y s t e m s ,  BDMS a n d  S DB MS ,  now u n d e r  

d e v e l o p m e n t  a t  L B L  a n d  L L L ,  s t i l l  l a c k  many  o f  t h e  a t t r i b u t e s  t h a t  p r o v i d e  p o w e r  

and f l e x i b i l i t y  t o  a g e n e r a l i z e d  s y s t e m .  B u t ,  t h e y  u t i l i z e  m o r e  r e c e n t  

t e c h n i q u e s  i n  c o m p u t e r  s c i e n c e  and  a r e  mo r e  r e a d i l y  t r a n s f e r a b l e  t o  o t h e r  

m a c h i n e s  and o p e r a t i n g  s y s t e m s .

- 116 -



2.5 Absence  of Coordination and Adequate Funding

Th e  n e e d  f o r  g e n e r a l i z e d  ma n a g e me n t  o f  s c i e n t i f i c  a n d  t e c h n o l o g i c a l  d a t a  wa s  met  

by  ERDA  i n  a d e c e n t r a l i z e d  m a n n e r .  I n d i v i d u a l  O f f i c e s ,  D i v i s i o n s ,  a n d  B r a n c h e s  

t r i e d  t o  m e e t  t h e i r  d e ma n d s  by  a d a p t i n g  o r  c r e a t i n g  s p e c i a l i z e d  s o f t w a r e  f o r  

t h e i r  own p r o g r a m m a t i c  n e e d s .  To d a t e ,  t h e r e  h a s  b e e n  no  a p p a r e n t  a t t e m p t  t o  

u n i f y  t h e  i n f o r m a t i o n  a n d  d a t a  ma n a g e m e n t  s o f t w a r e  d e v e l o p m e n t  e f f o r t  f o r  ERDA 

o r  DOE .  E x c e p t ,  t h e r e  e x i s t s  a r e c e n t  E R DA / D OE  d i r e c t i v e  t h a t  new d e v e l o p m e n t s  

i n  t h i s  a r e a  be  made  k nown  t o  DOE H e a d q u a r t e r s  f o r  r e v i e w  a n d  a p p r o v a l .  [ 2 0 ]

The  c o s t  o f  d e v e l o p i n g  a g e n e r a l  s y s t e m  h a s  b e e n  e s t i m a t e d  u p w a r d s  o f  

$ 2 , 0 0 0 , 0 0 0  w i t h  an  o v e r a l l  d e s i g n  and  i m p l e m e n t a t i o n  p e r i o d  o f  mo r e  t h a n  two 

y e a r s .  A s  m e n t i o n e d ,  t h e  s m a l l  p r o g r a m s  c o u l d  n o t  a f f o r d  t h i s  e x p e n s e  o r  d e l a y  

an d  p r o c e e d e d  t o  make  do w i t h  wh a t  wa s  a v a i l a b l e ,  o r  w h a t  c o u l d  be w r i t t e n  

q u i c k l y .  T h e  c u m u l a t i v e  t o t a l  o u t l a y s  f r o m  a l l  o f  t h e s e  i n d i v i d u a l  p r o g r a m m a t i c  

e f f o r t s  may v e r y  w e l l  h a v e  e x c e e d e d  t he  s i n g l e  u n i t  c o s t  e s t i m a t e .

C o n s e q u e n t l y ,  n e a r l y  a l l  o f  t h e  s y s t e m s  a t  t h e  ERDA N a t i o n a l  L a b o r a t o r i e s  

h a v e  e v o l v e d  g r a d u a l l y ,  u n d e r  i n c r e m e n t a l  a n d  m i n i m a l  f u n d i n g ,  a nd  i n d e p e n d e n t  

o f  e a c h  o t h e r .  U s u a l l y  t h i s  t o o k  p l a c e  i n  r e s p o n s e  t o  l o c a l  p r o g r a m m a t i c  

r e q u i r e m e n t s  t h a t  c o u l d  n o t  be me t  by  t h e  l a r g e  s o l e - p u r p o s e  s p e c i a l z e d  s y s t e m s ,  

n o r  by  t h e  c o m m e r c i a l l y  a v a i l a b l e  s y s t e m s .  I n  r e c e n t  y e a r s ,  a s  o u r  s e a r c h  f o r  

new s o u r c e s  o f  e n e r g y  a c c e l e r a t e d  and  t h e  c o n c e r n  f o r  o u r  e n v i r o n m e n t  came i n t o  

f o c u s ,  we o b s e r v e d  a r e n e w e d  i n t e r e s t  i n  g e n e r a l i z e d  s o f t w a r e  t o  c o p e  w i t h  t h e  

h i g h l y  d i v e r s i f i e d  a n d  i n t e r d i s c i p l i n a r y  a c t i v i t i e s .  B u t  t h e  e m p h a s i s  had 

s h i f t e d  t o  s h o r t - t e r m  o b j e c t i v e s .  P r o g r a m  m a n a g e r s  w e r e  n o t  p r e p a r e d  t o  w a i t  

a n d  p a y  t h e  p r i c e  f o r  d e v e l o p m e n t  o f  a new o r  mo r e  v e r s a t i  l e  s y s t e m .  The  o l d  

s y s t e m s  w e r e  c o n s e q u e n t l y  u s e d ,  a nd  some i n v e s t m e n t s  w e r e  made  t o  e x p l o r e  

w h e t h e r  a n y  o f  t h e  o l d e r  s y s t e m s  c o u l d  be  s a l v a g e d  a f t e r  a l l ,  e i t h e r  by m a k i n g  

t h em p o r t a b l e ,  o r  by  b r i n g i n g  t hem u p - t o - d a t e .  [ 2 1 ]

2 . 6  L a c k  o f  D e d i c a t e d  Di s k  S t o r a g e  f o r  Gene r a l ,  O n - l i n e  Da t a  B a s e s

T h e  c o m p u t e r  c e n t e r s  a t  t h e  N a t i o n a l  L a b o r a t o r i e s  a r e  s t r u c t u r e d  f o r e m o s t  t o  

s u p p o r t  o n g o i n g  a p p l i e d  r e s e a r c h .  E x c e p t  f o r  t h e  D 0 E / R E C 0 N  b i b l i o g r a p h i c  s e a r c h  

f a c i l i t y  a t  O R N L , t h e  c e n t e r s  do  n o t  p r o v i d e  a c c e s s  t o  r e s o u r c e s  o f  g e n e r a l  

i n t e r e s t  t o  t h e  r e s e a r c h  c o m m u n i t y .  T h i s  i s  on t h e  v e r g e  o f  c h a n g i n g  a s  d a t a  

s t o r a g e  d e v i c e s  d e c r e a s e  i n  c o s t ,  a n d  a s  d a t a  b a n k s  o f  s c i e n t i f i c  a nd  

t e c h n o l o g i c a l  c o n t e n t  c ome i n t o  b e i n g .

B u t  e v e n  t o d a y ,  a t  m o s t  i n s t a l l a t i o n s ,  we s e l d o m  f i n d  s u f f i c i e n t  a l l o c a t i o n  

o f  d i r e c t - a c c e s s , p r i m a r y  s t o r a g e  t h a t  c o u l d  b e  u s e d  t o  p r o v i d e  q u i c k ,  o n - l i n e  

a c c e s s  t o  d a t a  b a s e s .  I n  m o s t  c a s e s ,  t h e  u s e r s  s t i l l  h a v e  t o  s e c u r e  t h e i r  own 

f i l e s  f r o m  s e c o n d a r y ,  o f f - l i n e  s t o r a g e .  T h i s  h a s  a d i s c o u r a g i n g  e f f e c t  and 

t e n d s  t o  c h o k e  o p e r a t i o n s  a s  d a t a  b a n k s  a r e  r e d u n d a n t l y  l o a d e d  by  u s e r s  i n t o  

d i r e c t - a c c e s s  s t o r a g e ,  w i t h o u t  r e a d i l y  a v a i l a b l e  f a c i l i t i e s  f o r  t h e i r  s h a r i n g  

and u p d a t i n g .

- 117 -



I n  a d d i t i o n ,  t h e  o p e r a t i n g  s y s t e m s  a t  B N L , L B L  , L A S L , a n d  L L L  d o  n o t  

s u p p o r t  r e - e n t r a n t  c o d e  o r  u p d a t a b l e  s h a r e d  d i s k  f i l e s  a c r o s s  c o m p u t e r s .  T h i s  

h a s  a l s o  t e n d e d  t o  d i s c o u r a g e  t h e  d e v e l o p m e n t  o f  m o r e  g e n e r a l i z e d  d a t a  

ma n a g e m e n t  s y s t e m s ,  a n d  may h a v e  h i n d e r e d  t h e  e f f e c t i v e  u s e  o f  c o m m e r c i a l  

s y s t e m s  w h e r e  t h e y  w e r e  c o n s i d e r e d  a d e q u a t e  f o r  b u s i n e s s - l i k e  t e c h n o l o g i c a l  

a p p I  i c a  t i o n s .

The  m a i n  i s s u e  h e r e  i s  o ne  o f  Effort.  Wh a t  effort  m u s t  t h e  i n t e r e s t e d  u s e r  

e x e r t  t o  f i n d  t h e  i n f o r m a t i o n  o r  d a t a  t h a t  he s e e k s  o r  n e e d s ?  A f t e r  a l l ,  e v e n  

c e n t r a l  l i b r a r i e s  h a v e  f o u n d  i t  n e c e s s a r y  t o  e s t a b l i s h  b r a n c h  l i b r a r i e s  on s i t e  

t o  b r i n g  t h e  p r i n t e d  b o o k  c l o s e r  t o  t h e  u s e r .  I n f o r m a t i o n  a n d  d a t a ,  wh e n  n o t  

e a s i l y  a c c e s s i b l e  o r  w i t h i n  r e a c h ,  w i l l  s e l d o m  be  u s e d .

2 . 7  No  P r e f e r en t i a l  Ro l e  f o r  Da t a  M a n a g e m e n t

C o m p u t e r  c e n t e r s  a t  t h e  N a t i o n a l  L a b o r a t o r i e s  h a v e  b e e n  o r i e n t e d  p r i m a r i l y ,  a n d  

q u i t e  a p p r o p r i a t e l y ,  t o  s e r v e  t h e  l a r g e  d o m i n a n t  u s e r  g r o u p s .  G e n e r a I  — i n t e r e s t  

d a t a  m a n a g e m e n t  s y s t e m s  h a v e ,  t h e r e f o r e ,  b e e n  r e l e g a t e d  t o  a s e c o n d a r y ,  

p i g g y - b a c k  r o l e  on t h e  l a r g e  p o w e r f u l  m a c h i n e s ,  e v e n  wh en  t h e  d a t a  wa s  n e e d e d  

b u t  b e l o n g e d  t o  a s m a l l e r ,  l e s s  s i g n i f i c a n t  p r o g r a m .  New m a c h i n e s  a t  t h e  

N a t i o n a l  L a b o r a t o r i e s  h a v e  b e e n  s e l e c t e d  p r i m a r i l y  f o r  t h e i r  c a I c u I  a t i o n a I  s p e e d  

i n  s u p p o r t  o f  a p p l i e d  r e s e a r c h .  I n d e e d ,  d a t a  m a n a g e m e n t  s y s t e m s  u s u a l l y  h a v e  

had  t o  o p e r a t e  l i k e  a n y  o t h e r  a p p l i c a t i o n  p r o g r a m ,  e i t h e r  i n  t h e  b a t c h  mode  o r ,  

w h e r e  i n t e r a c t i v e  t i m e - s h a r i n g  was  p r a c t i c e d ,  w i t h o u t  p r e f e r e n c e  t o  f a s t e r  I / O  

r e q u  i r eme n  t s .

T h i s  s i t u a t i o n  h a s  l e d  t o  d e s i g n  i m p r o v e m e n t s  i n  t h e s e  s y s t e m s ,  m a k i n g  t h em 

mo r e  c o m p e t i t i v e  i n  t h e  t i m e - s h a r i n g  e n v i r o n m e n t .  M o d u l a r i t y ,

d y n a m i c - d i m e n s i o n i n g ,  a n d  d e c r e a s i n g  c o r e  memor y  w e r e  s ome o f  t h e  t e c h n i q u e s  

u s e d  t o  e l i c i t  f a s t e r  r e s p o n s e .  I t  i s  p r o b a b l y  a l s o  t r u e  t h a t  t h e  many  o p t i o n s  

a v a i l a b l e  on t h e  p o w e r f u l  c o m p u t e r s  h a v e  p r o m p t e d  p r o g r a m m e r s  t o  w r i t e  s i m p l e  

a n d  e f f e c t i v e  d a t a  s t o r a g e  a n d  r e t r i e v a l  p r o c e d u r e s  f o r  p a r t i c u l a r  n e e d s .  

D e v e l o p e r s  o f  s u c h  s m a l l ,  s e l f - m a d e  s y s t e m s  may h a v e  t h o u g h t  a t  f i r s t  t h a t  t h e i r  

s y s t e m s  c o u l d  be mo r e  r e s p o n s i v e  b e c a u s e  o f  t h e i r  s m a l l  s i z e ,  b u t  s o o n  

d i s c o v e r e d  t h a t  t h e y ,  t o o ,  ha d  t o  add  i n  t i m e  t h e  d e s i r a b l e  f e a t u r e s  o f  m o r e  

e s t a b l i s h e d  s y s t e m s :  Report Wr i t e r s , Arithmetic Manipulat ion P a c k a g e s , Recovery  

P r o c e d u r e s , etc., a l l  o f  w h i c h  t e n d e d  t o  d e c r e a s e  t h e i r  r e s p o n s e  t i m e .

When t h i s  t o o k  p l a c e ,  a t r e n d  t o w a r d  i n d e p e n d e n t ,  s t a n d - a l o n e  

m i n i - c o m p u t e r s  b e c a me  a p p a r e n t  w h i c h  p r o m i s e d  t o  f r e e  t h e  u s e r s  f r o m  t h e  o v e r a l l  

c o n s t r a i n t s  o f  t h e  l a r g e  c o m p u t e r  c e n t e r s ,  a n d  w h i c h  w e r e  w i t h i n  t h e  b u d g e t s  o f  

t h e  s m a l l e r  e n e r g y  a n d  e n v i r o n m e n t a l  p r o g r a m s .  I n  s o me  c a s e s  t h i s  a p p r o a c h  

p r o v e d  s u c c e s s f u l ,  e s p e c i a l l y  w h e r e  t h e  s m a l l  m a c h i n e s  w e r e  c o n n e c t e d  t o  t h e  

f a c i l i t i e s  o f  t h e  m a i n  c o m p u t e r  c e n t e r .  H o w e v e r ,  i n  t h e  a b s e n c e  o f  s u c h  

c o n n e c t i o n ,  p e r i p h e r a l  e q u i p m e n t  i n  t h e  f o r m  o f  e x t r a  s t o r a g e ,  t a p e - d r i v e s ,  

g r a p h i c a l  d i s p l a y  h a r d w a r e ,  e t c .  had  t o  be  a c q u i r e d  a n d  d u p l i c a t e d .  The 

m a i n t e n a n c e  o f  s u c h  m i n i - c o m p u te r c e n t e r s  h a s  n o t  b e e n  i n s i g n i f i c a n t .  The w h o l e

- 118 -



a p p r o a c h  w a s ,  t h e r e f o r e ,  s u c c e s s f u l  w h e r e ,  i n  a d d i t i o n ,  t h e  p u r p o s e  a n d  b o u n d s  

o f  t h e  m i n i - s y s t e m  w e r e  w e l l  d e f i n e d  and  e n f o r c e d .

2 . 8  Di f f i cu l t y  in Du p l i c a t i n g  Sc i en t i f i c  No t a t i o n s

U n t i l  q u i t e  r e c e n t l y ,  m o s t  c o m p u t e r  c e n t e r s  h a v e  o p e r a t e d  w i t h  a m i n i mu m o f  

p r i n t a b l e  c h a r a c t e r s .  Some i n s t a l l a t i o n s  a r e  s t i l l  i n  t h e  s t o n e  a g e  and  p r i n t  

o n l y  u p p e r - c a s e  l e t t e r s .  O t h e r s  h a v e  e x t e n d e d  t h e i r  c a p a b i l i t i e s  t o  i n c l u d e  t h e  

9 5 - c h a r a c t e r  F e d e r a l  S t a n d a r d .  [ 2 2 ]  B u t  e v e n  t h i s  c a p a b i l i t y  i s  n o t  s u f f i c i e n t  

f o r  p h y s i c s ,  c h e m i s t r y ,  o r  m a t h e m a t i c s .  A s  a r e s u l t ,  r e s e a r c h e r s  h a v e  n o t  f o u n d  

i n  c o m p u t e r —a s s i s t e d  d a t a  ma n a g e m e n t  an e x t e n s i o n  o f  t h e i r  d a i l y  m a n u a l  w o r k i n g  

e n v i r o n m e n t .  O n l y  w h e r e  l a r g e  b l o c k s  o f  s i m p l e  n u m e r i c  d a t a  w e r e  n e e d e d  a s  

i n p u t  t o  m a c h i n e  c a l c u l a t i o n s ,  w e r e  t h e  l i m i t a t i o n s  o f  i m p a c t  p r i n t e r s  l e s s  

o b v i o u s .  I t  i s  a g a i n  o n l y  i n  r e c e n t  y e a r s  t h a t  t h e s e  c o n s t r a i n t s  w e r e  l i f t e d  by  

t h e  a v a i l a b i l i t y  o f  n o n - i m p a c t  p r i n t e r s  a n d  C R T - d r i v e n  p r i n t i n g  d e v i c e s  l i k e  t h e  

F R 8 0 . A n d  y e t ,  e v e n  t o d a y ,  i t  i s  d i f f i c u l t  a t  m o s t  i n s t a l l a t i o n s  t o  r e p r o d u c e  

c h e m i c a l  f o r m u l a e  w i t h  s u b -  a n d  s u p e r - s c r i p t s  on a s c r e e n  o r  on h a r d c o p y  

t e r m i n a l s .  ( T h i s  r e p o r t  wa s  g e n e r a t e d  a n d  f o r m a t t e d  by  c o m p u t e r . )

2 . 9  A b s e n c e  of  C o m p r e h e n s i v e  B o d i e s  of  C o m p u t e r - r e a d a b l e ,  S c i e n t i f i c  Da t a

M o s t  d a t a  e v a l u a t i o n  t o d a y  s t i l l  s t o p s  w i t h  t h e  p u b l i c a t i o n  o f  a b o o k .  T h i s  i s  

t h e  c a s e  e v e n  t h o u g h  t h e  t a b l e s  o f  d a t a  w i t h i n  a b o o k  may h a v e  b e e n  p r i n t e d  w i t h  

t h e  a s s i s t a n c e  o f  i n s t r u c t i o n s  on-" m a g n e t i c  t a p e .  The  d e l a y  b e t w e e n  t h e  

m e a s u r e m e n t  o f  a m a t e r i a l  p r o p e r t y  a nd  i t s  u l t i m a t e  p u b l i c a t i o n  i n  r e a d a b l e  f o r m  

may be  a s  l o n g  a s  t wo  y e a r s .  T h e r e  d o e s  n o t  e x i s t  i n  t h e  U n i t e d  S t a t e s  a 

N a t i o n a l  p r o g r a m  t o  e s t a b l i s h  c o m p u t e r - r e a d a b l e  f i l e s ,  o r  d a t a  b a s e s ,  a s  

c o u n t e r p a r t s  t o  p r i n t e d  b o o k s  f o r  d i r e c t  u s e  by  m a c h i n e s .

Th e  O f f i c e  o f  S t a n d a r d  R e f e r e n c e  D a t a ,  N B S / O S R D ,  o f f e r s  some o f  i t s  d a t a  on 

m a g n e t i c  t a p e .  [ 2 3 ]  B u t ,  e v e n  t h e s e  t a p e s  a r e  s e l d o m  r e q u e s t e d ,  we a r e  t o l d ,  

p r o b a b l y  b e c a u s e  i t  i s  c u m b e r s o m e  t o  t r a n s l a t e  t h e  t a p e  f o r m a t s  i n t o  l o c a l  d a t a  

m a n a g e m e n t  s y s t e m s ,  a n d  b e c a u s e  i t  may be d i f f i c u l t  t o  r e p r o d u c e  t h e  s c i e n t i f i c  

n o t a t i o n s  w h e r e  t h e y  h a v e  b e e n  r e t a i n e d  f r o m  t h e  t y p e - s e t t i n g  i n s t r u c t i o n s .  We 

c o n c l u d e ,  t h a t  i n  o r d e r  t o  make  d a t a  s h a r i n g  e f f e c t i v e ,  t h e  m a j o r  t o o l s  r e q u i r e d  

t o  u s e  t h e  d a t a  m u s t  a l s o  be s h a r a b l e ,  i . e . ,  i n  t h e  p u b l i c  d o m a i n .  T h u s ,  i n  

g e n e r a l ,  t h e  c o m p u t e r  e n v i r o n m e n t  h a s  n o t  b e e n  v e r y  c o n d u c i v e  t o w a r d  t h e  

m a n a g e m e n t  o f  g e n e r a I - i n t e r e s t , t r u l y  s c i e n t i f i c  d a t a .

2 . 1 0  C o u l d  C o m m e r c i a l  S y s t e m s  Fi l l  t he  Nee d  o f  t he  Sc i e n t i f i c  C o m m u n i t y ?

T h e  a n s w e r s  t o  t h i s  q u e s t i o n  h a v e  v a r i e d .  I n  s ome c a s e s  t h e  t e c h n o l o g i c a l  d a t a  

b a s e s  r e s e m b l e  b u s i n e s s  d a t a ,  e . g . ,  t h o s e  c o n t a i n i n g  a i r  a n d  w a t e r  q u a l i t y  d a t a ,  

o r  t e c h n o  I o g i c a I / a d m i n i s t r a t i v e  i n f o r m a t i o n .  F o r  t h e s e  c a s e s  t h e  c o m m e r c i a l  

s y s t e m s  h a v e  c e r t a i n l y  b e e n  g o o d  c a n d i d a t e s .  C o n s e q u e n t l y ,  s ome  o f  t h e  DOE L a b s  

t h a t  d i d  n o t  h a v e  a d a p t a b l e  s y s t e m s  a c q u i r e d  c o m m e r c i a l  s y s t e m s :  M R I ' s  

S y s t e m - 2 0 0 0  wa s  o b t a i n e d  by  A N L , B N L , a n d  L A S L . ( L A S L  n e e d e d  a DBMS f o r  t h e  

C D C - 7 6 0 0  u n c l a s s i f i e d  m a c h i n e ,  o p e r a t i n g  w i t h  a CDC o p e r a t i n g  s y s t e m ;  MAS TER  

CONTROL  h a s  b e e n  u s e d  on t h e  c l a s s i f i e d  m a c h i n e s  w i t h  L T S S . )  S R L  p u r c h a s e d  

A D A B A S .  M o s t  o f  t h e i r  a p p l i c a t i o n s  w e r e  w e l l - d e f i n e d  a n d  r o u t i n e .

- 119 -



On t h e  o t h e r  h a n d ,  w h e r e  t h e  d a t a  m a n a g e m e n t  s y s t e m  wa s  t o  be  i n t e g r a t e d  

w i t h  s t a t e - o f - t h e - a r t  c o l o r  g r a p h i c s ,  o r  w i t h  d a t a  a p p l i c a t i o n  p r o g r a m s  t h a t  

w e r e  t h e m s e l v e s  u n d e r  d e v e l o p m e n t ,  o r  w h e r e  t h e  r e s u l t a n t  d a t a  b a s e s  a n d  

p r o g r a m s  had  t o  be  s h a r e d  w i t h  a l a r g e r  g r o u p  o f  u s e r s  a t  d i f f e r e n t  

i n s t a l l a t i o n s ,  t h e  a c q u i s i t i o n  o f  c o m m e r c i a l  s y s t e m s  s e e m e d  l e s s  d e s i r a b l e  o r  

s i m p l y  d i d  n o t  me e t  t h e  n e e d s  o f  t h e  u s e r .  T h e  p r o p r i e t a r y  n a t u r e  o f  t h e  

p r o g r a m s ,  t h e  u n a v a i l a b i l i t y  o f  t h e i r  s o u r c e  f i l e s ,  a n d  t h e  l i m i t a t i o n s  on  t h e  

d i s t r i b u t i o n  o f  t h e  s o f t w a r e  a f t e r  i t  m i g h t  h a v e  b e e n  m o d i f i e d  o r  e x t e n d e d ,  a l l  

made  i t  r a t h e r  d i f f i c u l t  t o  p l a n  f u t u r e  d e v e l o p m e n t s  w i t h  c o m m e r c i a l  DBMS 

p r o d u c  t s .

M o r e  i m p o r t a n t  p e r h a p s  w a s ,  a nd  s t i l l  i s ,  t h e  v e r y  d i f f e r e n t  c o m p u t e r  

e n v i r o n m e n t  a t  t h e  N a t i o n a l  L a b o r a t o r i e s , m a k i n g  i t  q u i t e  i m p r a c t i c a l  f o r  

c o m m e r c i a l  s y s t e m s .  A s  a r u l e ,  t h e  L a b s  h a v e  s t r e s s e d  c o m p u t a t i o n a l  p o w e r  f o r  

t h e i r  p r o g r a m m a t i c  R&D w o r k ,  a s  m e n t i o n e d  e a r l i e r .  T h i s  h a s  r e s u l t e d  i n  

a c q u i s i t i o n s  o f  t h e  m o s t  p o w e r f u l ,  u p - t o - d a t e  m a i n  f r a m e  m a c h i n e s  a n d  

p e r i p h e r a l s .  I n  s e v e r a l  c a s e s ,  e . g . ,  f o r  t h e  C D C - S T A R  a n d  CRAY  c o m p u t e r s ,  t h e  

o p e r a t i n g  s y s t e m s  had  t o  be  w r i t t e n  o r  a d a p t e d  by  t h e  L a b s .  I n  a d d i t i o n ,  t h e  

a p p l i c a t i o n  p r o g r a m s  t h a t  i n t e r f a c e  n e c e s s a r i l y  w i t h  a d a t a  m a n a g e m e n t  s y s t e m  

w e r e ,  a n d  a l w a y s  w i l l  b e ,  i n  a c o n t i n u o u s  s t a t e  o f  r a p i d  e v o l u t i o n .

2. 11 A  Nee d  f o r  I n t e r —L a b o r a t o r y  Co l l a b o r a t i o n

A p p r o x i m a t e l y  two y e a r s  a g o ,  when t h e  r e n e w e d  i n t e r e s t  i n  g e n e r a l i z e d  SDMS 

s o f t w a r e  c ame t o  t h e  f o r e f r o n t  o f  o u r  a t t e n t i o n ,  we p r o p o s e d  t o  t h e  D i v i s i o n  o f  

B i o l o g i c a l  a nd  E n v i r o n m e n t a l  R e s e a r c h  o f  ERDA t h e  f o r m a t i o n  o f  an 

Inter-Laboratory Working Group for Data Exchange (IWGDE ) . T he  i n i t i a l  

o b j e c t i v e s  w e r e  t o  p r o v i d e  a f o r u m  w h e r e  o u r  m u t u a l  e x p e r t i s e  i n  t h e  d e s i g n  a n d  

u s e  o f  s c i e n t i f i c a l l y - o r i e n t e d  d a t a  b a s e s  c o u l d  be  s h a r e d ,  a n d  w h e r e  t h e  

f u n c t i o n a l  s p e c i f i c a t i o n s  f o r  a f u t u r e  s y s t e m  t h a t  m i g h t  s e r v e  m o r e  t h a n  o n e  

ERDA i n s t a l l a t i o n  w e r e  t o  be p r e p a r e d  j o i n t l y .

T h i s  g r o u p  h a s  i n d e e d  b e e n  f u n d e d  now f o r  t wo  y e a r s  by  t h e  O f f i c e  o f  

E n v i r o n m e n t a l  I n f o r m a t i o n  S y s t e m s  ( E O I N )  o f  t h e  ERDA O f f i c e  f o r  E n v i r o n m e n t ,  

H e a l t h ,  a n d  S a f e t y .  EOI N  wa s  c h a r g e d  w i t h  t h e  d i f f i c u l t  t a s k  o f  s e t t i n g  up 

r e g i o n a l  d a t a  b a s e s  a n d  i n f o r m a t i o n  s e r v i c e s  i n  t h e  c o u n t r y .  H o w e v e r ,  i t  wa s  

f e l t  t h a t  t h e  f i r s t  o r d e r  o f  b u s i n e s s  f o r  t h i s  G r o u p  o f  L a b  r e p r e s e n t a t i v e s  

s h o u l d  be t h e  i d e n t i f i c a t i o n  o f  a v a i l a b l e  r e s o u r c e s  a n d  t h e  d e f i n i t i o n  o f  d a t a  

e x c h a n g e  s t a n d a r d s  among  t h e  L a b o r a t o r i e s .  T h i s  h a s  i n d e e d  t a k e n  p l a c e .  T he  

IWGDE  e f f o r t s  r e s u l t e d  i n  t h e  f o r m u l a t i o n  o f  a n  e x t e n s i o n  t o  t h e  p r e s e n t  

A m e r i c a n  N a t i o n a l  S t a n d a r d  f o r  I n f o r m a t i o n  E x c h a n g e  on  m a g n e t i c  t a p e s ,  

X 3 L 5 / 5 0 6 t ,  f o r  n u m e r i c a l  d a t a .  [ 2 4 ]

2.12 Professional Disagreement

Data manogement, a relatively new field of computer science, now employs some 

35% of all professional programmers and system analysts. Numerous best ways 

have been proposed how to store, access, and use data cost-effectively —  and to 

the liking of the user. The arguments depend on, and differ with the

-  120 -



c h a r a c t e r i s t i c s  o f  d i s s i m i l a r  c o m p u t e r  e n v i r o n m e n t s ,  t h e i r  p a r t i c u l a r  o p e r a t i n g  

s y s t e m s ,  p r o g r a m m a t i c  o b j e c t i v e s ,  and u s e r  n e e d s .  T h e r e  i s  u s u a l l y  mo r e  t h a n  

o n e  way  t o  do  a j o b  we 11 \ I n  a d d i t i o n ,  s i n c e  we a r e  d e a l i n g  w i t h  i n t e r a c t i v e ,  

r e a l - t i m e  s y s t e m s ,  we n o t e  t h a t  t h e  t e c h n i q u e s  a n d  t y p e s  o f  t h e  m a n - m a c h i n e  

c o m m u n i c a t i o n  a r e  a m a t t e r  o f  p e r s o n a l  p r e f e r e n c e  o r  t a s t e .

A s  The Art of Computer Programming  i s  b e i n g  t r a n s f o r m e d  q u i c k l y  i n t o  a 

Science,  i t  g i v e s  r i s e  t o  much d i s c o u r s e  among  d e s i g n e r s  a n d  u s e r s .  S o l u t i o n s  

h a v e  r a n g e d  f r o m  i d e a l i s t i c  do-all  p r o m i s e s  t o  t h e  t r a n s p l a n t i n g  o f  t o o l s  

b o r r o w e d  f r o m  t h e  w o r l d  o f  b u s i n e s s  d a t a  p r o c e s s i n g .  Q u e s t i o n s  o f  how b e s t  t o  

s t r u c t u r e  p a r t i c u l a r  d a t a  b a s e s ,  how t o  make  t h e i r  u s e  e f f i c i e n t  a n d  a p p e a l i n g ,  

a n d  how t o  o p t i m i z e  u n d e r  d y n a m i c  o p e r a t i n g  c o n d i t i o n s  h a v e  b e e n  g i v e n  many  a 

c o n t e s t e d  a n s w e r .  I n f o r m a t i o n  and  d a t a  o f t e n  r e c e i v e  a p e r s o n a l  i n t e r p r e t a t i o n  

a n d  an  e m o t i o n a l  a s s o c i a t i o n  by  t h e i r  ' p r o p r i e t o r s ' .  T h i s  p r o t e c t i v e n e s s  h a s  

c a r r i e d  o v e r  i n t o  t h e  w o r k  o f  s y s t e m  d e s i g n e r s .

The  d i s c o u r s e  i s  a p p a r e n t  i n  r o u t i n e  EDP a p p l i c a t i o n s ,  a n d  e v e n  mo r e  s o  i n  

t h e  t e c h n o l o g i c a l  a n d  s c i e n t i f i c  R&D w o r k i n g  e n v i r o n m e n t  w h e r e  c o m p u t e r s  r e m a i n  

s u b s e r v i e n t  t o  w e l l  e s t a b l i s h e d  f i e l d s  o f  s c i e n c e .  M a j o r  e f f o r t s  h a v e  b e e n  

e x p a n d e d  i n  v i e w i n g  d a t a  b a s e s  a s  C O D A S Y L - l i k e  n e t w o r k s  o f  i n f o r m a t i o n ,  a s  

h i e r a r c h i c a l  s t r u c t u r e s ,  a nd  mo r e  r e c e n t l y  a s  r e l a t i o n s h i p s  o f  p r e d i c a t e  

c a l c u l u s .  T h i s  s i t u a t i o n  i s  r e m i n i s c e n t  o f  t h e  d i f f e r e n t  m i s s i l e  s y s t e m s  

p r o p o s e d  a n d  b u i l t  d u r i n g  t h e  I 9 5 0 ' s  when  r o c k e t r y  s t a r t e d  t o  c ome o f  a g e .  

T o d a y ,  a f t e r  a d e c a d e  o f  p r o b i n g  i n  d a t a  m a n a g e m e n t ,  we s t i l l  do  n o t  f i n d  

c o n c e n s u s  on t h e  c e n t r a l  and  u n i f y i n g  r o l e  t h a t  d a t a  ma n a g e m e n t  p u r p o r t s  t o  h a v e  

i n  o u r  s o c i e t y ,  a n d  t h e  e s s e n t i a l  a s p e c t s  o f  g o o d  d e s i g n  a n d  i m p l e m e n t a t i o n  

t e c h n i q u e s .

2 . 1 3  S u m m a r y  o f  H i s t o r i c  Rev i ew

I n  r e t r o s p e c t ,  i t  i s  p r o b a b l y  t r u e  t h a t  t h e  i n a c t i o n  on t h e  p a r t  o f  

a d m i n i s t r a t o r s  t o  p r o v i d e  d e t e r m i n e d  s u p p o r t  f o r  a g e n e r a l i z e d  Scientific Data 

Management Syste m (SDMS) h a s  b e e n  an a p p r o p r i a t e I y  c a u t i o u s  r e s p o n s e  t o  t h e  

u n c e r t a i n t i e s  a n d  i m p o n d e r a b l e s  o f  t h e  p a s t .  B u t  s ome  c o n d i t i o n s  h a v e  c h a n g e d  

a n d  p r o g r e s s  h a s  b e e n  made .  To  b r i n g  a b o u t  a s u c c e s s f u l  SDMS  d e s i g n  and  

i m p l e m e n t a t i o n  wi  I I d e p e n d  n o t  o n l y  u p o n  t h e  k n o w - h o w  a n d  e x p e r i e n c e  o f  

d e s i g n e r s ,  b u t  a l s o  upo n  t h e  s t e a d y  s u p p o r t  by  ma n a g e m e n t  a n d  t h e  a v a i l a b i l i t y  

o f  a c o n d u c i v e  c o m p u t e r  e n v i r o n m e n t .  T h e s e  r e q u i r e m e n t s  h a v e  t o  be t r e a t e d  

j o i n t l y  a n d  a r e  a s  i m p o r t a n t ,  we b e l i e v e ,  a s  a n y  s i n g u l a r  p r o p o s a l  o f  t e c h n i c a l  

e x c e I  I e n c e .

-  121 -



3 . ADMINISTRATIVE AND TECHNICAL REQUIREMENTS

F r o m  o u r  h i s t o r i c  p e r s p e c t i v e ,  we now i d e n t i f y  t h e  d e c i s i v e  a d m i n i s t r a t i v e  

a n d  t e c h n o l o g i c a l  p r o b l e m s  o f  t h e  p a s t  t h a t  s e e m t o  h a v e  i n h i b i t e d  t h e  

s u c c e s s f u l  d e v e l o p m e n t  o f  g e n e r a l  Scientific Dat a  Management Systems  ( S D M S ) a t  

a n y  o f  t h e  N a t i o n a l  L a b o r a t o r i e s .  We do  t h i s  i n  l i g h t  o f  t o d a y ' s  e n v i r o n m e n t  

b e i n g  m i n d f u l  o f  f u t u r e  e x p e c t a t i o n s  a n d  n e e d s .  T h e  c r u c i a l  p r o b l e m  a r e a s  

r e q u i r i n g  d e t e r m i n e d  a c t i o n  a r e :

* M a n a g e m e n t  S u p p o r t

* D e m o n s t r a t i o n  o f  a P r o t o t y p e

* A c t i v e  P a r t i c i p a t i o n  o f  U s e r s

* C r e a t i o n  o f  a B a c k - e n d  D a t a  M a n a g e m e n t  M a c h i n e

* S o f t w a r e ,  l i k e  D a t a ,  s h o u l d  be i n  t h e  P u b l i c  D o m a i n .

* SDMS  D e s i g n  a n d  D e v e l o p m e n t  -  A C o l l a b o r a t i v e  P r o j e c t .

3.1 M a n a g e m e n t  S u p p o r t

T h e r e  i s  no d o u b t  t h a t  m a n a g e m e n t  s u p p o r t  a nd  s t e a d y ,  a d e q u a t e  f u n d i n g  a r e  t h e  

i n d i s p e n s i b l e  c o n d i t i o n  f o r  a n y  p r o j e c t ,  a nd  i n  p a r t i c u l a r  o n e  t h a t  t r a n s c e n d s  

o r g a n i z a t i o n a l  b o u n d a r i e s .  Had  i t  b e e n  p r e s e n t  a t  a n y  o f  t h e  DOE i n s t a l l a t i o n s ,  

s u c c e s s f u l  SDMS  c a n d i d a t e s  w o u l d  h a v e  e m e r g e d  s o o n e r  a n d  w i t h  g r e a t e r  p o t e n t i a l .  

H o w e v e r ,  f o r  t h i s  t o  t a k e  p l a c e  now,  i n  an e n v i r o n m e n t  w h e r e  R e s e a r c h  a n d  

D e v e l o p m e n t  ( R&D)  e x p e n d i t u r e s  o f  t h e  c o u n t r y  h a v e  b e e n  s t e a d i l y  d e c l i n i n g ,  i t  

c a n  p r o b a b l y  o n l y  be e x p e c t e d  a f t e r  e l i m i n a t i o n  o f  t h e  c r e d i b i l i t y  g a p  t h a t  

s e e ms  t o  s u r r o u n d  t h e  SDMS  i s s u e .

3 . 2  S u c c e s s f u l  d e m o n s t r a t i o n  o f  a L i mi t ed  P r o t o t y p e

T h i s  r e c o m m e n d a t i o n  i s  n o t  m e a n t  t o  be  a d e l a y i n g  t a c t i c .  A d m i n i s t r a t o r s  h a v e  

r e a d i l y  s u p p o r t e d  t h e  i n - h o u s e  d e v e l o p m e n t  o r  a c q u i s i t i o n  o f  b u s i n e s s  o r i e n t e d  

d a t a  p r o c e s s i n g  s y s t e m s .  T h e s e  s y s t e m s  w e r e  t h e  n e c e s s a r y  i n g r e d i e n t  f o r  a 

c o m p e t i t i v e  p o s t u r e  o f  t h e i r  o r g a n i z a t i o n .  P r o j e c t  l e a d e r s  o f  l a r g e  n a t i o n a l  

p r o g r a m s ,  i n  c o g n i z a n c e  o f  e a r l i e r  s i m i l a r  a p p l i c a t i o n s ,  a l s o  d i d  n o t  h e s i t a t e  

t o  a p p r o v e  s u b s t a n t i a l  s o f t w a r e  d e v e l o p m e n t  n e e d s  f o r  t h e i r  s o l e - p u r p o s e  d a t a  

ma n a g e m e n t  n e e d s .  T he  p r o j e c t s  c o u l d  h a r d l y  h a v e  b e e n  c a r r i e d  o u t  o t h e r w i s e .

To  e l i c i t  s u p p o r t  f o r  a g e n e r a  I SDMS  i n  s u p p o r t  o f  e n e r g y  a n d  e n v i  r o n me n  t a I  

p r o g r a m s ,  a n d  f o r  t h e  DOE s c i e n t i f i c  c o m m u n i t y ,  w i l l  r e q u i r e  a s i m i l a r  

d e t e r m i n a t i o n  a n d  s u p p o r t .  Wh a t  we n e e d  i s  t h e  c r e a t i o n  o f  a l i m i t e d  c a p a b i l i t y  

s y s t e m  t h a t  c o u l d  e x c i t e  t h e  i n t e r e s t  o f  p o t e n t i a l  u s e r s  a n d  t h e  s u b s e q u e n t  

e n d o r s e m e n t  o f  a d m i n i s t r a t o r s  a n d  t o p  m a n a g e m e n t .  I t  w o u l d  a c t  a s  a p r o t o t y p e .  

F o r  that r e a s o n  i t  s h o u l d  i d e a l l y  s e r v e  b o t h  g r o u p s ,  b e  r e l i a b l e ,  e x t e n s i b l e ,  

and s i m p l e  in u s e .  I t  s h o u l d  i n c r e a s e  p r o d u c t i v i t y !

Several candidates exist at the National Laboratories and abroad. An 

effort should be made to eliminate the deleterious circumstances that seem to 

have handicapped the development of these SDMSs at the large computer

-  122 -



i n s t a l l a t i o n s ,  t o  d o c u m e n t  t h e i r  p e r f o r m a n c e ,  a n d  t o  d e m o n s t r a t e  t h e i r  

c a p a b i l i t i e s  o f  i n c r e a s i n g  t h e  e f f e c t i v e n e s s  o f  o n g o i n g  r e s e a r c h .  B u t  h e r e  

a g a i n ,  w i t h o u t  t o p  ma n a g e m e n t  s u p p o r t  we c a n  n o t  h o p e  t o  a t t r a c t  c a p a b l e  

c o m p u t e r  s c i e n t i s t s  —  o r  h o l d  t hem f o r  a n y  l e n g t h  o f  t i m e .

3.3 An Expanding User Community

A s  t i m e  a d v a n c e s ,  o u r  e x p e c t a t i o n s  o f  t h e  c a p a b i l i t i e s  f o r  a f u t u r e  SDMS  s eem t o  

i n c r e a s e  a l s o .  N o t  o n l y  s h o u l d  s u c h  a s y s t e m  be  c a p a b l e  o f  h a n d l i n g  t h e  

c o m p l e x i t y  o f  s c i e n t i f i c  i n f o r m a t i o n  a n d  d a t a ,  a n d  d i s p l a y  t hem i n  t h e  

c u s t o m a r i l y  a c c e p t e d  s c i e n t i f i c  n o t a t i o n s ,  b u t ,  i n  a d d i t i o n ,  t h e  s y s t e m  s h o u l d  

be  e q u a l  l y  u s e f u l  t o  c a s u a l  u s e r s  a n d  t e c h n i c a l  a d m i n i s t r a t o r s  who  may h a v e  

l i t t l e  e x p e r i e n c e  w i t h  d a t a  ma n a g e me n t  o r  w i t h  c o m p u t e r s .  T h i s  i m p l i e s  t h a t  t h e  

g e n e r a l i z e d  S DM S  s h o u l d  be  c a p a b l e  o f  r e p l a c i n g  t h e  " Y e l l o w  N o t e b o o k "  o f  t h e  

r e s e a r c h e r ,  be  an  e f f e c t i v e  t o o l  f o r  g e n e r a t i n g  i n p u t  t o  s c i e n t i f i c  

c a l c u l a t i o n s ,  a n d  m a n a g i n g  t h e  g r o w i n g  v o l u m e  o f  c a l c u l a t e d  r e s u l t s .  The  SDMS 

s h o u l d  g u i d e  t h e  u s e r  t h r o u g h  a v a r i e t y  o f  a v a i l a b l e  g e n e r a l  r e f e r e n c e  d a t a  a nd  

s t a n d a r d  a n a l y s i s  r o u t i n e s .  I n  s h o r t ,  i t  s h o u l d  be  an e f f e c t i v e  t o o l  f o r  

c o m p u t e r - s u p p o r t e d  d e c i s i o n  m a k i n g  by  s c i e n t i s t s ,  e n g i n e e r s ,  a n d  t e c h n i c a l  

adm i n i s t r a t o r s .

Th e  w r i t i n g  o f  s o l e - p u r p o s e  EDP s o f t w a r e  r e q u i r e s  e x a c t  s p e c i f i c a t i o n s  f r o m  

t h e  s p o n s o r  a n d  u s e r s  w i t h  r e g a r d  t o  i n p u t  a n d  o u t p u t  f o r m a t s .  F o r  t h e  d e s i g n  

o f  a g e n e r a l - p u r p o s e  s y s t e m ,  n o t  u n d e r  t h e  d i r e c t  s p o n s o r s h i p  o f  a p a r t i c u l a r  

p r o g r a m ,  much  r e s p o n s i b i l i t y  r e s t s  w i t h  t h e  s y s t e m  d e s i g n e r s  a n d  i m p l e m e n t e r s  t o  

i n t e r p r e t  p r e s e n t  a n d  f u t u r e  n e e d s  o f  p o t e n t i a l  u s e r s .  A s  a r u l e ,  t h e  l a t t e r  

w i l l  n o t  h a v e  e x t e n s i v e  e x p e r i e n c e  w i t h  i n t e r a c t i v e  d a t a  m a n a g e m e n t  s y s t e m s ,  a nd  

t h e i r  w i s h e s  may  be  e i t h e r  u n r e a l i s t i c  o r  p a r o c h i a l .  B u t  u s e r  g r o u p s  s h o u l d  be 

i n v o l v e d  d u r i n g  t h e  e v o l u t i o n  an d  d u r i n g  t h e  t e s t i n g  o f  t h e  p r o t o t y p e .  I t  w o u l d  

be  d e s i r a b l e  t h a t  o n e ,  two o r  t h r e e  m a j o r  p o t e n t i a l  u s e r s  be  i n v o l v e d ,  

e s p e c i a l l y  i f  t h e y  h a v e  had  p r e v i o u s  e x p e r i e n c e  i n  t h e  u s e  o f  s c i e n t i f i c  d a t a  

m a n a g e m e n t  by  m a c h i n e .  The  g r e a t e s t  r e s p o n s i b i l i t y ,  h o w e v e r ,  r e s t s  upo n  t h e  

k n o w - h o w  a n d  e x p e r i e n c e  o f  t h e  s y s t e m  a n a l y s t s  who  s t r u c t u r e  t h e  s y s t e m  an d  i t s  

c a p a b i l i t i e s .  U s e r s  a r e  w e l l  v e r s e d  i n  t h e i r  o b j e c t i v e s  —  t h e  SDMS  d e s i g n e r  

a n d  i m p l e m e n t e r  h a s  t o  u n d e r s t a n d  h i s  own a n d  be  p r a c t i c a l  e n o u g h  t o  s t r i k e  a 

c o m p r o m i s e  by  c a r e f u l  e x a m i n a t i o n  o f  t h e  p r e s e n t  a n d  f o r e s e e a b l e  w o r k i n g  

e n v i r o n m e n t ,  a n d  t h e  s e l e c t i o n  o f  a p p r o p r i a t e  i m p l e m e n t a t i o n  t e c h n i q u e s .

I t  s h o u l d  a l s o  be b o r n e  i n  m i n d  t h a t  a g e n e r a l - p u r p o s e  s y s t e m  w i l l  h a r d l y  

be  a b l e  t o  c o m p e t e  w i t h  s o l e - p u r p o s e  s y s t e m s ,  s p e c i a l l y  a d a p t e d  t o  p r o g r a m m a t i c  

t a s k s .  S y s t e m  d e s i g n e r s  s h o u l d  h a v e  p e r s o n a l  w o r k i n g  e x p e r i e n c e  w i t h  s c i e n t i f i c  

d a t a .  [ 2 5 ]

3.4 The Dedicated B a c k - e n d  Dgta Mgnggement Machine

It is highly unlikely that generalized management of scientific data at the 

research-oriented large computer centers of the National Laboratories could 

suddenly gain a preferred status. Competition for available CPU resources and 

for direct-access disk storage is simply too great.

- 123 -



A c q u i s i t i o n  o f  f u t u r e  g e n e r a t i o n s  o f  m a c h i n e s  w i l l  u n d o u b t e d l y  a l s o  t a k e  

i n t o  a c c o u n t  t h e  m a n a g e m e n t  o f  i n p u t  a nd  o u t p u t  t o  c a l c u l a t i o n s  w i t h  a u t o m a t e d  

and  s i m p l e r  t o o l s  t h a n  t o d a y .  A s  t h e  v o l u m e  o f  c a l c u l a t i o n s  i n c r e a s e s  w i t h  m o r e  

p o w e r f u l  m a c h i n e s ,  o u r  a b i l i t y  t o  c o p e  w i t h  t h e  m a s s e s  o f  d a t a  m u s t  i n c r e a s e  

a l s o .  We r e c o g n i z e  a s o l u t i o n  t o  t h i s  d i l e m m a  and  t o  t h a t  o f  t h e  SDMS  i s s u e  i n  

t h e  t r e n d  t o  e m p l o y  m i n i - c o m p u t e r s  a s  b a c k - e n d  m a c h i n e s .  T h e y  c a n  h a n d l e  m o s t  

o f  t h e  I / O  a n d  t h e  s i m p l e r  t a s k s  o f  d a t a  m a n i p u l a t i o n s .  A c c e s s  t o  t h e  l a r g e  

m a c h i n e s  t a k e s  p l a c e  i n  t h i s  c o n c e p t  u n d e r  c o n t r o l  o f  t h e  m i n i - c o m p u t e r s  wh e n  

n e e d e d ,  o r  when  r e q u e s t e d  by  t h e  u s e r .  T h i s  i s  e x a c t l y  t h e  n e c e s s a r y  c o m p u t e r  

e n v i r o n m e n t  f o r  t h e  r e l i a b l e  d e v e l o p m e n t  o f  a g e n e r a l i z e d  Scientific D a t a  

Manag emen t System.

T h i s  a p p r o a c h  i s  b e i n g  t a k e n  a t  L L L  by  a t  l e a s t  t h r e e  u n r e l a t e d  p r o g r a m s :  

( 1 )  The  S H I V A / N O V A  I a s e r - i n d u c e d  f u s i o n  e n e r g y  p r o g r a m ;  ( 2 )  The  N a t i o n a l  U r a n i u m  

R e s o u r c e  E v a l u a t i o n  P r o g r a m  ( N U R E ) ,  and  ( 3 )  The  I n t e g r a t e d  I n f o r m a t i o n  S y s t e m  

( I I S )  f o r  t h e  DOE D i v i s i o n  o f  E n e r g y  S t o r a g e . [ 2 6 ]  I n  e a c h  c a s e ,  a P D P - I  I / 7 0  

m a c h i n e  i s  t o  a c c e p t  d a t a  i n p u t ,  p r o v i d e  t h e  u s e r  w i t h  q u i c k  a c c e s s  t o  n e e d e d  

i n f o r m a t i o n  and  d a t a ,  e x e c u t e  c o n t r o l  o v e r  t r a n s a c t i o n s ,  a n d  c o m m u n i c a t e  w i t h  

t h e  mo r e  p o w e r f u l  c o m p u t e r s  when  h i g h - s p e e d  p r o c e s s i n g  o r  mo r e  c o m p l e x  a n a l y s e s  

a r e  r e q u i r e d .

The  c o n c e p t u a l  r e q u i r e m e n t s  f o r  e a c h  o f  t h e  t h r e e  a p p l i c a t i o n s  h a s  b e e n  

a r r i v e d  a t  i n d e p e n d e n t l y  by  s e p a r a t e  t e a m s .  The  s t a f f  o f  t h e  D a t a  M a n a g e m e n t  

G r o u p  a t  L L L  h a s  p a r t i c u l a r  r e s p o n s i b i l i t y  f o r  t h e  D O E / S T O R  I n t e g r a t e d  

I n f o r m a t i o n  S y s t e m .  S i m i l a r  c o m b i n a t i o n s  o f  m i n i - m a x i  c o m p u t e r s  t o  e n h a n c e  d a t a  

m a n a g e m e n t  a r e  i n  p r e p a r a t i o n  a t  A N L , L A S L , L B L , a n d  e l s e w h e r e .

The  e s s e n t i a l  a d v a n t a g e  o f  a Data Management Machine  i s  i t s  d e d i c a t e d  

s t a t u s .  I t  may a l l e v i a t e  f o r  t h e  u s e r  t h e  n e c e s s i t y  t o  l e a r n  mo r e  c o m p l e x  

p r o c e d u r e s  o f  a g e n e r a l  p u r p o s e  c o m p u t e r  e n v i r o n m e n t .  I t  i n c r e a s e s  

s u b s t a n t i a l l y  t h e  r e l i a b i l i t y  and  r e s p o n s e  o f  i n t e r a c t i v e  d a t a  a c c e s s .  O f  

c o u r s e ,  s i n c e  t h e  u s e r  may w i s h  t o  e x e c u t e  some f u n c t i o n s  on t h e  l a r g e  m a c h i n e s  

w h e r e  h i s  a p p l i c a t i o n  p r o g r a m s  r e s i d e ,  he may f i n d  i t  a d v a n t a g e o u s  a s  an  

e x p e r i e n c e d  p e r s o n  t o  u s e  t h e  SDMS  t h e r e  a l s o .  T h e  SDMS  s h o u l d ,  t h e r e f o r e ,  be  

w r i t t e n  f o r  u s e  on l a r g e  a n d  smaI  I m a c h i n e s .

I t  i s  s t i l l  t o o  e a r l y  t o  s t a t e  t h e  d e g r e e  o f  s u c c e s s  f o r  t h e s e  s o l u t i o n s .  

F o r  t h e  S H I V A  a n d  NURE p r o j e c t s  w h i c h  d e a l  w i t h  r e l a t i v e l y  r o u t i n e  o p e r a t i o n s ,  

c o m m e r c i a l l y  a v a i l a b l e  o p e r a t i n g  s y s t e m s  and  d a t a  m a n a g e m e n t  s y s t e m s  w e r e  

s e l e c t e d .  F o r  t h e  DOE / S T OR  p r o j e c t  w i t h  n o n —r o u t i n e  u t i l i z a t i o n ,  t h e  

U N I X / I N G R E S  c o m b i n a t i o n  [ 2 7 ]  wa s  c h o s e n  a s  t h e  b a s i s  u n t i l  t h e  Scientific D a t a  

Base Management System (SDBMS) , u n d e r  d e v e l o p m e n t  b y  t h e  D a t a  M a n a g e m e n t  G r o u p  

at LLL, b e c o m e s  o p e r a t i o n a l  l a t e r  n e x t  y e a r .

3.5 Creation of Scientific and Technological Data Bases

Several efforts are under way to demonstrate the usefulness of genera I- interest 

numerical data bases. The Nuclear Data Section of the IAEA, for example, has

- 124- -



b e e n  m a n d a t e d  a t  t h e  1 9 7 6  m e e t i n g  a t  t h e  Cu I  ham L a b o r a t o r i e s  t o  e x p a n d  i t s  

c o o r d i n a t i n g  f u n c t i o n  i n t o  t h e  A t o m i c  and  M o l e c u l a r  d a t a  f i e l d .  N a t i o n a l  

p r o g r a m s  o f  c o n s i d e r a b l e  s c o p e  h a v e  b e e n  i n  p r o g r e s s  i n  S w e d e n ,  W e s t - G e r m a n y , 

a n d  J a p a n .  T h e  D a t a  M a n a g e m e n t  G r o u p  a t  L L L  i s  c o l l a b o r a t i n g  w i t h  t h e  O f f i c e  o f  

S t a n d a r d  R e f e r e n c e  D a t a  ( N B S / O S R D )  t o  e s t a b l i s h  d a t a  b a n k s  o f  e v a l u a t e d  

p r o p e r t i e s  f o r  m a t e r i a l s  o f  i n t e r e s t  t o  D OE / S T OR .  T h e s e  d a t a  a r e  b e i n g  p r e p a r e d  

f o r  u s e  on t h e  P D P - 1 1 / 7 0  m a c h i n e ,  a s  p a r t  o f  t h e  Integrated Information S y s t e m , 

w i t h  r e m o t e  a c c e s s  o v e r  t h e  A R P A n e t  a nd  by  t e l e p h o n e  d i a l - u p .

L e g a l ,  m o n e t a r y ,  a n d  n a t i o n a l  c o n s t r a i n t s  on t h e  u s e  o f  n o n - d e f e n s e  

o r i e n t e d  d a t a  c a n  h o p e f u l l y  a l s o  be  o v e r c o m e  t o  f o s t e r  a nd  r e n e w  a f r e e  s p i r i t  

o f  r e s e a r c h  a n d  p r o g r e s s  i n  t h e  s c i e n t i f i c  c o m m u n i t y . [ 2 8 , 3 1 ]

3 . 6  S c i e n t i f i c  No t a t i o n

The  d i s p l a y  o f  s c i e n t i f i c  n o t a t i o n s  i n  t h e  c u s t o m a r y ,  a c c e p t e d  f o r m s  o f  t h e  

p r o f e s s i o n a l  l i t e r a t u r e  i s  s t i l l  d i f f i c u l t  a t  many  i n s t a l l a t i o n s ,  b u t  

s u b s t a n t i a l  s t r i d e s  h a v e  b e e n  made t o  make  i t  p o s s i b l e .  A t  L L L  we h a v e  made 

g o o d  u s e  o f  t h e  H e r s h e y  c h a r a c t e r  s e t s  and  h a v e  a d d e d  a n u mb e r  o f  new f o n t s .  

M o s t  o f  t h e  s c i e n t i f i c  n o t a t i o n s  a r e  now s t a n d a r d  o p t i o n s .  By  u s i n g  t h e  FR8 0  

d a t a  o u t p u t  m a c h i n e s ,  we c a n  p r i n t  f o r m u l a e  and  e q u a t i o n s  on f i I- m o r  d i r e c t l y  a s  

c a m e r a - r e a d y  h a r d  c o p y .  C l e a r l y ,  t h e  l a s e r  p h y s i c i s t  s t u d y i n g  t h e  p o l y m o r p h o u s  

s i l i c a t e  g l a s s e s  w o u l d  l i k e  t o  s e e  p r i n t e d  by t h e  c o m p u t e r

7 - N a 2 B e F 4 n o t  G A M M A - N A 2 B E F 4 .

R e c e n t l y ,  we g a i n e d  e x p e r i e n c e  i n  t h e  p r e p a r a t i o n  o f  r a t h e r  u n u s u a l  

f r e e - f o r m  c h a r a c t e r s  by a d d i n g  t h e  H e b r e w  c h a r a c t e r  s e t  t o  t h e  s t a n d a r d  

r e p e r t o r y ,  i n c l u s i v e  o f  c a n t i  I l a t i o n  s e n t i n e l s .  By  e s t a b l i s h i n g  a m a c r o  

d e f i n i t i o n  f o r  t h e  k e y b o a r d ,  i n p u t  c o u l d  be  p r o v i d e d  f r o m  s t a n d a r d  t e r m i n a l s  

w h e r e  a s e n s i b l e  c o r r e l a t i o n  was  made among c h a r a c t e r s  o f  t h e  E n g l i s h  and  H e b r e w  

a l p h a b e t s .  H e r e  i t  i s  n o t  i m p o r t a n t  t h a t  i t  wa s  d o n e ,  b u t  t h a t  i t  c o u l d  be  d o n e  

w i t h i n  a m a t t e r  o f  d a y s .  We a r e  a p p l y i n g  t h e  l e s s o n s  l e a r n e d  w i t h  f r e e - f o r m  

c h a r a c t e r s  t o  t h e  w r i t i n g  o f  m a t h e m a t i c a l  e x p r e s s i o n s  a n d  f o r m u l a e .  [ 2 9 ]

S i m i l a r  c a p a b i l t i e s  a r e  now s t a r t i n g  t o  b e c o me  a v a i l a b l e  e l s e w h e r e .  We 

b e l i e v e  t h a t  t h e  d i f f i c u l t y  o f  d e p i c t i n g  a n d  d i s p l a y i n g  s c i e n t i f i c  n o t a t i o n s  

h a v e  now b e e n  s u b s t a n t i a l l y  o v e r c o m e .  The  p r o c e s s  i s  s t i l l  s o m e w h a t  c u m b e r s o m e .  

P h y s i c i s t s  a n d  c h e m i s t s  who may h a v e  a p p r o a c h e d  o n l y  r e l u c t a n t l y  a d a t a  

m a n a g e m e n t  s y s t e m  t h a t  c o u l d  n o t  r e p r o d u c e  t h e i r  c u s t o m a r y  t e x t  a n d  d a t a  s h o u l d  

now be  mo r e  r e c e p t i v e  t o  t h e  p e r s o n a l  u s e  o f  a Scientific D a t a  Management 

System.  I n  t h e  MA S TE R  CONTROL s y s t e m  we i n t r o d u c e d  t h e  c o n c e p t  o f  a f u n c t i o n a l  

d a t a  f i e l d  t h a t  c a n  be  u s e d  f o r  n u m e r i c a l  p r o c e s s i n g  a n d  t h e  i n t e g r a t i o n  o f  

s c i e n t i f i c  t e x t  a n d  d a t a .  A s i m i l a r  c a p a b i l i t y  s h o u l d  b e  p a r t  o f  a n y  f u t u r e  

SDMS.  [ 1 2 ,  U C R L - 5 2 0 1 5 ]

3.7 SD M S. a Portable System in the Public Domain

The Federal Government does not compete with industry. But there is clearly not

125 “



y e t  e n o u g h  p r o f i t  i n  s c i e n t i f i c  d a t a  m a n a g e m e n t ,  o r  i n d u s t r y  w o u l d  h a v e  f i l l e d  

t h e  v a c u u m .  M o r e o v e r ,  t h e  DOE f a m i l y  o f  L a b o r a t o r i e s  i s  b y  f a r  t h e  g r e a t e s t  

u s e r  o f  h i g h - p o w e r  c o m p u t a t i o n a l  e q u i p m e n t .  H i s t o r i c a l l y ,  a s  m e n t i o n e d ,  t h e  

m o s t  a d v a n c e d  c o m p u t e r s  h a v e  b e e n  s p e c i f i e d  by  A E C - E R D A .  O p e r a t i n g  s y s t e m s ,  

u t i l i t y  r o u t i n e s  a n d  n e t w o r k s  a r e  a l l  i n  a s t a t e  o f  r a p i d  f l u x .  T h i s  c r e a t e s  a 

w o r k i n g  e n v i r o n m e n t  w i t h o u t  p a r a l l e l  i n  t h e  c o m m e r c i a l  b u s i n e s s  w o r l d .  A g o o d  

e x a m p l e  i s  t h e  e x t e n s i v e  u s e  o f  c o l o r  g r a p h i c s  a nd  c o m p u t e r - g e n e r a t e d  m o v i e s  f o r  

t h e  a n a l y s i s  a n d  u n d e r s t a n d i n g  o f  m e a s u r e d  and  c a l c u l a t e d  p h e n o m e n a .  T h e s e  

g r a p h i c s  p r o g r a m s  a r e  e x p e r i e n c i n g  a t i g h t e r  l i n k  t o  d a t a  m a n a g e m e n t ,  a n d  a r e  i n  

a c o n t i n u o u s  s t a t e  o f  e v o l u t i o n .  [ 3 0 ]

A c o n s i d e r a t i o n  m i g h t  be  t o  w r i t e  t h e  e x a c t  s p e c i f i c a t i o n s  f o r  a 

g e n e r a l i z e d  Scientific Data Management System i n  a R e q u e s t  f o r  P r o p o s a l  ( R F P )  

and  t o  s u b c o n t r a c t  t h e  w r i t i n g  o f  t h e  s o f t w a r e  f o r  t h e  SDMS a s  an  e x t e n s i o n  o f  a 

p a r t i c u l a r l y  p r o m i s i n g  b u s i n e s s - o r i e n t e d  s y s t e m  t o  i n c l u d e  s c i e n t i f i c  

r e q u i r e m e n t s .  I n  v i e w  o f  t h e  r a p i d l y  c h a n g i n g  R&D c o n d i t i o n s  t h i s  a p p e a r s  t o  be 

d i f f i c u l t ,  e s p e c i a l l y  s i n c e  i t  i s  d e s i r a b l e  t o  h a v e  t h e  SDMS o p e r a t e  b o t h  on 

m i n i - c o m p u t e r s  a nd  on t h e  mo r e  p o w e r f u l  m a i n f r a m e s .  M o r e  i m p o r t a n t l y ,  h o w e v e r ,  

t h e  r e s u l t a n t  s o f t w a r e  w o u l d  be  p r o p r i e t a r y  and  c o u l d  n o t  be  m o d i f i e d  by  t h e  

L a b s  a s  i s  o f t e n  r e q u i r e d  on dema nd  and  s h o r t  n o t i c e .  S u c h  a s y s t e m  c o u l d  t h e n  

a l s o  p r o b a b l y  n o t  be s h a r e d  w i t h  o t h e r  L a b s  o r  i n s t a l l a t i o n s .

We h a v e  a l s o  c o n s i d e r e d  a j o i n t  r e s e a r c h  v e n t u r e  w i t h  s ome o f  t h e  l e a d i n g  

i n d u s t r i a l  s o f t w a r e  h o u s e s ,  e x p e r i e n c e d  i n  d a t a  m a n a g e m e n t  s y s t e m s .  A l t h o u g h  

t h e  s o f t w a r e  c o u l d  p e r h a p s  be  d e v e l o p e d  and  d o c u m e n t e d  j o i n t l y  u n d e r  a m u t u a l  

r e s e a r c h  a g r e e m e n t ,  t h e  r e s u l t a n t  s o f t w a r e  c o u l d  u l t i m a t e l y  be  u s e d  w i t h o u t  

l e g a l  i m p e d i m e n t s  o n l y  i n - h o u s e  and  c o u l d  n o t  be  s h a r e d  w i t h  o t h e r  L a b s ,  

a c c o r d i n g  t o  r e c e n t  l e g a l  c o u n s e l  on t h i s  m a t t e r .

F i n a l l y ,  i t  i s  c o n c e i v a b l e  t h a t  t h e  new s y s t e m  c o u l d  be  w r i t t e n  by  a 

c o m m e r c i a l  v e n d o r  u n d e r  e x a c t  t e c h n i c a l  s p e c i f i c a t i o n s  f r o m  s c r a t c h  a n d  p l a c e d  

f o r  u s e  i n  t h e  p u b l i c  d o m a i n .  To  p r o v i d e  e n o u g h  f e e d - b a c k  d u r i n g  t h e  d e f i n i t i o n  

p h a s e  w o u l d  r e q u i r e  e x t e n s i v e  f a m i l i a r i z a t i o n  o f  t h e  i n d u s t r i a l  s y s t e m  a n a l y s t s  

an d  p r o g r a m m e r s  w i t h  t h e  DOE s c i e n t i f i c  c o m p u t e r  e n v i r o n m e n t  a n d  t h e  n e e d s  o f  

i t s  p r o f e s s i o n a l  c o m m u n i t y .  T h i s  i s  d i f f i c u l t  t o  a c h i e v e  w i t h  an  o u t s i d e  

o r g a n i z a t i o n .  When t h i s  a p p r o a c h  wa s  t r i e d  by  N A S A / L e w i s  i n  t h e  e a r l y  1 9 7 0 ' s ,  

t h e  r e s u l t s  w e r e  n o t  s a t i s f a c t o r y .  To i m p r o v e  u p o n  t h i s  s i t u a t i o n ,  d e s i g n e r s  

a n d  d e v e l o p e r s  s h o u l d  be  p a r t  o f  t h e  s c i e n t i f i c  w o r k i n g  e n v i r o n m e n t ,  j u s t  a s  

t h e y  w e r e  p a r t  o f  t h e  b u s i n e s s  w o r l d  f o r  t h e  d e v e l o p m e n t  o f  b u s i n e s s - o r i e n t e d  

s y s t e m s .  We a r r i v e  a t  t h e  c o n c l u s i o n  t h a t  t h e  i n v o l v e m e n t  o f  c o m m e r c i a l  

s o f t w a r e  h o u s e s  i n  t h e  w r i t i n g  o f  a g e n e r a l i z e d  Scientific Data Management 

System i s  q u e s t i o n a b l e  t o  d a t e .  E x c e p t  f o r  r o u t i n e  a p p l i c a t i o n s  t h a t  a r e  

s i m i l a r  i n  n a t u r e  t o  b u s i n e s s  d a t a ,  w h e r e  c o m m e r c i a l  s y s t e m s  h a v e  b e e n  q u i t e  

successful, i t  a p p e a r s  t h a t  g e n e r a l i z e d  Scientific Data Management Systems will 

probably h a v e  t o  be  d e v e l o p e d  by  DOE f o r  DOE.

- 126 -



3.8 SD M S  Design -  A Colloborotive Project

Th e  r a p i d  p r o g r e s s  o f  c o m p u t e r  h a r d w a r e  a n d  i m p r o v e d  c o m m u n i c a t i o n s  h a v e  

s t i m u l a t e d  c o l l a b o r a t i o n  among  t h e  N a t i o n a l  L a b o r a t o r i e s .  A s  s o f t w a r e  

d e v e l o p m e n t s  i n c r e a s e  i n  c o s t ,  we n o t e  a l s o  a g r e a t e r  r e l i a n c e  u p o n  t h e  s h a r i n g  

o f  u t i l i t y  r o u t i n e s  a n d  c o m p u t e r  p r o g r a m s .  T h i s  i s  e s p e c i a l l y  a p p a r e n t  b e t w e e n  

L A S L  a n d  L L L  w h e r e  t h e  j o i n t  u s e  o f  t h e  L T S S  o p e r a t i n g  s y s t e m  a n d  i t s  e x t e n s i v e  

l i b r a r y  o f  s u p p o r t i n g  u t i l i t y  r o u t i n e s  h a s  r e s u l t e d  i n  a c o n s i d e r a b l e  s a v i n g s  

f o r  t h e  t wo  L a b s .

W i t h  r e f e r e n c e  t o  t h e  Inter laboratory Working Group for Data Exchange 

(IWGDE ) ,  now t h a t  a v i a b l e  d a t a  e x c h a n g e  f o r m a t  h a s  b e e n  e s t a b l i s h e d  f o r  

m a g n e t i c  t a p e s ,  t h e  c o n c e r n s  a b o u t  a p o r t a b l e  d a t a  ma n a g e m e n t  s y s t e m  f o r  

s c i e n t i f i c  d a t a  i s  c o m i n g  a g a i n  i n t o  t h e  f o r e f r o n t  o f  a t t e n t i o n .  S e v e r a l  o f  t h e  

IWGDE s t a f f  a r e  c o n t r i b u t o r s  t o  t h e  O E C D / N E A  S p e c i a l i s t  S t u d y  G r o u p  t h a t  i s  

p r e p a r i n g  t o  l a y  t h e  f o u n d a t i o n  o f  a g e n e r a l i z e d  s y s t e m  f o r  s c i e n t i f i c  u s e .  

T h i s  s u g g e s t s  a m o d u l a r i t y  o f  SDMS d e s i g n .  One  w o u l d  h o p e  t o  d e v i s e  a p r o c e d u r e  

w h e r e b y  p a r t i c u l a r  f e a t u r e s  f o r  a s p e c i f i c  i n s t a l l a t i o n  c o u l d  be  s e l e c t e d  f r o m  a 

w i s h — l i s t  t o  s a t i s f y  t h e  n e c e s s a r y  a n d  s u f f i c i e n t  l o c a l  r e q u i r e m m e n t s . A l s o ,  

o n e  w o u l d  h o p e  t h a t  c o m p u t e r  s c i e n t i s t  w i t h  p a r t i c u l a r  e x p e r t i s e  i n  t h e i r  f i e l d  

o f  s p e c i a l t y  c o u l d  be  e n g a g e d  t o  p a r t i c i p a t e  i n  t h e  d e s i g n  a n d  d e v e l o p m e n t  

e f f o r t .  I n  a p r a c t i c a l  s e n s e ,  f e a t u r e s ,  i . e . ,  m o d u l e s ,  n e e d e d  a t  some 

i n s t a l l a t i o n  s h o u l d  b e s t  be d e v e l o p e d  by  i n - h o u s e  p r o f e s s i o n a l s ,  b e a r i n g  In m i n d  

t h e  mo r e  g e n e r a l  r e q u i r e m e n t s  o f  t h e  o v e r a l l  SDMS s y s t e m .  One  o r g a n i z a t i o n  

s h o u l d  be  a s s i g n e d  r e s p o n s i b i l i t y  f o r  t h e  p r o j e c t .  A u t h o r i z a t i o n  and  s u p p o r t  

s h o u l d  c ome  f r o m  DOE H e a d q u a r t e r s ,  b a s e d  u p o n  t h e  f o r e s i g h t e d  b e g i n n i n g  made by  

t h e  O f f i c e  o f  E n v i r o n m e n t a I  I n f o r m a t i o n  S y s t e m s ,  D O E / E O I N .

SUMMARY
We b e l i e v e  t h e  t i m e  h a s  come f o r  t o p  DOE ma n a g e m e n t  t o  d e a l  w i t h  t h e  i s s u e  

o f  g e n e r a l i z e d ,  scientific d a t a  ma n a g e me n t  i n  a c o n c e r t e d  a n d  d e t e r m i n e d  m a n n e r .  

By  s u c h  a c t i o n ,  r e d u n d a n t  a nd  c o s t l y  d e v e l o p m e n t s  c o u l d  be  c h a n n e l e d  t o  g o o d  

a d v a n t a g e .  T o d a y ,  t h e  d e s i g n ,  d e v e l o p m e n t ,  a n d  i m p l e m e n t a t i o n  o f  a Scientific 

Data Management System (SDMS) i s  l e s s  r i s k y  t h a n  i n  y e a r s  p a s t .  S i g n i f i c a n t  

a d v a n c e s  h a v e  b e e n  made  In c o m p u t e r  s c i e n c e ,  t h e  r e l i a b i l i t y  o f  b u s i n e s s  d a t a  

m a n a g e m e n t  on a g l o b a l  s c a l e  i s  p r o v e n ,  we a r e  i n  a p o s i t i o n  t o  g i v e  t o  t h e  

s c i e n t i s t  a n d  e n g i n e e r  h i s  d a t a  i n  a c c e p t a b l e  s c i e n t i f i c  f o r m s ,  a n d  t h e  c o s t  

r e d u c t i o n s  d u e  t o  m I c r o - c o m p u t e r i z a 1 1  on a r e  c o n t i n u i n g .

I n  p a r t i c u l a r ,  we r e c o mme n d  f o r  c o n s i d e r a t i o n  t h e  c o n c e p t  o f  t h e  b a c k - e n d  

m i n i - c o m p u t e r  a s  a d e d i c a t e d  s c i e n t i f i c  Data Management Machine. I t  w o u l d  n o t  

o n l y  r e d u c e  t h e  I / O  b u r d e n  now c a r r i e d  b y  t h e  p o w e r f u l  c o m p u t e r s ,  b u t  w o u l d  a l s o  

p r o v i d e  f o r  t h e  c a s u a l  a n d  k n o w l e d g e a b l e  r e s e a r c h e r ,  o r  t e c h n i c a l  a d m i n i s t r a t o r ,  

a r e s p o n s i v e  t o o l  f o r  i n c r e a s e d  p r o d u c t i v i t y .

- 127 -



The  s y s t e m  s h o u l d  be  d e s i g n e d ,  d e v e l o p e d ,  a n d  i m p l e m e n t e d  a s  a 

c o l l a b o r a t i v e  p r o j e c t ,  u n d e r  t h e  t e c h n i c a l  l e a d e r s h i p  o f  o n e  o r g a n i z a t i o n .  

A d m i n i s t r a t i v e  r e s p o n s i b i l i t i e s  s h o u l d  be  k e p t  s e p a r a t e .  C o n t r i b u t o r s  c o u l d  

s p e c i a l i z e  i n  t h e i r  f i e l d  o f  e x p e r t i s e  by  w r i t i n g  m o d u l e s  i n  s u p p o r t  o f  t h e i r  

l o c a l  r e q u i r e m e n t s .  T h i s  s h o u l d  f i n d  t h e  e n d o r s e m e n t  o f  l o c a l  m a n a g e m e n t .  I t  

s u g g e s t s  a t o p - d o w n ,  m o d u l a r ,  a n d  w e l l  s t r u c t u r e d  a p p r o a c h  f o r  u s e  on 

m i n i - c o m p u t e r s  a n d  t h e  m a j o r  m a i n - f r a m e  m a c h i n e s .

I f  we a g r e e  t h a t  m e a s u r e d  and e v a l u a t e d  p r o p e r t i e s  o f  n a t u r e  m u s t  be  

u n e n c u m b e r e d  by  l e g a l  o r  m o n e t a r y  c o n s t r a i n t s  t o  s u p p o r t  t h e  n a t i o n a l  R&D e f f o r t  

i n  t h e  s c i e n c e s ,  t h e n  t h e  g e n e r a l i z e d  Scientific D a t a  Management System  a s  t h e  

p r i m a r y  t o o l  f o r  t h e i r  e f f e c t i v e  u s e  mu s t  a l s o  be  i n  t h e  p u b l i c  d o m a i n .  B e f o r e  

a m a j o r  c o m m i t m e n t  i s  ma d e ,  t h e  d e v e l o p m e n t  o f  a p r o t o t y p e  s h o u l d  be f u n d e d .  

T h i s  w o u l d  p e r m i t  us  t o  t e s t  t h e  p r a c t i c a l i t y  o f  t h e  p r o p o s a l  i n  a l i m i t e d  

s e n s e ,  a n d  t o  e n g e n d e r  u s e r  s u p p o r t .

NOTICE

" R e f e r e n c e  t o  a c o mp a n y  o r  p r o d u c t  name 

d o e s  n o t  i m p l y  a p p r o v a l  o r  r e c o m m e n d a t i o n  

o f  t h e  p r o d u c t  by  t h e  U n i v e r s i t y  o f  

C a l i f o r n i a  o r  t h e  U . S .  D e p a r t m e n t  o f  

E n e r g y  t o  t h e  e x c l u s i o n  o f  o t h e r s  t h a t  

may be s u i t a b l e . "

NOTICE
“This report was prepared as an account o f  work 
sponsored by the United States Government. 
Neither the United States nor the United States 
Energy Research & Development Administration, 
nor any o f  their employees, nor any o f  their 
contractors, subcontractors, or their employees, 
makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the 
accuracy, completeness or usefulness o f any 
information, apparatus, product or process 
disclosed, or represents that its use would not 
infringe privately-owned rights.”

- 128 -



1
2
9

EVOLUTION OF DATA BASE 
SYSTEMS löTPLßeU

Scientific Functional

Technological

Bibliographic Interactive On-Line Secæohinq

1965 1970  1975

Figure-1 : The Evolution of Data Base Management Systems

1980



REFERENCES

[2]

[3]

[ 4 ]

[ 5 ]

[6]

[ 7 ]

[8]

[9]

[10]

[11]

[12]

[ 1 ] V.  E .  Ha mpe l  , Problems and So lut ions for the Creation and Utilization of 

Large Interdisciplinary Computerized D a t a  B a n k s , U C R L - 7 4 6 8 5 ,  CODATA  

S y m p o s i u m ,  F r e i b u r g ,  G e r m a n y ,  1 9 7 3 .

M.  C .  M a c C r a c k e n ,  G.  D.  S a u t e r ,  Deve lopment of an Air Po I lut ion Model for 

the San Francisco B ay Area,  U C R L - 5 1 9 2 0  a n d  e s p e c i a l  l y  U C R L - 5 1 5 3 7  f o r  t h e  

u s e  o f  MASTER  CONTROL  a s  t h e  DBMS,  1 9 7 4 - 7 5 .

J .  F .  B a r b i e r i ,  E PA-San Bernardino National Forest Information System - 

Final Report,  U C R L - 5 2 3 0 9 , 1 9 7 7 .

E .  H e n r y  and  V.  E .  H a m p e l ,  A Computerized D a t a  Base of the Fundamental 

Constants of N a t u r e , U C R L - 5 1 9 6 9 ,  1975  E.  H e n r y ,  Computer izat ion of Atomic 

Level and Transition Data for the First and Second I onizat ion States of 

the Elements H ydrogen through Phosphorus , U C R L - 5 2 1 4 8  , 1 9 7 6 .  E.  H e n r y  an d  

V .  E .  H a m p e l ,  Computerization of Spectroscopic Constants for Selected 

He t eronuc tear Diatomic Mo lecules , U C R L - 5 2 1 4 9 ,  1 9 7 6 .  P .  L .  S o mme r v  i I l e ,  

L .  Wo od ,  a n d  V.  E .  H a m p e l ,  Prospective Nuclear Transitions for a 

Gently-Pumped Gamma-Ray Laser  ( I d e n t i f i e d  by  t h e  u s e  o f  t h e  MAS TER  CONTROL  

d a t a  m a n a g e m e n t  s y s t e m ) ,  U C R L - 7 6 4 4 2 ,  1 9 7 5 .

W. T.  O v e r m a n ,  J .  E .  Ra mu s ,  V A LI D , A Routine to Validate Input D a t a , 

U C I D —3 0 1 2 1 ,  1 9 7 5 .  J .  E .  R a mu s ,  C O N C O R D , A Word Index Generator for 

Arbitrary Text S t r i n g s , U C I D - 3 0 1 2 6 ,  1 9 7 5 .  P .  R.  K e l l e r ,  R.  A .  K e i r ,  

T .  W. S t u l  I i c h ,  N D , A Program to Analyze D a t a  on Air Po I lut ion in the San 

Francisco Bay Area,  U C I D - 3 0 1 2 0 ,  1 9 7 5 .

M. Wi  I I i ams , S .  R o s e ,  Compute7—Readable Bib I iographic D a t a  Bases  -  A

d i r e c t o r y  an d  D a t a  S o u r c e  B o o k ,  A S I S ,  1 9 7 6 ,  R e v i s e d  1 9 7 7 .

The  T e c h n i c a l  I n f o r m a t i o n  D e p a r t m e n t  a t  L L L  h a s  o n g o i n g  c o n t r a c t s  w i t h  t h e  

f o l l o w i n g  b i b l i o g r a p h i c  i n f o r m a t i o n  c e n t e r s :  Lockheed Information 

Se r v i c e s , Palo Alto, Ca; System Development Corporation, Santa M o n i c a , 

Ca.; Bibliographic Retrieval S e r v i c e s , I n c o , S c o t i a , NY; I N F O B A N K , 

Pa r s i p p a n y , N J ; Defense Research Deve lopment Test and Evaluation on Line 

System (DDC) , Cameron S t a t i o n , Va; D O E / R E C O N , Oak Ridge National 

L a b o r a t o r y ; Medline  , National Library of Medicine  , Be th e s d a , Md.

MASTER  CONTROL  h a s  b e e n  u s e d  by  t h e  T e c h n i c a l  I n f o r m a t i o n  D e p a r t m e n t  a t  

L L L  s i n c e  1970  t o  p r o c e s s  a p p r o x i m a t e l y  1 , 5 0 0  i n t e r e s t  p r o f i l e s  f o r  t h e  

p r o f e s s i o n a l  s t a f f  a t  L L L  a g a i n s t  s ome  d o z e n  m a j o r  c o m p u t e r i z e d  

b i b l i o g r a p h i c  d a t a  b a s e s  o f  t h e  s c i e n t i f i c  l i t e r a t u r e .

B .  M a r r o n ,  E .  F o n g ,  D.  W. F i f e ,  K .  R a n k i n ,  A Study of Six University based 

Inf ormat ion S y s t e m s , NBS T e c h n i c a l  N o t e  7 8 1 ,  1 9 7 3 ;  D.  W. F i f e ,  K .  R a n k i n ,  

J .  C .  W a l k e r ,  B .  M a r r o n ,  A Technical Index of Interactive Information 

Systems,  NBS  T e c h n i c a l  N o t e  8 1 9 ,  1 9 7 4 .

D. R.  R i c h a r d s ,  A n  Overview of BDMS: The Berkeley Database Management 

System,  R e f e r  to p a pe r  in t hes e  P r o c e e d i n g s .

W. D r a i s i n ,  GIRLS - A General Information Retrieval and Library S y s t e m t 

Los  A l a mos  S c i e n t i f i c  L a b o r a t o r y .

V.  E.  Hampel  and J .  A.  Wade,  MASTER CONTROL  -  A Unifying F r e e—F o r m  Data

-  130 -



Storage and D a t a  Retrieval System for Dissimilar Dat a  Bases,  U C R L - 7 1 6 8 6 ,

1 9 6 8 ,  c f .  A S I S  P r o c e e d i n g s ,  S o n  F r a n c i s c o  M e e t i n g ,  1 9 6 9 .  S t a f f  o f  t h e  

I n f o r m a t i o n  R e s e a r c h  G r o u p ,  MASTER CONTROL User's M a n u a l , M - 0 6 6 ,  1 9 7 5 .

R.  W. K u h n ,  A Numeric Processor and Text Manipulator for the MASTER 

CONTROL D a t a  Management System,  UCRL-52015, 1976.

STOFI - S ystem TO F ind Information , A S y s t e m  of subrou t i n e s  for 

m a n i p u l a t i n g  h i e r a r c h i ca I Iy related data blocks, for large data files, in 

the BKY format, Lawrence Berkeley Laboratory.

P. Kreps, S EEDIS M o n i t o r , A Socio-Economic Environmental Demographic 

Information System,  Lawrence Berkeley Laboratory, LBL-6440, 1977.

E. B. Birss, S. E. Jones, D. R. Ries, J. W. Yeh, Scientific Data Base 

Management at Lawrence Livermore L a b o r a t o r y : Needs and a Prototype 

System,  UCRL-8 0 1 4 6 ,  1977, presented in these proceedings.

A. A. Brooks, ORCHIS - Oak Ridge Computerized Hierarchical Information 

System,  OR NL-4929, 1973.

R. C. Du r fee, ORRMIS  -  Oak Ridge Regional Modeling Information System,

O R N L - N S F - E P - 7 3 , 1974.

E RDA/DOE /R EC ON  User's M a n u a l , T I D - 4 5 8 6 , 1 9 7 6 .

J . R . H i I I e y , The JOSHUA System,  D P S T M - 5 0 0 , Savan n a h  River Laboratory, 

Aiken, S .C .

B. Greeng l a s s ,  Interim Procedures for Submission 8c Review of Information 

System Proposals,  ERDA Office of P r o g r a m  M a n a g e m e n t  Support, March, 1977. 

The ERDA O f f i c e  of Technical Inform a t i o n  and the ERDA Office of 

Enviro n m e n t a l  I nformation Systems have suppo r t e d  several data m a nagement 

information systems at the National L a b o r a t o r i e s .

Refer to the Federal Information Processing Standards Index, FIPS PUB 12-2 

National Standard Reference Data S y s t e m , P u b l i c a t i o n  List, L P - 8 1 . 1976, 

National B u r e a u  of Standards, Washington, D.C.

D. Merri I I , D. Austin, ERDA Interlaboratory Working Group for Data 

Exchange (IWGDE), Progress R e p o r t , L B L - 5 3 2 9 , 1976.

D. R. Ries, Analyzing User Requirements for Data Management Systems,

U C R L - 7 9 4 4 0 , 1977.

V. E. Hampel , Decision Making with Interactive  A c c e s s  to Administrative 8c 

Technological Dat a Bases  , U C R L - 8 0 3 5 3 , 1977.

UNIX is an o p e rating system dev e l o p e d  by Bel I L a b o r a t o r i e s  for the 

P D P - 1 1 / 7 0  computer. INGRES is a relational data base ma n a g e m e n t  system 

under act i v e  d evelopment by the E l e c t r o n i c s  Res e a r c h  Labora t o r y  of the 

C o l l e g e  of E n g i n e e r i n g  at the Univ e r s i t y  of C a l i f o r n i a  in Berkeley.

F . U . We t z I e r , D at a Banks for RicD, R e s e a r c h  and D e v e l o p m e n t  Journal, June, 

1 9 7 7 .

R.  W. K u h n ,  Deve lopment and Implementation of N e w  Character Fonts at L L L , 

U C I D - 1 7 6 5 3 ,  1 9 7 7 .

1977 Picture D a t a  Description  & Management W o r k s h o p , I E E E ,  1 9 7 7 .  c f .  

A C M / S I G G R A P H s .

V .  E .  H a mp e l  , The Time for Atomic and Molecular D a t a  Bases is Now, 

U C R L - 7 9 2 8 6 ,  1 9 7 7 .  P r o c e e d i n g s  o f  t h e  I A E A - 1 9 9 .

- 131  -



SCIENTIFIC DATA BASE MANAGEMENT AT LAWRENCE LIVERMORE LABORATORY:

NEEDS AND A PROTOTYPE SYSTEM* 

by

Edward W. Birss 
Stephen E. Jones 
Daniel R. Ries 
Jeffry W. Yeh

Lawrence Livermore Laboratory 
Livermore California

Abs trac t :

Lawrence Livermore Laboratory (LLL), with such diverse data 
applications as material compatibility, laser fusion, magnetic fusion, 
test, equation of state, weather, environmental and demographic data, 
has an acute need for a Scientific Data Base Management System (SDBMS). 
The large volume, the numeric values within an epsilon of accuracy, the 
unknown data relationships, the changing requirements, coupled with the 
overall goal of extracting new intelligence from the raw data, dictate a 
database system tailored toward scientific applications. Such an SDBMS 
should support scientific data types, a relational end user view, an 
interactive user language, interfaces to graphical and statistical 
packages, a programming language interface, interfaces to existing 
facilities, extensibility, portability, and use in a distributed 
env i ronment.

Addressing these needs, LLL has begun a project to develop a 
scientific data base management system. A prototype has been 
implemented which uses a relational algebraic interactive user language. 
The software consists of a macro processor, a parser, a parse tree 
generator, a parse tree interpreter, semantic routines, and data base 
access routines. Currently, the database access routines utilize a 
CODASYL database system for data storage.

♦This work was performed under the auspices of the U. S. Energy 
Research and Development Administration under contract No. 
W-7405-Eng-48.

-  132 -



Scientific Data Base Management at LLL

INTRODUCTION

Energy research at Lawrence Livermore Laboratory (LLL) increasingly 
requires management of scientific data by computer. The uniqueness of 
both the users' requirements and the computing environment dictate the 
development of a Scientific Data Base Management System (SDBMS). This 
paper illustrates these needs and provides an overview of the software 
development effort begun to fulfill them.

SCIENTIFIC DATA CHARACTERISTICS AT LLL

Livermore has large quantities of bulk data, numeric data within an 
epsilon of accuracy, unknown data relationships, and changing 
requirements. The magnitude of the amounts of data is illustrated by 
the Magnetic Fusion Test Facility (MFTF) project. The raw data produced 
by a half second shot will be on the order of two million bytes. Under 
maximal operational conditions, it is possible that one shot could occur 
every five minutes. Computer controlled instruments can generate up to 
four million ten-bit integers from one expermimenta 1 shot of SHIVA's 20 
lasers. Much of this data consists of digital representations of 
photographs of laser beam cross sections. The volume of experimental 
data exemplified by MFTF and SHIVA dictates that the physicists have 
efficient access to the collected information.

Epsilon-accurate data elements are exhibited by the National 
Uranium Resource Evaluation (NURE) project. This program's geologists 
and physicists gather soil and water samples and test them to find new 
reserves of uranium. Sample tests generate medium volumes of floating 
point numbers. To manage the epsilon-accurate data, additional 
parameters are stored with each real quantity. Some examples are: 
labels (such as concentration of uranium), units (such as parts per 
billion (ppb)), and error quantities (such as plus or minus ppb). In 
working with such epsilon-accurate data, equality comparisons are not 
meaningful, instead small range comparisons are frequently used.

The NURE project also exhibits the characteristics of unknown data 
relationships and changing requirements. The goal to find uranium 
resources is clear enough and the most obvious approach is to look at 
samples with large uranium concentrations. Unfortunately, the uranium 
concentration is meaningless unless considered along with other 
environmental measurements and uranium concentrations in surrounding 
areas. As more is discovered from data analysis, new tests are added, 
the data changes and new relationships of significance are discovered 
between uranium and other elements.

PROCESSING SCIENTIFIC DATA AT LLL

There is a large computer user community at LLL. It consists of 
over 2000 physicists, chemists, engineers, and other scientists. Of 
these 2000, only about 300 are computer scientists. Nearly all of these 
scientists use the main computer facility which consists of four CDC 
7600 and two CDC STAR-100 computers. Through a network of about 1000 
terminals, the users interactively access any of the large computers. 
Peripheral devices are shared by the large computers through several 
n e t w o r k s .

- 133 -



Scientific Data Base Management at LLL

Mini-computer usage at LLL is increasing dramatically. Many of 
these minis are utilized for data aquisition and reduction, and require 
data handling software compatible with that on the large computers. The 
data collected by the minis must often be compared with simulation 
results generated on the large machines. Thus data interface tools and 
translators are urgently needed.

With such a large user community, with diverse data including 
material compatibility, test, equation of state, weather, environmental 
and demographic data, the ultimate use of the data is seldom known.
There are some generalizations of data usage that are of interest. One 
class of applications involves the collection and analysis of 
experimental data. Experimental data is analyzed to find out how an 
experiment worked. The knowledge gained by this analysis is then used 
to reconfigure the experiment. Comparisons are also made between the 
experimental results and the expected or theoretical results from 
analytical or simulation models to gain physics and experimental 
insight. This type of analysis is usually performed only once, and 
consequently a specific program is not justified.

On the other end of the spectrum, other types of applications are 
much more static in nature. Cataloging material properties, for 
example, is a rather static task. Although relatively static, these 
databases usually are the type that require periodic standardized 
reports. These databases last over long periods of time and change 
little.

GENERAL REQUIREMENTS FOR AN SDBMS

Based on these needs, the following are general requirements for a
scientific DBMS at LLL.

SCIENTIFIC DATA TYPES - Since virtually all of the applications at LLL 
have a scientific orientation, the SDBMS must have data types 
suitable for storing scientific data. These are typically integers, 
floating point numbers, and mu 11i-dimensiona1 FO RT R A N - 1 ike arrays. 
Additionally, vector data types for new vector processing machines 
such as the STAR-100 and the CRAY-1 , plus character strings, bit 
strings, and date data types are needed.

RELATIONAL END USER VIEW - The relational data model [l] views data as a 
set of interrelated relations which may be thought of as tables.
The simplicity of this model, its tablular view, and its ability to 
establish relationships dynamically make the relational approach 
well suited for scientific applications.

INTERACTIVE USER LANGUAGE - The need to perform one time analysis makes 
a general, interactive user language system attractive. With such a 
system, specific programs need not be designed, written, and 
debugged. Furthermore, a good user language helps one get more 
useful information out of the database with less effort. A 
mechanism should be included to enable the user to tailor this 
interactive language to his application.

INTERFACES TO GRAPHICAL AND STATICAL PACKAGES - Because of the numeric 
nature of scientific data, graphical, statistical, and numerical

- 134 -



Scientific Data Base Management at LLL

analysis tools are a needed extension to the data manipulation 
capabilities of a DBMS. Such tools are used by scientists to 
visualize and analyze their data, and to discover relationships not 
known a priori.

PROGRAMMING LANGUAGE INTERFACE - Interfaces to programming languages 
such as FORTRAN, are needed for sophisticated users who, for 
performance reasons or for a highly tailored user interface, wish to 
write their own specialized programs that access the database. In 
addition to permitting special purpose interfaces, a programming 
language interface will permit adoption of other analysis packages 
such as graphics, pattern recognition and statistics programs that 
presently use input data files.

INTERFACES TO EXISTING FACILITIES - Links to existing LLL facilities
such as text editors, report writers, secondary and tertiary storage 
devices, etc, are important in making the system easy to use.

EXTENSIBILITY - The system must be extensible to adapt to changing
requirements. Supplementing the language, for example, should not 
require extensive software modification. Creating sequences of 
commands should be facilitated.

PORTABILITY - The SDBMS must be able to operate on a wide variety of
computer types. It must operate on the CDC 7600 and STAR computers, 
and on large minicomputers as well. Such portability enhances the 
ability to share data, but dictates that the code be independent of 
word size, character set, and other hardware dependencies.

DISTRIBUTED ENVIRONMENT - To be most valuable at LLL, the SDBMS should 
evolve into a system suitable for use in a distributed environment. 
Databases on one machine should be accessible and modifiable by 
users on other machines without user-specific knowledge of the 
location of the data.

THE PROTOTYPE SDBMS

Two primary objectives guided our implementation of the SDBMS 
prototype: it must become operational quickly and be easily modified.
We wanted it operational quickly to demonstrate SDBMS capabilities and 
to enable users to suggest improvements. We want to iteratively enhance 
the user language to ensure that the language has the desired 
characteristics. To accomplish these objectives, the language will be 
tested on a limited scale, and enhanced prior to general release. The 
iterative scheme is effective in demonstrating SDBMS capabilities to 
users and management, and is instrumental in obtaining support.

Our prototype must be easily modifiable so that the iterative 
development described above is achievable without extensive software 
revision, and so that the software maintenence activities are minimized. 
We thus have adhered to strict and uniform coding standards which stress 
logical clarity in coding and have documented the code extensively. Our 
subroutines are designed to be logically independent so that entire 
portions might be replaced without side effects. We chose standard 
FORTRAN as an implementation language because it is by far the most 
widely used language at LLL, and because it is available both on large

- 1 3 5  -



Scientific Data Base Management at LLL

scientific computers and on minis. In order to hide word length and 
character set dependencies, we use functions and subroutines for all bit 
and character string handling.

We have done both design and implementation in a top-down fashion. 
The user's view of the system was designed, primarily consisting of the 
user language. That language was implemented and debugged as the 
underlying functions were being formulated. We still have temporary 
structures underlying our system which will be replaced as the system 
so 1idi f ies.

THE PROTOTYPE'S USER LANGUAGE

The SDBMS user language is procedural, based on the relational 
algebra [2]. It is slightly "lower level" than some of the popular 
research languages such as QUEL [3] and SEQUEL 2 [4], but we feel it is 
simpler and more appropriate for our user community. We are not 
initially addressing the query optimization issues that must be solved 
for a non-procedural language to achieve acceptable performance.

An SDBMS database consists of a set of TABLEs (relations) which 
have COLUMNs (attributes) containing values from a DOMAIN of values.
For example, a WEIGHT column might contain values from the domain of 
positive real numbers. We plan to associate integrity assertions with 
DOMAINS much as does McLeod [5]. DOMAINS and COLUMNs may be of the 
following data types:

FLOATING - floating point number.
INTEGER [N] - fixed length number N bits long (default length is a 

machine w o r d ) .
CHAR N - fixed length character string of length N characters.
TEXT - variable length character string with leading and

trailing spaces deleted and multiple internal spaces 
reduced to one.

TEXTB - variable length character string in which blanks are
s igni f icant.

DATE - date; can be input and output in a variety of formats
but is stored uniformly internally.

BIT - uninterpretted bit string. primarily for bulk,
foreign data.

Additionally, the first three types can also be aggregated into VECTORS 
and ARRAYs. These types provide for direct interfacing to FORTRAN 
programs using these structures.

To illustrate our language, consider a portion of a database from 
the NURE project. A SAMPLE table contains information about each sample 
taken in the field. Columns are SAMP-ID (a unique identifier), 
SAMP-TYPE, DATE-COL (date collected), and COMMENTS. Samples, when 
analyzed, produce many measurements per sample. Table MEASURE contains 
columns indicating the SAMP-ID of the sample, an ELEMENT found in the 
sample, its concentration in parts-per-bi11 ion (PPB), the ERR of the 
measurement (plus or minus ppb) and the date when the analysis was 
performed (DATE-ANAL).

- 136 -



Scientific Data Base Management at LLL

The statements defining these tables are:

DEFINE TABLE SAMPLE 
SAMP-ID CHAR 10,
SAMP-TYPE CHAR 6,
DATE-COL D A T E ,
COMMENTS T E X T ;

DEFINE TABLE MEASURE 
SAMP-ID CHAR 10,
ANAL-TYPE CHAR 10,
ELEMENT CHAR 3,
PPB FLOATING,
ERR FLOATING,
DATE-ANAL DATE;

Input is accepted in free format; the spacing in these examples is for 
c 1ar i ty o n l y .

Most manipulation is done with the relational assignment statement, 
in which one or more tables (relations) are operated upon yielding a new 
table. Queries to the database are realized by creating a result table 
containing the answer(s). We will illustrate a few commands, including 
the three basic table operations.

1. PROJECT - This operation copies desired columns from a table into a 
new tab1e .

TEMPI = SAMPLE PROJ SAMP-ID SAMP-TYPE;

The result is a new table named TEMPI with columns SAMP-ID and 
SAMP-TYPE from the SAMPLE table. It may be printed by

PRINT TEMPI;

2. SELECT - Desired rows may be selected from one table creating a new 
table based on the value of an arbitrarily complex boolean function.

TEMP2 = MEASURE WHERE ELEMENT = "CL" OR 
(ELEMENT = "U" AND PPB > 500);

TEMP2 is created with all the columns of MEASURE but contains only 
rows for chlorine measurements or uranium measurements with 
concentrations of greater than 500 parts per billion.

3. JOIN - Tables may be combined based on equal values in designated 
c o 1umn s .

TEMP3 = (JOIN MEASURE WITH SAMPLE ON SAMP-ID)
PROJ SAMP-TYPE ELEMENT;

This statement combines the rows from SAMPLE with those from MEASURE 
where the SAMP-ID columns in each match. It then projects only 
SAMP-TYPE and ELEMENT causing TEMP3 to be a table showing all the 
elements found in each sample type.

-  137 -



ARCHITECTURE AND EXECUTION

The architecture of the prototype may be viewed as having seven 
logical levels:

Scientific Data Base Management at LLL

MACRO
PROCESSOR

| SYNTACTIC COMPONENT
v

PARSER

v

PARSE TREE 
GENERATION

v

PARSE TREE 
INTERPRETER

v

SEMANTIC
ROUTINES

v

DATA BASE 
ACCESS

SEMANTIC COMPONENT

I DATA MANIPULATION COMPONENT
v

ADBMS

A distributed macro processor which operates on lexical tokens sits 
between the parser's lexical scanner and the parser itself. The parser 
is an LALR type, based on the work of DeReemer [6]. It is table driven, 
the tables being produced by a separate grammar analyzer. Thus changes 
to the language require no changes to the parser (although code to 
process the commands must be written). Having the parser independent of 
the language greatly eases language modification. The macro processor 
and parser are quite logically separate from the rest of the program, 
having been previously developed for another project.

- 138 -



Scientific Data Base Management at LLL

As the statements are parsed a tree structure of the command is 
generated. Execution of the command occurs as this tree is traversed 
and pruned. This tree is used as an intermediate structure of the 
co mm a n d :
* to assure syntactic correctness of the entire command before it

processed.
* to store information that will be used repeatedly in the execution

the command.
* to allow global knowledge of the command's meaning thus allowing

optimized processing of the request.

Nodes in the tree usually represent relations or operations which 
yield a relation. Additional information is stored in auxilliary nodes 
which are attached to the tree. During a postorder traversal of the 
tree, visiting nodes triggers actions which result in that node and its 
subtrees being reduced to a terminal node (relation).
E x a m p l e :

TABLE2 = (MEASURE WHERE ERR < 0.05) PROJ ELEMENT PPB;

-  1 3 9  -



Scientific Data Base Management at LLL

When this statement is parsed, the following tree is constructed: (The 
nodes with capital letters are tree nodes, the others are auxilliary 
informât ion).

- 140 -



Scientific Data Base Management at LLL

Traversal of the tree causes first the evaluation of the WHERE node 
resulting in a temporary relation created from MEASURE. The tree would 
then look like this:

Visiting the PROJECT node similarly yields another temporary relation 
which in turn is renamed TABLE2 when the ASSIGNMENT node is visited.

The semantic routines are those which perform the action specified 
in the language (select, project, join, print, etc.). They are 
independent of the tree traversal just described; they do "atomic’' 
functions given straightforward FORTRAN arguments as input. They 
typically have one or two relations and some auxilliary information as 
input and produce a temporary relation as output. Thus these routines 
perform the basic relational functions while the command tree 
manipulation routines have the global awareness of the command 
process ing.

The relational access routines form the interface between the 
semantic routines and the data. They are logical rather than physical 
in scope. Functions include open a relation, get a tuple (row), store a 
tuple, etc. The semantic routines have no knowledge of the underlying 
data structures or I/O mechanisms.

The access routines are currently built upon a CODASYL [7] type 
DBMS called ADBMS [8]. We used ADBMS in this way primarily to speed 
development. This was much faster than writing our own I/O subsystem 
and thus allows earlier development of the upper level code. We plan  to

- 141 -



Scientific Data Base Management at LLL

replace the CODASYL system with our own access methods at a later date. 
The system is simplified by having working data, system data, and user 
data all stored as relations and accessed by the same routines. The 
data description components of the SDBMS are stored in the database as 
system-owned relations. Similar to INGRES [9], these include a relation 
that describes relations in the database, a relation that describes 
attributes and a relation that describes domains.

The ADBMS schema is a very simple structure that models a relation:

SYSTEM

RELATIONS

RELATION

TUPLES
y

TUPLE

TUPLE BODIES

T

CONTENT

Hence an SDBMS data base consists of a set of relations which in 
turn consists of a set of tuples. A tuple consists of a set of tuple 
content records, a mechanism for implementing tuples of various lengths. 
This simple schema has the advantage that there is little reliance on 
the ADBMS functions, thus replacement is eased. It is necessary to 
achieve dynamic characteristics in a relational system that are 
unavailable in CODASYL systems ( such as creating new relations at 
runt ime).

The disadvantages of using ADBMS are size and performance 
penalties. We are certainly not using most of its capabilities and are 
paying for unneeded functions.

CURRENT STATUS AND FUTURE PLANS

We started in April of 1977 and have had two to three people 
working on the prototype and are encouraged with the results so far. 
Currently (September 1977) most of the prototype's commands are 
implemented, JOIN being the notable exception. It runs in 45K (decimal) 
words. It should be smaller when the code is overlayed and ADBMS is 
replaced.

Our future plans are divided into short-term and long-term plans.
In the short-term we want to complete Nthe user interface. This task

- 14-2 -



Scientific Data Base Management at LLL

involves adding graphics and statistics interfaces, views and derived 
attributes, tertiary storage management, and perhaps a report-writer. 
Views in this context are an application program's expectations of data 
stored in the data base, and a derived attribute is an item derived from 
other attributes stored in the same relation. In addition to completing 
the user interface, we also intend to enhance the capabilities and 
performance of the SDBMS. We plan to replace the CODASYL base 
understrueture and develop our own access methods. A variety of access 
methods are invisioned, including direct, indexed, and sequential. We 
may also develop access methods that have flexibile clustering 
mechanisms, for example, the ability to store tuples of one relation 
physically close to tuples of other relations (where keys of the tuples 
are s imi1a r ).

Our long-term plans include developing a programming language 
interface, query optimization, performance optimization base on usage 
patterns, integrity constraints, and data base administration utilities. 
We also plan to convert the system to large minicomputers and use the 
system in a distributed environment.

NOTICE

"This report was prepared as an account 
of work sponsored by the United States 
Government. Neither the United States 
nor the United States Energy Research 8c 
Development Administration, nor any of 
their employees, nor any of their 
contractors, subcontractors, or their 
employees, makes any warranty, express or 
implied, or assumes any legal liability 
or responsibility for the accuracy, 
completeness or usefulness of any 
information, apparatus, product or 
process disclosed, or represents that its 
use would not infringe privately-owned 
r i ght s ."

NOTICE

"Reference to a company or product name 
does not imply approval or recommendation 
of the product by the University of 
California or the U. S. Energy Research 
and Development Administration to the 
exclusion of others that may be 
su i tab1e ."

-  14-3 -



Scientific Data Base Management at LLL

REFERENCES

[1] E. F. Codd, ”A Relational Model of Data for Large Shared Data 
Banks," CACM 13,6 (June 1970) pp. 377-397.

[2] C. J. Date, An Introduction to Database Systems (Addison Wesley, 
Reading, Mass. 1975).

[3] G. D. Held et. a l ., "INGRES — A Relational Database System," 
Proc. 1975 N C C , pp. 409-416.

[4] D. D. Chamberlin et. a l ., "Sequel 2: A Unified Approach to Data 
Definition, Manipulation, and Control," IBM Journal of Research and 
Development (November 1976) pp. 560—575.

[5] D. J. McLeod, "High Level Definition of Abstract Domains in a 
Relational Data Base System," Computer Languages 2(1977) pp. 61,73.

[6] F. L. DeReemer, "Simple LR(k) Grammars," CACM 14,7 (July 1971) pp. 
453-459.

[7] CODASYL Data Base Task Group Report, April 1971, ACM, New York.

[8] E. W. Birss, ADBMS User's Guide, LLL report UCID 17417, February 
1977.

[9] M. Stonebraker et. a l ., "The Design and Implementation of INGRES," 
ACM Transactions on Database Systems 1,3 (September 1976) pp. 
1BC|~222.

- 144 -



LBL- 7201

AN OVERVIEW OF BDMS: THE BERKELEY DATABASE MANAGEMENT SYSTEM*

David R. Richards 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California

ABSTRACT

The design and implementation of BDMS is outlined with emphasis on those 
features of particular importance to the management of complex scientific 
data having significant numerical content. These include binary internal 
representation of integer and single or double precision real data element 
types, ability to handle vector values of numeric data elements as well as 
arbitrary length character and bit strings, and the provision of an exten
sive set of "hooks" for the attachment of user-supplied processing rou
tines .

INTRODUCTION

BDMS, the Berkeley Database Management System1, is a hierarchical data
base management system whose design was heavily influenced by the require
ments of scientific data management. It has its origin in the joint 
development of a Particle Physics Data System (PPDS)*’3 by the Berkeley 
Particle Data Group (PDG) and the Caltech Data Compilation Group.

The original conception of the PPDS software called for a separate sys- 
ten to manage each of the databases: a document system, a reaction data 
system, a particle properties system, a vocabulary control system, etc.
In fact, by mid-1973 a prototype of each of these systems had been 
developed. It rapidly became clear, however, that the task of modifying, 
extending, and even maintaining these specialized systems was beyond 
available resources. There was ample reason to expect that the require
ments for these systems would never stop changing; the nature of particle 
physics data had changed significantly over the past decade as the field 
evolved and was expected to continue changing.

Searching for a different approach, we realized that it should be possi
ble to use a single database management system that would be general 
enough to manage all the databases and serve as the basis for the special
ized software that would still be necessary. The broad spectrum of size, 
growth rate, volatility, and complexity encompassed by these databases and 
the complexity of their intended uses demanded capabilities not provided by 
any database management system then in existence that could be run on our 
hardware (CDC 6400, 6600, 7600). Thus, we were led to develop our own 
system.

We are now painfully aware of the very large commitment of time and 
resources necessary for a project of this magnitude. In fact, our naivete 
at that time was probably a major factor contributing to the eventual 
attainment of our goals, since if we had realized how difficult it would 
be, we might never have embarked on the project, instead simply reducing 
our expectations.

*This work was done with support from the U.S Department of Energy.

-  14-5 -



There is, on the other hand, a clear advantage in local control of system 
development. When some new capability is needed, it is possible to make 
a decision as to whether it is a general facility that is best built into 
the database system once and for all, or whether it deserves only to be 
put into the application software. With a system supplied by a commerical 
vendor, some very complicated and unattractive kludges may be necessary to 
add a capability, since the only option is building it outside of the 
existing system.

In the rest of this paper, the structure of a BDMS database will be 
defined and the facilities of the system (version 2.1) outlined. Some 
comments will be made concerning those aspects of the implementation that 
might affect its suitability for a proposed application. Finally, our 
plans for future development will be outlined.

STRUCTURE QE A BDMS-DATABASE

A BDMS database is structured into records, the units in which data pass 
between the system and disk storage. Normally, a record will have some 
significance to the user, e.g. a record in a bibliographic database would 
be a description of a single document, but this is not always necessary or 
desirable.

The individual data items within a record are called data elements; they 
are the smallest units of data with any meaning to the system, although an 
individual data element might have some internal structure known to an 
application program. A data element has a unique name and is normally 
referenced by name (or a synonym). There is essentially no limit on the 
number of data elements that may be defined fora database.

A hierarchical structure may be imposed on the information within a 
record when a database is defined. This means that some data elements are 
declared to be subordinate to other, parent, data elements. Those data 
elements for which no parent is declared are called record-level data 
elements; it is often useful to consider the record itself to be their 
parent. There is essentially no limit on the number of levels which may 
be defined in the record structure.

Within a given record, each record-level data element may occur once, 
several times, or not at all. Likewise, each occurrence of a data element 
at any level in the hierarchy may have linked to it one, several, or no 
occurrences of each of its subordinate data elements. There is essen
tially no limit on the number of times any data element may occur in a 
single record.

Data elements are classified into six types according to the values they 
can assume. INTEGER, REAL, DOUBLE, CHAR, BIT, and NODE. Integer or real 
(floating point) data elements may be scalars (single numbers) or arbi
trary length vectors (i.e. an ordered set of numbers, which are the compo
nents of the vector). Real data elements may be single or double pre
cision. Character or bit strings may be of any length with no limit 
beyond that imposed by run-time memory restrictions. Any of the foregoing 
data element types may occur with a null value. Pure node data elements 
carry no value; they may be used to link together subordinate data ele
ments in the record hierarchy or as flags.

Any data element, regardless of type, may serve as a node in the 
hierarchical record structure. In general, if one of a group of related 
data elements may occur only once in each occurrence of the group, it 
should be made the parent of the rest of the data elements. However, if 
all of the data elements in such a group may occur multiply, they all must

- 146 -



be linked to a pure node parent; since no single occurrence of any one of 
them can serve as the parent of the rest.

Any data element may be declared to be a record key. The system will then 
maintain an index for that data element to allow erficient retrieval. In 
an index, key values have a fixed length that is declared in the database 
definition; data element values are truncated or padded as necessary when 
they are put into an index.

It is possible to declare a data element to be virtual. which means that 
it will be recognized in input data and appear in the record buffer, 
accessible to user-supplied processing routines, but will be discarded 
when the record is stored in the database. This is useful if the input 
contains data elements that one does not wish to store in the database at 
all. One might also wish to store some data element values only in the 
indices, where they point to the record, without permanently allocating 
space for them in the record itself. This is often the case if a key 
value is constructed from the values of one or more data elements by a 
user-supplied processing routine (discussed below). In this case, a 
virtual data element is defined and is further specified to be a key. It 
is then used to hold the key values temporarily; when the record is stored, 
these values will be indexed before the virtual data element is discarded.

The system assigns a record ID to each record as it is created. This 
guarantees that each record has a unique identifier by which it can be 
selectively retrieved even if none of its data elements is defined to be a 
key so that no indices are maintained. The ID is displayed whenever a 
record is listed by the system.

BDMS FACILITIES

BDMS comprises a database definition compiler, a database executive, and 
several utility programs.

The database definition compiler is used to create a new database. It 
accepts a description of the logical record structure expressed in a data
base definition language (DDL) and generates tables describing the data
base. These tables then drive the rest of the system when that database 
is in use.

The database executive is a self-contained system providing a user 
interface to database maintenance and retrieval facilities through a high- 
level language. It has two major subsystems: an editor and a query 
language processor.

The editor permits a user to enter data into a new record or modify an 
existing one by appending, inserting, replacing, or deleting data element 
occurrences by means of free-format editing commands. A string substitu
tion facility is provided for modifying the values of character string
data elements. Any change to the database made via the executive 
is immediately effective and reflected in the indices.

The BDMS query language permits a user to search a database for those 
records satisfying an arbitrarily complex condition on key (indexed) data 
element values. The condition is constructed as a Boolean combination of 
key value specifications, including inequalities and ranges. Furthermore, 
it is possible to search for records having an occurrence of a specified 
data element regardless of value, or for those having an occurrence of 
the data element with a null value. Truncated value specification for 
character string keys may be used to search for those records having an 
occurrence of the data element beginning in a particular way. A par-

-  147 -



ticular record ID or range of record IDs may be included in a query 
explicitly. The result of a query is the set of records that satisfy it. 
Any of them may be listed at the user’s terminal, printed, dumped, modi
fied, or deleted. Existing sets may be combined with other sets and still 
further conditions through the query language.

The utility programs provide for efficient initial database loading, 
full database dump, data file garbage collection, and rebuilding of 
indices for more efficient query processing and disk space utilization.

Except for the utilities, which are batch programs, the system may be 
used in either batch or interactive mode by simply linking it to the 
proper set of low-level I/O routines. The user language is identical in 
either mode. BDMS also may be invoked procedurally from a user-written 
FORTRAN program by means of a small and carefully chosen set of subroutine 
calls.

The database executive incorporates exits to user-supplied processing 
routines to allow input data validation, and data transformation on input, 
output, during the creation of index entries, and the processing of 
4ueries. In addition, the user may supply routines that are called just 
before a record is stored or just after it is fetched from the disk. The 
store processor routine may perform more complex data validation involving 
correlation of several data element values and may generate additional 
data element values, e.g., keyed virtual data elements as discussed above. 
The fetch processor routine is primarily useful to rematerialize virtual 
data elements when it is desirable to make them visible to a user or 
application program.

These ’’subroutine hooks"’ provide a powerful facility for tailoring the 
database executive for specific databases and applications without requir
ing the user to write a completely new ’’front end.” They are particularly 
important to the management of scientific databases since even input data 
validation is likely to be too complex to be handled by the simple facili
ties (e.g. within a specified range or explicit list of values) typically 
provided by a commercially-oriented database management system.

IMPLEMENTATION

A BDMS database is divided into three system disk files: the data file, 
which contains the database definition and data records, the directory 
file, which contains the physical storage addresses of data records, and 
the inversion file, on which reside indices for key data elements.

On the disk, the hierarchical structure of a data record is represented 
by unidirectional pointers linking together the data element occurrences. 
There is no storage overhead associated with data elements that do not 
occur at all, either in the record or a particular occurrence of their 
parent. When a record is brought into the record buffer, it is restruc
tured to facilitate access--the pointers are made bidirectional and 
relocated relative to the start of the work area, and entry pointers are 
allocated for all missing data elements to allow insertion. When the 
record is converted back into its disk-resident form prior to storage, all 
garbage resulting from updating activity is automatically eliminated.

If a modified record is no longer than it was prior to modification, it 
is stored back in its original location on the data file and any unused 
space following it is flagged as deleted for the data file garbage 
collection utility. If the modified record is longer than it was, it is 
written at the end of the data file, its directory file entry is updated, 
and the original form of the record is flagged as deleted.

- 148 -



Numeric data element values are stored in the database in the internal 
binary format of the machine being used. This decision was based upon the 
assumption that much of the use of ascientifically-oriented database 
management system involves access to the data by analysis software requir
ing numeric values in internal binary form. They must be converted into 
this form from their character representation only when initially input 
rather than every time they are read by an analysis program, as would be 
the case if they were stored in character form.

Paged, multilevel tree-structured indices are maintained by the system 
for data elements declared to be keys. These indices are updated auto
matically whenever a new or modified record is stored in the database or 
a record is deleted. A ’’leaf” entry in an index tree is a unique value 
for the indexed data element followed by a list of record IDs for all 
records containing an occurrence of that data element with that value. The 
query language processor performs Boolean operations by merging these 
lists of records.

A single access to the directory file, with an entry address calculated 
from a record ID, provides the disk address and length of that record on the 
data file. This level of indirection was provided so that it is not 
necessary to update all index entries for a record that has been made 
larger by an update and has to be relocated; the only index entries that 
need to be changed are those for data elements whose values were actually 
modified. Likewise, when records are moved by the data file garbage 
collection utility, only their directory file entries need to be changed; 
all index entries remain correct.

The BKY operating system,under which BDMS is run at LBL, makes no provi
sion for re-entrant code or updatable shared disk files, so BDMS was 
built as a single user system and does not support updatable shared data
bases. However, BKY does allow shared access to a read-only (’’public”) 
disk file, so multiple users, each with his own copy of the database sys
tem, can retrieve information from a common disk-resident database.

Likewise, BKY does not support permanent disk files, so elaborate crash 
recovery machinery in BDMS was not deemed necessary. Normally, a data
base is stored on tape, staged to a disk for use, and then staged back to 
another tape if it has been modified. One can then ’’roll back” to a pre
vious state of the database provided that a sufficient number of tapes is 
used in the storage cycle.

The only situation in which a system crash can be a major annoyance is 
when an interactive user has made extensive changes to a database imme
diately before the crash. To save such a user from having to re-key all 
those changes, the system records all user input on an audit file. If 
this file is maintained in such a way that it survives the crash (tape 
would be virtually foolproof), it can then be processed as batch input 
against the original version of the database. The audit file can also 
serve as a record of update activity if it is preserved as a part of 
normal operating procedure.

Since each user either uses a read-only public file or has his own copy 
of the database, we did not feel it was necessary to design an elaborate 
security mechanism to prevent unauthorized update. We are considering 
the addition of a password scheme, access control at the data element 
level, and possibly even selective encryption to ensure privacy of sensi
tive information.

One of the design goals was easy transportibility. This was achieved 
by a) writing the major part of the system in a relatively machine-

- 149 -



independent subset of FORTRAN IV, and b) careful modularization to isolate 
machine and operating system dependence in a few low-level interface rou
tines that can be recoded easily for another system. Versions of BDMS 
exist now for CDC 6600 and 7600 computer running BKY, and IBM 360 series 
machines. An experimental 7600 version has been run under SCOPE and we 
are currently working on a PDP-11 version for RSX and IAS systems.

FUTURE PLANS

Current plans for development of BDMS fall into two major areas: exten
sion to allow multiple record types (’’multi-file databases”), and enhance
ment of the query facility to handle intra-record and non-key data ele
ment qualification. A consequence of providing multiple record types will 
be the ability to modify easily the definition of an existing database.
The ability to formulate queries involving intra-record qualification will 
allow retrieval conditions to be specified in terms of the relative posi
tion of data element occurrences in the record hierarchy. We are also 
considering the addition of multidimensional array data element types as 
well as the access protection machinery mentioned in the previous section.

As BDMS has evolved, many people have contributed ideas and assisted 
with programming. They include Tricia Coffeen, Paul Chan, Geoffrey Fox, 
Marge Hutchinson, Silvia Sorell, Paul Stevens, Gill Ringland, Alan 
Rittenberg, Deane Merrill, Tom Lasinski, Tom Trippe, Vicky White, and 
George Yost. Over the course of development, support has been provided 
by the National Science Foundation and the National Bureau of Standards, 
in addition to that of the U.S. Department of Energy (in its previous 
incarnations as the U.S. Atomic Energy Commission and later the U.S.
Energy Research and Development Administration).

REFERENCES

1. Richards, D.R., BDMS User’s Manual, LBL-4683 (Revision 1); BDMS 
Programmer’s Manual, LBL-4684; BDMS Implementation Manual, LBL- 
4685.

2. Berkeley Particle Data Group, Particle Physics Data System Docu
ment File, PDG-3100*, Particle Physics Data System Reaction-Data 
File, PDG-3200.

3. Stevens, P.R., and Rittenberg, A., The Particle Data Group: Using 
a GDMS to Solve Data Handling Problems in Particle Physics, CALT- 
68-622, contribution to this study.

- 150 -



EXTENSIONS TO THE JOSHUA GDMS TO SUPPORT 
ENVIRONMENTAL SCIENCE AND ANALYSIS DATA HANDLING REQUIREMENTS*

J. E. Suich and H. C. Honeck 
Savannah River Laboratory 

E. I. du Pont de Nemours and Company 
Aiken, South Carolina, U.S.A.

SUMMARY

For the past ten years, a generalized data management system (GDMS) 
called JOSHUA has been in use at the Savannah River Laboratory. Originally 
designed and implemented to support nuclear reactor physics and safety 
computational applications, the system is now also supporting environmental 
science modeling and impact assessment.

Extensions to the original system are being developed to meet new data 
handling requirements, which include more general owner-member record re
lationships occurring in geographically encoded data sets, unstructured 
(relational) inquiry capability, cartographic analysis and display, and 
offsite data exchange.

This paper discusses the need for these capabilities, places them in 
perspective as generic scientific data management activities, and presents 
the planned context-free extensions to the basic JOSHUA GDMS.

APPLICATIONS OVERVIEW

In recent years, there has been considerable discussion of the appli
cation of data base management techniques to environmental data.1 At the 
Savannah River Laboratory (SRL), the concern has centered around the En
vironmental Transport Division’s (ETD) computer applications2 which natur
ally involve the JOSHUA data management system.3 In this manuscript, the 
JOSHUA system is the given basis for data management, and the emphasis will 
be on necessary extensions to support current and planned ETD applications. 
Clearly, not all applications demand new data management or even new 
systems extensions, but may be supported by new applications programs.

* The information contained in this article was developed during the 
course of work under Contract No. AT(07-2)-l with the United States 
Energy Research and Development Administration.

- 151  -



In this manuscript, these teleological distinctions will not be much 
in evidence because at the present level of conceptualization one cannot 
distinguish the exact degree of generality an implementation will possess. 
However, the areas of most general need for new systematic capabilities 
probably shade from context-free data management (data base exchange), 
through context-free data manipulation services (information retrieval), 
to context-dependent data manipulation services (geocoded data management), 
and, finally, context-free data analysis (statistical analysis) for devel
oping applications based on generic functions (geographical data manipula
tion and display). All such extensions will here be considered to be 
systems because they are not typical of programming done for any specific 
end-use and are sufficiently involved with the JOSHUA systems routines to 
require development and maintenance by Computer Sciences Section (CSS) 
personnel.

The JOSHUA data management facilities were developed for reactor 
physics applications. Subsequent use of these facilities for environ
mental science applications is straightforward where there is a computa
tional similarity to the original application. However, the JOSHUA facil
ities require systems extensions to accommodate distinctively different 
computational features.

One case in point is the JOSHUA emergency and routine environmental 
impact assessment handler (JEREMIAH) subsystem, currently being developed 
under native JOSHUA capabilities. This computational system for advective- 
diffusive atmospheric transport and dose effects is implemented in exactly 
the same coupled module/data base approach as that used for nuclear reac
tor physics and engineering applications.3 Taken as a system applicable 
to any geographical region, JEREMIAH would founder on JOSHUA’S lack of 
facilities to deal with geographically encoded data. Taken as a system 
specific to the Savannah River Project site, however, the small scale of 
the region, the levelness of the terrain, and the fixed map locale have 
permitted the geographical problem to be made subordinate to JOSHUA’S non- 
geographical, indexed (x,y) list handling capability.k * 5 This requirement 
for geographical data manipulation, analysis, and mapping is a generic 
one for ETD’s applications, and constitutes the highest priority need for 
JOSHUA data management extension.

A second ETD application which illustrates the need for extended data 
management capability is the environmental impact study for the USERDA 
alternative fuel cycle technology study (AFCT). Because of the scope of 
this study, data bases and models at several ERDA and NOAA laboratories 
and a variety of computer systems have been used. The JOSHUA system con
templated an offsite data base exchange only with the National Neutron 
Cross Section Center (NNCSC), and there only for a single, clearly defined, 
cross-section data set which could be defined to the system (in fact, this 
data set structure and definition was the system model). Thus, JOSHUA 
inherently incorporates the mechanism for definition of the necessary AFCT 
data sets, but provides no means for data set interchange beyond the NNCSC 
specific tape load routines. The ERDA Interlaboratory Working Group for 
Data Exchange (IWGDE) has been developing standards6 * for data base ex
change and PL/1-FORTRAN interface routines to implement those standards.
The JOSHUA data set definition facility now needs to be extended to permit 
input from, and output to, data sets in the exchange standard format. 
Recognition should be given to differences among SRL and other data centers 
in the use of formats, nomenclature, geocodes, and data structures. Much 
of the process of translation can be automated, and the present manpower 
intensive situation can be significantly improved.

-152 -



The process of data archiving, retrieval, and evaluation was pre
sumed to have been done at the NNCS£ and additional support by the JOSHUA 
data management system was not contemplated. Several aspects of ETD's 
computing activities fall in this category, including ecological experi
mental studies ^and assessment simulation studies. Because data evaluation 
is a relatively unstructured activity (it generally means whatever the 
individual evaluator does), it is difficult to support these activities 
at other than a very basic, context-free level. However, three such 
generic activities in data evaluation are evident in ETD programs: 
unstructured inquiry, statistical analysis, and data display.

The JOSHUA system provides for FORTRAN retrieval of an entire data 
record, given its complete name, and simply catalogues the FORTRAN I/O 
list to format the data record for terminal users. In addition, FORTRAN 
callable routines and terminal commands are available to retrieve record 
names based on their unique names or their hierarchical tree structure. 
These routines and commands have been a very powerful and useful set of 
facilities for retrieving information for those applications in which in
quiry keys can be thought out in advance and the inquiry response struc
tured as hierarchically organized lists of names. This retrieval ability 
will be referred to here as structured inquiry to connote both the implied 
high degree of name and data organization, and the predefined problem
solving which that structure supports. The unstructured inquiry, which 
characterizes data evaluation, violates both notions of structure. The 
data are often organized by experimental observation or acquisition number, 
with no predefined record name inquiry keys; and the inquiries likely to 
arise during evaluation are not predefined, but are themselves data- 
dependent.

Unstructured information retrieval can readily be supported by a 
relational set of data bases, in which what is placed under control of the 
inquirer is the definition of relations among the data elements themselves. 
In this inquiry mode, the inquirer uses names as usual to select records 
for a subsequent search through the record itself to find data elements 
obeying the defined relational expression. All such groups of elements 
then constitute a sequential set on which an inquiry is simply answered 
by elementary operations--count, average, variance, sort, list, etc. To 
implement these operations under JOSHUA, commands must be provided for 
record selection and retrieval of data elements within a record which 
satisfy the inquiry criteria. These commands are commonly implemented 
as arithmetic and Boolean logical operations on the data elements en
countered during record retrieval.8’9

The requirement for statistical analysis of experimental or observa
tional data is basic to both data evaluation and to ecosystems modeling 
(e.g., Reference 10) which are generally what the soft environmental 
sciences involve. The attractiveness of satellite packages, e.g., the 
Savannah River Project deer file (SASS) and the forest energy balance 
model (CSMP), is that the satellite packages offer an extensive set of 
statistical and time series analyses coupled with crude data management 
to extract a relational set and operate on it through a user-oriented 
command language. Until JOSHUA offers comparable facilities, the environ
mental data base at SRL will remain fragmented and not supportive of 
integrated environmental model development.

The third general area where basic help can be given to evaluators 
is in computer graphics. The cartographic capability9 mentioned earlier 
is probably the most useful addition to present systems and has been 
actively sought by ETD for the past two years. This capability, when 
associated with thematic data, will enable the user to treat the graphics

- 153 -



terminal as a map-like view of his data base, in contrast to today's 
numerical listing capability. Contouring, vector fields, and other typi
cal graphic styles of data display should be implemented under the system 
as automatic display features.

DATA MANAGEMENT OVERVIEW

In this manuscript, the spectrum of data processing activities are 
segmented into three categories (Figure 1).

a COLLECTION--------- j
2 REDUCTION j - experiment

ARCHIVING----1----
3) IDENTIFICATION
£ RETRIEVAL | - reference 
bo EVALUATION----
jj? SIMULATION [ - assessment

PREDICTION-

Interpretation -*■

Figure 1. Data Processing Categories

The systems involved in managing experimental data are at the lowest 
level of data aggregation and interpretation. Such systems are least 
susceptible to generalization; their function is dictated by the experi
mental equipment, data quality control, and so on. It is probably un
avoidable that each experimental project must develop appropriate data 
management approaches to deliver its end-product to an archive.

At the other end of the spectrum are the assessment simulation- 
modeling systems. Characterized by mathematical models, these are typi
cally FORTRAN computer programs which have best-estimate (reference) data 
sets as input. These data sets are heavily interpreted aggregations of 
experimental data. As in the experimental information systems regime, 
data management is directed by the end product; however, effective record 
cataloging is provided by JOSHUA, at least for simple grids.

The systems involved in developing and distributing reference data 
sets provide the link between massive, raw-data sets and the highly aggre
gated, best-estimate, data sets used by models. At SRL, this type of 
application has not been well supported and, consequently, examples of 
this activity involve ad hoc use of various programming languages, e.g., 
MARK-IV, SASS, CSMP, and FORTRAN.

A second classification scheme will be used to relate data management 
facilities to application types (Figure 2).

In translating Figure 1 into Figure 2, interpretation was replaced 
with retrieval index structure, and aggregation was replaced with inquiry 
structure. Generally a strong correlation exists between these concepts; 
that is, the more that data have been subjected to the evaluative and 
interpretive process, the more, in general, these data have been subjected 
to correlative and classification schemes which produce names, indices, 
and structures which organize the data into forms suitable for retrieval

-  154 -



0
*
34->
U
3
?-■
+->
CO

>>
Jh

•H

cr
ö

COLLECTION---------------
REDUCTION 

ARCHIVING
IDENTIFICATION 

RETRIEVAL
EVALUATION- 

SIMULATION
PREDICTION -

- relational retrieval

structured retrieval

Retrieval Index Structure

Figure 2. Informational Retrieval Types

(at least for the purposes for which it was organized in the first place). 
Again, as data become more highly aggregated, the original diffuse nature 
of the inquiries to the data base become more structured along the lines 
of the aggregation processes themselves.

The more primitive relational inquiries are therefore of a relatively 
unstructured type (precise nature of the inquiry not known in advance), 
being based at inquiry time on the relationships between the (typically) 
disaggregated data themselves.

The structured type of retrieval is characterized by reliance on the 
data-group name and its internally associated data elements to respond to 
the inquiry. However, raw observational data are seldom so structured, 
but rather are stored as sequential data sets of records containing all 
variables for an individual observation, necessitating a search through 
many records to elicit all occurrences of the desired relationship. For 
this reason, JOSHUA data management does not provide any systematic facil
ity for unstructured inquiry, and the aforementioned ETD applications 
falling in the experiment and evaluation categories are implemented in an 
ad hoc way using a variety of programming languages which address this 
type of inquiry with more or less sophistication. Clearly, if JOSHUA 
supported relational inquiry, there would be less incentive to go to other 
languages, and data captured for these purposes would then be more readily 
available for assessment modeling.

A third distinction between application and information retrieval 
types can readily be made on the basis of identification of geographical 
data, as shown in Figure 3.

cTJ 
bO 
CD 
U 
bO 
bO 
<

COLLECTION------------------------
REDUCTION

ARCHIVING
IDENTIFICATION

RETRIEVAL
EVALUATION------

SIMULATION
PREDICTION

points
areas

points, areas, 
grids, networks

Retrieval Index Structure ->

Figure 3. Geographical Coding Structures

-  1 5 5  -



Here, the association of the experiment and evaluation systems with 
data recorded at points (normally latitude and longitude) and for areas 
(specially defined tracts such as census districts, or convenient political 
boundaries such as counties) is an obvious one. For evaluation and assess
ment, some data are most compactly stored as the measured characteristic 
of some derived area as, for example, soil type or geologic formation 
boundaries. Finally, the assessment and analytical application systems 
normally require some data to be interpolated onto a regular grid or net
work for further modeling as, for example, in transport and diffusion 
models of the atmosphere or surface water systems.

Even within systems directly oriented to the manipulation, analysis, 
and display (mapping) of geographical data, a need exists to treat these 
various geographical indexing schemes as a proper data management function, 
because of the need of the geographical package to perform basis file mode 
conversions internally for the sake of efficiency of various algorithms, 
and to achieve comparability of various related data sets.

NEW JOSHUA DATA MANAGEMENT FACILITIES

The data manager in JOSHUA is called the basic named access method 
(BNAM). BNAM has been running successfully for nearly nine years, and 
has well-served the nuclear reactor numerical data handling needs at the 
Savannah River Plant. In view of environmental science and analysis re
quirements, and the desire to use JOSHUA on non-IBM computers, a new 
version of BNAM is needed, and is now being designed.

JOSHUA can be used on most large IBM 360 or IBM 370 class computers. 
JOSHUA has been installed on an IBM 360/75 at Idaho Nuclear Engineering 
Laboratory (INEL) and on an IBM 360/91 at Oak Ridge National Laboratory 
(ORNL). The system was installed at ORNL to support a fast reactor safety 
data base called SACRD very successfully.11

BNAM provides the facilities for managing record names and storage 
locations. The contents (data elements) of a data record are not known 
to BNAM. In the eight years since BNAM was developed, many advances have 
been made in data manager technology, and many of these advances could be 
incorporated into a new BNAM.

The extended relational capabilities required to meet the needs of 
the environmental sciences can be accommodated under this newer technol
ogy, as well as the inter-ERDA laboratory transport-ability requirement. 
The most economical approach, therefore, appears to be the development of 
a new JOSHUA generalized data management system (GDMS) which is upward- 
compatible with the current version.

One component of a GDMS is used to manage the names of data records. 
This manager is called the JOSHUA System Name (JSN) manager. Another 
component is used to manage physical disk storage space. This manager is 
called the JOSHUA System Storage (JSS) manager. A third component is used 
to manage the establishment of relationships (owner/member sets) between 
data records. This latter component is called the JOSHUA System Relation
ship (JSR) manager. The implementation of the GDMS using these conceptual 
managers can be visualized in Figure 4.

- 156 -



GDMS USER----------------------------
| relational element

JSR-----------------------------
relational record

JSN-----------------------
logical cell

JSS-----------------
physical

DISK STORAGE-- 

Figure 4. GDMS Components and Interfaces

Information is translated several times between disk storage and the 
GDMS user. A translation maps one view of the data onto another view.
Four views are illustrated in Figure 4, viz:

A — Relational at the element level

B — Relational at the record level

C — Logical at the cell level

D — Physical at the page level

The GDMS user should have access to to system with any or all of 
these views. BNAM today roughly corresponds to the combination of name 
and storage managers (JSN and JSS). Thus the JOSHUA user has access only 
to Views B and D in Figure 4.

The relational view (at the record level) has five components; i.e., 
application data set, data record, data name, record alias, and relation.

Application data sets are the logical subdivision of the data base. 
They correspond to JOSHUA job, user, and standard data sets and are named 
with a single qualifier. These data sets may be specified in a hierarchi
cal sequence, so that each data set in the sequence is viewed as a modi
fication of the next higher data set in the sequence.

Data records are contiguous collections of data elements. However, 
the data elements are not seen in this view. The data record is simply 
viewed as an arbitrary (but specified) length byte string.

Each data record has a single unique record name. The name consists 
of up to 16 alphanumeric qualifiers. The record names form a hierarchy 
with the qualifiers as the nodes. The hierarchy may have several root 
nodes, that is, it may be segmented into several application data sets.
A data record may be associated with any node of the hierarchy, but any 
node need not have an associated data record. If a terminal node does 
not have an associated record, the data are, in effect, the node qualifier.

A record may be given one or more alternate names. Each is called an 
alias. A name in the hierarchy must be either a record name or an alias, 
but not both. A record name may have several aliases, but an alias must 
be specific for a single record name.

Aliases establish relationships between data records supplementing 
those inherent in the hierarchical record names. These alias relation
ships are managed directly by the GDMS user for such applications as

-A

-B

-C

-D

- 157 -



reordering the record name hierarchy to establish a new search sequence, 
sharing the same data elements between different collections, and main
taining inverted lists.

The relational view at the element level managed by JSR provides 
system-maintained linkages between record names and/or alias names based 
upon specified set relations on the data element values. These relation
ships establish a network of pointers which can be variously interpreted, 
and include a full directed graph, owner/member chains, and inverted 
lists. These linkages are established and maintained by JSR dynamically 
as data records are being catalogued by JSN.

The current version of JOSHUA provides only the views discussed 
above as application data set and record name. The additional views are, 
of course, generally useful GDMS concepts; but they are particularly use
ful in meeting the needs of geographical data handling, which requires 
maintenance of topological networks and directed graphs, and the associ
ation of thematic data with the geographical-basis reference data sets. 
With the facilities provided by JSR, much of the algorithmic specification 
of geographical data relationships will be automatically provided by the 
system, and need not be hard-coded into applications packages.

-  1 5 8  -



REFERENCES

1. Proceedings of the Conference on Computer Support of Environmental 
Science and Analysis, 9-11 July 1975, Albuquerque, New Mexico,
USERDA Document CONF-750706.

2. T. V. Crawford and C. E. Bailey, ’’Environmental Science and Compu- 
tations--A Modular Data-Based Systems Approach,” in USERDA Document 
CONF-750706.

3. H. C. Honeck, ’’The JOSHUA System,” USERDA Report DP-1380 , E. I. du 
Pont de Nemours § Company, Savannah River Laboratory, Aiken, South 
Carolina (1975) .

4. P. R. Coleman, R. C. Durfee, and R. G. Edwards, ’’Application of a 
Hierarchical Polygonal Structure in Spatial Analysis and Cartographic 
Display,” presented at the Advanced Study Symposium on Topological 
Data Structures for Geographic Information Systems, 16-21 October 
1977, Cambridge, Massachusetts.

5. R. G. Edwards, R. C. Durfee, and P. R. Coleman, ’’Definition of a 
Hierarchical Polygonal Data Structure and the Associated Conversion 
of a Geographic Base File from Boundary Segment Format,” presented 
at the Advanced Study Symposium on Topological Data Structures for 
Geographic Information Systems, 16-21 October 1977, Cambridge, 
Massachusetts .

6. A. A. Brooks, ’’Draft Proposal: American National Standard Specifica
tions for an Information Interchange Data Descriptive File,”
X3L5/589F (corrected), available from the author, Post Office Box X, 
Oak Ridge, Tennessee 37830.

7. D. Merrill and D. Austin, ”ERDA Interlaboratory Working Group for 
Data Exchange (IWGDE),” USERDA Report LBL-5329 (1976).

8. J. B. Fried, ’’BASIS On-Line Retrieval and Analysis of Large Numeric 
Data Bases,” in Proceedings of the Fifth Biennial International 
CODATA Conference on the Generation, Compilation, Evaluation, and 
Dissemination of Data for Science and Technology, July 1976, Boulder, 
Colorado, Pergamon Press, New York (1976).

9. Session VI-C ’’Data Access and Manipulation Languages” in Proceedings 
of the Berkeley Workshop on Data Management and Computer Networks, 
25-26 May 1976, Berkeley, California, USERDA Report LBL-5315 (1976).

10. B. C. Patten, et al., "Total Ecosystem Model for a Cove in Lake 
Texoma,” in ’’Systems Analysis and Simulation in Ecology,” Vol. 3,
B. C. Patten, ed. , Academic Press, New York (1975).

11. N. M. Greene, G. F. Flanagan, and H. Alter, ’’Central Computerized 
Data Base for LMFBR Safety Codes,” in Proceedings of the Fifth 
Biennial International CODATA Conference on the Generation, Compila
tion, Evaluation, and Dissemination of Data for Science and Tech
nology, July 1976, Boulder, Colorado, Pergamon Press, New York (1976).

- 159 -



THE MANIPULATION OF SCIENTIFIC DATA FOR NUCLEAR 
ENERGY CALCULATIONS

K R Montgomery 
United Kingdom Atomic Energy Authority 

England

- 160 -



THE MANIPULATION OF SCIENTIFIC DATA FOR NUCLEAR ENERGY CALCULATIONS

INTRODUCTION

1 . The UKAEA are currently operating a prototype fast reactor (PFR) at Dounreay,
North Scotland. When the reactor is operating at full power, fuel burn-up rates in the 
inner core will be of the order of l-jj$ per reactor cycle of 6 weeks. The reactor 
contains 78 core region fuelled sub-assemblies (325 fuel pins per standard sub-assembly) 
and 42 breeder sub-assemblies (85 breeder fuel pins per sub-assembly) in the breeder 
zone. There are some 20 non-standard sub-assemblies in the core region.

2. Fuel management strategy is vital to the efficient operation of this reactor, the 
strategy falling into three broad groups of planning, operational and post-operational 
activities. In brief, the principle objectives of each stage are as follows:-

(i) Planning. To provide sets of workable and economic forward core loadings 
allowing fuel enrichment to be defined for replacement sub-assembly orders. To 
provide advanced data of predicted sub-assembly performances in respect of 
reactivity worths, heat ratings and maximum temperature requirements (for pre
gagging the sub-assembly coolant flow).

(ii) Operational. To provide on demand fuel burn-up rates, power distributions, 
control rods worths, breeding gain, neutron balances and off-centre reaction rates.

(iii) Post Operational. To provide accurate reaction data for fuel element 
performance analysis, and to generate a permanent data store of fluxes, spectra 
and neutron group cross-sections in the PFR fuel data bank.

3. The above is merely a brief outline of the objectives of the fuel management 
calculational requirements. Although there are many other aspects of calculational 
processes in the nuclear energy field that require the processing of large data sets, 
this paper will be restricted to an outline of the fuel management calculations as 
being typical of the processes involved. The unusual nature of the associated problems, 
the ideal requirements of the system to be adopted, and the present technique for their 
solution will be presented in outline form. Some of the essential requirements of a 
scientific data base to support such calculations will be defined.

PROGRAMMING OBJECTIVES

4. Tasks in nuclear fuel management have three distinct characteristics, namely

(i) large amounts of data require computerised manipulation and storage

(ii) the computer programs that perform the calculations involve the iterative 
execution of several programs, each requiring data generated by the others in 
addition to user-input data.

(iii) program coding is necessarily divided between dispersed groups of 
programmers in different fields of expertise.

5« These characteristics give rise to two well-defined requirements of a system that 
will operate successfully under the above constraints, namely:

(i) a data storage and retrieval function possessing considerable data 
indépendance, controlled by a management suite and permitting volatile and non
volatile files.

- 161 -



(ii) inter-code compatibility that will permit dispersed programmers to ’’plug-in" 
modules coded by other programmers to perform a particular set of the total 
algorithm.

COMPATIBLE OPEN SHOP MODULAR OPERATING SYSTEM (COSMOS)

6. Many of the PFR nuclear energy calculations are performed within the COSMOS system, 
which is a general system of FORTRAN k coding handling a scientific database and a 
compatible code scheme and is devised to operate within the above constraints. For a 
detailed technical description of the system the paper by Brissenden^) should be 
consulted; the scope of the present paper is limited to a brief outline of some of the 
features of the COSMOS system.

7. COSMOS has been in use since 1971 and its supporting database now contains some 
300 Mbytes of information. It is a modular code scheme under which sets of programs 
designed to use common datafiles and programming conventions operate. Data handling 
is independent of the processing algorithms and communication facilities are provided 
between programs. Standard datafile accession routines for read/write options upon 
well ordered datafiles are built into the programs. COSMOS is integral with the 
computer system control in that the embedded accession sub-routines will locate and 
transfer datafiles from the database to programmer specified core storage. A program 
that performs a single part of a multi-function task is regarded as a ’module* of the 
program suite. Data generated by modules may be written to the database for subsequent 
modification within the total program execution or reserved for use by other programs 
at a much later date. A single database holds all the common data required by extant 
COSMOS modules.

8. COSMOS is installed on the ICL ¿f-70 computer at the Atomic Energy Establishment at 
Winfrith, Dorset, England. It is coupled by data links to Risley (Cheshire, England) 
and the Prototype Fast Reactor (Dounreay, North Scotland). Modules are available for a 
range of calculations including Thermal Performance, Irradiation Swelling, Shielding 
and Fuel Management.

THE COSMOS DATABASE

9. The datafiles are stored on EDS60 (Exchangeable disc system, 60 Mbytes) discs which 
are called the COSMOS Interface. The Interface is subdivided into many small libraries 
that give the user some independence in the storage of his own data. On average, each 
user tends to operate within about four libraries. The datafiles are generalised 
Fortran arrays of numeric data and the Nests are integer strings which describe the 
datablock structures and their parametric relationships. The datafiles are identified 
by Labels which normally have five components.

DATABLOCKS AND NESTS

10. The common understanding between all users of the definition of each datablock 
structure and the ability of all programs to interpret it guarantees the compatibility 
of each individually written program. This definition is given in the Nest linked to 
the datablock. To clarify the point, an example is given of a possible and conveniently 
simple datablock and its Nest, but it is not necessary for the user to be aware of each 
datablock/Nest definition since interpretive modules, such as NLOOK, are provided that 
unpick the datablock structure from the Nest for the user.

- 162 -



11. In several reactor physics codes the composition of the reactor is input in terms of 
the densities of various nuclides in various regions. A table of COMPOSITION showing 
the densities of 8 nuclides in 3 regions might be as follows:-

Nuclide - 1 2 3 ^ 5 6 7 8  

Region

1 .076 .134 - - - - - -
2 -  .2 k b  .101 .176 .0*f0
3 - - - - - -  m20k .011

The linear datablock could be written:

. 076, - 13^ , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . 2¥ + , . 10 1 , . 17 6 , . 0^0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . 20*f, .011

and structured by the integer string 3,8 (3 regions, 8 nuclides). Writing the 
COMPOSITION table in columnar form as follows:

Nuclide Region Density

1 1 .076
2 1 .13^
3 2 m2kk
k 2 .101
5 2 .176
6 2 .0^0 
7 3 -20*f 
8 3 -Oil

Here, the column of data ’Density1, is the datablock and the relationship columns 
'Nuclide1 and 'Region1 is the Nest. The Nest descriptor could be 3,8,11222233 for the 
linear string datablock. Noting further that successive nuclides are always in the same 
or next higher region, the datablock relationships could be expressed by a Nest 3,8,2^2.

12. The numerical representation of all likely conventions have been formalised in 
COSMOS. The Nest integers always appear in the pattern defined by the convention and 
include the convention code number. The integers are never mixed with the datablock 
itself. Nest interpretation routines are bound into every COSMOS program. The names 
of the connected entitles gives the Nest Display name, eg (REGION(NUCLIDE) ) and the 
input to the program would state that the datablock COMPOSITION is described and 
structured by the Nest whose display Name is (REGION(NUCLIDE).

LABELS

13* The datafiles are held on close packed variable length datablocks and catalogued 
by their Labels, and each dataset catalogue is a datafile in the COSMOS directory 
handled by accession routines. The directory consists of an index of Datafile names 
linked to an accession number, and physical address pointers also linked to accession 
numbers. The 5 dimensions of the Label are:

(i) Display Name:

(ii) Version Number
(iii) Program Name:
(iv) Run Number:
(v) Library Number:

- 163 -

the datafile descriptor and up to 190 characters for the 
Nest components.
a variable to augment the Display Name, 
to enter the datafile to the database.
to record the individual computer runs of the same program, 
to identify the area of the database holding the datafile.



The parameters are punched on the label cards in the above sequence (with as the 
default character). The labels are specified by the user for all data, whether input 
from source, from the Interface, or output to the Interface.

1^. This brief outline of COSMOS has necessarily omitted several of the outstanding 
features of the system, such as Tracing Facilities, Database Integrity, Sequential Files 
and Management Control. Reference must however be made to the COSMOS FORTRAN IV program 
WORKSHOP that is used to service the database as its standard utility. The program can 
amend and store "decks" of cards on COSMOS files, and submit these "decks" to the job 
stream for execution.

15. In nuclear physics calculations there are many examples of tasks that involve 
running a sequence of jobs using a number if distinct programs,that are linked by later 
jobs in the sequence. If the overall task can be programmed for consecutive operation 
without user intervention the risk of input error is reduced. The workshop program 
fEASYf can perform this function by issuing directives to the workshop to cause control 
to pass to a set of Fortran compiled statements.

WORKSHOP

16. Workshop is a Fortran based program combining the card editing facilities and logic 
of simple Fortran. It supports a range of commands that handle the COSMOS system and 
has roll-in/roll-out facilities to enable it to roll-out into the database when not in 
use. Here it may remain until it resumes further execution at a later time. A workshop 
program can submit a program for execution, roll itself out into the database and resume 
execution on the completion of a set task. In this way, a workshop program can proceed 
intermittently over several days or weeks. It can be used for the automatic submission 
of reactor physics calculations. It can be used for the management of user resources 
such as opening new files, archiving old ones, deleting old libraries and renewing 
magnetic tapes, assigning run times and print-out. It interacts with the computer 
operators whilst rolled out from the database and can take remedial action in the event 
of a system crash. It can cycle indefinitely through the computer whilst performing 
database service tasks.

FUEL MANAGEMENT CALCULATIONS

17. A typical requirement would be to predict the parametric changes consequent upon a 
change to the reactor core loading. A sequence of calculational processes would be 
undertaken under the control of the Workshop COSMOS program EASY using modules for the 
solution of each stage of the process and would input data currently held on the COSMOS 
Interface in conjunction with the new data associated with the core change. A probable 
set of steps would be as follows: For the new core (1) source input data for the new 
core loading, (2) compute mean core burn-up, (3) computer macroscopic power cross- 
sections, (k) compute neutron flux distribution, (5) compute power distribution; for 
the burnt-up core (6) compute nuclide composition after a specified time period, (7) 
compute macroscopic power cross-sections, (8) compute final neutron flux distribution, a 
.and finally (9) display all computed information from the task in reactor zone plan 
format.

18. A detailed statement of the Fuel Management processes has been published by 
Wardleworth and Wheeler (2). The following short description is only intended to 
indicate the interactive nature of the individual modules of the task and the inter
dependence of the Interface datafiles and the module generated datafiles.

19* The compositions of the sub-assemblies are source input from Design Reports that 
detail the volume fractions of each constituent material for each sub-assembly type.

- 164 -



Their nuclide compositions are amplified through the modules SACOMP and RSSHIELD from 
the 37 group neutron cross-section library, the compositions of the individual materials 
and the fissile loading from the PFR Fuels Databank. These interactions create a sub- 
assembly data store on the Interface of nuclide densities and neutron cross-sections 
still tied to individual sub-assemblies for each sub-assembly type in the new core.
The projected reactor loading is then input to relate new individual sub-assemblies to 
locations in the reactor. The reactor model is then constructed, using a definition of 
zone, group and mesh structure and weighting fluxes. The compositions and cross- 
sections are smeared and condensed to form the macroscopic cross-sections required for 
the neutron diffusion theory program (TIGAR) which computes the neutron fluxes. Using 
these computed fluxes, the sub-assemblies from the data store are ’burnt-up1 as required 
and returned to the store which will ultimately contain compositions at each stage of 
burn-up. It can be seen that many individual programs are involved and the input data 
at each stage is changing in a dynamic manner. The burden of the task is greatly 
reduced by the Workshop program.

CONCLUSIONS

20. This paper has attempted to give an account of a practical application of 
scientific calculation in the nuclear energy field and to demonstrate the necessity of 
a supporting database structure and a compatible modular code scheme. The COSMOS 
databank differs from the General Database Management System IDMS in that it is a 
dynamic area in which any user may operate. Provided that the user conforms to set 
conventions, he may write datafiles to and read them from the database. By labelling 
the files and storing the labels in the Directory, these files are available for other 
users to employ. The files are related in the sense that they have been created within 
a chosen model and have used particular generations of files that are current on the 
database. The user name, program name, version number and run number all uniquely 
identify the file and its points of origin. In effect, all users are their own data
base administrators, but the files that they have generated conform to the administra
tion rules of the database. The files appear unrelated in that pointer navigational 
paths between files are not used; the files labels are used through their labels to 
point to generically related files. It is possibly superior to IDMS in possessing the 
additional attribute of interaction with the system and the system operators, and offers 
not only data independence but also program independence. Through its complexity it 
tends to possess a poor user image which is being improved through the continuing 
development of the system.

ACKNOWLEDGEMENTS

21. The author is greatly indebted to D Wardleworth for permission to extract certain 
parts from his unpublished Committee Paper, and to the publications of Wardleworth & 
Wheeler and R J Brissenden.

REFERENCES

22. (1) f,The Compatible Open Shop Operating System COSMOS1', R J Brissenden. American 
Nuclear Society "Topical Meeting on Computational Methods in Nuclear Engineering", 
Charleston, South Carolina, April 15-17? 1975*

(2) "Reactor Physics Calculational Methods in Support of the Prototype Fast 
Reactor", D Wardlesworth 8c R C Wheeler. Journal of the British Nuclear Energy 
Society. 1974, 13(4) pp 383-390.

- 165 “



R P  ( z ?

GENERALIZED
DATA
MANAGEMENT
SYSTEMS

AND

SCIENTIFIC
INFORMATION
Report of a specialist study

SYSTÈMES DE 
GESTION DE 
BASES DE 
DONNÉES

ET

INFORMATION 
SCIENTIFIQUE
Rapport d'étude de spécialistes

Published by/Édité par 
OECD NUCLEAR ENERGY AGENCY 

AGENCE DE L’OCDE POUR L’ÉNERGIE NUCLÉAIRE
38 bd. Suchet, 75016 Paris France

1978



NEA WORKING GROUP ON NUCLEAR ENERGY INFORMATION
GROUPE DE TRAVAIL DE L’AEN SUR L’INFORMATION 

DANS LE DOMAINE DE L’ÉNERGIE NUCLÉAIRE

GENERAUZED DATA MANAGEMENTSYSTEMS 
AND SCIENTIFIC INFORMATION 

SYSTÈMES DE GESTION DE BASES DE DONNÉES 
ET INFORMATION SCIENTIFIQUE

report of the specialist study on computer software  
rapport d ’étude de spécialistes sur le logiciel d ’ordinateur

The use of Generalized Data Management Systems 
for handling Scientific Information

L’utilisation de systèmes de bases de données généralisés pour 
le traitement de la documentation et des données scientifiques

jointly organized by/organisé conjointement par 
OECD NUCLEAR ENERGY AGENCY 

AGENCE DE L’OCDE POUR L’ÉNERGIE NUCLÉAIRE 
and/et

UNITED STATES DEPARTMENT OF ENERGY
in cooperation with/en coopération avec 

U.S. NATIONAL BUREAU OF STANDARDS
Chairman/Président 

A. SHOSHANI, LAWRENCE BERKELEY LABORATORY
Secretary and Editor 

N. TUBBS, OECD NUCLEAR ENERGY AGENCY

published by/édité par 
OECD NUCLEAR ENERGY AGENCY 

AGENCE DE L’OCDE POUR L’ÉNERGIE NUCLÉAIRE 
38 bd. Suchet, 75016 Paris France



CONTENTS

General Introduction 11
PART I : AN INTEGRATED APPROACH TO DATA MANAGEMENT
1. An introduction to Generalized Data Management Systems 15G. Moorhead, N. Tubbs
2. Characteristics of existing Database Management Systems 27D. Deutsch, E. Pong

- Candidate software packages (appendix) 43- GDMS commercially available in Japan (T. Yamamoto) 49
3. Cost considerations for Database Management Systems 50D. Deutsch, E. Pong, J. Collica
4-. An APL approach to Data Bases 71G. Martin
PART II : GDMS POR SCIENTIFIC DATA : REQUIREMENTS AND SPECIALIZED SYSTEMS
5. The structure of R and D information - some observations 93

A. Brooks
6. The capabilities required in a Generalized Data Base Management System for Handling Scientific and Technical Data 106K. Szczesny, W. Gersbacher
7. Requirements for the design of a Scientific Data Base Management System 111

V. Hampel, D. Ries
8. Scientific Data Base Management at Lawrence Livermore 

Laboratory : needs and a prototype system 132E. Birss, S. Jones, D. Ries, J. Yeb
9. An overview of BDMS : the Berkeley Database Management System 14-5D. Richards
10. Extensions to the JOSHUA GDMS to support environmental science 

and analysis data handling requirements 151J. Suich, H. Honeck
11. The manipulation of scientific data for nuclear energy calculations (the COSMOS database) 160

K. Montgomery
PART III : GDMS APPLICATIONS POR HANDLING SCIENTIFIC DATA

A. Experience of GDMS use
12. Status of Data Base Management Systems at Argonne National 

Laboratory 167P. Fuja, A. Lindeman
13. The Particle Data Group : using a GDMS to solve data handling 

problems in particle physics 173P. Stevens, A. Rittenberg
14. Use of a GDMS for high-energy reaction data 180G. Moorhead
15. The world Nuclear Power Plant data base of the FrenchAtomic Energy Commission 184J. Leralle, G. Martin

Page

- 5 -



16. Laboratory Animal Data Bank - Environmental husbandry factors,
hematology, and clinical chemistry files 201K. Hsu

22717* The use of TOTAL at the Netherlands Energy Research Foundation 
(ECN)h> Rietveld

18. Use of DBMS-10 for storage and retrieval of Evaluated Nuclear
Data files 232C. Dunford

1 9• A large data “base on a small computer : Neutron physics dataand bibliography under IDMS 239A. Schofield, L. Pellegrino, N. Tubbs
B. Forward planning for GDMS use, and potential GDMS 

applications
20. Databank for the Prototype Fast Reactor 250K. Montgomery
21. Design of a Solar Heating and Cooling data centre 257D. Deutsch
22. SDI-programs for small computers using the INIS database 263A. Nevyjel
23* Scientific data handling : needs and problems at the Zentral-stelle fttr Atomkernenergie-Dokumentation (ZAED) 265

W. Bau, H. Behrens
24. Problems of a Nuclear Data centre in an international network 268P. Attree
25* The NEA Computer Program Library : A possible GDMSapplication 276W. Schuler
26. Computerized data handling in the Environmental ChemicalsData and Information Network 288J. Petrie, J. Powell, ¥. Town
PART IY : THE DIRECTION OF GDMS DEVELOPMENT
27. The rationale of a standard Interchange Format 297A. Brooks
28. Future directions in GDMS development and database conversion 302

A. Shoshani
Epilogue : The composition of the study, and its conclusions 309
Appendix : A selection of references to GDMS literature 314

N. Tubbs
PART Y : FRENCH TRANSLATIONS
- Introduction genérale 321
- Introduction aux Systémes de Bases de Données Generalises 324
- Considerations finales : l1etude et ses conclusions 553

Author index, with addresses of participants 344

- 6 -



TABLE DES MATIERES

Introduction générale
Page

version anglaise 11
version française 321

PREMIERE PARTIE : UNE STRATEGIE INTEGREE DE GESTION DE DONNEES
1. Introduction aux Systèmes de Bases de Données GénéralisésG. Moorhead, N. Tubbsversion anglaise 15

version française 324-
2. Caractéristiques des SGBD actuellement disponibles 27

D. Deutsch, E. Fong
- Produits-programmes à prendre en considération (Appendice) 4-3
- SGBD disponibles sur le marché japonais (T. Yamamoto) 4-9

3. Considérations de coût pour les SGBD 50D. Deutsch, E. Fong, J. Collica
4-. Une approche APL aux bases de données 71

G. Martin
DEUXIEME PARTIE : SGBD POUR DONNEES SCIENTIFIQUES : BESOINS ETSYSTEMES SPECIALISES
5- La structure des données pour la recherche et le développe

ment - quelques observations 93A. Brooks
6. Desiderata d'un Système de Gestion de Bases de Données pourla manipulation de données scientifiques et techniques 106

K. Szczesny, W. Gersbacher
7. Cahier des charges pour un SGBD scientifique 111

V. Hampel, D. Ries
8. La Gestion des bases de données scientifiques au Lawrence Livermore Laboratory : besoins et un système prototype 132

E. Birss, S. Jones, D. Ries, J. Yeb
9. Résumé du système BDMS : le Berkeley Database Management

System ^D. Richards
10. Extension du SGBD "JOSHUA" pour les besoins en gestion de 

données des sciences et de l'analyse de l'environnement 151J. Suich, H. Honeck
11. La manipulation des données scientifiques pour les calculsdans le domaine de l'Energie Nucléaire (la base de données 160COSMOS)

K. Montgomery
TROISIEME PARTIE : APPLICATIONS DES SGBD A LA MANIPULATION DE

DONNEES SCIENTIFIQUES
A. Les SGBD à l'usage

12. L'utilisation actuelle des SGBD à Argonne National Laboratory 167
P. Fuja, A. Lindeman

- 7 -



13. Le "Particle Data Group" : une solution SGBD aux problèmes 
de manipulation de données dans la physique des particules 
élémentairesP. Stevens, A. Rittenberg

14. L'emploi d'un SGBD pour les données de réactions à hautes 
énergies

G. Moorhead
15« Da base de données mondiale du GEA français sur les 

centrales nucléairesJ. Leralle, G. Martin
16. La "Laboratory Animal Data Bank" : éléments d'environnement de l'élévage, hématologie, et fichiers de chimie cliniqueK. Hsu
17. L'utilisation de TOTAL à la Fondation Néerlandaise pour la Recherche Energétique (ECN)

H. Rietveld
18. L'utilisation de DBMS-10 pour stockage et recherches sur 

les fichiers de données nucléaires évaluéesC. Dunford
19. Une grande base de données sur un petit ordinateur : donnees et bibliographie de physique neutronique sous IDMSA. Schofield, L. Pellegrino, N. Tubbs

B. Planification pour l'introduction de SGBD, et applications potentielles de SGBD
20. Banque de données pour le "Prototype Fast Reactor" britanniqueK. Montgomery
21. Projet d'un centre de données sur le chauffage et la réfrigération par énergie solaireD. Deutsch
22. Programmes pour la dissémination sélective des informations 

H3TS, utilisant de petits ordinateurs
23. La gestion des données scientifiques : besoins et problèmes de la Zentralstelle fttr Atomkernenergie-Dokumentation (ZAED)W. Bau, H. Behrens
24. Problèmes d'un Centre de données nucléaires dans un réseau 

internationalP. Attree
25. La bibliothèque AEN de programmes de calcul : application possible d'un SGBDW. Schuler
26. La gestion sur ordinateur des données du "Environmental Chemicals Data and Information Network"J. Petrie, J. Powell, W. Town
QUATRIEME PARTIE : LE DEVELOPPEMENT DES SGBD DANS L'AVENIR
27. La justification d'un format standard pour l'échange de bases de donnéesA. Brooks

173

180

184

201

227

232

239

250

257

263

265

268

276

288

Page

297

- 8 -



Page
28. Directions d® avenir dans la développement des SGBD et dulogiciel de conversion de bases de données 302

A. Shoshani
Considérations finales : llétude et ses conclusions

version anglaise 309version française 338
Appendice : Bibliographie restreinte des SGBD 314- N. Tubbs

CINQUIEME PARTIE : TRADUCTIONS FRANÇAISES
Introduction générale 321
Introduction aux Systèmes de Bases de Données Généralisés 324-
Considérations finales : 1*étude et ses conclusions 338

Répertoire des auteurs, avec les adresses des participants 344

- 9 -



PART III
GDMS APPLICATIONS FOR HANDLING SCIENTIFIC DATA

PARTIE III
APPLICATIONS DES SGBD A LA MANIPULATION 

DE DONNEES SCIENTIFIQUES

A. Expérience of GDMS use 
Les SGBD à l ’usage

B. Forward planning for GDMS use, 
and potential GDMS applications
Planification pour l ’introduction de SGBD, 
et applications potentielles de SGBD



STATUS OF DATA BASE MANAGEMENT SYSTEMS 
AT ARGONNE NATIONAL LABORATORY

P. M. Fuja 
A. J. Lindeman 

Argonne National Laboratory 
Argonne, Illinois U.S.A.

ABSTRACT

Argonne National Laboratory has been using the System 
2000 data base management system for the past two years. It 
has been used for technical as well as administrative applica
tions. This paper describes some of the experience gained 
relating to advantages and disadvantages of data base manage
ment systems as well as of System 2000 in particular.

Argonne National Laboratory acquired System 2000 from MR! Systems Corporation in 
1975 and since that time it has been used for a wide variety of applications. The pur
pose of this paper is twofold: (1) to review some of our experiences with System 2000 
and (2) to discuss recent DBMS technology advancements.

In the Spring of 1975, several people felt the need for a data base management 
system and began defining management and system objectives in preparation for obtaining 
one. Several approaches were considered in obtaining a DBMS. First, where do you get 
one? Some national laboratories have been fortunate in receiving funding for designing 
and implementing their own software in the D M  area. ANL felt that we were getting in
to the DBM area rather late and in this case, a software development was unnecessary 
since there were commercial systems available. A second approach was to obtain a ’’pub
lic" DBMS from another laboratory or possibly a university. Although this approach was 
considered, we found that some would not work on our computer, some didn!t have the needed 
features, and others had little or no documentation. Ultimately, we decided to analyze 
and select from commercially-available systems. This choice offered several advantages 
and some disadvantages:

There were a number of DBMS packages available for IBM hardware; there
fore, we had a wide choice.

Companies selling systems generally support their products by fixing 
bugs, providing documentation, and usually improving the package.

A substantive argument often raised against commercial systems is that 
the source code is usually not available. Therefore, no enhancements 
suited to the local needs are possible. This can be an advantage, how
ever, in maintaining compatability with other installations having the 
same package.

After deciding to buy a commercial system, it was necessary to specify desired 
capabilities and then establish an evaluation methodology. Some of the desired capa
bilities were:

- 167 -



an English-like query language 
accommodate complex data structures 
efficient update and retrieval
provide Interfaces with high level programming languages 
report writer facility

System 2000 was selected in the Summer of 1975 over several other products as the 
DBMS that was most compatible with ANL requirements.

To give the reader some impressions on what has been accomplished with data base 
systems at ANL, several applications are briefly described.

1. WENDS

The WENDS system is a hierarchical data base where detailed information on energy 
R§D on a world-wide basis is stored for easy access by scientists, engineers, and pro
ject or program managers. In addition to detailed technical data, material on economic, 
social, and political conditions for all nations covered in the program will provide 
additional perspective to users.

This application supports a hierarchical data base where elementary components 
are units of information called screens. A screen of information is defined as 22 lines 
of text with 70 characters per line so that it fits within the bounds of most video 
terminals. The characters displayed within a screen are from the standard ASCII 96 
character set which includes both upper and lower case letters. All retrievals and up
dates for the prototype system are implemented with the System 2000 Natural Language.

WENDS is constructed on three logic systems: 1. A geographic tree, in which 
specific information about the energy picture in any given nation can be quickly assessed, 
along with whatever specific data is desired on particular technologies; 2. A technology 
tree, which will allow users to obtain data on any given technology and the status of 
projects, regardless of where they are taking place; and 3. Tutorial data and discussions 
for background. It is anticipated that data will cover all countries affecting or re
lated to the energy situation in the U.S. They will encompass all major energy tech
nologies on an unclassified basis.

2. INSITE

Interactive Nuclear Site data base was developed under contract for the Nuclear 
Regulator Commission. It contains site parameters on all commercial nuclear power plants, 
proposed, under construction, or operating in the U.S. The data is to be accessed from 
state agencies and utilities across the country and has been made available on a com
mercial time sharing service network. Extensive use was made of the PL/I language rather 
than the System 2000 Natural Language to load data and to create conversational retrieval 
programs.

3. RADIATION EXPOSURE SYSTEM

The Occupational Health and Safety Division of ANL is responsible for maintaining 
current records for those personnel that may be exposed to radiation. To better accommo
date these record-keeping responsibilities, a System 2000 data base of pertinent exposure 
data has been implemented. In fact, the global query facilities and all report writing 
features that are part of this system are provided by System 2000.

Each enployee and visitor who has an assigned film badge or dosimeter is included 
in the data base. Additional descriptive information, such as payroll number, birth date, 
service date, and location is also included. All of the monthly exposure details (rover,

- 168 -



beta, gamma, xray, and neutron exposures) are retained for all sections in which the 
employee or visitor is monitored.

4. SPECIAL MATERIALS

ANL is developing a new Special Materials Information System for processing and 
analyzing all data on special nuclear materials (SNM) to provide current (daily) records of 
the quantities, movements, and locations of SNM in ANL custody. This system includes the 
capability of company book values with measurement values and statistical analysis of the 
significance of all differences.

The System 2000 data base is organized by physical control area with supporting data 
consisting of batch definitions, starting balances, transactions, and physical inventories.

5. FERMI LAB

The Fermi Laboratory currently utilizes the ANL central computer facility for its 
administrative data processing and has implemented several data base applications:

Financial Information System 
Capital Assets System 
Experiment Inventory for the Accelerator 
File of Experimentors and Institutions

Some of this data had previously been kept on other management systems but System 
2000 gives much more flexibility and provides for easier update than previously realized.

EXPECTED VERSUS ACTUAL USE OF SYSTEM 2000

For the purpose of this paper, it is desirable that we class our data base appli
cations into two categories--administrative and technical or scientific. A sijnple, broad 
definition of an administrative data base is an information system which we use to run our 
organization and support our paperwork. The technical data bases include the data we use 
to fulfill our contracts or do our research. Obviously, some data cannot be correctly 
classified into either of these categories. Some contract data bases are really adminis
trative in nature or could be called management data bases.

Most literature and educational material in the data base field has been directed 
toward administrative applications. The information needs in many administrative functions 
fit quite naturally into the criteria for which a data base implementation is appropriate. 
Some of these are: (1) a fairly well defined set of data which may need to be accessed in 
different ways (if separate files were kept, there would be considerable redundancy), (2) 
constant updating is needed, (3) protection or privacy of data is needed, and (4) there are 
defined relationships between data items. It appears that the DBMS concept is a response 
to the needs of commercial or administrative computer uses. In fact, the administrative 
users at ANL had a good idea what they needed in a DBMS and the effort required to imple
ment a data base application.

In contrast, technical users have had some difficulty in gaining the proper per
spective. However, the DOE Laboratories have been directing their efforts into fields where 
the data problems are massive, and some new type of data management techniques seems neces
sary. At ANL, there have been many trial and error attempts to build useful data bases. 
Many of these attempts have succeeded but some have failed. It is our desire to attempt to 
classify some of the reasons for success and failure so that others may benefit from our 
experience.

- 169 -



Differences in technical and administrative data bases occur in the character of 
the data, the probable applications, and the methods or characteristics of the people 
implementing or using the data base. We may consider each of these separately.

In System 2000, the available data types are integer, decimal, character, text, 
date, and money. The last three of these are rarely needed in scientific data but float
ing point, vector, and matrix representations are needed. Presently, few DBM systems 
handle these data representations. Another tendency with scientific data is that fewer 
updates are needed. Often, a set of data will be conpletely replaced rather than par
tially updated. A third difference in the data is that privacy is seldom an issue but 
accuracy is very important.

Applications also tend to be different in administrative and technical or scienti
fic data base systems. Administrative applications usually need a small amount of arith
metic capability and extensive report generating or information retrieval. Technical 
applications may require extensive calculations, statistics routines or graphical out
put generation as well as report generation.

The last area of difference is in the people and their ways of thinking. In the 
research mode, it is difficult to know what applications may be desirable from a data 
base. This tends to complicate the proper structuring of the data. Researchers tend also 
to be quite autonomous and the idea of a data base administrator with broad authority is 
many times unworkable. Lack of centeralized authority, however, inplies an increased need 
for education of users as well as a high level of technical consultation being available.

In general, technical uses of a data base management system may require a system 
with broader capabilities than are needed for administrative applications. However, 
there are many technical users who can benefit from the DBM systems now available even 
with current limitations.

The following list of questions are given for consideration in deciding whether a 
given application should be done via a DBMS. They are not exhaustive but may uncover 
some possible difficulties.

1. Is the data going to be used long enough to warrant constructing a data base? Can 
it be updated or does the entire set of data need to be replaced?

2. Is there a variety of uses for the data? In some cases, a data base may be approp
riate for only one application but it is more effective if many applications can use 
the data. A related question is: Is the application too simple for the amount of 
data to be loaded?

3. Can an intelligent structure be defined for the data? Is it too simple or too com
plicated?

4. Is it in a form to be conveniently loaded into the data base? Is a conversion to 
such a form worthwhile?

5. What other functions are needed for the data (statistics, graphics, extensive cal
culations) , and are the functions available within the DBMS? System 2000 provides 
several functions, high level language routines can be written, or records can be 
generated for the graphics or statistics packages through list or report generator 
facilities. Interactive use of such packages is not practical except through PL/1.

6. How much external calculations are needed? Calculations can certainly be done 
efficiently with high level languages as everyone recognizes but data base structures 
do not lend themselves to matrix manipulation, for example.

Several of the advantages and disadvantages contained in Sytem 2000 have been 
mentioned throughout this discussion. There is always something that one finds a

-  170 -



software package unable to do but this is an extensive system with broad capabilities 
for doing administrative and technical data base management. It is a particular advant
age that System 2000 is available on IBM, CDC, and Uni vac hardware and that it has been 
acquired by several DOE Laboratories.

System 2000 is designed to operate only with hierarchical data. In the administra
tive work at Argonne, it is sometimes more convenient to utilize other data structures, 
particularly network structures.

Although System 2000 has proved to be inadequate for some needs, it certainly has 
many features that make it very useful. Data bases are accessible in either a batch or 
an interactive mode. It has a particularly good natural query language in which the 
string and function definition features give extensive capabilities. The report writer 
has limitations since disjoint portions of the hierarchical structure cannot be accessed 
in the same report. Since System 2000 interfaces to Cobol, Fortran, and PL/1, many re
ports are written in a higher level language. A capability not available that would be 
desirable would be to access more than one data base in the natural language. This feature 
is available in PL/I.

Because of the flexibility of System 2000, the efficiency can vary widely. In large 
applications, therefore, attention to optimum data structuring and tuning is necessary.
The availability of technical consultants with in-depth knowledge of the system is then 
critical. As mentioned previously, this has been a problem at ANL which has only re
cently been alleviated.

CURRENT ANL PLANNING ACTIVITIES

The complexity of the administrative structure at ANL gives rise to complex data 
structures in an overall administrative data base or what might be termed a laboratory- 
wide data base environment for administrative information systems. System 2000 is not 
adequate for such an environment because it is limited to hierarchial data structures 
and because of the limited capacity to access more than one data base. Therefore, ANL 
has initiated a planning study to plan for and acquire software for the establishment of 
laboratory-wide data base environment for administrative information systems. ANL has 
recognized that the ultimate success of such an environment is critically dependent upon 
long-range planning.

Why is a lab-wide administrative environment needed? Historically, most data bases 
have been installed to achieve efficient and flexible management and maintenance of data. 
However, commercial data base management systems have developed to the point that recent 
improvements in the area of data accessibility are dramatic. Current demands, such as 
the proposed DOE Uniform Contractor Reporting Guidelines, require effective, flexible, 
and timely information retrieval abilities.

We see as one of the main goals of this planning effort the detennination of the most 
appropriate DBMS environment for the Laboratory; that is, one that has the optimum balance 
of accessibility features, efficient organization, and growth potential. One DBMS may be 
outstanding in data accessibility, another may be more in line with Tlwhere things are go
ing,” and yet another may be most efficient. The state of the DBMS technologies will be 
thoroughly studied within the context of ANL requirements. Part of the planning effort, 
then, is that the information objectives and requirements of key Laboratory administra
tive areas are to be identified.

There are a number of software and hardware technologies that can be utilized to 
accomplish these objectives. One alternative is to keep the current file-oriented appli
cation systems, but augment them by additional report writer software. This approach 
appears inadequate, but will be examined on the basis of its low cost and quick imple
mentation .

- 171 -



In addition to this file-oriented approach, there are at least three forms of data 
base management technologies to consider: centralized, distributed, and back-end. Cur
rently, the centralized DBMS is the most common: all software, including the TP monitor, 
is on the central computer and data storage is on attached disk drives. A distributed 
DBMS is where the data base resides on a number of computers and those computers and data 
base management systems communicate with each other.

The newer back-end DBMS concept involves off-loading the data base management function 
from the host CPU to a dedicated minicomputer, or ,rback-endff processor. ANL has only re
cently been introduced to this approach for practical applications and it may be a po
tentially effective alternative for both high-volume centralized environments and also 
distributed processing networks.

The function of the back-end is to provide data base management services on behalf 
of the host. The motivations generally given for development of back-ends include: higher 
performance/cost ratios than with a centralized CPU in executing data base-oriented tasks; 
increased independence between main frames and secondary storage; enhanced data base se
curity, integrity and availability; and more effective sharing of data among multiple hosts, 
When the technology develops, the extent to which a given back-end system will satisfy 
those objectives will depend greatly on key design issues (such as word length, address 
space, instruction set characteristics, and multiprocessing support) and the degree of 
integration of the back-end hardware and software architectures.

Both MRI Systems Corporation and the Cullinane Corporation have asserted that im
proved host throughput accounts for the major cost advantage of back-end DBMS. In fact, 
both Cullinane and MRI are currently developing prototype back-end DBMS technologies.
The Cullinane design currently employs an IBM 370/158 as the host with a DEC PDP 11/70 
minicomputer serving as the back-end processor. MRI Systems Corporation is developing 
the back-end DBMS technology using an Interdata 832 minicomputer. Both organizations 
claim that these products will be available in approximately one year.

The current state-of-the-art for DBMS technologies reminds the authors of the stories 
of the state-of-the-art of constructing bridges at the beginning of the century. At that 
time, engineers estimated the load that the structure must bear, tried to make sure that 
enough steel and structural support would be provided to hold the load--and hoped. Not 
until fairly recently have we been able to design structures to withstand wind, water, 
and earthquakes. It seems that we are building our data bases now much like we built 
our bridges at the turn of the century. We are now evolving to a better design method
ology.

- 172 -



THE PARTICLE DATA GROUP: USING A GDMS TO SOLVE DATA HANDLING 

PROBLEMS IN PARTICLE PHYSICS

Paul R. Stevens*

Physics Department

California Institute of Technology, Pasadena, California 91125

and

Alan Rittenberg 

Particle Data Group**

University of California 

Lawrence Berkeley Laboratory, Berkeley, California 94720

ABSTRACT

We examine data handling needs and problems in particle physics and look at three 
different approaches at resolving these problems with emphasis on the efforts of the 
Particle Data Group and on the role of GDMS in the solutions.

I. INTRODUCTION

In 1977, worldwide, there are approximately 7000 high energy, or particle, 
physicists (plus graduate students). Particle physics annual research budgets total to 
about $600,Q00,Q00 and some 300 experiments are under way at 16 major accelerator 
centers. Approximately 150 of these experiments are completed each year and the 
experimental data they produce are reported in approximately 1,500 preprints, reports, 
journal articles or theses. The data fall into two general categories: first, data on 
properties of elementary particles and resonances and, second, data on reactions.

In the area of particle properties, for the past 20 years the Particle Data Group, 
PDG, has, by itself, been able to handle all of the data and to satisfy the needs of all 
users world-wide.

In the area of particle reactions, PDG has been able to compile only a rather 
limited subset of the data. Although* other groups have also compiled reaction data,

*Supported by U. S. Energy Research and Development Administration under Contract 
EY76-C-03-0068.

**The Berkeley Particle Data Center is jointly supported by the U. S. Energy Research 
and Development Administration, the Office of Standard Reference Data of the National 
Bureau of Standards, and the National Science Foundation.

- 173 -



notably the CERN-HERA group in Geneva (see Dr. Moorhead’s contribution to this study) 
and, more recently, groups cooperating with ZAED Csee the talk of Drs. Bau and Behrens), 
the situation at present is not satisfying: in many areas no compilations exist at all, 
in others the compilations are not up-to-date, and in many cases the compilations are 
difficult either to obtain or to use.

PDG, CERN-HERA, and ZAED are each currently trying to improve the situation but are 
using very different approaches. The availability, or lack thereof, of a suitable 
generalized database management system, GDMS, has influenced the approach each group has 
taken and the range of problems it is trying to resolve.

In the rest of this paper we look at these various approaches, especially that of 
PDG, and pay particular note of the role of GDMS. We also argue that scientific GDMS be 
able to handle multidimensional arrays and give an example of how PDG has implemented 
and is using such a capability.

II. THE NATURE OF THE DATA AND THE NEEDS OF USERS

Particle properties data and reaction data have very different characteristics and 
are used very differently.

Particle properties (masses, lifetimes, decays, spins, and so on) play an important 
role in all areas of particle physics, and in other areas, such as nuclear physics and 
astrophysics, as well. Each year about 1000 new results are reported in approximately 
300 papers. Most particle physicists are only interested in averages and few of the 
widely used ones change in a given year.

PDG has developed a system for handling the particle properties data which consists 
of a great deal of specialist attention and a simple card-oriented, sequential file 
manipulated by a number of special-purpose computer programs. Biannually, annually, or 
biennially, depending on the state of the field, PDG publishes the data and printed 
averages and distributes them to most particle physicists Cl)• Because of the stability 
of the averages and the relatively small volume of data, this simple system has been 
able to serve both users and compilers very successfully for 20 years (2) . This system 
does not constitute a GDMS. On the basis of this operation alone, PDG could not justify 
conversion to a GDMS.

Particle reaction data are characterized by a very large number of possible 
measurements because the number of distinct reactions is very large, collisions between 
any two particles can result in the production of particles, and because the cross 
section for a given reaction can be a function of many variables, the number depending 
on what particles are scattered and on what particles are produced. Also, the 
description of reaction data is very complex, first, because there is no standardization 
in the choice of variables and units and, second, because combinations of cross sections 
may be measured and reported (i.e. ratios, products, sums, differences involving the 
same reaction or different reactions). These complications are inherent in the nature 
of particle physics because the field is highly research oriented and constantly 
changing. Different choices of the independent variables may be preferred in different 
theoretical models and the preferred choice may change as understanding of the data 
changes.

As experimental techniques improve, not only do data rates keep growing but data on 
more and more different reactions are measured, and for specific reactions cross 
sections are measured for larger ranges of the independent variables and with finer 
steps. Most new measurements reported in a given year are either entirely new, 
completely supersede existing measurements, or cover different ranges of the independent 
variables.

The number of potential users, for reaction data is smaller than for particle 
properties data but their needs are more demanding and varied. Some are interested in 
comparing many reactions at the same values of the independent variables; others in

-  174 -



studying a few reactions as a function of all the independent variables. For some, a 
few sample points are sufficient; for others all existing data are necessary. Some 
require data many times a year; others seldom. In almost all cases, users want the data 
presented to them in units and variables that they select, regardless of how the data 
were reported.

III. EARLY COMPILATION EFFORTS

Early reaction-data compilations fell far short of being able to handle all data 
and of servicing all user needs. In 1969 PDG and the CERN-HERA group in Geneva began to 
publish selected subsets of reaction data. Since the late 196Qfs numerous other groups 
have also compiled subsets of reaction data but have done so primarily for their own 
research needs and few have published or distributed their compilations. The problems 
with these efforts were: they did not cover the field; each was done in its own format 
and each was handled by separate special-purpose programs; those published as printed 
reports quickly became out of date; those available on tape often required the user to 
write his or her own data extraction programs.

In 1975 the CERN-HERA group upgraded its system by adopting a relatively simple 
GDMS available at CERN called TABLOID. By limiting the scope of its compilations to 
reaction cross sections with all variables integrated out, CERN-HERA has been able to 
keep its compilations up to date. By using TABLOID it has allowed users direct access 
to the data and greatly facilitated the tasks of update, sorting, and report generation. 
The CERN-HERA effort is described in Dr. MoorheadTs contribution to this study.

In 1974 the Federal Republic of Germany established the Zentralstelle fur 
Atomkernenergie - Dokumentation (ZAED) whose mission, in the area of particle physics, 
was to coordinate compilation of reaction data and to encourage and facilitate the 
publication of printed compilations. ZAED helps compilers prepare their work for 
publication and publishes and distributes the printed reports (see the talk of Drs. Bau 
and Behrens) . As a result some compilations have been published which might otherwise 
have remained private and difficult to access. So far, however, ZAED has made no effort 
at completeness and, though its compilations are accessible, for many purposes they are 
still not easy to use since ZAED relies on the format and programs of the different 
compilers which vary from compilation to compilation.

IV. THE PDG SOLUTION

PDG has taken the point of view that most reaction data should be compiled and that 
most user needs should be met (clearly some data are of too limited interest to warrant 
compilation and some requests are too rare to justify setting-up general procedures or 
too difficult to service economically).

In 1971 PDG realized that the proliferation of many independent, special-purpose 
compilations would not satisfy user needs in the long run and so began a comprehensive 
review of its own operations and the data compilation needs of particle physics in 
general. As a result of this study, PDG decided to build a single system which could 
handle all data and data-related bibliographic information for particle physics.

In 1973 PDG decided that, to maintain the various databases of this unified system, 
it needed a GDMS. Furthermore, it decided to design and implement its own. The GDMS 
which resulted, the Berkeley Database Management System (BDMS), is described by 
Dr. Richards in another paper submitted to this study.

In 1975 a prototype of BDMS became operational and PDG began implementing its new 
BDMS-centered system of databases and operating procedures. At the same time PDG turned 
over primary development responsibility for BDMS to the Computer Sciences and Applied 
Mathematics Group of the Lawrence Berkeley Laboratory both because BDMS promised to be 
useful to other laboratory groups as a general scientific database management system and 
because its development was turning out to require greater resources than PDG had 
available.

- 175 -



The development of BDMS and of the BDMS-centered system of databases and operating 
procedures have been intricately related. Initially the needs of PDG and the users 
dictated features that BDMS should have. As BDMS became a more and more general system, 
features were added which could be of potential use to PDG and any scientific data 
compilation effort. Armed with greater capabilities in BDMS, PDG soon found ways to 
refine and extend its system which, in turn, led to the discovery of new features BDMS 
should have. Both BDMS and PDG's system have benefited immensely from this interplay, 
but an unfortunate consequence has been that both systems have taken much longer to 
develop than anticipated. Even now, in 1977, BDMS is still far from fully developed and 
PDG's BDMS-centered system is at least a year away from being fully operational.
However, a version of BDMS is operational and has many powerful features; all major 
components of PDG’s system are designed and are in various stages of being implemented.

PDG's new unified system contains three major databases: the document file, the 
reaction-data file, and the particle-properties file. Each file has its own hierarchical 
intra-record structure and its own encoding language. Each language has some data 
elements which must be encoded in a controlled vocabulary, for example particle names, 
and some which must be written in a rigidly-defined syntax, for example reaction names.
To a degree the files are interrelated in that some data elements appear in all three, 
for example particle names, and no matter where they appear they must be encoded in the 
same way. The controlled vocabularies and some syntax definitions are kept in auxiliary 
databases.

BDMS handles general database management operations for all databases: retrieval, 
update, storing, etc. Features of BDMS of special significance to PD G Ts application are: 
random access and update of individual records; batch and interactive capabilities with 
common command language; extensive retrieval facilities; hierarchical intra-record 
structure; support of character bit strings, integer or real (single or double precision) 
vectors; exits to user-supplied routines; and modular design and, for the most part, 
machine-independent FORTRAN IV coding (see Dr. Richards’ talk for more details).

In addition PDG has interfaced to BDMS extensive special-purpose software for input 
data verification, syntax checking, controlled vocabulary checking, data transformation, 
and special-purpose report generating. For the document-file, the simplest of the major 
files, the data elements are still sufficiently complex that the amount of special- 
purpose software is comparable to that of BDMS itself. For the more complex reaction- 
data file which is still under development, the relative amount of special-purpose 
software is expected to be much greater.

Most anticipated user queries can be handled by the BDMS retrieval features coupled 
with special PDG-supplied extensions. The BDMS query language (3) includes Boolean and 
relational operators, nested parentheses in search expressions, truncated and range 
search. Any data element value or quantity derived from it may be defined as a key. 
PDG-supplied software transforms some data element values before the keys are 
constructed, for example to ensure uniform units for the keys. PDG is also writing 
software to produce output in special formats most suitable to a given user’s needs or 
to interface to graphics.

The mere existence of PDG's system which is capable of handling all particle 
physics data is not sufficient to ensure that all data will be compiled. In fact, the 
volume of old uncompiled data, the production rate of new data and the amount of 
expertise necessary to compile all types of data are just too high for PDG to hope to do 
all steady-state encoding and catch up on the backlog by itself. With its unified 
encoding language, the powerful capabilities of the BDMS-plus-PDG software, and the 
transportability of the system, PDG has begun to recruit collaborators. The most likely 
candidates are the same groups that have produced or are producing the special-purpose 
compilations.

The document file plays a central role in PDG's effort to coordinate the efforts of 
the various groups which actually compile the data. It contains bibliographic 
information and experimental descriptions for all papers reporting new experimental data

- 176 -



and keeps track of the encoding status of all data. This database is now operational 
and is being kept up to date. Users can alert themselves to the existence of newly 
published or preprinted data as soon as they become available and can simultaneously 
determine whether they are encoded, in process, or not to be encoded. The 
Crystalographic Data Centre in Cambridge also uses a document database to coordinate the 
activities of its center, see Kennard et al. (4).

At present, initial work on the reaction-data file is being carried out by a 
collaboration whose members are located in Berkeley and Pasadena, U.S.A.; Rutherford 
Laboratory and Durham, England; and Glasgow, Scotland. This geographically diverse 
collaboration is absolutely necessary because no one location has members with the 
required expertise in all the classes of reaction data being compiled nor with all the 
knowledge and skills in systems development. The unified encoding language and the 
single software system implemented on different computers have been crucial in making 
this collaboration work. So far emphasis has been on developing and refining the 
encoding language, software system and collaborative procedures, even while a useful and 
very large, though far from complete, database is being established. During this 
development phase, close communication between all collaborators is essential. This 
collaboration could not have gotten off the ground without an initial visit by all 
members to Berkeley where the main systems development work is being carried out and 
could not have been sustained without day-to-day communication via the ARPA-Network.

PDG has not yet begun conversion of its particle properties file to BDMS since its 
pre-BDMS operation is so successful. Given that it now has a GDMS, PDG does plan to 
convert these operations eventually.

V. A DATA MODEL FOR TABULAR DATA

When it designed BDMS, PDG felt that a sufficiently accurate model of the intrinsic 
logical structure of the data could be constructed using a hierarchical intra-record 
structure together with, among other things, data elements which were real vectors. 
However, the most common way in which data are presented in the literature is in the 
form of tables with column headings and row labels giving the names and values of the 
independent variables and the body of the table containing the data points. PDG could 
find no satisfactory way to model these tables and the associated labels using just the 
associations implied by a hierarchical structure. Instead, PDG designed a very 
efficient and accurate representation of tabular data in terms of a multi-dimensional 
array model. In PDG's implementation the data and labels are still stored and input in 
the same way as hierarchically associated quantities but special PDG add-on software 
applies and interprets additional associations which are nonhierarchical.

We feel the ability to input and manipulate tabular data conveniently and 
efficiently should be part of any scientific GDMS and so we briefly outline our 
particular method.

Consider the following table:

s,u s ,u

w
W1 w2

XI X2 X3 \^Z
Z1 z2 Z1 Z2

X11 X12 x13 *1 y2 y3 y4

X21 X22 X23 y5 ‘ • y8

X31 X32 x33 y9 • •

X41 X42 x43 y13 • • y16

-  V 7  -



In this table the capital letters represent the names (and units) of all the independent 
variables which are needed to characterize the data points. The corresponding lower 
case letters represent the values of these independent variables. Finally, the y ^’s 
represent the data points ( and  errors). The association of independent variables and 
data points is obvious from the tabular representation.

Now, consider the following fragment of a hierarchical record structure:

TABLE-NAME

n o 5 e

1 r
N V

where N contains the names (and units) of the independent variables, V their values, Y 
the data points (and errors), and NODE just links related names to values. A possible 
encoding language is :

TABLE-NAME=T ABLE;

NODE; N=Z; V - z ^ z ^

NODE; N=W; V - w ^ w ^

NODE; N=S;U; V=s;u;

NODE; N=X1 ;X2 ;X3; V=xn  ;xl2 ;x13 ;x21 ’ * * ,X43 *

Y=y1 ;y2 ;y3 ;y4 ;y5 .... y16 ’

It is very convenient to regard Y as a multidimensional array with the following 
structure: Y(n(Z),n(W),n(S,U),n(Xl,X2,X3)) where n(Z) is the number of distinct values 
of the variable Z (2 in the example), n(W) is similar, n(S,U) is the number of distinct 
pairs of s,u values (1), and finally, n(Xl,X2,X3) is the number of distinct (X1,X2,X3)- 
triplet values (4). Z is the fastest running variable, the (XI,X2,X3)-triplet is the 
slowest. This array representation of the table makes it very easy to formulate and 
visualize any data selection or manipulation operation: for example, selecting data 
points with certain values of the independent variables amounts to_projecting out rows, 
columns, or planes from the table, or equivalently from the array Y (the example should 
be regarded as a 3-dimensional table with the (XI,X2,X3)-axis down, the Z-axis across, 
and the W-axis into the paper with the right half of the table as the second sheet) .
This model resembles the relational model and shares its conceptual simplicity.

The convenience of using this model and its efficiency are related to the very 
precise way in which it models the intrinsic logical structure of the data. Consider a 
dependent variable y which is a function of n independent variables. Then y is a 
function in an n-dimensional space and the data points y^ may be regarded as lattice 
points in that space. Finally, a typical table will be a projection on 2, perhaps 3, 
dimensions of that n-dimensional lattice.

As an aside, we remark that PDG has experienced great difficulties in converting 
many non-BDMS files to BDMS. First, PDG had to overcome such tedious, yet 
straightforward, problems as translating free format quantities into controlled 
vocabularies, allowing for different encoding standards, correcting errors, removing 
duplication, and finding omissions. However, a much more difficult task was translating 
compilations where the data model used was not defined precisely enough and, as a result, 
there were ambiguities in what the actual associations between elements were. Such

- 178 -



cases were quite common for descriptive information in compilations using sequential 
card-oriented formats and could only be resolved by looking at the source publications.

VI. CONCLUSIONS

The Particle Data Group has designed and is now implementing a system of databases, 
encoding languages, database management software, and operating procedures that it hopes 
will resolve most problems with data compilation and dissemination in particle physics. 
PDG's operation requires both extensive general database management capabilities as well 
as numerous capabilities particular to its application. There is no doubt that most of 
the general capabilities could be used in other scientific data handling operations and 
that, likewise, most of the general capabilities developed for other applications could 
be used productively by PDG. Since the development of a GDMS is so very difficult and 
time-consuming and at the same time so essential to operations such as PDGTs, the 
highest priority should be given to prompt development of a GDMS suitable for most 
scientific applications and this development should be coordinated at the national, or 
perhaps even international, level. BDMS and some of the other systems described at this 
conference have many of the capabilities required of such a system.

An especially important characteristic of any GDMS is how well it can model the 
intrinsic logical structure of the data being handled. In this regard PDG found it 
necessary for the GDMS to be able to handle multidimensional arrays. Since such a 
capability is not yet in BDMS, PDG has implemented a scheme through special add-on 
software.

ACKNOWLEDGMENTS

PDG's system has been built by the ideas and hard work of many people without whose 
contributions we would have had nothing to report. The design and implementation of 
BDMS has been almost entirely the work of David Richards. Those who planned, developed, 
and tested the software and procedures particular to PDG include B. Armstrong,
T. Coffeen, R. Crawford, F. Gault, C. Horne, M. Hutchinson, R. Kelly, T. Lasinski,
B. Read, R. Roberts, T. Trippe, F. Uchiyama, V. White, and G. Yost. Finally, a great 
deal of motivation and inspiration, especially in the early stages of the project, was 
provided by Geoffrey C. Fox and Arthur Rosenfeld.

REFERENCES

1. Particle Data Group, Rev. Mod. Phys. 48_, SI (1976).
2. A. H. Rosenfeld, Ann. Rev. Nucl. Sci. 25_, 555 (1975).
3. BDMS User's Manual, D. R. Richards, LBL-4683 (Revision 1) unpublished.
4. 0. Kennard et al., Chemistry in, Britain 12, 213 (1975).

- 179 -



USE OF A GDMS FOR HIGH-ENERGY REACTION DATA

W.G. Moorhead.

CERN, Geneva, Switzerland

1. ABSTRACT

At CERN, data on high-energy reactions is "being compiled using a 
Generalized Data Management System. The GDMS is a stand-alone system 
designed for administrative and engineering applications. The Data Base 
at present contains about 20,000 cross-section values, each linked to a 
description of

a) the corresponding reaction, and

b) the publication from which the value was derived.

The immediate objective is to produce the widely circulated Compilation 
Reports, and the standard Report Generator of the GDMS is being used for 
this. Direct retrieval is also possible.

2. The GDMS

A generalized data base management system called TABLOID was imnle- 
mented for the CDC 6000 Series Computers under SCOPE 3.4, primarily to 
meet some of the needs arising in the construction of the 300 GeY accele
rator. From an external point of view, TABLOID is a self-contained GDMS 
by means of which Data Bases of a fairly general type may be defined, and 
procedures for update, retrieval, sorting and report generation specified, 
all in a (rather primitive) high level language. Internally, TABLOID 
interfaces with the CDC SCOPE Indexed Sequential (SIS) file organization 
module for storage and access of data on disks,.

In TABLOID, a Data Base consists essentially of an SIS file con
taining variable length records composed of items, sub-items, and repeating 
items to one level only, the organization within a record being defined 
by a schema. Some of the items are designated in the schema to be the com
ponents of the unique Data Base Key used to access the records. The schema 
and the user-defined procedures written in the TABLOID language are kept 
in source form in a separate word-addressable file.

In addition, a second SIS file containing any nymber of "dictio
naries" may be attached. Each dictionary has its own schema defining its 
record format and key, in the same way as the main Data Base. The key is 
generally an abbreviation which may occur many times as an item in the 
main Data Base, and the purpose of dictionaries is thus to avoid the rea
ding in and storing of excessive amounts of redundant information.

- 180 -



TABLOID is now used for about a dozen Data Bases relevant to the 
installation of cables, magnets and other equipment in the accelerator 
tunnels and auxiliary buildings, as well as for other applications.

One of the limitations of TABLOID is that it is used entirely in 
batch mode and no interactive facilities are envisaged for it, though 
batch ¿jobs may be submitted via an interactive terminal.

3. THE HIGH-ENERGY REACTION ANALYSIS APPLICATION

TABLOID is being used to produce compilations of cross-sections for 
certain classes of high-energy reactions. There is a main Data Base file 
containing at present about 20,000 records where each record represents 
one data point obtained from a publication. A data point is a cross- 
section and its errors for a particular reaction, with a specified energy 
of incident particles, and possibly with specified decay modes of second
ary particles. A reaction is of the form

I + T A + B + C  ••• ,

where I is an incident particle; T is a target particle and A, B, C, 
etc., are secondary particles, e.g.,

PI + P P + RHO + PI + PI°

The cross-section may, in fact, correspond only to a channel in which one 
(or more) of the secondary particles decay into other particles, which 
may in turn decay, etc. For example, a reaction can take the more 
general form :

I + T - * A  + B + C ...

L* D + E .. .

U  ^ g + . . .

The Data Base key of the main file consists of the following
items :

i) an eight character code, such as A 100000, for the reaction;

ii) the energy of the incident particle in MeV/c;

iii) a four character code, such as S102, for the publication 
reference;

iv) the decay mode and particle number of the first secondary 
particle listed as decaying.

The records in the main file are thus kept in ascending order of 
these values, and it is possible to retrieve rapidly by reaction, code 
plus energy range.

There are five dictionaries of which the three most important
are :

i) a Reaction Dictionary containing fuller details of about 3500 
reactions referred to by the eight character code in the main 
file. The incoming and outgoing particles are recorded in this 
dictionary, together with a threshold energy for the reaction;

- 181 -



ii) a Particle Dictionary containing for each particle its mass
and for each decay mode the decay products, together with the 
branching ratio and its error. The particle name which is used 
as key component in this dictionary has 10 characters, and may 
have occurred as a secondary in the Reaction Dictionary or as a 
decay product in the Particle Dictionary itself. There are about 
6000 entries in this dictionary at present;

iii) a Reference Dictionary containing expanded (but still coded)
descriptions of about 1500 published papers referred to by the 
four character reference code in the main file. An example of 
a coded description of a publication is :

GRARD, PL59B, ̂-09-75

which means a paper by Grard et al., starting at page 409 of 
Phys. Letters, Volume 59B (1975)«

Procedures for updating the main data file and the dictionaries 
have been provided for the end user, together with simple retrieval faci
lities for sampling parts of the files. Pre-processing programs had to 
be provided to convert the variable field input cards preferred by the 
user to the fixed field cards required by TABLOID.

An example of part of a page of the compilation report generated 
by TABLOID is shown in Pig. 1. Much calculation and dictionary searching 
can be performed in correcting the cross-section and its errors to take 
account of the decay modes, possibly to several levels. A table of 
contents is also produced, and output is generated for a post-processor 
program which makes histograms and graphical plots.

- 182 -



APP

CROSS
SECTION

HKFEHENCE FOOT
NOTES

REACTION (K*+890/K*-990) (K-/K+)

(K‘4-890/) » KL (PI+/PI-) 

(K*+890/) - KS (PI+/PI-)

THRESHOLD 

REACTION 2 .....

(K*+890/) * KS (PI+/PI-)

THRESHOLD 

REACTION 3 .....

---- REACTION 4 .....

(K*+890/) - KS (PI+/PI-)

REACTION 5

THRESHOLD

____ REACTION 6 . ... .

(K*+890/) » KS (PI+/PI-)

____ REACTION 7 .....  APP ■

(K*+890/) * KS (PI+/PI-)

(K*+890/) » KS (PI+/PI-) & (K*-890/)

(K*+890/) » KS (PI+/PI-) & (K*-890/)

2.149 0.585 1.2000 0.21000 0.02000 BARLOW,NCA50,701-67
2.149 0.585 1.2000 0.07000 0.00700 BARLOW,NCA50,701-67

CORRECTED ---- 0.07D00 0.00700
2.149 0.585 1.2000 0.08500 0.00700 DUBOC,NPB46,429-72

CORRECTED ---- 0.08500 0.00700
2.158 0.604 1.2240 0.06390 0.01510 HANDLER,NPBl10,173-76
2.169 0.629 1.2560 0.07580 0.01540 HANDLED NPB110,173-76
2.179 0.654 1.2860 0.02260 0.01100 HANDLER,NPBl10,173-76
2.188 0.676 1.3130 0.05900 0.01310 HANDLER,NPBl10, 173-76
2.201 0.706 1.3500 0.06670 0.01470 HANDLER,NPBl10,173-76
2.378 1.136 1..8500 0.08900 0.01800 CHAPMAN,NP342,1-72

3.519 0.000 0.0000 9 DATA POINTS LISTED

►+890/K*- 890) (K-/K+) PI0

2.149 0.585 1.2000 0.24700 0.04000 BARLOW,NCA50,701-67
2.149 0.585 1.2000 0.06520 0.00760 DUBOC,NP346,429-72

CORRECTED ---- 0.06520 0.00760
2.158 0.604 1.2240 0.06260 0.02930 HANDLER,NPBl10,173-76
2.169 0.629 1.2560 0.05850 0.02440 HANDLER,NPBl13,17 3-76
2.179 0.654 1.2860 0.06230 0.02930 HANDLER,NPCl10,173-76
2.188 0.676 1.3130 0.06450 0.02350 HANDLER,NPBl10,173-76
2.201 0.706 1.3500 0.04000 0.02350 HANDLER,NPBlId,173-76

5.189 0.889 1.5677 7 DATA POINTS LISTED

+890/K*- 890) (K-/K+) (PI+/PI-)

2.158 0.604 1.2240 0.02640 0.01690 HANDLER,NPBl10,173-76
2.169 0.629 1.2560 0.03010 0.01900 HANDLER,NPBl10,173-76
2.179 0.654 1.2860 0.03170 0.01960 HANDLER,NPBl10,17 3-76
2.188 0.676 1.3130 0.01340 0.0145C HANDLER,NP3110,173-76
2.201 0.706 1.3500 0.01700 0.01810 HANDLER,NPBl10,17 3-76
2.378 1.136 1.8500 0.38100 0.06100 CHAPMAN,NPB42,1-72

6 DATA POINTS LISTED

'+890/K*- 890) (K-/K+) (2PI+/2PI -)

2.149 0.585 1.2000 0.00950 0.00420 DUBOC,NPS46,429-72
CORRECTED ---- 0.00950 0.00420

►+890/K*- 890) K0 (PI-/PI+)

2.149 0.585 1.2000 0.57900 0.08000 BARLOW,NCA50,701-67
2.158 0.604 1.2240 0.05140 0.01460 HANDLER,NPBl10,173-76
2.169 0.629 1.2560 0.14440 0.03510 HANDLER,NPB110,173-76
2.179 0.654 1.2860 0.09740 0.05100 HANDLER,NP3110,173-76
2.188 0.676 1.3130 0.08710 0.03310 HANDLER,NP3110,173-76
2.201 0.706 1.3500 0.07470 0.01890 HANDLER,NP3110,173-76

3.519 0.000 0.0000 6 DATA POINTS LISTED

►+890/K*- 890) KS (PI-/PI+)

2.149 0.585 1.2000 0.03390 0.00680 DUBOC,NPB46,429-72
CORRECTED ---- 0.03390 0.03680

2.158 0.604 1.2240 0.02860 0.02850 HANDLER,NPB110,173-76
2.169 0.629 1.2560 0.00480 0.01960 HANDLER,NPB110,173-76
2.179 0.654 1.2860 0.03750 0.02570 HANDLER,NPB110,173-76
2.188 0.676 1.3130 0.01230 0.02030 HANDLER,NP3113,173-76
2.201 0.706 1.3500 0.00990 0.02200 HANDLER,NPBl10,173-76

6 DATA POINTS LIFTED

►+890/K*- 890) (K*-890/K*+890)

2.149 0.585 1.2000 0.52400 0.00670 DUBOC,NPB46,429-72
CORRECTED ---- 0.52400 0.00670

3 (PI+/P1»  (NC)
2.149 0.585 1.2000 0.07030 0.00620 DUBOC,NPB46,429-72

5 PI-(NC)
2.149 0.585 1.2000 0.05240 0.00670 DUBOC,NPB46,429-72

____ REACTION 8 .....  APP

(K*+890/) - KS (PlVt*I-) * K*0890

(K* + 890/) ■ KS (PI+/PI-) & K*0890

- (K*+890/K*-890) K*0890 (PI-/PI+) 

KS PI0
2.149 0.585 1.2000

CORRECTED ----
(K+/K-) (PI-/PI+)

2.149 0.585 1.2003
CORRECTED ----

2.158 0.604 1.2240 
2.169 0.629 1.2560

0.00200
0 . 01200

0.01860
«.027930.02000
0.02200

0.00310
0.01861

0.00380 
0.00571 
0.01320 
0.01580

DUBOC,NPB46,429-72

DUBOC,NPB46, 429-72

HANDLE R,NP[3llk), 173-76 
HANDLER,NPB110,173-76

NOTES Ï-DEAM MOMENTUM IS CENTRAL VALUE. SEE ORIGINAL PAPER

FIG. 1: FRAGMENT OF A COMPILATION RETORT

- 183 -



THE WORLD NUCLEAR POWER PLANT DATA BASE 

OF THE FRENCH ATOMIC ENERGY COMMISSION

J.C. Leralle - GIDE - DPg - Commissariat a l'Energie Atomique 
G.A. Martin - Service APL - CISI

ABSTRACT

The expansion in the construction of nuclear plant for energy 
production has brought with it a need for data on the characteristics and 
performance of nuclear power plant, to be used for forward planning and 
other studies by governments, public and private enterprises in the 
nuclear field, and financial institutions.

The Data Base described in this paper is an implementation of 
a GDMS written in APL, and carries technical and economic data on nuclear 
power installations worldwide.

CONTENTS

INTRODUCTION

2. DATA BASE ORGANISATION

2.1 Data structures

2.3 Technical characteristics

3. THE QUERY LANGUAGE

3.1 Typical Selection Sessions

3.2 Listings and Balance Sheets

3.3 Direct use of user defined functions

3.4 Interactive updating

3.5 Multi-user Data Base

4. CONCLUDING REMARKS

5. REFERENCES

- 184 -



1. INTRODUCTION
In 1974-1 the Economic Information and Documentation Group of 

the Program Department within the French Atomic Energy Commission (CEA - 
DPg - GIDE) asked CISI, its EDP subsidiary, to develop a system for 
handling information about the nuclear power plants of the world.

As a government body, the CEA has to answer various questions 
about the nuclear market, which may condition political and economic 
decisions. The increasing number of queries made it necessary to ratio
nalize this activity. Although the data are available, they are often 
hard to extract from the literature, or simply not published, and it 
seemed appropriate to store these data on computer media. While the data 
themselves do not change rapidly, the decision to go Data Base was jus
tified by the wide variety in type and the increasing number of queries.

A first attempt, using a conventional GDMS, proved ineffective, 
and was followed in 1976 by a feasibility study in order to choose bet
ween APL and SYSTEM 2000. While SYSTEM 2000 seemed well adapted to the 
data structures to be represented, the choice of APL was motivated by 
the need to allow for unpredicted changes in the system, and for complex 
computations on the data carried within it.

In June 1977? all basic software for the system was available 
(data structures, access methods, reports, retrievals, etc....), but 
the data themselves were still incomplete, because of the need for meti
culous checking. Some further delay was due to new demands on the sys
tem from the users : new facilities can be implemented rather easily, 
which incites the users to ask for more.

The present system is a subset of a more general Data Manage
ment System LGI written entirely in IBM APL-SV /~2^7 and in which 
the concepts of the paper 9An APL approach to Data Bases1 are fully im
plemented. LGI is used by CISI for several data bases, in particular 
Sea Water Desalination Plant (this base will later be linked to the 
Nuclear Power Plant data), Plutonium Needles (a real-time data base 
for the Fontenay-aux-Roses production centre), computer systems in the 
CEA (there are 5̂ -0 systems with more than 4-K of memory) and some small 
commercial data bases.

2. DATA BASE ORGANISATION

2.1 Data structures

Some criteria will have a single value for each plant (e.g. 
name, country, etc...) while some others will have multiple values. The 
first will be represented by vectors of numbers or arrays of characters 
(e.g. names) where each vector (or array) is a logical record in a file. 
This set of vectors constitute level 1 of our data base.

There are two types of multiple value criteria : the history of 
power changes (normally 2 or 3 changes during the life of the plant, with 
a maximum of 9) and the history of electricity production (one finds one 
set of data per time interval, normally for each month, though the perio
dicity may vary between countries. A plant may have a life of 20 years. 
These two sets of data are normally described as Repeating Groups.

Power changes are few, so that one may represent each (multiple 
value) record as a matrix, in which a row carries one set of information 
for all the plants : the first row is the set of the first (initial)

- 185 -



powers, etc... If we associate a relative pointer (number of the row) 
to this array structure, one may consider the level 2 information as 
similar to the level 1 information : access will he restricted to a 
single value of the pointer at any given time and the number of occur
rences will he introduced as a direct (level 1) criterion to know 
whether a plant may he selected or not for a given value.

The set of data on the electricity production of a plant is 
known as the Operating Experience of that plant. It will constitute 
our level 3 information. A special access method (historic) has been 
developed to manage this information properly (see OJ>*. It will he 
possible to scan the history of the plants from the' beginning (e.g. the 
first 10 years of a set of plants), from the end (e.g. the last 5 years 
of the life of the plants) or from any random point (e.g. the 2 years 
after initial criticality or the 2 years before the date of cancelling).
To increase the performance, some statistics will be automatically recom
puted each time the level 3 data is updated (e.g. the production in the 
most recent period or for the past 12 months or for the current calendar 
year). In Prance, the PEON commission has defined an Energy Utilisation 
Factor k :

, _ 100 x gross electrical generation

gross electrical power x related period

For a set of plant units, one may compute the average of the 
k*s or estimate a parameter k in function of each individual period and 
gross electrical power.

The data structures of level 3 are defined but not yet loaded. 
The initial loading will be done in September 1977 and will take a few 
months (there are 220 active generating plants!;.

The data structures may be summarized as follows :

LEVEL 2 (660)
LEVEL 3 (220)

National "Reference Plants" (having characteristics defined by 
the PEON commission) are also recorded, for comparison with a given 
reactor or class of reactors such as PWR.

-  186  -



2.2 System architecture

The APL functions are organized in 4 workspaces : each work
space may he loaded independently.

2.2.1 Workspace DEFINITION

This workspace is under control of the Data Base Administrator 
(DBA) and contains functions for :

- file creation and deletion

- initial data hase loading (in hatch mode)

- updating the various tables

- data base administration (various access tables)

- program library maintenance.

The data structures of the present base were defined directly 
in APL. A Data Definition Language is under consideration* but the need 
for one is not immediately evident, since the APL coding of the present 
structure .took only one day9s work. It may be preferable to employ the 
APL support specialists to code data structures rather than construct a 
DDL which will consume equal coding effort but may result in less effi
cient data structures.

So as to leave maximum memory in the SELECTION workspace, user- 
defined functions are stored in an overlay file which is maintained under 
the control of the DBA, using the DEFINITION workspace.

We may request a list of active keywords and tables (Fig. 1$J&; 
the display can be output in either French or English).

2.2.2 Workspace SELECTION

All search operations are run in the SELECTION workspace using 
the query language described in Section 3* Access to this workspace is 
in general open only to the DBA : the operations performed are :

- EDITION on high-speed printer or typewriter terminal

- MAJ (mise h jour = update). Currently only the DBA is authorised to 
update this data base, and updates are performed interactively. 
Multiple-user updating could be quickly implemented using shared files 
and a shared variables lock/unlock control mechanism

- BILAN produces balance sheet listings of power plant performance 
(level 2 data). These may be in standard form (balances by country 
and type of reactor over a given period) or follow the user*s selec
tion criteria

- LISTE for a given keyword prints out all values within the required 
subset

- VALEURS prints the complete set of values for a keyword.

In addition, system commands are available for routing 
output within the CISI network, dumping tables from the data base, 
query optimisation and query storage on the QUESTIONS file.

- 187 -



2.2.3 Workspace DUMP

This workspace contains two main functions :

- dump of the full data base on a line printer (tables and formatted 
images for each plant)

- selective dump of a set of keywords on punched cards for large updates. 
Some information is pre-punched on the card (e.g. the internal address) 
to facilitate the updating operations.

2.2.4 Workspace QUESTIONS

In data bases using the LGI /”1_7 software, this is the normal 
workspace for external users other than those authorized to use the 
SELECTION facilities. Any query may be saved from a SELECTION session. 
The optimized (compiled) search code is kept as well as the initial 
source for further visualization and use.

For technical and political reasons external users may not at 
present access directly this nuclear power plant data base. Queries are 
now handled by the DBA, but client access to the data base is,under 
consideration,

2.3 Technical characteristics of the system

The system uses the standard 80 Kbyte workspaces of the APL-SV 
Release 2 system installed in CISI ; some 40 Kbytes remain free in
a workspace for the user's current operations. Data are recorded on OS 
files, while APL functions are called for use in overlay from a library 
file. Some 350 Kbytes of disc space is sufficient to store the charac
teristics of up to 900 power plants. The present population of the base 
is 660 plants (with data in levels 1 and 2) of which about 220 are 
producing electricity (level 3 data). System storage capacity can be 
extended by reorganizing the disc space allocations. The cost of execu
tion for each search expression in the SELECTION workspace is printed 
with the reply, and an accounting routine for cost survey and analysis is 
available in the APL public library.

3. THE QUERY LANGUAGE

The query language used is a subset of that used in LGI, and 
allows for execution, normally in the SELECTION workspace, of the various 
standard operations EDITION, LISTE, MAJ, etc. Pour types of expression 
are accepted :

- Logical expressions using arguments connected by ET (and), OU (or),
SAUF (and not), PAS (not). These arguments may be arithmetic expres
sions involving keywords (keyword = xxx etc.) or the results of 
previous selections.

- Computational expressions yielding a value rather than acting as a 
selection mask.

- Directly executed APL expressions .

- System management commands.

- 188 -



3.1 (Typical selection sessions

The conversation "below (with, user commands outlined) is an 
example. Line numbering is done "by the system.

)L0AD SELECTION ---- -
SAVED 1 8 . 1 7 . 5 5  08/01/77
POINTEUR = 1 
n ■

SELECTION □
PAYS=US[1 ] ______

. . .TROUVES 
COUT :

: 282 
1 o 9 7

[2] ET FILIERE=PWR

C0U1
164 

2o 53

[3] 1 ET CONSTRUCTEUR = WEST 
oooTROUVES : 0 
COUT : 2 « 97

[4] (LIGNE rTÌ-
.TROUVES

COUl
: 164 
1 0 34

[5] _____
» . o VALEUR 
ALCO 
BAW
CoEo
MARTIN 
ORNL 
WEST*

COUT :

LISTE CONSTRUCTEUR

loading the workspace

relative address for level 2 
file opening completed

(actions automatically taken 
when loading the workspace)

(number of items answering 
. (the question

the cost is automatically given 
in French francs)

these conditions are linked 
to the previous condition

come back to the selected 
subset at line 2

the result is now a value

set of exhaustive values

the value WEST is unknown, hence the result in

Æ 7
2 . 0 2

[5] 1 ET CONSTRUCTEUR=WEST. f  
oooTR0UVES : 9 0 
COUT : 2 o 8 6

this condition is combined with 
the last active one, i.e. line

B J

[ 6 ]
o . . TROUVES 
COUT

(LIGNE 2 )ET CONSTRUCTEUR^ALCO
\ 2 
3 « 64

activation of a new selec
tion

[7] )REFERENCES -system command (like in APL)

10 04 PM2-A-(GROENLAND) 
1002 SM-l-A(GREELY) 

COUT : 3.18

US
US

[7] El
COUT DE LA SELECTION 22.28

Control is now returned to APL

end of SELECTION 

TOTAL COST

- 189 -



User queries are free of the constraints imposed by some in
formation retrieval systems. The results of a selection may be further 
refined in succeeding expressions ^ i n e  £} or recalled to become the 
active selection ^Tines 3 and 4 below7 which may be useful when a selec
tion is empty, as in the question 'LISTE CONSTRUCTEUR• on line 3 below : 
this represents the intersection of the first 3 search lines.
Selection lines giving an explicit result, indicated by the message ... 
VALEtJR are in fact not normally retained as part of the selection, 
but may be kept following a system command.

It will prove cheaper to use complex selection expressions, 
as showii in this search dialogue, than a series of simple conditions 
(5 francs for 3 conditions combined, rather than 7 francs as in the 
first example). Typical comparison operators are /£, £• (belongs to 
a list), cG-ies between given limits) , , and this set may
easily be extended.

SELECTION examples of complex expressions

[1] (PAIS=US)ET(FILIERE=PWR)ET (CONSTRUCTEUR=WEST.) 
. „ „ TROUVES : 9 0 
COUT : 5 « 3 5

[2] I (PAIS=US)ET(FILIEREePWR, PHWR)SAUF( CONSTRUCTEURS WEST.,ORNL) 
...TROUVES
COUT

73
6.60

ALCO
BM7
C .E .
MARTIN

COUT : 1.96

these functions are using the 
last active mask, i.e. line /5/

The SELECTION function may be called tinder SELECTION to indicate 
that the last active mask in the workspace has to be used.

[3] SELECTION
. . .TROUVES 
COUT ;

: 73 
2 „ 67

[4] 
o„ .TROUVES 
COUT :

ET CONSTRUCTEUR=B*W
; 33 
4.76

the active mask is the 
result of the line 2

intersection with a new 
condition

which is useful for the parameterisation of the questions recorded.

-  190 -



3.2 Listings and Balance Sheets

One may continue with a listing of the selected subset (33 
plants) just b y entering EDITION :

LARGEUR : 37 
MOT_CLEF : CONSTRUCTEUR 
LARGEUR : 50 
MOT_CLEF : SITE  
LARGEUR : 5 5 
MOT_CLEF : TYPE 
LARGEUR :64 
MOT_CLEF : COMPAGNIE 
LARGEUR % 74 
MOT_CLEF : V,
PHASE DE TRI 
MOT_CLEF : S I  
MOT_CLEF : COM,
MOT_CLEF : Vx 
RUPTURE 
MOT_CLEF ; 5 J 7  
MOT CLEF : V 
DECOUPAGE ?

the subset is small enough (33). 
One may edit a short report.

1. Select the keywords. The system 
answers with the print width 
(LARGEUR). Our present report 
will have a width of 74 charac

ters.

2. Sort phase

Changes in the sequence (one 
blank line will be inserted)

4. To allow automatic page format
ting

fEnd of data entry symbol. Default 
/ options are taken if it is the 
Lonly answer.

A pause is now made to allow paper positioning, for example 
before a new page :

No NOM PAYS I FILIERE |CONSTRUCTEUR|SITE|TYPE \C0MPAGNIl

1 142 ARKANSAS-ONE-1 US 1PWR \Ba W 1 1 1COMMERC.\APL

1101 INDIAN-POINT-1 US 1PWR \BAW I 1 iCOMMERC.\C0N_ED

1175 MIDLAND-1 US IPWR \B*W I 1 1COMMERC. 1 CPC

1176 MIDLAND-2 US 1PWR \BAW I 1 1COMMERC.1 CPC

1265 GREENWOOD-2 US 1PWR \BAW I 1 1COMMERC. 1DETR. ED

1266 GREENWOOD-3 US IPWR \Ba W I 1 1COMMERC. 1DETR. ED

1127 OCONEE-1 US 1PWR \Ba W I 1 1COMMERC.1 DUKE

1128 OCONEE-2 US IPWR \Ba W I 1 1COMMERC.1 DUKE
1143 OCONEE-3 US 1PWR \Ba W ! 1 1 f f i T ~ ~  liíñlT —

THREE-MILE-ISLAND-1 US\PWR 
TRREE-MILE-ISMJ¡P-~^J?S | PWR 
ERIE-1:

\BAW

\BAW
________^trS^T^HANFORD -1 US 1PWR \Ba W
T21+3 WPPSS-H-HANFORD-3 US 1PWR \BAW

1159 CRYSTAL-RIVER-3 US 1PWR \BAW

1309 SOUTH-RIVER-1 US 1PWR 1 Ba W
1310 SOUTH-RIVER-2 US 1PWR \Ba W
1311 SOUTH-RIVER-3 US 1 PWR 1 Ba W

p.. 1 u vmMERu •TVEP
1 1COMMERC. I VEP
1 1COMMERC. 1 VEP
1 1COMMERC. 1WPPSS
1 ICOMMERC. 1WPPSS

2 1COMMERC. IFPC

4 1COMMERC. t CPaL
4 1COMMERC. \CPAL
4 jCOMMERC. \CPAL

COUT 16. 22

-  I9-I -



Using the appropriate system command will permit this report 
to "be kept as part of the selection (saved as a question) either in a' 
fixed context (output keywords and sort conditions) or leaving the user 
to choose the sort order and the breaking conditions. It is possible to 
use direct keywords (as above) or computed keywords by entering arith
metic expressions (e.g. COUPLAGE-TRAVAUX) with an appropriate title.

One may now get a power balance (for the selected units) by 
calling the function BILAB' :

[5] BILAN 1 9 7 7 0 1 0 1
RUPTURE PAYS ? : NO 
RUPTURE FILIERE ? : NO

CENTRALES INSTALLEES

? T H
PBRvjt

19157.0 6689.0 6 3 8 2 . 0 8

t
£ENTr a l e s _ e n _e x p l o i t a t i o n  nutv-Aifcp

16305.0 5729.0 5 4 76 . 0  7 

CENTRALES _EN CONSTRUCTION

29836.0 1 0251.0 9 7 2 9 . 0 10 

CENTRALES_EN_COMM.AN DE

51006.0 176 4 4 . 0  1 6 7 9 4 . 0  15

CENTRALES_T0TALES

99999.0 34 584.0 329(
COUT : 19.40

[5] [ T f

COUT DE LA SELECTION : 26.10

3.3 Direct use of user defined functions

The BILAN function was specially written for the N.P.P. Data 
Base. There are several other specific functions. For example, one may 
compute the average period between the start of construction (TRAVAUX) 
and the first production of electricity (GOUPLAGE), i.e. the mean time to 
become operational :

- 192 -



SELECTION

Cl] I SELECTION ET(COUPLAGE*Q)ET (TRAVAUX^O)
. . .TROUVES : 8 
COUT : 4,60

[2] MOYENNE COUPLAGE MOINS TRAVAUX
. . . VALEUR : 
2 2 5 3 . 2 5  ----

COUT : 2.57

[2] ANNEE MOYENNE COUPLAGE MOINS TRAVAUX
. , , VALEUR : 
6 2 1 ------------:------ ^  \ ) C * W  VW.

C*W<tau<Jl v£cu-}
COUT : 2.95

[ 2 ] Q ]

COUT DE LA SELECTION : 10.71

It is easy to install new functions from public libraries. For
example, to implement a histogram facility, we define a HISTOGEAMWE 
function with the appropriate specifications (as explained in and
we copy the required functions as explained in the STATPACK Reference 
Manual /~5_7. By a )SAVE command, the new functions are kept as part of

)LOAD SELECTION 
SAVED 1 5 . 1 4 . 1 7  08/02/77 
POINTEUR = 1
0

)C0PY 4 2 STATI DESCRIPTION STATISTICS HISTOGRAM MEDIAN MODE 
SAVED 9 . 28 . 4 5  09/17/76

)COPY 42 STATI GEOMETRIC HARMONIC QUADRATIC CUMULATIVE 
SAVED 9 . 2 8 . 4 5  09/17/76

)SAVE
1 5 . 1 6 . 4 7  0 8 / 0 2 / 7 7  SELECTION

VIIISTOGRAMMEIOIV

our DB]

tn

$VB ^ O c W V i O O e  Ouu A  

Ç u v ĉ Và c m a  Î tôwa. •Avo.

V R+PAS HISTOGRAMME 7; D J 0 ; Q P P
[ i  ] uio+i
[ 2 ] GPP-f-6
[3] V+M&S1Î/V

[4] ±(Pi45<0)/,7-t-(K^0)/7'
[5] (iPytS) DESCRIPTION V
[6] R - 10
[7] 2 1 p ’ '

V

- 1 9 3 -



The HISTOGRAMME function may now be used directly -under 
SELECTION. It has taken less than one hour to find the appropriate func
tions, to write the interface and to test it under SELECTION. If this 
new capability is recognized as important, one may ask the Data Base 
Administrator to include this set of functions in the data base library 
for dynamic call, which will reduce demands on the user*s workspace. The 
use of the HISTO GRAMME function is shoyn below :

SELECTION

[1] I P A Y S = U S I 
. . .TROUVES : 28 2 
COUT : 1.98

[2] "10 HISTOGRAMME COUPLAGE MOINS TRAVAUX

A DESCRIPTIVE ANALYSIS ON THE INPUT DATA VECTOR YIELDS THE FOLLOWING
MAXIMUM 3656
MINIMUM 3 0
AVERAGE 1 7 4 1 . 7 1
STD.DEV 7 0 7.624
RANGE 3626
NO. OBS 96

ENTER UPPER AND LOVER LIMITS IN VECTOR FORM.
IF  THE COMPUTED MAX AND MIN ARE DESIRED , ENTER 0 
□ :

3683 30 ------------------------------------- -------
FREQUENCY HISTOGRAM ; EACH STAR = 1 PERCENT

one will get 
a repartition 
per year 
(365.25 days)

LOWER UPPER NO o REL.FREQUENCY IN PERCENT
30.00 395.30 3 ***

395.30 760.60 6 * * ****
7 6 0 o 6 0 1 1 2 5 . 9 0 7 * * * * * **

112 5*90 1 4 9 1 .2 0 21 * * * * * * * * * * * * * * * * * * * * * *
1 4 9 1 . 2 0 1 8 5 6 . 5 0 17 * * * * * * * * * * * * * * * * * *
1 8 5 6 . 50 2 2 21.80 19 * * * * * * * * * * * * * * * * * * * *
2221 . 8 0 2587 . 1 0 13 * * * * * * * * * * * * * *
25 87.10 2952.40 5 *****
29 52.40 3 317.70 4 ****
3317 . 7 0 3 6 8 3 o 0 0 1 *

FOLLOWING ARE PERCENT AND NUMBER OUTSIDE INDICATED LIMITS
3 0 o 0 0 o00 0

3683 . 0 0 .00 0

MEDIAN IS 1745
MODE IS 1384« 65
GEOMETRIC MEAN IS  1511.62

THE HARMONIC MEAN IS  87 6.0 99 
THE QUADRATIC MEAN IS 187 8.58

- 194 -



CUMULATIVE FREQUENCY HISTOGRAM
LOWER UPPER NO.
3 0 * 0 0 39 5.30 3

3 9 5.30 7 6 0 . 6 0 9
7 6 0 . 6 0 1 1 2 5 . 9 0 16

1 1 2 5 . 9 0 1 4 9 1 . 2 0 37
1 4 9 1 o 20 1 8 5 6 , 5 0 54
1 8 5 6 , 5 0 2 2 2 1 . 8 0 73
2 2 2 1 . 8 0 2 5 8 7 . 1 0 86
2 5 8 7 . 1 0 2 9 5 2 . 4 0 91
2 9 5 2,40 33 1 7 . 7 0 95
3317 .70 36 8 3 . 0 0 96

REL. CUMULATIVE FREQ. IN PERCENT 
*

*

*
*

*
★

*
*

*
*

COUT : 1 0.81

m  Ij T )

We may be surprised by the distribution of the delays between 
the start of construction and the production of electricity. One month 
of delay seems to indicate an error in our data. Calling SELECTION, we 
submit the proper query and EDITION will give us more details. It is 
now easy for the Data Base Administrator to find what may be wrong (see 
the listing, below).

This example illustrates the power of an interactive DBMS.

3*4- Interactive updating

Calling the MAJ (update) function under SELECTION will allow 
interactive and context oriented updating.

SELECTION

[1] ______
. . .TROUVES 
COUT :

CONSTRUCTEUR-WEST
; 0 
2,18

[ 2 ]  I CONSTRUCTEUR-WEST.
,TROUVES 

COUT
121 

2 o 2 5

-*this name is wrong (0 values are 
found.)

One needs to remove the period. 
Let us call the update function 
(MAJ)

MAJ CONSTRUCTEUR[3]
POINTEUR = 1
NOMBRE DE VALEURS A METTRE A JOUR 121
'ütmrkoini ? : n

ENTREZ LES NOUVELLES VALEURS (MEME ORDRE QUE PRECEDENTS 
[3 : WEST
CONTROLE ? 
COUT :

; N 
3.71

[3] CONSTRUCTEUR-WEST h
.TROUVES 

COUT
121 

2 o 1 5

t>] Q j

COUT DE LA SELECTION

All the names have been replaced 
in a single operation.

The updating could be done 
element by element as well.

10.71

- 195 -



SELECTION

£
[1] (PAYS=US)ET(COUPLACrE*0)ET(TRAVAUX*0)ET(395>COUPLAGE MOINS TRAVAUX)
c . . TROUVES 
COUT :

[2] 1 EDITION 1 
LARGEUR : 37
MOT-CLEF : CONSTRUCTEUR
LARGEUR :50
MOT JCLEF : TRAVAUX
LARGEUR 2 62
MOTJCLEF 2 DIVERGENCE
LARGEUR 2 74
MOT__CLEE 2 COUPLAGE
LARGEUR 2 85
M O ?  CLEF 2 CALCUL ----
tfCW Pi/ ÄtfStfLÄMÄ1 2 Z)£L4I 0P.
CALCUL 2 Jtfi/i? *-
L4i?G2?£/;? 2 95
MOT __CLEF 2 Pi"tf
LARGEUR 2 10 5
MOT JCLEF 2 PBRUT
LARGEUR s 114
MOT JCLEF ; V_______ _ _____
PHASE DE TRI :
MOT CLEF 2 V

vu* ou*W -Cor a  c<5\u^vAeA

vv\ dia.^

RUPTURE 
MOT CLEF

Vvo Àô'rV

*\o .Aecyĵ iuüi. Wv.oÀÂ^caUcM

DECOUPAGE ?

No NOM PAYS I FILIERE I CONSTRUCTEUR I Ti?4 7/1 i/X I DIVERGENCE

1016 BORAX- 3
1017 BORAX-H
10 04 PM2-A-(GROENLAND)

US\BWR 
US\BWR 
US ! PJ/Ä

\ANL
\ANL
\ALC0

1955 6 1 * I 19 5 5 6 9
1956 11 1 * I 19 56 12 1* 
1960 7 1* I 1960 10 2

COUT : 13.63

C 2 ]  j

COUT DE LA SELECTION :

5 < z e  3 * 3

11955 7 11 30 11 15.51 2.4
11957 4 11 151 1 15.51 2.4

1 1960 11 12 1 134 1 10 1 1.9

- 196 -



3.5 Multi-user data base

As a final example, let us see an APL session for a user who has 
been permitted a restricted use of the data base : relatively few keywords 
are authorized and the access is restricted to non military power plants.

) 1 0 0 1
OPRi CISI-SIA2 APL SERVICE 
027) 1 7 . 0 6 . 1 6  0 8 / 0 2 / 7 7  COURS

logon (sign on)

A P L APL is active

I Vl OAD 14 50 SELECTION H  
SAVED 1 6 . 0 Ì . 1 2  08/02 / 7 7  
POINTEUR =~1
0

SELECTION

[1] PAYS-US I 
o o . TROUVES : 27 6 
COUT : lo 91

[23 
. . » VALEUR 
PROTOTYP 
COMMER C. 
EXPERIM«

COUT s

LISTE TYPE

2.15

MOTSCLEFS[ 2 ]
o o . VALEUR :
NUMERO
NOM
PAYS
FILIERE
BOUCLE
TYPE
FROID
COMMANDE
CONTRAT
CEC 0MB
DIVERGENCE
COUPLAGE

--->■ Let us load the work
space from the DB Admin

istrator Library. The files are 
automatically open

*

JWe found previously 282 
_ nuclear power plants in 
the U.S. There are in 
fact 6 military plants, 
TYPE 4 (military; is not 
available for this user.

[The keywords are also limited to the authorized 
list as loaded during the 
file opening operation.

I This user will never know 
I which possible keywords 
I are forbidden to him.

COUT : .81

[ 2 ] |~~V f

COUT DE LA SELECTION 5,33

027 1 7 . 0 8 . 0 2  0 8 / 0 2 / 7 7  COU 
CONNECTED 0 . 0 1 . 4 6  TO DATE 
CPU TIME 0 . 0 0 . 0 2  TO DATE

0.31.47
0.0 0 . 1 0

-► log off (sign off)

)running statistics 
)provided by the system.

- 19 7  -



4-. CONCLUDING REMARKS

The initial GDMS implementation for this nuclear power plant 
data was abandoned in 1974-. The present project was started in October 
1976, and development costs so far are 1 man-year for system design and 
5 man-months for APL coding.

The main problem proved to be data loading and validation, for 
which some interesting features were developed. Development is continu
ing on graphics capabilities and cross- and contingency tables for data 
analysis and economic studies. The system is expected to be fully 
operational at the end of 1977*

Further extensions which may be envisaged are :

- Safety information

- Inclusion of research reactors

- Nuclear waste data for optimisation of the management of waste storage 
areas

- Linkage with other nuclear plant data bases

- Linkage with economic data bases, to compare predictions and reality 
in the energy field.

Some lessons which may be drawn from our experience are :

- The quality of data is critical to the usefulness of the data base.
A few good data are better than many poorly checked values.

- The system should be extensible, and should be written in a high- 
level programming language. It should be possible to make extensions 
rapidly, without upsetting the existing data base. APL offers a highly 
cost-effective solution.

- It should be possible to personalize data input and output. Graphics 
are certainly the most valuable tool for data representation.

5. REFERENCES

¿"1.7 G. HERVT and G. MARTIN : "Manuel d^tilisat* ">n du Système de 
Bases de Données LGIn
Rapport technique CISI - PARIS (France)

f 2 j  APL - Manuel de Réference - IBM manual GHF2-0056-0
APL-SY - Manuel de Référence - IBM manual SHF2-0080-0 
(These manuals are available in English)

Z~3_7 G. MARTIN : "An APL Approach to Databases" 
in this issue -

G. HERVY : "Manuel ¿'Utilisation de la Base de Données des 
Centrales Nucléaires dans le Monde"
En préparation - Manuel CEA - PARIS (Prance)

APL Statistical Library - Program Description and Operations 
Manual - IBM manual SH20-1841-0

- 198 -



in: il cu i p ? I on e n  f r a n c a  in
SfcSUcViev) )L(JAD Ut: FIN I T  ION m  

SAVED  11.38.Ì? 0H/01/77

L I S T S  D E S  M O T S - C L E F S  PO S S I B L E S

//• M O T - C L E F 1 S I G N I F I C A T I O N  ( LI B E L L E  )

1 N U M E R O 1 R E F E R E N C E  I N T E R N E  DE LA CENTRALE ( //• DE S E Q U E N C E  )

2 N O M | NO M
3 P A Y S \ P A Y S
4 F I L I E R E | F I L I E R E
5 B O U C L E I N O M B R E  D E  BO U C L E S
C P T H I P U I S S A N C E  T HERMIQUE ( N I VEAU 2 )
7 PB R U T I P U I S S A N C E  E L E C T R I Q U E  BR U T E ( NIVEAU 2 )

8 P N E T } P U I S S A N C E  E L E C T R I Q U E  N E T T E ( NIVE A U 2 )

9 PDA TE I D A T E  D ' A P L I C A T I O N  DU C H A NGEMENT DE P U I S S A N C E ( N I VEAU 2 )

10 an O U P A G E | N O M B R E  D E  CHAN G E M E N T  DE PUISSANCE ( NIVEAU 2 )

11 T Y P E I C A R A C T E R E  D E  LA C E NTRA LE  ( C O M M E R C I A L E , MILI1'AIRE ... , )

12 F R O I D 1 M O D E  DE R E F R O I D I S S E M E N T  DU CONDENSEUR PRIN C I P A L
13 S I T E ! S I T U A T I O N  GEOG R A P H I Q U E
14 C O M M A N D E | D A T E  D E  C O M M A N D E
15 C O N T R A T | D A T E  DE C O N T R A T
16 P R E V I S I O N | D A T E  DE P R E V I S I O N  I N I T I A L E  DE M I S E  EN EXPL0I1'ATION C O M M E R C I A L E

17 C O N S T R U C T E U R ! C O N S T R U C T E U R  D E  LA CHAU D I E R E  N U C LEAIRE
18 C O M P A G N I E | C O M P A G N I E  D ' E L E C T R I C I T E  PRO P R I E T A I R E
19 T U R B O | F O U R N I S S E U R  DU T U R BOALTERNATEUR

20 C U V E | F O U R N I S S E U R  DE LA CUVE OU DE L ' E N C E I N T E  P R I M A I R E

21 G V | F O U R N I S S E U R  DU GENERA T E U R  DE VAPEUR

22 E C H A N G E U R j F O U R N I S S E U R  D ES ECHA N G E U R S  D E  C H ALEUR

23 A R C H I ! A R C H I T E C T E  INDUSTRIEL
24 D D E P C | D A T E  DE D E M A N D E  DU P E RMIS DE C O N S T R U I R E

25 P C O N S T 1 D A T E  D ' O B T E N T I O N  DU PE R M I S  DE C O N S T R U I R E

26 TRA VAUX | D A T E  D E  D E B U T  D E S  T RAVAUX

27 D D E P E X P | D A T E  D E  D E M A N D E  DU PERM I S  D ' E X P L O I T A T I O N

28 P E X P P j D A T E  D ' O B T E N T I O N  DU PE R M I S  D ' E X P L O I T A T I O N

29 C U C 0 M B 1 D A T E  D E  D E B U T  DE CHARGE M E N T  DU C O M B U S T I B L E

30 D I V E R G E N C E J D A T E  DE D I V E R G E N C E  IN I T I A L E

31 C O U P L A G E 1 D A T E  D E  P R E M I E R  C O UPLAGE AU RESEAU

32 E X P L O I T A T I O N 1 D A T E  E F F E C T I V E  D'EXPLOI T A T I O N  C O M M E R C I A L E Fi 633 P M A X | P U I S S A N C E  M A X I M A L E  C O N TRACTUELLE A T T E I N T E
34 F I N

D E S C R I P T I O N
-----V - - — —

j D A T E  DE M I S E  HORS SE R V I C E  OU D ' A B ANDON 

I N  E N G L I S H

vjJO tV syo-eft.

x cVcxVc cX V  A 
c\ Îke-WÀ S M t

0 >̂CTCcVv0V\

L I S T  OF P O S S I B L E  K E Y W O R D S

No I K E Y W O R D  \ M E A N I N G  ( LABEL )

1 N U M E R O N.P.P. I N T E R N A L  R E F E R E N C E  ( S E Q U E N C E  N U M B E R )
2 N O M N A M E
3 P A Y S C O U N T R Y
4- F I L I E R E T Y P E  OF R E A C T O R
5 B O U C L E N U M B E R  O F  L O O P S
6 P T H  • T H E R M A L  P O W E R ( LEVEL 2 )
7 PB  R U T GR O S S  E L E C T R I C A L  POWER ( LEVEL 2 )
8 P N E T N E T  E L E C T R I C A L  POWER ( LEVEL 2 )
9 P D A T E E F F E C T I V E  D A T E  OF POWER CHANGE ( LEVEL 2 )

10 G R O U P A G E N U M B E R  O F  P O W E R  CHANGES ( LEVEL 2 )
11 T Y P E N A T U R E  O F  THE POWER PL A N T  ( C O M M E R C I A L . MI L I T A R Y )
12 F R O I D M A I N  C 0 N D E N S 0 R  COOLING MET H O D
13 S I T E G E O G R A P H I C A L  L O C A T I O N
14 C O M M A N D E D A T E  OF O R D E R
15 C O N T R A T D A T E  OF C O N T R A C T
16 P R E V I S I O N O R I G I N A L  D A T E  OF C O M M ISSIONING
17 C O N S T R U C T E U R N.S.S.S. CONSTR U C T E U R
18 C O M P A G N I E U T I L I T Y
19 T U R B O D E L I V E R Y  C O N T R A C T A N T  FOR TURBINE G E N E R A T O R
20 C U V E D E L I V E R Y  CO N T R A C T A N T  FOR REACTOR VESSEL
21 G V D E L I V E R Y  CO N T R A C T A N T  FOR S T E A M  GE N E R A T O R
22 E C H A N G E U R D E L I V E R Y  CO N T R A C T A N T  FOR HEAT E XCHANGER
23 A R C  11 I A R C H I T E C T  E N GINEER
24 D D E P C D A T E  OF C O N S T R U C T I O N  P ERM I T  A P P L I C A T I O N
25 P C O N S T D A T E  OF C O N S T R U C T I O N  PE R M I T  I S SUANCE
26 T R A V A U X D A T E  OF C O N S T R U C T I O N  S T ART
27 D D E P E X P D A T E  OF O P E R A T I N G  L I C E N C E  APPL I C A T I O N
20 P E X P P D A T E  OF O P E R A T I N G  L I C E N C E  ISSUANCE
29 CH C O M B D A T E  OF FU E L  L O A D I N G  B E GINNING
30 D I V E R G E N C E D A T E  OF I N I T I A L  C R I T I C A L I T Y
31 C O U P L A G E D A T E  OF IN I T I A L  ELEC T R I C I T Y
3 2 E X P L O I T A T I O N D A T E  OF COMM E R C I A L  OPE R A T I O N
33 P M A X D E S I G N  E L E C T R I C A L  GROSS POWER REACHED
34 F I N D A T E  OF C A N C E L L I N G  OR COMPLETED O P E R A T I O N S

- 199 -



Il»

1
2
3
4
5
G
7
0
9

10
11
12
13
14
15
1G
17
10
19
20
21
22
23
24
25
2 G
27
28
29
30
31
32
33
34

//o I

0 I
1 I

//« I

1 I
2 I
3 i
I

5 I
6 I
7 I

7/e I

1 I
2 I
3 I
* I

//« I

1 I

d e s c r ip t o r s  o p  p o s s ib l e  ke y  voit u s
F*’GÜ R.E &

K E Y W O R D
DATA I F I L E  
BAVE  I NA M E

INDEX IN TA B L E S  ( H 0 0 K S  ) 

ZZQ/ZEU I ZZA I ZE.L I ZAI2 I ZM N U M B E R  OF BL O C K S

N U M E R O
N O M
P AY S
F I L I E R E
B O U C L E
P TU
P B  R U T
P N E T
P D A T E
G R O U P A G E
T Y P E
F R O I D
S I T E
C O M M A N D E
C O N T R A T
P R E V I S I O N
C O N S T R U C T E U R
C O M P A G N I E
TUR B O
C U V E
G V
E C H A N G E U R
A R C H I
D D E P C
P C O N S T
T R A V A U X
D D E P E X P
P E X P P
CIICOMB
D I V E R G E N C E
C O U P L A G E
E X P L O I T A T I O N
P M A X
F I N

h
0
o

<o

CE N T R
CE N T R
C E NTR
C ENTR
C E NTR
C E NTR
C E N T R
C E NTR
CE N T R
C ENTR
CE N T R
C E NTR
CENTR
CENTR
CE N T R
C E NTR
C ENTR
C EN T R
CE N T R
C ENTR
C EN T R

C E N T R
C E N T R
CEN T R
C E N T R
C E N T R
C ENTR
C ENTR
C E N T R
C ENTR
C E N T R
C E N T R
C E N T R

2 G 
5
7
8 

21
2
3
4 
1

27
24 
20
25
13 
23 
22
9

10
11
37
38 
0

12
32
33
14
34 
36
35
15
16
17
18 
19

i  t.L ï\o
: CX\<*\AAN\fcxV VA ftoInferi«

; C\\̂a*A.<JuÀ ^

D E S C R I P T I O N  OF T HE TABLES USED IN THE D A T A B A S E

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0

WoV VjjteÂ 
O^ Ì̂ÀCaVìuv\

ftot acfcîv/e.

D E S C R I P T I O N _ 0 F _ Z I L E S _ T A B L E  

F I L E  | B A S E  | U SA G E

I 0 I E M P T Y  F I L E  ( KE Y W O R D  NOT A C T I V E  )
C E N T R  | 1 j N U C L E A R  P O W E R  P L A N T  D A T A B A S E  ( LE V E L S  1 + 2 )

ZIG. I Z Z D  I D E S C R I P T I O N  O F  A C T I O N

Q A Q  I {¿DATE I C O N V E R S I O N  OF CALENDAR DATES ( D A Y , M O N T H . YEAR  ) TO J U L I A N  D A T E S  ( I N T E G E R S  )
CQ.Q I R O O D  | S T R I N G  OF 10 C H A R A C T E R S «-* 1 REAL NU M B E R  ( 8 B Y T E S )
COP 1 I & C 0D1 i S T R I N G  OF 5 CH A R A C T E R S «-► 1 INTEGER ( 4 BYT E S )
M I C  | P A I D  j E X T E R N A L  C O U N T R Y  NAME ++ INTERNAL R E F E R E N C E  IN A T A B L E  ( VALIDITY C H E C K  )
R I M  I ZIRD  I WO CO D I N G  ( Z Z E £  ). P L A I N  VALUE ( C H A R A C T E R S  ) R E S T I T U T E D  F OR E D I T I O N .
R L M  I I NO C O D I N G / D E C O D I N G  ( N AMES A R E  N OT E N CODED  )
RU.ZC | m i D  | F L O A T I N G  N U M B E R  ( X D E C I M A L S  ) «--► I N T E G E R ( M U L T I P L I C A T I O N  B Y  10 P O W E R  X )

iii^tl^ii^AlA^^l^- ^^l^J^J^iD^OPEBATION  

Z Z L  1 D E S C R I P T I O N  OF A C T I O N

¡IQML I C A T E N A T I O N  O F  THE 2 P A R T S  OF N A M E  FOR E DITION
££7?3 I E X T R A C T I O N  OF THE C U R R E N T  R OW ( POWER ) IN THE LE V E L 2 R E C O R D
itGQU I S P E C I A L  T R E A T E M E N T  F O R  N E G A T I V E  ( I N C O M P L E T E ) D A T E S
C A R D  | S A M E  F O R  L EVEL 2 D A T E S

Z E Q  I D E S C R I P T I O N  OF A C T I O N

U Q M O  | R E P L A C E M E N T  OF O P E R A T I O N  = BY THE APL EQUI V A L E N T  FOR A R R A Y S  ( a .= )

-  200 -



LABORATORY ANIMAL DATA BANK - ENVIRONMENTAL HUSBANDRY FACTORS, 
HEMATOLOGY, AND CLINICAL CHEMISTRY FILES*

Kang Hsu

Information Systems Section 
Computer, Information Systems, and Education Department 

Battelle Columbus Laboratories 
Columbus, Ohio 43201

ABSTRACT

BASIS (¿attelle Automated Search Information System) is introduced along with a 
detailed description of the environmental husbandry factors, hematology, and 
clinical chemistry files of the LADB (Laboratory Animal Data Bank). This paper has 
attempted to show that LADB involves a great deal of data manipulation, data base 
management, and owncode interface software. LADB illustrates how a generalized data 
management system called BASIS can be utilized to handle both scientific and 
technical information processing tasks. This sophisticated yet easy-to-use LADB 
system has the potential to bring some dramatic impact in the research area of 
animal science.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the assistance and suggestions from members 
of Battelle LADB research team including Dr. William J. Clarke, Dr. Charles 
R. Claydon, Albert R. Fish, Dr. Willard Gersbacher, Dr. Hugh H. Harroff, 
Victor A. Kean, Jr., Robert T. Niehoff, Lyn Sander, Richard C. Simon (LADB Project 
Manager), Kenneth F. Szczesny, Dr. Daryl C. Thake, and Dr. Ralph E. Thomas.

* This work was supported by Contract NOl-LM-5-4747 of the National Library of 
Medicine and the Department of Health, Education and Welfare Committee to 
Coordinate Toxicology and Related Programs.

-  201 -



INTRODUCTION

Currently the Information Systems Section of the Battelle Columbus Laboratories 
is conducting a research project to design and implement the Laboratory Animal Data 
Bank (LADB) sponsored by the National Library of Medicine and the Department of 
HealthjEducation and Welfare Committee to Coordinate Toxicology and Related Programs* 
The system design of the LADB is based on BASIS (Battelle Automated Search 
information System) which is a completely user-oriented, information storage, 
retrieval, and analysis system [1]. LADB represents a successful application of 
BASIS in the area of handling scientific and technical information tasks. The 
ultimate goal of this project is to design and implement LADB which is an on-line 
and easy-to-use laboratory animal data base comprising laboratory control animal 
data supplied by numerous research organizations with a wide range of environment 
conditions. LADB is accessible via computer terminals allowing biomedical
scientists, researchers, breeders, and managers of animal laboratories to search, 
retrieve, analyze, and statistically manipulate control animal information. There 
are several objectives of the LADB. Among them are:

o To provide comparison data with animals being tested.

o To assist researchers in making relational selections of the best species 
and strain of laboratory animal for a specific biomedical experiments.

o To provide comparisons of laboratory data with consideration given to 
origin, strain, environment and husbandry conditions, and test methods used.

o To establish more accurate baseline values considering similarities of 
colonies with regard to the factors outlined above.

o To determine which factors most significantly affect results for a variety 
of test parameters.

o To establish incidences of spontaneous disease conditions and pathologic 
lesions in various strain and species of laboratory control animals and 
determine how these are influenced by the factors outlined above.

o To assist in monitoring test results more efficiently by comparing the 
research data with the information stored in the LADB.

o To assist in designing experimental protocols.

The kinds of laboratory control animal data which are collected, screened, and 
stored in the LADB are data on animal species/strain, environmental and husbandry 
factors, physical characteristics, hematology, clinical chemistry, and pathology. 
The kinds of data described in this first paper are hematology, clinical chemistry, 
and environmental and husbandry factors. In addition to describing LADB, this paper 
also emphasizes the fact that the capabilities provided by BASIS can be efficiently 
utilized in handling scientific and technical information.

BASIS OVERVIEW

BASIS is a completely user-orientied, interactive information storage, 
retrieval, and analysis system. Operational since 1970, the storage and retrieval 
module has been designed to allow users to search large files of textual or 
numerical information by index terms or data values and rapidly retrieve information

-  2 0 2  -



satisfying the search criterion [1]. BASIS supports sophisticated computational, 
owncode, profile, monitor, on-line sort, thesaurus control, range search, 
statistical analysis, interactive graphics, tabular reports, and generalized data 
base creations and maintenance capabilities. BASIS thereby fulfills the 
requirements crucial to GDMS (Generalized Data Management System) [3-5]. The system 
has been utilized to create and maintain over one hundred data bases that differ 
widely in size, complexity, and scope. These data bases comprise a national network 
for scientific and technical information [9], and cover such areas as materials and 
metals, medical and cancer research [6-8], social and economic, management, and 
library science [12]. BASIS is both economically viable and completely user 
oriented. No programming experience is needed to use the system. Response time to 
the entry of individual search parameters averages only a few seconds and output can 
be secured both on-line and off-line.

Since the BASIS software is written in a high level language (FORTRAN), it is 
adaptable to other computer systems. BASIS is currently operational on the 
following computers; CDC 6000 series, UNIVAC 1100 series [10,11], XEROX Sigma 9 
[12], DEC 10, DEC 20, and IBM 360/370 series. Utilizing experience gained in the 
implementation of BASIS on these computer systems, there should be no major 
technical problems to implement BASIS on other third generation time-shared computer 
system. An organization may choose to implement their data bases on Battelle's 
computer or acquire BASIS to operate on their own computer.

BASIS ARCHITECTURE

BASIS is a completely modular software system [2,13,18]. Each module has a 
number of submodules responsible for specialized functions. The BASIS system is 
simialr in many respects to other on-line storage and retrieval systems, but it 
provides a wide range of additional capabilities including:

(1) Combined TEXTUAL and NUMERIC DATA retrieval and analysis

(2) On-line DATA MANIPULATION and STATISTICAL ANALYSIS

(3) On-line SORTING

(4) On-line REPORT GENERATOR

(5) On-line THESAURUS

(6) Complete system interaction MONITORING

(7) User search and save procedures - PROFILE

(8) INVERTED FILE or SEQUENTIAL FILE searching

(9) Ability to execute external programs (OWNCODE) from BASIS

(10) User-oriented RETRIEVAL AIDS

(11) Extremely fast retrieval for SMALL and LARGE files

(12) Sophisticated file CREATION and MAINTENANCE packages (including the 
ability to easily update very large files).

- 203 -



All of the above features are fully integrated, tested, and operational in a 
real-world production environment.

BASIS FILE ORGANIZATION

flFile organization11 is used to describe the manner in which a file is logically 
structured. The file organizations designed for BASIS are meant to match the 
processing requirements of the BASIS system to the capabilities of the structures 
used. In addition to the commonly used sequential and random file organizations, 
there are two more sophisticated file organizations designed and utilized by BASIS. 
They are symbolic keyed (SK) file and numeric keyed (NK) file which provide 
efficient and comprehensive capabilities for the BASIS user to directly access a 
record in a file at random [13]. Both SK and NK files access methods provide for a 
machine independent method for creating and maintaining large files of randomly 
stored variable size records that can be retrieved by logical sequential position, 
and appropriate keys (textual string key for SK files or numeric keys for NK files). 
The variable length records are stored in fixed length data blocks. Usually each 
block will contain several records. The records are scattered across the data 
blocks wherever they fit. A record space index is used to locate available space in 
the data blocks, and a new data block is only created when it is impossible for a 
new record to be placed in any existing data block. Old records may be replaced by 
different size new records. SK and NK files use the same kind of internal key index 
structure, index block splitting scheme, data blocks, record space index, and the 
file space allocation method. These carefully designed file organizations help make 
BASIS a generalized data management system.

LADB DESIGN

A conceptual system plan (Figure 1) for handling hematology and clinical 
chemistry data in LADB is presented here. This plan includes six major aspects: 
data specification and collection, the IADB (Individual Animal Data Base), document 
set generation and data summarization, LADB (Laboratory Animal Data Bank), 
structured search mode, and a statistical interface program. Prior to describing 
each of these six major aspects, it is important to describe the main reasons for 
summarizing individual animal information stored in IADB. Theoretically the IADB is 
suitable for searching. For example, a scientist could search IADB for hemoglobin 
on nine-month old female beagle dogs, via standard BASIS search mode, send the 
retrieved data to an interface program and perform appropriate statistical analysis. 
This approach does work yet it has drawbacks. The major problems of maintaining 
IADB on-line are:

o Since each data element of every IADB record contains a single value for 
each individual control animal, a great deal of disk storage is required to 
handle thousands of individual animal records.

o More computer time is required to access each stored individual animal data 
value to perform statistical calculations.

To overcome these drawbacks, it was decided by both NLM and Battelle to build LADB 
(Laboratory Animal Data Bank) as a summarized version of IADB (Individual Animal 
Data Base). In addition to the standard BASIS search mode, LADB is also equipped 
with a menu-driven structured search mode which provides many comprehensive yet 
easy-to-use search, retrieval, and analysis capabilities for the LADB user. The 
combination of LADB and structured search mode reduces dramatically the cost of

-  204- -



FIGURE 1. SYSTEM PLAN FOR HANDLING HEMATOLOGY AND 
CLINICAL CHEMISTRY DATA

-  205 -



using and maintaining LADB in terms of training time, disk space, and computer time.

LADB DATA SPECIFICATIONS AND COLLECTION

The primary goal of LADB is to collect pertinent data on certain strains of 
laboratory control animals, screen, summarize these data, and then build up an 
on-line and easy-to-use information system for use by any research scientist having 
need for such data. The quality of the data which are collected, screened, 
summarized, and stored into LADB plays a critical role in the acceptance of LADB by 
the biomedical community. The very first task involved in data collection is to 
work out the data element specifications. Each LADB data element is carefully 
defined and specified in terms of both technical and system specifications. The 
technical specification for a LADB data element includes element name, synonym(s) or 
abbreviation, major data group and subgroup classification, general description, 
acceptance criteria, screen methods, and certain data attributes such as units of 
measurement, number of significant digits, and preferred measuring method. The 
system specification for each data element defines both search and display 
mnemonics, display label, field or data element number, and whether the data element 
is searchable, displayable, or manipulatable statistically in various level of data 
files. With these well defined data element specifications, the next task is to 
design various data collection forms for recording the individual animal data. 
These Battelle designed data element specifications and LADB data collection forms 
can be found in the LADB Data Collection Manual [15]. Battelle has full 
responsibility to make contacts with potential data sources, evaluate the 
acceptability of data sources, identify and define the animal colonies, set up the 
conditions for data collection, define the mandatory data elements, establish 
procedures for data collection, actually collect the data, and screen the collected 
data. The derivation of acceptance criteria was carefully undertaken but not 
without some difficulties. A realistic approach was required because if these 
criteria were too stringent, very little data would qualify for LADB and if the 
criteria were too loose, LADB would be meaningless. These acceptance criteria 
represent a blend of required procedures, accepted procedures, and good laboratory 
practice, tempered with Battelle's years of research experience in biomedical and 
life sciences.

INDIVIDUAL ANIMAL DATA BASE

The IADB (Individual Animal Data Base) consists of four logical files which are 
the environmental and husbandry factors file, the hematology and clinical chemistry 
file, strain file, and the pathology file. As indicated in the Introduction, this 
paper only describes the first two logical files.

An animal colony is defined as a group of animals of the same strain, the same 
source laboratory, the same supplier (or breeder), the same microbial barrier, and 
maintained under the same or similar, control, environmental, and husbandry factors. 
In order to identify a unique animal colony, the environmental and husbandry factors 
logical file has more than a hundred data elements. There are numerous
data elements which have been defined and collected in the hematology and clinical 
chemistry logical files. All of these hematology and clinical chemistry
data elements are numeric. Each set of data has to be submitted by its data source 
together with its mandatory data elements. Where the data source uses units of 
measure different from LADB standard units, the Mnon-standard,f units and their 
conversion factors must be recorded. For the irreversible cases, IADB treats them 
as separate elements [15]. A free form keying format has been designed to key and

- 206 -



verify all the individual animal data. A unique data collection form code is always 
assigned to each type of data.

The IADB is described to BASIS by using the BASIS Data Description Language 
(DDL) Compiler which creates a data base description for BASIS. The information 
from the data collection forms is keyed and then processed by IADB input processor 
(FORTRAN program) that presents the data to BASIS standard interface routines. 
BASIS then updates the data base via its data base maintenance facilities (Figure 
1 ).

Data screening and quality control are a very significant part of the IADB 
input process (Figure 2). Using the facilities provided with BASIS, the IADB input 
processor plays a key role for handling data screening and quality control task for 
IADB. It checks for the presence of mandatory data elements, certain attributes, 
expected formats and data element specifications. It also performs the range check 
on numeric data elements and spelling checks on textual data elements via various 
internal dictionaries. Error messages are issued by the IADB input processor where 
expected conditions and data standards are not met. While the IADB input processor 
is producing appropriate transactions for all the good data and issuing error 
messages for all the questionable data, it also generates a record transaction file 
with all the input data in it. All the questionable data rejected by the IADB input 
processor are printed out for subsequent review. Values falling outside established 
ranges and misspelled text are checked for data transcription errors, decimal point 
problems, and keying mistakes. If none of these problems exist but the value is 
still outside the established normal range, Battelle veterinarians examine the data 
and decide whether this questionable data should be rejected, or accepted. 
Occasionally, the data source is recontacted to see if there is an explanation for 
this data value. Normal ranges can be adjusted if data suggest a trend toward a 
larger normal range. A standard editing program can be used to access the data file 
to correct records. Corrected data will be sent back to the IADB input processor 
for normal processing. In addition this error-free data file will be kept for 
future purposes.

SUMMARIZATION SCHEME AND LABORATORY ANIMAL DATA BANK

The Battelle-designed scheme used to summarize hematology and clinical 
chemistry data is a two-stage scheme (Figure 3). The first stage requires searching 
IADB via the standard search mode provided by BASIS. For hematology and clinical 
chemistry data, the search instructions are various unique combinations of animal 
colony, sex, age range (or body weight range for wild caught animals with unknown 
ages), observation date range, and the logical file (or subfile) type. The logical 
file (or subfile) search term SUBFILE:CH retrieves all the hematology and clinical 
chemistry records out of the IADB. The animal colony search term (for example 
COL:00022) defines the environmental and husbandry factors associated with the 
animals. The animal sex search term can be either SEX:MALE or SEX:FEMALE. Age 
ranges search terms (or the body weight ranges) are chosen based on the age 
categories defined by Battelle. There is a unique age category number assigned to 
each age range (or body weight range). This age category number is the age 
information stored in a summary record. The age related index term generated in the 
summary record level is the age category number concatenated with the corresponding 
age range (or body weight range). The observation date range search term divides 
the time interval in a yearly base. For example, the observation date range search 
term OBS:720101/721231 retrieves all the laboratory animal data observed in 1972 out 
of the IADB. The basic reason to construct the search instructions by using the 
unique combination of logical file type, animal colony, sex, age range (or body

-  207 -



208

IADB
Raw Trans

Data cribe^

LADB
Data

Collection
Forms^^

IADB 
Head File 
Trans
actions

< 2 > l
IADB

Uninver
ted Index

File 
Transac- 

Lior

Data
Standard

Editing
Program

Rej ected 
Data

Data Source 
Review

Correct
Mechanical

Errors

r

Biomedical 
Data Review

FIGURE 2. IADB DATA SCREENING AND DATA QUALITY 
CONTROL FLOW CHART

Uninverted Index File Manager

Head File Manager



First
Stage

Second
Stage

FIGURE 3. SUMMARIZATION SCHEME

-  209 -



weight range), and observation date range is because the document sets defined by 
these unique combinations are the appropriate data which can be used to generate the 
baseline values. In other words, each hematology and clinical chemistry data 
element in a summary record represents a group of data for the set of individual 
control animals with the same sex, category, observation year, logical file type, 
and environmental and husbandry factors. The product of this first stage effort is 
essentially to generate a series of document sets which will be processed by the 
summary program to generate the summary records.

The summarization scheme currently utilized in the second stage to create the 
summary records is the one commonly used by statisticians to summarize the raw data 
into frequency distributions [16]. For the purpose of minimizing the grouping 
error, the number of class intervals has been set to sixteen. The detailed 
procedure to create a summary record can be outlined as follows.

Step 1. Access the IADB to retrieve a set of individual animal records with 
identical colony, sex, age range, test year, and subfile type.

Step 2. For each numerical data field, find out its actual minimum (AMIN) and 
actual maximum (AMAX) data values, the unique animal count (UAC), and 
data field number (NFLD).

Step 3. Perform the necessary calculations to determine range of the values 
(r), the size of class interval width (w), and all the seventeen class 
boundaries (b^ i = 1,17) for the sixteen class intervals (h = 16) 
according to the order of the following relevant formulas:

Let AMIN = actual minimum data value (see Step 2)
AMAX = actual maximum data value (see Step 2) 

w = class interval width 
h = 16 = number of class intervals 
r = range of the data value 

CMIN = calculated minimum data value 
CMAX = calculated maximum data value 

b-̂  = the i-th class boundary

then:
w = (AMAX-AMIN)/h 

r = AMAX - AMIN + w 

w = r/h (w is redefined)

CMIN = AMIN - w/2 

CMAX = AMAX + w/2

w = (CMAX-CMIN)/h (w is again redefined)

CMIN= CMIN - w/2 (CMIN is redefined)

CMAX = CMAX + w/2 (CMAX is redefined) 

b1 = CMIN

bi = b]_ + (i - 1) * w (where i = 2, 3, ••., 16)

-  210 -



Step 4. Access the data values of this data field within the domain of the 
retrieved IADB records to find out the category frequencies (f^ , for 
the i-th class interval) via a binary search algorithm.

Step 5. Write out this portion of summary record according to the following 
format (each data element is separated by semicolon)

NFLD;CMIN;CMAX;UAC;w;fi;f2 ;...;f16;

Step 6. Repeat Step 2 through Step 5 for all the other data fields required to 
be summarized for this retrieved IADB record set defined by Step 1.

Step 7. Repeat Step 1 through Step 6 for the other requested combination of 
colony of animal, sex, age range, test, and subfile type to generate 
other sets of summary records as required.

This summary program will generate a summary transaction file which is the 
input file to the LADB input processor. Figure 4 is a schematic representation to 
illustrate the file relation between IADB and LADB. Based on the fact that a set of 
IADB records is often replaced by a single summary record, the disk space needed to 
maintain LADB as an on-line data bank is much less than IADB. The disk storage data 
included in Table 2 indicates that the amount of disk space saving is up to 86% 
[14] . As it stands now, LADB contains data on 10 animal species/strains broken down 
into 71 distinct colonies which include 11,000 unique laboratory control animals.

STATISTICAL INTERFACE MODULE AND STATISTICAL ANALYSIS

One of the major objectives of LADB is to provide the baseline data in an 
easy-to-use manner. For this reason, a BASIS OWNCODE module program has been 
designed and implemented to interface BASIS and the Statistical Package for Social 
Science (SPSS) [17]. For a requested baseline data field, this interface module 
will access a set of LADB data records retrieved by the user via the structured 
search to build up the following files: (a) A SPSS input file which consists of 
its category frequencies ( ^  ) and its associated middle point value (X-̂  ) for the 
requested data field, and (b) A set of SPSS control statements file which consists 
of the requested data field name and unit, statistic procedure name, desired 
variables, selected statistic options, and other necessary SPSS control statements.

With these SPSS input and SPSS control statements files and the on-line version 
of SPSS executed by the statistical interface module, the user will obtain the 
statistical analysis results automatically (Figure 5). Currently this statistical 
interface module provides capabilities to handle three SPSS procedures which are 
FREQUENCIES, BREAKDOWN, and CROSSTABS [17]. The FREQUENCIES procedure is used to 
produce basic statistical information and an associated histogram (Appendix A). 
BREAKDOWN is used to make a breakdown results which may show the genetic drift. 
Finally, the CROSSTABS procedure can be used to generate a tabular report for the 
variables selected by the user. It is important to emphasize again that the BASIS 
OWNCODE module really makes BASIS an open-end generalized data management system 
which is very significant for handling the scientific and technical information 
tasks.

-  211 -



Environ
mental 

Husbandry 
Factors 

 ̂ File

Hematology
and

Clinical
Chemistry

File

IADB

FIGURE 4. FILE RELATION BETWEEN IADB AND LADB

-  212 -



TABLE 2. DISK STORAGE STATISTICS

File Type IADB (bytes) LADB (bytes)

Head File 5,900,160 1,021,440

Inverted Index File 2,786,560 898,560

Range File 924,800 —

Table File 57,600 57,600

Uninverted Index File 9,507,840 673,280

Total 19,176,960 2,650,880

-  213 -



214

LADB

LADB
Structured

Search
or

BASIS
Standard
Search

zy

SWAP

FIGURE 5.

Output

STATISTICAL INTERFACE FLOW CHART



STRUCTURED SEARCH

A menu-driven structured search has been designed and implemented to ensure 
that the LADB is extremely user oriented (Figure 6). The standard BASIS search mode 
was modified to have tree type menus built in and provides the structured search 
capabilities. The difference is that modified BASIS handles internally all the 
logical combinations based on the set and sequence of menus the user has chosen. 
All the menus used by LADB can be classified as one of the following types:

o The basic LADB service selection menu is used to choose one of the LADB 
basic services including:

1. SEARCH (Build a profile)
2. USE A PREVIOUSLY SAVED PROFILE
3. SIGN OFF (Stop LADB)
4. BUILD A WORK SET (Your Data)
5. STATISTICS
6. PRINT REPORTS

o The strain(s) or specie(s) selection menu is used to choose which strain(s) 
or specie(s) the user wants.

o The logical file selection menu is used to choose one of the logical files a 
user is interested in.

o The class(es) selection menu is used to choose the class(es) the users 
desire. Each class may contain a set of data field categories or a group of 
closely related data fields.

o The category(ies) selection menu is used to choose the category(ies) the 
user needs. Each category contains a group of closely related data fields.

o The data field search term(s) selection menu points to all the search terms 
associated with a specific data field. The user may 1) enter any stem term 
to bring in a list of search terms with the same stem for further selection 
via a "LOOK" option, or 2) ask the LADB to list a set of search terms 
associated with this specific data field for further selection via "LIST11 
option, or 3) leave this data file as it was chosen and go on to the next 
data field via a "LEAVE" option. For each data set selected, the LADB 
system will provide prompting to allow the user to make selections.

o The control flow selection menu is used to choose what the user is going to 
do next at each logical end of a search activity. The user may choose to 
either run immediate search for results, save the data elements of the 
search as a profile for future search, or go back to the class(es) selection 
menu to perform further selections. In case the user choose to run 
immediate search for result, the LADB will inform the user how many colony 
records were retrieved and ask the user to either make the profile more 
general/specific, or save the profile for future usage, or go back to the 
basic LADB service selection menu to select one of the basic services.

o The save profile menu provides the capabilities to save the current search 
profile for future usage.

o The previously saved profile selection menu provides the capabilities of 
letting the user retrieve one of the previously saved profiles.

o The work set construction menu allows the user to enter his own data. The

-  215 -



FIGURE 6. LOGICAL FLOW OF LADB STRUCTURED SEARCH

- 216 -



LADB system will process this set of data and offer a compatible statistical 
analysis.

o The statistical option selection menu is used to define the necessary 
information for performing requested statistical analysis. Options include 
data field, procedure name, and variable(s).

o The print reports selection menu is used to choose the contents of tabular 
reports.

INFORMATION CONTENT OF LABORATORY NUMERICAL DATA

The distribution of a set of laboratory numerical data can sometimes be 
described by Gaussians, or normal distribution (De Moivre, 1733). It is the 
theoretical distribution of the relative frequency of a large number of observations 
made under the same experimental conditions. This normal distribution has three 
distinct characteristics which are the major information content of any set of 
laboratory numerical data. The first characteristics is the central tendency (or 
signal) represented commonly by arithmetic mean. The second characteristic is the 
measurement of variability (or noise) represented by standard deviation. The third 
characteristic is the range represented by confidence interval.

The theory of normal distribution was developed from a mathemetical theory of 
errors. In the laboratory the researcher can not afford to make a large number of 
observations; as a result the researcher does not know the true populatoion mean 
and the true standard deviation by using the sample standard deviation. When the 
researcher does this, one should use the "Student's t-distribution" [19] which is 
independent of true standard deviation and is dependent only on the sample size. 
The t-distribution is flatter than the normal distribution but approaches it as the 
sample size increases, becoming identical to the normal distribution as the sample 
size approaches infinity. For practical purposes, researchers sometimes use the 
normal distribution for sample sizes more than 30. It is seen that Student's 
t-distribution with 30 degrees of freedom has characteristics approximately equal 
those of the normal distribution. With more than 30 observations, this means the 
information content of a laboratory numerical data set is characterized by its 
central tendency (arithmetic mean), variability (standard deviation), and range 
(confidence interval), regardless of whether the t-distribution or normal 
distribution is used. The information content loss of the laboratory numerical data 
due to the summarization scheme can be studied by comparing its major information 
content for those prior to and after the summarization. A comparative study has 
been carried out for the same set of statistical analyses with respect to the 
similar sets of animal data retrieved separately from IADB and LADB. The results 
included in Table 3 indicates that the amount of information content loss due to the 
aforementioned summarization scheme is insignificant. More comparative studies 
between IADDB and LADB will be found elsewhere [14] .

CONCLUSION

LADB data has periodic measurements of the source data elements. The data is 
collected by colony under a strict protocol and includes environmental and husbandry 
factors. In addition to the immediate usefulness of this data, in the future it may 
be possible to measure the "strain drift" which is the slow change in animal 
characteristics arising from genetic noise and biased breeding selection. By 
collecting LADB-type data on colony foundation stock and comparing it to the LADB

-  217 -



218

TABLE 3. INFORMATION CONTENT COMPARISON DATA

Data Field No. of Cases Mean
Standard
Deviation

95% Confidence Interval

Data BasStart End

Red Blood Cell Count 1000 7.100 0.743 7.054 7.145 IADB
(7.108) (0.761) (7.061) (7.156) LADB

White Blood Cell Count 1008 10.115 3.117 9.922 10.308 IADB
(10.214) (3.076) (10.022) (10.406) LADB

Hemoglobin 1006 16.682 1.808 16.570 16.794 IADB
(16.790) (1.847) (16.675) (16.904) LADB

Serum Glutamil Oxaloacetic 868 27.586 9.854 25.930 28.243 IADB
(27.786) (10.035) (27.125) (28.467) LADB

Total Protein 323 6.138 0.582 6.074 6.202 IADB
(6.198) (0.618) (6.129) (6.268) LADB

Creatinine 859 0.819 0.159 0.808 0.830 IADB
(0.833) (0.166) (0.822) (0.844) LADB



statistical norms for control animal populations drawn from the same colony, it 
should be possible to select foundation stock which will reinforce the probability 
of central tendency over time and to thereby limit genetic drift. This interactive 
process should also make it possible to statistically engineer the LADB data and 
ultimately to produce laboratory animals with certifiably stablized and predictable 
base lines suitable for particular lines of research in animal related research 
fields.

This paper has attempted to show that LADB involves considerable text 
processing and data manipulation. LADB illustrates how the generalized data 
management system called BASIS can be utilized to handle the textual and numeric 
information tasks. The easy to use LADB system could make a dramatic impact in the 
research fields of animal science. LADB will be even better if all the scientists 
and research organizations across the country will submit their own data to LADB and 
let it be shared by other scientists in the same research fields.

- 219 -



REFERENCES

1. Fried, J. B., "BASIS-70 Interface", Interactive Bibliographic Search: The 
User/Computer Interface., D. E. Walker, ed. , Montvale, N.J. AFIPS Press, 1971. 
pp. 143-157.

2. "BASIS On-line Retrieval and Analysis System Manual", Information Systems 
Section, Battelle Columbus Laboratories, Columbus, Ohio, 1976.

3. Hsu, K . , "What BASIS Can Do For Implementing a General Purpose Computerized 
Chinese/English Language Information Retrieval and Data Analysis System in 
Taiwan, Republic of China", Proceedings of International Computer Symposium, 
Vol. II, pp. 458-475, 1975.

4. Fite, D. W., Rankin, K. , Fong, E., Walker, J. C., and Marron, B. A., "A 
Technical Index of Interactive Information Systems", Washington, D. C.: 
National Bureau of Standards, February, 1974 (NBS Technical Note 819).

5. Martin, T. H . , "A Feature Analysis of Interactive Retrieval Systems", Stanford, 
California: A Report (Report No. SU-COMM-ICR-74-1) of the Institute for 
Communication Research, Stanford University, September, 1974.

6. Simon, R. C., and Kovacs, G. J., "The Historical Toxicology Information/Data 
System - HISTOX, Drug Information Journal, pp. 144-153, 1975.

7. Litterst, C. L. , Mimnaugh, E. G., Gram, T. E. , Guarino, A. M. , Simon, R. C., 
"Acute Toxicity of Substrates of the Mixed Function Oxidase System in Normal 
and Phenobarbital-Pretreated Mice", Journal of Toxicology and Environmental 
Health, Vol. 1, pp. 39-46, 1975.

8. Levy, A. F., Simon, R. C., Beerman, T. H. , Folk, R. M. , "Scheduling of 
Toxicology Protocol Systems", Computers and Biomedical Research, Vol. 10, 
pp. 139-151, 1977.

9. Claydon, C. R. and Klette, I. J., "New Techniques for Weapons Systems Cost 
Analysis", Proceeding, Military Operations Research Society, June, 1974, 
pp. 1-5.

io. - j ' M i - 4  ^  'J- , * rf ''ft, - - P f £ ~  ?.&, #  M

jf &  f , ; -y -j % ,  fit

P i **4^, |f i ^  1174. v

• j - x. 4? A  -, £  $ *  f  A  ^  ̂  % '  til

^ 7 4 .

12. Krohn, R. E., Fish, A. R. , Hsu, K . , "Ohio College Library Center Subject 
Search", in progress.

13. "BASIS Data Base Construction and Maintenance", Information System Section, 
Battelle Columbus Laboratories, Columbus, Ohio, 1976.

11

-  220 -



14. Hsu, K. , "Laboratory Animal Data Bank," Master's Thesis, Computer and 
Information Science Department, The Ohio State University, in progress.

15. ffLADB Data Collection Manual,11 Information System Section, Battelle Columbus 
Laboratories, Columbus, Ohio, 1976.

16. Snedecor, G. W. , Cochran, W. G. , "Statistical Method", 6th Edition, The Iowa 
State University Press, Ames, Iowa, 1967.

17. Nie, N. H. , Hull, C. H . , Jenkins, J. G., Steinbrenner, K. , Bent, D. H. , 
"Statistical Package for the Social Science," 2nd Edition, McGraw-Hill Inc., 
1975.

18. Fried, J. B. , "BASIS On-line Retrieval and Analysis of Large Numeric Data 
Bases," Proceedings of Fifth Biennial International CODATA Conference, pp. 
541-547, 1976.

19. "Student", Biometrika, 6:1, 1908.

APPENDIX A. EXAMPLE SEARCH (BASE-LINE FILE)

Question in Mind:

"What is the distribution of platelets data of 10 month old female beagle dogs?"

After LOGIN, the logical menu-selection procedures are as following:

1. The menu-selection activities* included in the first page of this example 
illustrates the search steps which make the data available to LADB.

2. The menu-selection activities* included in the second page of this example 
illustrate the search steps which select only the 10 month old female 
beagle dogs out of the 8 colony records.

3. The menu-selection activities* included in the third page of this example 
illustrate the search steps which select the "STATISTICS 4- HISTOGRAM" 
option of the "DISTRIBUTIONS" procedure to analyze the retrieved platelets 
data of 10 month old female beagle dogs.

4. The latter part of the third page, the fourth page and the upper part of 
the fifth page contain the statistical data and the frequency distribution 
of the selected data set. It is the standard output provided by the 
FREQUENCIES procedure of SPSS.

5. The menu-selection activities* included in the fifth page of this example 
illustrate the automatic LOGOUT procedure provided by LADB.

* All user entries are underlined in the search example.

-  221 -



CHOOSE BASIC LADB SERVICE BY NUMBER:
1. SEARCH (BUILD A PROFILE)
2. USE A PREVIOUSLY SAVED PROFILE
3. SIGN OFF (STOP LADB)

FOR HELP CALL (202)-785-8414 

/ _i
CHOOSE FILE BY NUMBER:

1. BASE-LINE FILES
2. STRAIN DESCRIPTIONS
3. HUSBANDRY DESCRIPTIONS (NOT AVAILABLE)
4. PROTOCOL DESCRIPTIONS (NOT AVAILABLE)
5. ANALYTICAL PROCEDURES DESCRIPTIONS (NOT AVAILABLE)
6 . RETURN TO "CHOOSE BASIC LADB SERVICE"

FOR HELP CALL (202)-785-8414

/ _L
CHOOSE SPECIES BY NUMBER:

1 . DOG (BEAGLE ONLY)
2. HAMSTER (SYRIAN GOLDEN ONLY)
3. MONKEY (RHESUS ONLY)
4. MOUSE
5. RAT
6 . RETURN TO "CHOOSE FILE"

/ J_
CHOOSE C L A S S (E S ) OF BASE-LINE DATA BY NUMBER: (E.G. 1,4,5)

** INDIVIDUAL DESCRIPTORS **
1. ENTER DATA ELEMENT ABBREVIATION(S ) FROM LADB SERVICE CARD

** GROUPED DESCRIPTORS **
2. COLONY ID
3. PROTOCOL/HUSBANDRY FACTORS

** DATA DESCRIPTORS **
4. HEMATOLOGY
5. CLINICAL CHEMISTRY
6 . GROWTH AND LIFESPAN
7. PATHOLOGY

8 . RETURN TO LAST CHOICE

/ _ L
CHOOSE TYPE OF HEMATOLOGY PARAMETER BY NUMBER: (E.G. 1,2,3)

1. NON-SEGMENTED NEUTROPHILS
2. SEGMENTED NEUTROPHILS
3. LYMPHOCYTES
4. MONOCYTES
5. EOSINOPHILS
6. BASOPHILS
7. HEMATOCRIT
8 . HEMAGLOBIN
9. MEAN CORPUSCULAR HEMAGLOBIN

10. MEAN CORPUSCULAR HEMAGLOBIN CONCENTRATION
11. MEAN CORPUSCULAR VOLUME
12. NUCLEATED RED BLOOD CELLS 
13- PLATLETS
14. RED BLOOD CELL COUNT
15. RETICULOCYTES
16. WHITE BLOOD CELL COUNT
17. RETURN TO "CHOOSE CLASS OF BASE-LINE DATA"

/ 1 1

-  222  -



YOU HAVE SELECTED DATA ELEMENTS OF INTEREST 
CHOOSE YOUR NEXT STEP BY NUMBER:

1. RUN IMMEDIATE SEARCH FOR RESULTS
2. SAVE DATA ELEMENTS OF THIS PROFILE FOR FUTURE SEARCH
3. RETURN TO "CHOOSE CLASS(ES) OF BASE-LINE DATA"
/ J_

YOUR SEARCH HAS PRODUCED THE FOLLOWING PRELIMINARY RESULT:
8 COLONY RECORDS 

CHOOSE YOUR NEXT STEP BY NUMBER:
1. MAKE PROFILE MORE GENERAL/SPECIFIC
2. SAVE PROFILE FOR FUTURE USAGE
3. RETURN TO "CHOOSE BASIC LADB SERVICE" (REPORTS, STATISTICS, ETC.

/ J _
CHOOSE BASIC LADB SERVICE BY NUMBER:

1. SEARCH (BUILD A PROFILE)
2. USE A PREVIOUSLY SAVED PROFILE
3. SIGN OFF (STOP LADB)

FOR HELP CALL (202)-785-8414
4. BUILD A WORK SET (YOUR DATA)
5. STATISTICS
6 . PRINT REPORTS

/ JL
DATA AVAILABLE FOR STATISTICAL ANALYSES ARE GROUPED 
BY COMBINATIONS OF AGE (OR AGE GROUPINGS), TEST YEAR, AND SEX 
FOR EACH DATA ELEMENT (E.G. H C T , BUN, WBC) WITHIN A COLONY.

THERE ARE 132 COMBINATIONS OF THESE IDENTIFIERS FOR YOUR SEARCH 
DO YOU WANT TO SELECT GROUPS BY AGE, SEX, OR TEST YEAR?
ENTER YES OR NO 

/ YES 
FOR ** SEX **
CHOOSE 1-LOOK, 2-LIST, 3-LEAVE 

/ _2_

CHOOSE ITEM(S) FOR ** SEX **
1. CHOOSE ALL
2. FEMALE (6 6)
3. MALE (6 6)
4. CHOOSE NONE

END OF TERMS FOR ** SEX **

/ JL
FOR ** SEX **
CHOOSE 1-LOOK, 2-LIST, 3-LEAVE

/ J_
FOR ** AGE CATEGORY **
CHOOSE 1-LOOK, 2-LIST, 3-LEAVE

CHOOSE I T E M (S ) FOR ** AGE CATEGORY **
1 . CHOOSE ALL
2 . 03( 2 . 0 0 - 2.99 MO) ( 1 )
3. 04 ( 3 . 0 0 - 3-99 MO) (2 )
4. 05 ( 4.00 - 4.99 MO) ( 1 )
5. 06 ( 5.00 - 5.99 MO) ( 1 )
6 . 07 ( 6.00 - 6.99 MO) (3)
7. 08 ( 7 . 0 0 - 7.99 MO) (3)
8 . 09 ( 8.0 0 - 8.99 MO) (8 )
9. 1 0 ( 9. 00 - 9.99 MO) (13)

1 0 . CHOOSE NONE
/ 9

- 223 -



MORE TERMS EXIST FOR ** AGE CATEGORY **
WOULD YOU LIKE TO SEE THEM?
ENTER YES OR NO 

/ NO
FOR ** AGE CATEGORY **
CHOOSE 1-LOOK, 2-LIST, 3-LEAVE 

/ 3
FOR *”*■ OBSERVATION YEAR **
CHOOSE 1-LOOK, 2-LIST, 3-LEAVE

/ JL

THERE ARE 13 COMBINATIONS OF THESE IDENTIFIERS FOR YOUR SEARCH 
DO YOU WANT TO SELECT GROUPS BY AGE, SEX, OR TEST YEAR?
ENTER YES OR NO 

/ 1 0
CHOOSE ONE DATA ELEMENT BY NUMBER

1. PLATELETS (10**3 PER CU MM)
2. ENTER A DATA ELEMENT ABBREVIATION
3. RETURN TO "SELECT DATA GROUPINGS"
4. RETURN TO "CHOOSE BASIC LADB SERVICE"

/  J_
CHOOSE LADB STATISTICAL SERVICE BY NUMBER:

1. DISTRIBUTIONS (PRINTED CURVE AND S T A T I S T I C S ,E T C .)
2. CROSSTABULATION (DATA ELEMENT VS S E X ,A G E ,ETC .)
3. BREAKDOWN (COLONY(S) BY S E X ,A G E ,E T C .)
4. T-TEST (COMPARE DATA ELEMENT BY S E X ,A G E ,E T C .) (NOT AVAILABLE)
5. RETURN TO "SELECT DATA GROUPINGS"
6. RETURN TO "CHOOSE BASIC LADB SERVICE"

/ J _
CHOOSE DISTRIBUTIONS OPTION BY NUMBER:

1. STATISTICS
2. TABLE(DETAILS)+STATISTICS
3. STATISTICS+HISTOGRAM
4. STATISTICS+TABLE(CONDENSED)+HISTOGRAM

/ J_
SPSS/ONLINE V4.0

------ FREQUENCIES - - -

END OF FILE ON FILE INDATA
AFTER READING 123 CASES FROM SUBFILE NONAME 

PLAT PLATELETS IN 10**3 PER CU MM

MEAN
MODE
KURTOSIS 
MINIMUM 
C.V. PCT

2 8 3 . 10 2  
406.744 

.613 
1 16.000 
29.195

STD ERR 
STD DEV 
SKEWNESS 
MAXIMUM 
.95 C.I.

6 . 212
82.652

.719
567.231
270.842

MEDIAN
VARIANCE
RANGE
SUM

TO

272.169 
6831.297 
451.231 

50109.130 
295.363

VALID CASES 177 MISSING CASES 0

- 224 -



------ FREQUENCIES - - -

PLAT PLATELETS IN 10**3 PER CU MM

CODE I
116.000 ** ( 1 )II
146.079 ******** ( 7 )II
176.159 ************** ( 1 3 )

II
206.238  ********************** ( 21 )

II
2 3 6 . 3 1 7  ************************** ( 2 5 )

II
266.397 *********************************** ( 3 4 )

II
2 9 6 . 4 7 6 *********************** ( 2 2 )

II
326.555 **************** ( 1 5 )

II
356.635 *********** ( 1 0 )II
386.714 ************ ( 1 1 )

II
4 1 6 . 7 9 3 ********* ( 8)

II
446.873 ******* ( 6)II
476.952 ** ( 1 )II
507.031 ** ( 1)I

I
5 3 7 . 1 1 0  * ( 0 )II
567.190 *** ( 2)II

I....... I........I........I........I........I
0 10 20 30 40 50
FREQUENCY

- 225 -



VALID CASES 177 MISSING CASES 0

THESE STATISTICS ARE BASED ON NO MORE THAN 
100 INDIVIDUAL ANIMALS. THIS IS THE ACTUAL 
NUMBER OF INDIVIDUAL ANIMALS IF ONLY ONE 
AGE CATEGORY WAS CHOSEN.

CHOOSE YOUR NEXT STEP BY NUMBER:
1. SAME DATA ELEMENT WITH ANOTHER STATISTICAL PROCEDURE
2. ANOTHER DATA ELEMENT
3. RETURN TO "SELECT DATA GROUPINGS"
4. RETURN TO "CHOOSE BASIC LADB SERVICE"

/ A
CHOOSE BASIC LADB SERVICE BY NUMBER:

1. SEARCH (BUILD A PROFILE)
2. USE A PREVIOUSLY SAVED PROFILE
3. SIGN OFF (STOP LADB)

FOR HELP CALL (202)-785-8414
4. BUILD A WORK SET (YOUR DATA)
5. STATISTICS
6 . PRINT REPORTS

/ JL
YOU HAVE COMPLETED A LADB SERVICE.

IF YOU WOULD LIKE TO SUBMIT YOUR
DATA FOR LADB ACCEPTANCE, PLEASE CONTACT
(202)-785-8414 OR WRITE TO:

LADB
BATTELLE WASHINGTON OPERATIONS 
2030 M ST. N. W.
WASHINGTON, D.C. 20036

CONNECT TIME 0 HRS. 7 MIN.

GOODBYE

-  226 -



THE USE OF TOTAL AT THE NETHERLANDS ENERGY RESEARCH FOUNDATION ECN

H.M. Rietveld, Netherlands Energy Research Foundation ECN, Petten (N.H.)

- 227 -



TOTAL data base management system.
The general data base management system TOTAL is implemented on the CDC 6600 computer at 
the ECN research centre at Petten (N.H.). It is a network structure data base which 
provides a direct linkage between files. There are two types of files: master and 
variable. A master file can be independent and its records can be accessed directly by 
respective control keys. A variable file is dependent and must be attached to a master 
file. Its records are chained in groups. Each of these records is, in turn, chained to 
a unique master record in a related master file. This chaining provides the access paths 
to the variable records. A master file can be linked to more than one variable file and 
a variable file to more than one master file. Thus multiple access paths can exist be
tween multiple master files and a single variable file. This interlinkage of files per
mits the construction of a network structure data base. TOTAL lends itself well for the 
handling of problems involving data sets which can be differently interrelated. The 
first step is to define the contents of the records of the required master and variable 
files. Secondly, the links between these files should be established. These steps define 
the data base which can be accessed by means of special application programs. In Petten, 
all application programs are written in FORTRAN and the interface with the data base 
consists of a call to the subroutine DATBAS, with the proper parameters defining the 
required functions to be executed. It should be stated here that the use of this sub
routine in FORTRAN programs is rather cumbersome. This is mainly due to the fact that 
FORTRAN does not have the character type variable, as does COBOL. This means that for 
each CALL DATBAS the required character string has to be newly constructed. Until now, 
in Petten, TOTAL has been used in two widely different applications of which a short 
description will be given.

Library automation.
The first is the use of TOTAL for library automation. An obvious reason to do this is to 
reduce the labour involved in the mainly routine type transactions common in a library, 
thereby enabling the staff to handle a larger volume of work. In view of the fact that 
the library budget is, as usually, limited, this exercise should not cost too much. The 
availability of a GDBMS helps to ease significantly the required programming effort. In 
effect, without it, the automation of a small library does not pay. The schematic of 
this integrated acquisition, cataloging and circulation control system is shown in fig.
1. The squares indicate master files with their appropriate names and control keys. 
Circles constitute variable files. The files can be described generally as follows:
PERS - master file containing records with names and other data of persons allowed to 

use the library. The control key consists of the person’s registration number, 
BOOK - master file containing short descriptions of books (or other items) on order.

The book number is the control key,
SUPP - master file containing the names, addresses and other data on publishers and 

booksellers with their code number as control key,
BUDG - master file containing the budget amounts and spendings of the different depart

ments in the institute. The budget number is also the control key,
CATL - master file with records containing a full bibliographic description of books 

present at the library. The book number is the control key,
LOAN - variable file with lending transactions,
RESN - variable file with reservations for books on loan,
ORDR - orders for books placed with the booksellers.
The application programs operating on this data base have already partly been written 
and enable one to control all the common operations in the library, thereby ensuring a 
better management and a more efficient use of the library. Almost all programs are writ
ten for interactive terminal use.

Fuel burn-up computation.
The initial fuel load of a nuclear reactor consists of a mixture of nuclides. When the 
reactor is operating this fuel is subjected to a neutron flux. As a consequence neutrons 
are absorbed by the nuclides leading to either fission or capture. In addition radioac
tive isotopes formed by these processes can decay to other nuclides. In nuldimensional 
calculations the spatially variable neutron flux is averaged over the reactor core.

- 228 -



This flux is then split up in a number of energy groups. For each energy group a set of 
appropriate cross-sections is supplied. The whole process of mutations in the nuclear 
fuel can be described in terms of depletion chains. These specify (1) how each nuclide 
is formed (radioactive decay or capture) from previous nuclides in the chain, (2) wether 
or not the nuclide is a direct product of the fission process, and (3) how the nuclide 
is destroyed (radioactive decay and/or absorption). The differential equations describ
ing the burn-up processes in a given chain are of the following two types:

I a ^ - V - A V i  - < V  V i

II dt l

Y^=Z y^^S^=total yield of nuclide i 
k

y_^k=yield of nuclide i after fission of nuclide k

S, =fission rate of nuclide k 
k

N^=atomic density of nuclide i in this chain

A^=total absorption cross-section of nuclide i,

a.=partition to parallel branches in a chain (isometric states of a nuclide). For
first nuclide in a chain a.=Q, for all other normal cases a.=l

l ■ * l

X^=decay constant of nuclide i

a.=X. or C. 
i l  l

C^=total capture cross-section of nuclide i

Analytical solutions to these differential equations can be found and are used in this 
program. The schematic of the data base is shown in fig. 2. The contents of the files 
are as follows:
ISOS - master file containing 1200 records. Each record consists of a control key equal 

to the isotope number plus a yield index number k and the energy in Joules re
leased on fission. The isotope number is calculated according to ZxlOOO+A, where 
Z is the atomic number and A the mass number. When no fission is possible, k=f0. 

KETS - master file of 180 chains. Each chain comprises a control key (=chain number),
the number of isotopes in the chain and the type of burn-up process in the chain. 

SETS - master file of 60 sets of chains. The set number is the control key. Each record 
further contains the number of chains in the set and the type of isotopes in the 
chain i.e. fission products only or fissionable nuclides. In each burn-up calcul
ation normally one of each type of sets is used.

YIND - a stand alone master file containing 36 records with control key=yield index
number k. The record contains also the corresponding isotope number. Only fission 
nuclides, i.e. isotopes with k=0 in file ISOS, are stored.

SKET - variable file consisting of 255 records, each with two control keys: a set number 
and a corresponding chain number.

DATA variable file consisting of 3000 records, each with two control keys: a chain 
number and a corresponding isotope number and further containing the following 
data for this isotope:

xi’.ai? yik k̂ = 1 , -----* 30^’ 0C and cp*
oc indicates wether the nuclide has occurred before in another chain: cp indicates 
the coupling, capture or radioactive decay, to the parent nuclide. The subscript 
k in y ^  is the yield index number.

- 229 -



Two application programs in FORTRAN have been written for this data base. One calculates 
the atomic densities N. for a certain neutron flux and after a certain time interval, in 
addition to other related quantities. The other is used to update an existing data base 
or create a new base.

Conclusion.
The use of the TOTAL data base management system has some definite advantages such as the 
ease of programming complicated interconnected file structures. It also proves to be 
efficient in core occupation, less than 2000g words, as well as execution time. 
Disadvantages are the cumbersome implementation of the subroutine DATBAS in FORTRAN 
application programs and the absence in the CDC implementation of such possibilities as 
a report writer, a data dictionary and sorting and merging routines. However, it can be 
said that, overall, TOTAL is a handsome system to implement a data base, especially with 
regard to its cost.

-  230  -



fig. 1. Schematic of an integrated library acquisition, cataloging and 

circulation control system.

YIND

fig. 2. Schematic, of a fuel burn-up computation system.

- 231 -



USE OF DBMS-10 FOR STORAGE AND RETRIEVAL OF* 
EVALUATED NUCLEAR DATA FILES

C. L. Dunford 
National Nuclear Data Center 

Brookhaven National Laboratory 
Upton, New York 11973 U.S.A.

Abstract

The use of a data base management system (DBMS) for storage of, and 
retrieval from, the many scientific data bases maintained by the National 
Nuclear Data Center is currently being investigated. It would appear that 
a commercially available DBMS package would save the Center considerable 
money and manpower when adding new data files to our library and in the 
long-term maintenance of our current data files.

Current DBMS technology and experience with our internal DBMS system 
suggests an inherent inefficiency in processing large data networks where 
significant portions are accessed in a sequential manner. Such a file is 
the Evaluated Nuclear Data File (ENDF/B) which contains many large data 
tables, each one normally accessed in a sequential manner.

After gaining some experience and success in small applications of 
the commercially available DBMS package, DBMS-10, on the Center's 
DECsystem-10 computer, it was decided to select one of our large data 
bases as a test case before making a final decision on the implementation 
of DBMS-10 for all our data bases. The obvious approach is to utilize the 
DBMS to index a random access file. In this way one is able to increase 
the storage and retrieval efficiency at the one-time cost of additional 
programming effort.

*Research carried out under the auspices of the U.S. Energy Research and 
Development Administration under Contract No. EY-76-C-02-0016

- 232 -



I. Introduction

Brookhaven National Laboratory, Upton, New York operates on behalf 
of the Energy Research and Development Administration, a nuclear data 
center known as the National Nuclear Data Center. This center is charged 
with the responsibility for providing information on nuclear reactions 
and nuclear structure and decay in the area of low and intermediate 
energy physics. In order to fulfill this charter, the center is active 
in the compilation, storage, retrieval and dissemination of a wide va
riety of data types in all forms available through current technology.

Until 1976, the center was known as the National Neutron Cross 
Section Center with responsibilities limited to the area of low energy 
neutron physics. As such, the center maintained three separate data 
bases, one for bibliography, one for experimental data and one for evalu
ated data. Although small in number the individual data bases were large, 
ranging from 5 million words to 20 million words. Since 1969 the center 
has had a dedicated computer system to support its responsibilities. This 
computer is a DECsystem-10 with 30 million words of disk storage, 144K 
memory and auxiliary devices such as a paper plotter, card reader, and 
magnetic tape drives. A PDP-15 computer and interactive graphics facili
ty, is joined with this system. The computer is operated in time-sharing 
mode and is heavily used by the center's 20 professionals and 8 technical 
and clerical staff.

In the past the center staff has developed its own data storage and 
retrieval systems by essentially developing a data base management system 
for each application. These ranged from a fairly sophisticated system 
for the large, loosely formatted experimental data file to a very simple 
system for the rigidly structured evaluated data file. This ability to 
design and construct each data base was possible because eagh computerized 
data system was developed as the need arose and as the programming man
power was made available. But in 1976, the center's responsibility was 
increased when new areas of nuclear physics were added. With the ad
ditional responsibility came an additional four data bases, which in
creased our data base contents by about 300 percent.

It was quickly realized that we could not implement four new data 
bases and all the necessary processing programs with the modest staff 
increase allocated to the data base management function. Therefore a 
commercially available DBMS software package was purchased. After com
paring the DBMS systems available for the DECsystem-10, DBMS-10 was 
purchased. It is a system which closely follows the CODASYL specifi
cations. We have implemented DBMS-10, version 3, on our computer using 
FORTRAN as the host language. Our goal was to minimize the programming 
effort involved in developing storage and retrieval systems for our new 
data bases and to reduce the time required to make the new data bases 
operational.

II. Description of the Application

In order to explore the capabilities and limitations of DBMS with 
respect to our large scientific data bases several smaller applications 
have been developed. I will describe in this paper some of our experi
ences with DBMS-10. Our system for handling evaluated neutron data will 
be described in some detail. Interesting results from other applications 
will also be described.

The evaluated nuclear data file consists of small amounts of text and 
organizational data and large amounts of sequentially accessed data tables.

- 233 -



The information is rigidly organized and structured since the format of 
the data contained in the file was designed about 11 years ago to inter
face directly into large processing codes used in nuclear power reactor 
physics design programs. In Fig. 1, the original sequential organization 
of the data is illustrated. The core of its design is the section which 
contains a data table describing a particular reaction and function for a 
single material. In the simplest case this table consists of a maximum 
of 5000 numerical pairs (energy and cross section) ordered by increasing 
energy.

Our old file management system used a random access technique to 
access a material. No processing programs were directly linked to the 
random access file. An intermediate retrieval step to produce a se
quential file was required. At the present time the evaluated data file 
is undergoing major revisions. Therefore it was decided to build a DBMS 
which could automatically handle much of the bookkeeping operations, 
provide access to the fundamental unit of information and be interfaced 
with most of the processing programs easily.

III. System Design

One of the crucial problems to be resolved before implementing a DBMS 
to handle the evaluated data base was developing a strategy to provide for 
efficient storage and retrieval of the large data tables. We believe that 
the present implementation of DBMS is prohibitively expensive if used for 
storage and retrieval of a large number of records retrieved in a se
quential manner. Therefore, at the expense of some additional programming 
effort, it was decided to use DBMS for the indexing and associated 
bookkeeping while the data itself is stored using random access data 
files.

The data base management programs were designed, programmed, and de
bugged with about a 3 man-week effort. The data base is currently 
accessed by three programs: a file update program, a retrieval program, 
and an index program. All are designed to operate in an interactive 
mode using one of the terminals with access to our DECsystem-10.
Processing programs are now being interfaced to the new system.

The schema used is illustrated in Fig. 2. You will note that we 
have made frequent use of SORTED sets. This is done in order to quickly 
produce output in a useful order. Such a decision is not without cost 
but we have found that the penalty is acceptable as long as the number of 
records in a set occurrence is not large (up to 100 records) . Most re
trievals can then be simply done by following a set pointer chain. The 
next version of the DEC FORTRAN system will contain a fast sort routine.
We will then investigate the possible advantages of not using SORTED sets. 
Retrievals would be done by retrieving the keys to records satisfying 
the retrieval criteria along with any information required by the sorting 
specifications. These would be sorted by the FORTAN sort routine and 
then the retrieval done by sequentially processing the sorted key file.

Some records have duplicate information stored in them. Three 
records, the MAT record, the Z-A record, and the MAT-SECTION record con
tain the variable NLIB, the library number and MAT, the material number. 
This kind of duplication eliminates the need to do multiple lookups 
following linking relationships to construct a single output record. We 
have found that a schema employing many record types of short length is 
very inefficient for our retrieval purposes.

- 234 -



Sets and their relationship were created to handle the majority of 
the envisioned retrievals. The schema is designed to provide access to 
the file on three of the four levels illustrated in Fig. 1. Only access 
at the "file" level has been elimated. By entering at the MAT record 
level we can retrieve the data for an entire material, while entrance at 
the TAPE record level enables us to retrieve an entire tape. Since dual 
access keys are not permitted we have added Z-A records to the file.
These records permit accessing a meterial by its alternate identification, 
namely its nuclear charge number (Z) and its mass number (A) . Normally 
a material is identified by its material number (MAT).

Since external random access files are used to store the data we 
have included records to describe these external files. This record 
gives the file name, the number of records used, and a pointer to the 
next available record. MAT records are linked to occurrences of DA-FILE 
records in order to permit the system to open the proper random access 
file for retrieval.

IV. Special Program Features

ENDLIB is the library generation and maintenance program whose main 
function is to take an input sequential file and replace or add material 
sections one at a time in the data base. The DBMS index is updated and 
the data tables stored in a random access file. All sections for a 
material are stored in the same random access file. Several small 
materials may be clustered in the same random access file while large 
materials are stored in their own file. The link between the DBMS index 
and a material section is the random access record number of the first 
record in the section's data table.

When a section is replaced, the new version of the section is stored 
at the end of the appropriate random access file and the record pointer 
updated in the DBMS index. With sufficient updating activity, the record 
utilization efficiency in the random access file is greatly diminished. 
When this efficiency falls below 70 percent, the file is copied over thus 
automatically eliminating unused records.

ENDRET is the library retrieval program. Retrievals can be done by 
specifying a TAPE thereby retrieving all materials assigned to that TAPE. 
Retrievals can also be done by material (giving either its material number 
or its nuclear identification (Z,A)) or by material section. The program 
automatically expands the compacted storage format into the standard file 
format.

INDED is a program designed to permit various miscellaneous oper
ations on the DBMS index. Two elementary, but vital functions are modules 
to dump the contents of the DBMS file in a fixed format sequential file 
and another module to recreate the DBMS file from this sequential file.
In this way backup and cleanup functions are easily accomplished.

A module exists which permits the user to modify the DBMS file 
contents. Current implementations include creation and modification of 
TAPES, reassignment of material numbers, and revision of section or 
material status codes. A last module allows one to print on the terminal 
the contents of any tape or material.

V. Other Operating Experiences

In operating other DBMS applications we have noticed that data base 
loading times would fluctuate widely while the actual CPU time required 
remained relatively constant. One significant factor was the configu-

- 235 -



ration of our disk storage and the job mix in the machine. All six 5 
million word disk drives are on one channel. Heavy 10 activity from 
other jobs often dramatically increased loading times. Another factor 
was competition for positioning the disk head. Load times were decreased 
when the DBMS file was on a private disk structure with little or no head 
position competition as opposed to a public disk structure where program 
swapping as well as other user input/output were causing competition for 
head positioning.

Load times are also heavily affected by whether the data are to be 
loaded into a file in some specific sort order. However, we did find 
that presorting the input file did minimize both the number of page 
retrievals and the elapsed time. We would assume that the sorting 
algorithm used in DBMS-10 can take advantage of the fact that an input 
file is presorted. Presorting seems to be a good procedure whenever a 
record is sorted in only one order with the DBMS file. Savings should 
also result if more than one sort order is required, through a judicious 
selection of one of the sort orders for presorting.

The DEC FORTRAN-10 system has extremely good file manipulation capa
bilities which may not be available on other FORTRAN systems. Such capa
bilities are essential for selecting and accessing the different random 
access files required in the above application in an interactive mode.
In another application it was desirable to have many small DBMS data 
bases which could be processed by a single computer program, where the 
proper file for processing is to be selected interactively. The current 
version of DBMS-10 requires that the DBMS file have a name predetermined 
by the schema. It is very inconvenient to have to regenerate the schema 
for each different file to be accessed. This obstacle was overcome by 
using the RENAME feature of the file closing statement (CLOSE). The 
selected file is renamed to name.DBS before being opened by the DBMS 
system and restored to its original name after the DBMS CLOSE.

VI. Summary

We have investigated the use of a commercially available DBMS, 
DBMS-10 for use in constructing and maintaining scientific data bases.
Two applications have been implemented with relative ease and are now in 
full production use. The additional storage and operation overhead has 
been within acceptable bounds in relation to the savings in the cost of 
development and maintenance for the data management system. In the next 
phase of development we intend to implement two large scientific data 
bases based on the results of the experiments described in this paper.

REFERENCES

1. D. Garber et al., "Data Formats and Procedures for the Evaluated 
Nuclear Data File, ENDF", BNL-NCS-50496, Oct. 1975

2. "Data Base Management System (DBMS-10) Administrator's Procedures 
Manual", DEC-10-AAPMA-B-D, Digital Equipment Corporation, Maynard, 
Mass., May 1975

3. "Data Base Management System (DBMS-10) Programmer's Procedures 
Manual", DEC-10-APPMA-B-D, Digital Equipment Corporation, Maynard, 
Mass. May 1975

- 236 -



Section

Nuclear data for 
a particular 

reaction

Fig. 1. Structure of ENDF (Evaluated Nuclear Data File)

- 237 -



238

Fig. 2. Schema for DBMS system for ENDF (Evaluated Nuclear Data File)



A LARGE DATA BASE ON A SMALL COMPUTER

Neutron Physics data and bibliography under IDMS

A. Schofield 
L. Pellegrino

OECD/NEA Neutron Data Compilation Centre, Saclay, France 

N. Tubbs
OECD Nuclear Energy Agency, Paris

1• Introduction

The OECD/NEA Neutron Data Compilation Centre (CCDN) works with 
three other regional data centres to provide world coverage for the com
pilation and distribution to users of numerical data and other information 
on neutron-induced nuclear reactions. The ffour-centre network* and the 
characteristics of the data files exchanged within it are discussed in 
detail in the paper by Mrs. Attree of IAEA elsewhere in this report / 1J7. 
In respect of GDMS use in these centres, it is important that their Tour 
major information projects are implicitly (if not;explicitly) linked, in 
that these files refer to successive stages in the elaboration of neutron 
cross-section data and leading up to the presentation of evaluated files 
of numerical data in standard format: ?best values1 for use in reactor 
computations.

The work reported in this paper concerns the transfer of three 
associated files to an IDMS data base: the CINDA bibliographic index to 
neutron physics publications (now 140,000 records or some 17 Mbytes), the 
cumulated EXFOR exchange tapes used for maintaining parallel data 
collections at all four centres (2 million records, or 35 Mbytes when 
packed on disc) and the CCDNfs internal data storage and retrieval system 
NEUDADA (2.65 million records, 54 Mbytes packed). With associated 
dictionaries and inter-file conversion tables the corresponding IDMS data 
base will be about 160 Mbytes. The main characteristics of the three 
files are shown in Section III, 1 below.

2. The Decision to Use a GDMS

It is proposed to replace the two NEA data centres, CCDN and 
the Computer Program Library (CPL) located in Italy, by a single NEA 
Data Bank in Saclay. In evaluating the computer requirements of the Data 
Bank a conflict became apparent between the benefits in speed and 
convenience of replacing the CCDNTs IBM 370/125 computer by remote links 
to an IBM 370/168 (in any case essential for the program testing work of 
the CPL) and the high overhead cost of disc storage for the neutron

- 239 -



physics data. It was decided to overcome this difficulty by installing 
a ’heavy mini-computer1 in the Data Bank for use as a remote job entry 
station to the IBM 370/168 and other large computers on the Saclay site, 
and as a data base carrier. The equipment provisionally chosen is a 
PDP 11/70 with some 350 Mbytes of disc storage: however, there are 
other heavy minis on the market which might be expected to perform well 
in the same role.

The transfer of CCDN files to a GDMS had been under discussion 
for some time. The Centre had over the years produced its own data 
handling systems for CINDA and NEUDADA using the Indexed Sequential 
Access Method (ISAM), but was conscious of their limitations to the extent 
that the question of using GDMS was being discussed, but for a future 
time several years ahead. The decision to change computers precipitated 
the choice: by transferring control of the contents of the CCDN files 
from the home-made programs to a GDMS on the 370/125, and later flifting 
off1 the data base on to replacement hardware but using the same GDMS, 
only the fphysics-dependent1 programs need be rewritten for the new 
computer thus shortening the changeover. Besides its reputedly good 
performance in disc input/output, the PDP 11/70 offered a choice of IDMS 
and TOTAL data management systems, both compatible with the 370/125.
IDMS was preferred because it was adopted by DEC for the PDP 11, and 
because it can represent directly hierarchical as well as network data 
structures.

3. Structuring the CCDN Data Base

1. Inherent and system-dependent structure of the data at CCDN

It now seems most convenient in handling numerical neutron 
data to consider as the basic unit of information the measurement of 
a cross-section for one element or isotope, in a particular laboratory.
One measurement will generate a number of data points (as incident 
neutron energy is varied, for example) which will be grouped in a data 
table for storage purposes. Several authors will work in a group to do 
a number of similar measurements, usually reported in several progress 
reports and a journal or conference paper. The unit of data compilation 
is on the other hand the paper or report through which the compiler 
learns about this work, and which usually gives results for several 
measurements. Each one of these measurements may have a different 
history of measurement and extended remeasurement over the several years1 
lifetime of that particular experimental set-up. These issues have been 
clarified only slowly, and largely in connection with successive develop
ments of CINDA / 2 j ,  the CINDA-based IAEA data index DASTAR and the 
design of EXFOR.

An unfortunate corollary is that some criteria essential in 
uniquely defining a given measurement are coded differently in each 
file, to the extent that conversion between files may require more 
information than is explicitly available in either, and which must be 
generated indirectly from other ’clues1 in the file, or added manually, 
usually as tables to be consulted by conversion programs. It is this 
apparent incompatibility between historically different ’views’ of the 
same information which has caused much difficulty in separate but co
ordinated operation of the three files, and is responsible for much of 
the complexity of the schema and the data base loading programs now 
being written. Examples of incompatibility are:

- Different nomenclature in each file for nuclear reaction cross- 
sections. More or less aggregation of similar cross-sections 
into one ’Quantity’ has created a many-to-many correspondence

-  240 -



between Quantities1 in CINDA and NEUDADA files.

- Bibliographic references are coded differently in each file.

- Manual intervention may be needed to steer conversion of EXFOR 
data tables (a ’compiler view’ of the data) to produce the 
’FORTRAN view’ required for input to customer programs and 
represented by NEUDADA ’Calculation’ output. This steerage 
information will be generated once-for-all and stored in the 
data base as conversion tables or set linkages.

Data is identified within each of the three files by a mixture 
of externally significant criteria (target nuclide, laboratory of 
measurement) and arbitrary, system-dependent data items such as ’work no.’ 
(EXFOR) or ’Experiment block no.’ (CINDA). Different subsets of these 
quantities may be sufficient uniquely to define a measurement, and it is 
in fact defined differently in each one of the present files, which then 
in turn reflect this definition in the design of their storage programs 
at CCDN:

CINDA ISAM key items:
(Most significant 
first)

Non-key items:

NEUDADA ISAM key items:

Inverted indices 
on:

Non-key items:

EXFOR Direct access: 
Sequential scan 
of CCDN index:

Laboratory, Nuclide, Quantity, 
Experiment block no., serial no.

Neutron energy, Bibliographic Reference, 
Tyge_of work± Coder, date of Entry, 
cross-reTerence to EXFOR work/subwork no.

Nuclide, Reference, Tag (arbitrary 
measurement identifier)

Laboratory, Reference, Quantity

Neutron energy

Work no., subwork no.

Laboratory, Reference, Nuclide, Quantity

The data items underlined in the table above are externally 
significant criteria frequently specified in searching the present files, 
and design of the schema must allow good access both to these and to such 
system-dependent criteria as it is necessary to keep because they are 
frozen into externally agreed formats (EXFOR work no.) and/or the 
existing data files to be transferred to the data base.

2. Construction of the initial "SCHEMA11

One of the authors (A.S.) spent some two months analysing the 
files and data handling programs which make up CCDN’s current investment 
in the three interrelated projects described in the introduction, and a 
further two weeks working together with a consultant from SEMA 
Informatique (the French agents for IDMS) to draw up the data base schema 
(the current version is shown in Fig. 1). The notation is explained in 
ref. / 3 7 9 while the operational context of the data base can be seen 
in Fig. 2, which will be easier to follow after reading the explanation 
of international neutron data activities in ref. / 1_7• The dotted line 
shows the limit of data base working: most operations outside it will be 
run on the IBM 370/168 computer for which the PDP 11/70 will serve as a 
remote batch entry station.

-  241 -



3. Data base loading strategy

In one calendar year since IDMS was installed on the IBM 370/125, 
some two man-years of effort have been put into preparing the data, 
defining the data base, and writing loading programs. Of this time, 
about half has been devoted to fupgrading* (eliminating inconsistencies 
and completing) the data files. The loading strategy shown in Fig. 3 
is that which would leave fewest set pointers unresolved during loading 
due to the absence of set owners to whom members must be linked. It can 
in fact be broken down into sections which can be loaded in any order 
and linked by the appropriate sets afterwards at relatively small extra 
cost.

A fast load utility will soon be released for IDMS, at least on 
the 370/125; it is not yet announced for the PDP 11/70. This utility 
promises important gains in loading performance, but cannot absolve the 
user of the need to prepare his data for loading, not only by cleaning 
it but also by supplying preformatted input data containing all the 
information needed to resolve set linkages. As far as possible, CCDNfs 
homemade loading programs have been written so that they can be trans
formed into updating programs for future use. As the fast load utility 
is at present, the whole data base must be loaded at once. The size of 
some of the intermediate data base workfiles to be sorted during this 
operation, and the difficulty with a small team in getting all the 
information together on time for loading, may in any case make the more 
gradual approach of Fig. 3 preferable for the initial loading process.

4. Data Base Performance at the CCDN

The decision to fgo data base1 at CCDN was based in general on 
the high-level advantages of GDMS and brought forward by the choice of 
a PDP 11/70 as data base carrier for the NEA Data Bank. The question of 
physical performance had been considered only in very general terms: 
after all, the programs in use on the 370/125 were basically those 
transferred from an earlier 360/30 computer used on a one-shift rental 
agreement. Surely the 11/70, designed to optimise disc input/output, 
and well spoken of by the users we contacted, would perform at least as 
well as a 360/30? In view of the low level of effort available for 
preliminary work on the data base, pending approval of the Data Bank pro
posal, CCDN preferred to start work directly on preparing real neutron 
data to load into the schema of Fig. 1.

Then the troubles began. Measurement on a small number of 
CINDA records (corresponding data items are dispersed over the left-hand 
part of the schema) yielded a retrieval time of about 6 secs/record from 
the first version of the schema, or 200 hours to reconstitute the CINDA 
file from the data base. The whole file must be read at least twice a 
year when the CINDA bibliography is issued in book form. Loading times 
for numerical data into the TABDAT record type (three-quarters of the way 
across the schema, to the right) were 2.5 seconds per data point, or of 
the order of 1000 hours to load the EXFOR data tables point by point.

Solutions could be found to both these problems with some help 
from SEMA: in the original schema all data redundancy had been eliminated 
from the CINDA subschema, but in order to reconstitute the CINDA record 
it was necessary to follow three successive sets from, say, the ZAQCIN 
entry point, then to complete the skeleton record CINDA thus recovered by 
adding the key information first from ZAQCIN and then by following an 
'owner1 pointer back to the corresponding DICLAB entry. This section of 
the schema has been modified and in particular all information needed to 
produce the tape used in printing the CINDA book is now available at the

- 242 -



lowest hierarchical level in the CINDA record. Data points were re
aggregated into variable length records representing either a data table 
or a 2Kbyte block of data points, whichever is shorter. These data 
blocks require about the same loading time as a single data point.

Having learned the hard way that complex structure is expensive 
in data base performance, we tried and failed to get ’typicalf perfor
mance figures for the IDMS operations, sufficient to allow us to calculate 
the order of magnitude of running times for different CCDN applications, 
in particular on the PDP 11/70 as DBMS-11. The manufacturers could give 
us only global performance targets. We spoke to some IDMS users who 
found performance ’adequate1 but had not made measurements. SEMA was 
therefore commissioned to load a reasonable amount of data into their 
standard "Hoes, rakes and shovels/customer, salesman, order" IDMS test 
data base (Fig. 4), and to help run benchmark performance tests on an 
11/70 and on CCDN’s 370/125. In parallel, work continues in preparing 
data and loading programs for the CCDN data base, in order to test and 
adjust our own schema, and to show before a final decision is taken on 
the hardware and software for the Data Bank that CCDN operations can be 
adequately carried on a GDMS.

Table I shows some of the results of the benchmark measurements. 
Table II shows some comparative execution times for current CCDN programs, 
compared with results extrapolated from measurements on a partially 
loaded data base. These figures should be seen only for what they are: 
an attempt to demonstrate that GDMS performance will be at least accep
table for CCDN operations, both now on the 370/125 and later in the Data 
Bank using an 11/70 as data base carrier. The 11/70 performs all data 
base operations tested faster than the 370/125, with the exception of 
’sequential read within area’ for which the two computers perform equally 
well. We deduce from this that if a CCDN data base can be made to run 
acceptably on the 370/125, performance will also be acceptable on the 
11/70. Data base loading on the 370/125 can be speeded up by running 
the computer in mono-user mode, without spooling.

5. Conclusions

The lessons we have learned, and our tentative conclusions 
after a year’s work in preparation for loading a 160 Mbyte complex data 
base on a small computer are:

- There is an inevitable conflict between the desire to simplify 
the structure of an integrated data base by redesigning working 
methods around it, and the need to preserve compatibility with 
data suppliers and users outside the CCDN. The three different 
views (CINDA, EXFOR and NEUDADA) of what is eventually the same 
physics data are frozen into such links and cannot be changed in 
the short term.

We can identify a paradox here. Data centres with a large stock 
of data (and experience in handling it) are very likely to be 
faced with historical problems of this kind when installing a data 
base. New data compilations will in time surely acquire similar 
incoherences of structure as they expand to include data not fore
seen in the original system design, whether as a result of errors 
due to lack of knowledge of the data, or as a result of changed 
circumstances. Either way, data base structures in real data 
centres will tend to be more complicated than the theoretical 
optimum.

- Performance tests at CCDN have shown a very strong dependence of 
running times on the detailed design of the IDMS schema: estimates

- 243 -



of performance have changed by two orders of magnitude in a year’s 
development work. Our second paradox is this: almost no detailed 
information on data base performance is publicly available on which 
to base a preliminary data base design, although errors in design 
can degrade performance sufficiently to make use of the data base 
infeasible.

- It is too early to talk of ’tuning1 the CCDN data base. However, 
we have already found it necessary to reduce the number of sets 
scanned in CINDA retrieval, and to provide for sequential scanning 
of the whole or large parts of this ’file’ by reintroducing 
(controlled) redundancy into the bibliographic part of the 
schema. As an extension of this, the use of ’sorted sets’ will 
be replaced by external utility sorting of data retrievals.

- The ’typical’ data base does not exist (perhaps one reason why 
manufacturers are reluctant to state performance figures), but 
these CCDN applications may given an idea of the size and type of 
data base which can be mounted on a small computer and still give 
acceptable performance. Data base loading times are now thought 
likely to give the most difficulty, as much because all linked 
files are to be loaded in a single series of operations as 
because of longer running times compared to current data files. 
Retrieval performance is expected overall to be comparable with 
current programs.

- As much effort may be absorbed by upgrading existing data files in 
preparation for loading as in definition and programming work on 
the data base.

References

1. "Problems of a nuclear data centre in an international network11 
Ms. P. Attree, IAEA Nuclear Data Section: in this report.

2. "The CINDA neutron data index: an illustration of complementarity 
between mission-oriented and specialised information systems"
N. Tubbs, OECD/NEA, in proceedings of the IAEA Symposium 
"Information Systems: their interconnection and compatibility" 
(Varna, Bulgaria 1974, IAEA-SM-89 paper 44).

3. "IDMS: Concepts and Facilities", Section 4.
Cullinane Corp., 20 William St., Wellesley, Mass. 02181, U.S.A.

- 244 -





l\) 
~ 
(JI 

to and 
from 
other 
data 
c.en-· /; 

" tres 

to 
NlifIJC // 

'" 

... , 

~ 
CINDA COMPILATION EXFOR COMPILATION EXFOR INPUT FROM n-CENTRE 

(Bibliography) (Experimental data) OTHER CENTRES MEMOS 

J.. l i , ~ 

TEST 1 l .. 1 EXFOR 1: .. 
to and from other 

'1 C INDA BATeH TESTS data centres 

l 1 1 
: CINDA 

1 1 1 
PROCESSING 1 

1 
FEEDBACK EXFOR-NDD(NEUDADA) EXFOR 

CONVERSION-INDEX 
GENERATION J.._ 

• •••• 0 •••• ~o 0 • • • • • • •• • • l T : .. ~ .I.~T.~~~~~~~ .~I.~~S •. !I-.-. ~-.-.-.-. -. -. -. --' . ..l. ....... . 
· 1 1: 4 DICTIONARY • EXFOR ADMINISTRA- 1 EXFOR DATA 1 1: 
: CINDA UPDATE : • 0 •• MAINTENANCE o. • TION & COMMENTS STORAGE : 
~f ~------~~ . · · · · 0 · CINDA EXCHANGE \ · TAPE GENERATION · · · · · · 
~I CINDA RETRIEVES 1 

1 · 1»'00000 •• 00,' •• :) 0 4;> 0 lit 0 0 • CI 00" 

0 · · ..-----..1----.------0' · · · · · 

NDD INDEX 
MAINTENANCE 

1 
EXFOR NDD 
CONVERSION 

..... 
NDD RETRIEVES 1 

Il · · · CINDA EXFOR · ... INDEX LINES · 

l 
· · 

T · · · · 
1 

· EXFOR INDEX EXFOR DATA · · MAINTENANCE RETRIEVES · · · · · 0 · 
"",.. · . EXFOR RETRIEVES 1 . 

1 
· · · · L-------:oo:----I..---J~ 

•• Q •• Q •••• a • " •••••• it •••••••• 110 •••• CI 0 ••• ~ ••• lit 1;) •• --:1 CI • • • •••••• 
'0' '0 1 •••• 0 

INTERMEDIATE FILES~ 

1 EXFOR TAPE 

~~ . ____ w~r~ ___ ~ 

~ UTILITY SORTS !I.f.~------I NDD DISPATCHING 
(data in custo~er Jb service format) 

"III~ 

GENERATION 1 1 

REQUESTERS 
(customers in laboratories, 
or other data centres) 

Fig. 2. Data flows at CCDN 
The dotted boundary separates operations 
using the data base from others. 

to other neutron 
data centres 



2
4
7

1. LOADING OPERATIONS

c CINDA

QCN NEUDADA - CINDA QUANTITY CORRESPONDENCE

IX EXFOR INDEX

COV CINDA COVERAGE FILE

X C O EXFOR COMMENTS

DA EXFOR DATA TABLES

RW CINDA REFERENCE - EXFOR WORK CORRESPONDENCE

IN NEUDADA-INFOR INDEX

NC0 NEUDADA COMMENTS

QX EXFOR ISO-QUANT FIELDS

IQ REACTION ISOTOPE-QUANTITY CORRESPONDENCE

R REQUEST FILE

I 2. LOADING STRATEGY

PT1--->]F| : A before B

Fig. 3. Loading strategy for the CCDN data base



<-----  record type
6 no. of occurences 

f------location modeCALC

REGION

Fig. 4. Test data base for performance benchmark



Table I

Performance tests with a 3000 record data base /Fig. 47

IBM 370/125 128 Kb PDP 11/70 256 Kb 
(virtual storage) (64 Kb work spaces)

Storage times

Data base loading 

Store isolated CALC record 

Store CALC record in set (e.g. AGENCY) 

Store VIA record with CALC owner 

Store VIA record with 2 CALC owners 

Retrieval times

Elapsed

Elapsed CPU 

53mn 15s 8mn 43s 

36s 

Is. 74 

Is 

Is

Sequential scan of CALC 

records, follow through two sets: 7mn 21s 3mn 11s 

(e.g. INDIVIDU COMMAND QUANTITY) 5 transactions/

Find CALC record from symbolic key 

(e.g. PRODUCT)

CALC record by key then VIA 

record (e.g. PRODUCT QUANTITY)

sec
25s 6s

4 trans/sec

49s 9s

5 trans/sec

CALC record by key then follow 2 sets 52s 19s 

(e.g. INDIVIDU COMMAND QUANTITY) 15.6 trans/sec

Extract a given record type by 

sequential sweep of area 

(e.g. QUANTITY)

lmn 38s

32 trans/sec

Elapsed CPU

6mn Omn 34s

0.06s 

0.10s 

0.06s 

0.10s

CPU Elapsed CPU

5mn 45.34s

7 transactions/sec

15s 0.46s 

6.6 trans/sec

21s 4s

11.7 trans/sec

41s 7s 

19 trans/sec

lmn 10s 12.20s 

28 trans/sec

During these tests, both computers ran with a Tsingle-user1 
but with the spooling system in. The very large disparity in loading 
performance between the 370/125 and the 11/70 may be reduced if the 
spooling system is not leaded on the 370/125.

- 248 -



Table II

IBM 570/125: Estimates by extrapolation of DBMS performance, 

compared to current programs

Data base loading

EXFOR data sets, blocked up to 100 data points/DB record.

fTABDAT! 2 m data points, 50/block, 2.5 secs/block + 30 hrs

(spooling on)

Sort and load NEUDADA ISAM file, generate inverted indices

(2.65 m records, packed and heavily blocked + 15 hrs)

CINDA records, stored and set linked singly to retrieval keys

1CINDA1 150,000 records plus retrieval keys + 24 hrs

(spooling off)

Sort and load CINDA ISAM file + "1.2 hrs

Data base interrogation (spooling on)

Typical experimental data search yielding 10,000 data points

Data base (~1 block/sec via index, 50 secs/block)

NEUDADA (50 records/sec, using inverted indices)

CINDA retrieval of 500 entries

Data base (access from CALC keys VIA 2 sets)

CINDA ISAM file: Laboratory/Country specified (60%)

Others (sequential scan^40%) 

Sequential scan of CINDA file to produce book printing tape 

Data base (scan DB area, write in book format) (spooling 

off)

CINDA ISAM file (write in book format)

+

+

+

+

3 mins 

3 mins

8 mins 

1 min

+ 30 mins

+ 1.75 hrs 

+ 45 mins

- 249 -



DATABANK FOR THE PROTOTYPE FAST REACTOR

K R Montgomery 
United Kingdom Atomic Energy Authority 

England

- 25O -



Introduction

This databank is a large set of files controlled by a management suite of COBOL data 
handling programs. The data, data dictionary and data directory are stored on exchange
able disc packs in the Random Access Index Sequential mode on an ICL V 7 2  computer at 
the UKAEA headquarters at Risley.

It is a databank for the UKAEA Prototype Fast Reactor which stores data pertaining to 
the entire composition of the in-core components, concentrating particularly upon the 
fissile fuelled driver assemblies and the many experimental assemblies of both fuel pin 
and cladding/structural materials.

At this time, the reactor is not yet operating at full power. This should be achieved 
in 1977 and the databank will then contain reactor operating history and reactor 
physics data, and also post-irradiation examination data for the discharged units.

The databank will then represent a complete data compilation of in-reactor performance 
of fully documented materials. The current size of the databank is of the order of 
100 megabytes and is expected to increase to approximately 200 megabytes over the next
2 years.

The ICL 4/72 computer will be phased out during 1977 and replaced by an ICL 2980 
computer. The Databank Management System adopted by ICL is IDMS (integrated Database 
Management System), and it will be available on the 2980 computer. Initially, the 
databank will be moved on to the 2980 in its current form, but IDMS potential will be 
probed by moving selected sub-sets of the databank into this management system. We 
hope that eventually IDMS will enhance the databank from batch mode to transaction mode 
processing. The expected growth of the databank will increase data retrieval and file 
reorganisation times, and it is hoped that IDMS may ease this problem.

The Filing System

There are 150 separate files. Each file contains fixed length records of data items for 
a common entity. For example, the Steel Ingot file contains chemical analysis records 
for each of the 1000‘steel ingots used by the project.

The records consist of an entity key (eg steel ingot number) and a set of individual 
data items (eg analysis data) common to the entity keys. The records may also contain 
lists of data items that are entity keys for related records in other files (eg lists 
of steel turbine batches manufactured from the steel ingot of that record). These are 
regarded as forward pointers. Sub-key items in the records are also present as back
ward pointers (see section ’’File Navigation”).

The entity key occupies the first 12 bytes of every record, and the records are 
arranged in ascending order of entity key value within each file.

The 150 files are sub-divided into 9 groups of files. Each group of files have similar 
but not equal, record lengths:-

-  251 -



File Maximum Record Number of Files in 
Group Length Each File Group 
______ (Bytes) _____________________

1 888 1
2 6o 19
3 66 k 
k 96 19
5 152 29
6 Jkk 31
7 968 28
8 2760 12
9 1600 7

150

The grouping of the files is chosen for maximum usage of the disc storage capacity and 
without regard for logical relationships between the files.

When a file is allocated to a file group, the 12 byte entity keys are extended to 
Ik bytes; the first 2 bytes being used for the file group sub-group number.

File
Group

3
3
3
3

Sub-
Group

02
03
05
06

File
Number

056
065
135
13^

File Title

Empty Fuel Pin 
Reworked Pin 
Components 
DMSA Load

Record
Length
(Bytes)

6561
k9
56

Entity Key of 
First Record 
in each file

02100000------------
03177565------
05ABC760302—  
0 6 X Y Z 0 0 3 ---------------------------

Number of 
Records

60000
250
300
50

The above system preserves the identity of each file within the file group, all keys 
within a file group are unique (duplicate keys in files are not permitted), and all 
the records in a file group are maintained in ascending order by the record key values.

In order to recover a specified record from a particular file, the file number and the 
12 byte key to the record is specified. A file table in the database is interrogated for 
the correlations file number to file group and file sub-group. For example, to 
recover the record with key 177987 from file O65 (Reworked fuel pin file) , O65 is 
located in file table which returns file group 3 sub-group 03. File group 3 is then 
searched, randomly or sequentially, for the record with the key 03177987-

The file groups are arranged in vertical sets of tracks (cylinders) on the disc packs 
in order to minimise radial head movements during the selection of the appropriate 
sub-group.

File Navigation

There is a hierarchic relationship between the files. A typical descending hierarchy 
of a small sub-set of files is shown in figure 1.

Navigation down the file hierarchy is shown (fig l) to be provided at the record level. 
The data in each record in a file is preceded by the entity key value which are in turn 
the entity keys to related records in the files lower down the hierarchy.

- 252 -



Data Types

The following data forms are stored in this databank:-

A Alphanumeric, 1 character = 1 byte
N Numeric, 1 number = 1 byte
H Half-word Integer ( < 2^5) = 2 bytes
I Full-word Integer ( > 215 < 2^1) = k bytes
F Floating Point (E ± &k) = k bytes

Decimal points and units are inserted at output time. Sub-routines are provided for the 
conversion of numeric characters to binary integers for calculational work in 
applications programs.

Data Input

The data originator completes pre-formatted data collection forms. This is punched on 
to 80 column cards to provide the data set for the INPUT program. The program inspects 
the identifier characters on the data cards which reference the Card Layout File records 
stored in the bank. This in turn directs the data to the appropriate files and records 
for updating. If a part record already exists for the quoted entity key, that record is 
updated; if the entity key does not yet exist, a new record is created. The entity 
key value is checked for correct format before record creation or update by reference to 
a Keys-Format file. The data values are tested for validity and specification limits 
and suitable Error Messages are returned on hard copy to the data originator. The 
system software indexes the new records sequentially into the files or the file over
flow areas.

Data Retrieval

Data retrieval is controlled by the databank access module. The module is written in 
COBOL occupying 8.5 k bytes of core plus 60 k bytes required by the ISAM routines. The 
principal entry point in the module is DBREC; this and other entry points are 
compatible with FORTRAN. A typical FORTRAN call statement with the DBREC arguments is:-

CALL DBREC (IFILE, IOP, ISTAT, IREC, IKEY) Applications programs must provide a 3 k byte 
area to hold the retrieved record (IREC), and a 12 byte area for the record key (IKEY). 
The selection mode is specified by a digit for random or sequential (I0P), the required 
file by the file number (IFILE), and the routine will return a status report such as 
good or bad read (ISTAT) to the program. The routine is used by application 
programmers for manipulating selected data from the databank.

Selected records may be obtained from the bank by a standard program DBREAD for the 
inspection of file records by non-specialist programmers. The program will only recover 
data from specified files and not from associated linked records. However, a standard 
program SEARCH is available that will provide an automatic file walk and data recovery 
for all linked records across the file hierarchy for a given starting entity key. The 
program uses the file directory and requires no knowledge of filing structures by the 
user.

A data manipulation language is provided as an instruction set in the program DBLOOK.
This permits the selective retrieval of data items from linked records across the file 
structure. It does not require expertise in program procedures but does demand an 
intimate knowledge of file linkages and data item locations.

File Maintenance

A complete suite of housekeeping programs is available to the databank administrator 
for maintaining directories, dictionaries and the ordering of the database records.
These include the normal DUMP, REORGANISE, DELETE, AMEND, JOURNALISE AND ARCHIVE 
features.

- 253 -



The Scope of the Current Databank

The following remarks can only give a very brief indication of the scope of the 
databank in its current form. For any one of the 250 sub-assemblies at present in the 
reactor core or intended for replacement purposes, the databank will provide informa
tion on its significant components. Several thousand data values provide information 
on its significant components. Several thousand data values can be returned for each 
unit, covering manufacturing and inspection data (including metrology and material 
analysis). Some 50,000 fuel pins are recorded for which 400 fuel batches, 1500 breeder 
batches, 1500 component batches and 1500 pin tubing batches are associated. The steel 
derivatives (pin tubing and components) are associated with 500 ingots from 4-00 casts. 
Data for the 250 carriers (hexagon tubes) linked to some 2000 internal component 
batches and 4-000 fuel pin support grids are readily available. The simplest search 
question for the bank of 'report all1 for 6 sub-units in one hexagon carrier returned
120,000 lines of printed data output. Permutations of possible questions based upon 
the several thousand individual data types in the bank for the large units (sub- 
assemblies) and the sub-units (clusters) are almost infinite and are answerable within 
minutes on the computer; questions such as "report the vanadium content of the fuel 
pin tube from any one of 50,000 pins, give the in-core disposition of a particular 
(say suspect) fuel batch, give tabulated detailed pin dimension data, give metrology 
data for a set of fuel pin spacer grids found in a specified cluster sub-unit, give 
fuel enrichment and 0/M ratio for fuel in a pin without quoting the fuel batch number, 
give the pre-irradiation weight of a fuel pin", and so on. The monumental task of 
recovering such answers from dispersed paper records is obvious.

The PFR fuels databank is a well organised high activity filing system and contains at 
present detailed information upon the individual elements of PFR fissile and non- 
fissile components. In its present form it is an ordered collection of data that is 
being used as a data source for the solution of thermal and nuclide/neutron interaction 
calculations. The bank will eventually contain data upon fissile and non-fissile 
component performance under PFR irradiation conditions upon which detailed performance 
analysis will be assessed and from which the optimisation of CFR will be more readily 
achieved.

The ICL 2980 computer complete with the database management system package IDMS is now 
installed at the UKAEA Headquarters (Risley) and is currently undergoing pre
acceptance trials. The computer should be available to users in July 1977*

With the databank at its current size of 100 M bytes, there are several operational 
criticisms :-

(i) File reorganisation time is becoming excessive. The whole bank required 7^
minutes for copying (dump). The reorganisation times for the individual file 
groups are as follows:-

totalling 219 minutes.

This time consumption arises because reorganisation takes place at the file group 
level; a large proportion of the files within the file group do not require 
reorganisation.

Conclusions

01 - 8 mins;
04 - 14 mins;
07 - 43 mins;

02 - 9 mins; 
05 - 46 mins; 
08 - 20 mins;

03 - 13 mins;
06 - 27 mins;
09 - 39 mins,

- 254 -



(ii) Data retrieval times can also be large, not only because files to be retrieved 
may lie deep in the hierarchy but also because of excessive radial head movements 
on the disc packs. This arises from the storage of logically unrelated files 
(having only similar record lengths in common) in vertical cylinders of tracks.

(iii) It follows from (ii) that interactive transaction processing is not a viable 
proposition with the current databank structure constraining users to batch mode 
processing.

(iv) The current amendment/deletion system does not provide total automatic removal of 
redundant records. A proportion of disconnected records result.

(v) Application programmers often require detailed knowledge of the structure of 
large areas of the databank and the navigational paths between the records.

Although it is unlikely that the whole databank will be restructured into IDMS, 
selected sub-sets of related files will be re-ordered into this database management 
system. In this manner, we will probe the potential of IDMS. The page dump method is 
expected shortly on IDMS (area/realm dump only is currently available) and this will 
reduce copying and reorganisation times, (i). Enhanced retrieval ability must follow 
from the clustering structure of related records by the IDMS command *VIAf, and 
transaction processing facility should follow from faster retrieval times, (ii) and 
(iii). The automatic fade-out of disconnected records provided by IDMS will reduce 
redundancy, (iv). The provision of sub-schemes to application programmers will remove 
the burden of file structure and navigational path knowledge from the user, (v). It is 
hoped that the result of a 3 month exercise in this field will be available by October 
1977.

- 255 -



FILE KEYNAME SUBKEY (1)
(1) 

GO TO 
FILE

SUBKEY (2)
(2) 

GO TO 
FILE

051
PIN NO. FUEL BATCH 028

LAST OF 5 BYTES OF 
FUEL BATCH 121

k k 1 7 3 5 5 a 5 5 A 5 5

028

029

121

FUEL BATCH MET LAB SERIAL NO.

3 5 5 a 5 5

MET LAB SERIAL NO.

Z A 8 6 3

LAST OF 5 BYTES OF 
FUEL BATCH

GRANULATION BATCH

A 5 5 3 0 7

GRANULATION BATCH SOURCE POWDER BATCH

027

3 0 7 C 0 0 H 2 0 6

SOURCE POWDER BATCH

023 STOP

C 0 0 H 2 0 6

029

027

023

I 3 0 7

THE CARBIDE BREEDER FUEL FILE HIERARCHY AND FILE WALK

- 256 -



DESIGN OF A SOLAR HEATING AND COOLING DATA CENTER

D. Deutsch

Institute for Computer Sciences and Technology 
National Bureau of Standards* 
Washington, DC 20234 U.S.A.

The National Bureau of Standards designed and operates a 
Data Center serving the Federal Solar Energy Research, Develop
ment and Demonstration Program. The design effort included 
thorough consideration of the applicability of generalized 
database management software. The functional requirements for 
the Data Center and the factors influencing the database deci
sion are described. A modified database approach is presented 
and reasons for its adoption by the Data Center are discussed.

Key words: Database management; data center; G D M S ; software 
selection; solar energy; system design.

1. BACKGROUND

The Congress of the United States in 1974 enacted legislation estab
lishing an interagency task force for carrying out a five year Federal 
Solar Energy Research, Development and Demonstration program. As part of 
that program the Institute for Computer Sciences and Technology (ICST) of 
the National Bureau of Standards (NBS) was charged with development of an 
operational Data Center for receipt, maintenance and distribution of 
technical and non-technical data pertaining to the program. The require
ments analysis and design activities carried out during the fourteen 
months ending October 1977 were concerned with the selection of hardware 
and software tools, and the preparation of an integrated system design for 
serving the many diverse data providers and Data Center users; one major 
design consideration was the potential applicability of generalized data
base management software.

*NBS/ICST Data Center development activities were supported by the NBS 
Center for Building Technology under interagency agreements IAA-H-38-76 
with the U. S. Department of Housing and Urban Development, and 
E-49-1-3800 with the U. S. Department of Energy (formerly Energy 
Research and Development A dministration). Development of this report 
was supported in part by the U. S. Department of Energy under In
teragency Agreement No. EA-77-A 01-6010, Task No. A050-TI. A CONTRIBU
TION OF THE UNITED STATES GOVERNMENT, THIS NATIONAL BUREAU OF STANDARDS 
PRODUCT IS NOT SUBJECT TO COPYRIGHT.

- 2 5 7  -



The NBS Solar Heating and Cooling Data Center receives inputs from 
several sources and provides information and processing services to a 
number of institutional users. The Center maintains numeric, alphanumeric 
and graphical data that is accessible via on-line as well as batch 
processes. The source database will grow from the modest four million 
characters available in the last half of 1977 to an estimated fifty to 
one-hundred million characters in 1980.

2. FUNCTIONAL REQUIREMENTS

The functional requirements for the Solar Heating and Cooling Data 
Center are perceived as falling into three broad areas. First is the re
ceipt and maintenance of machine-readable source data in a form suitable 
for satisfying all output requirements, either directly or through addi
tional processing steps. A second area is the production of printed re
ports and compendia both for project participants and for a variety of 
other users. Finally, there are less predictable ad hoc and presently un 
defined requirements that will be specified throughout the five-year life 
of the project. Figure 1 illustrates this three-part conceptual view.

2.1 Data Receipt and Maintenance

The Solar Heating and Cooling Data Center provides a central location
for the receipt, storage, processing, and reduction of data collected
from solar demonstration projects. Machine-readable data is received
from aata-formatting and encoding contractors as well as from other data 
collection and processing facilities.

Data received at the NBS installation is cataloged and, if n e c e s 
sary, edited for accuracy prior to insertion into the database. All p e r 
tinent source data are retained, and a catalog of available data is p u b 
lished periodically for potential Data Center users by this NBS data repo
sitory. This approach helps assure the security, integrity and wide d i s 
tribution of the data throughout the life of the project.

2.2 Production of Printed Reports

A major continuing function of the Data Center is the printing of 
summaries of the data using various selection criteria and levels of 
aggregation. Printed reports and compendia are produced both periodically 
and upon request. Their timely production is facilitated through the 
availability of generalized software capabilities such as report g e n e r a 
tors, sort packages, statistical programs, file manangement systems, and 
data management tools.

2.3 Ad Hoc and/or Curently Undefined Processing

In addition to the more well-defined and predictable requirements for 
data receipt and maintenance and production of printed reports, the Data 
Center satisfies various other functional requirements as they become 
known. The general approach followed is to forecast as accurately as 
possible additional requirements that will be placed on the Data Center. 
These requirements are then matched against the array of basic processing 
and data management tools available on or obtainable for the NBS computer

- 258 -



Figure 1



facility. In the event that the NBS facility does not appear to be able 
to satisfy some class of requirements, alternatives are identified. So 
far all unanticipated information needs have been handled in-house with 
tools that were already in the NBS software inventory.

3. FACTORS INFLUENCING THE APPLICABILITY OF GDMS

The potential applicability of Generalized Database Management S y s 
tems (GDMS) to the Solar Heating and Cooling Data Center was influenced 
by several factors including those listed below.

Complex Structure - Major applications exploit structural relationships 
among collected data items; specifically, the analysis of failure data u s 
ing a component tree for organizing both system descriptions and m a i n t e 
nance data is planned.

Generation of Printed Reports - A primary function of the Data Center is 
to produce hard-copy listings and summarizations of the data received.

On-line Queries - Portions of the database must be immediately accessible 
for responding to on-line queries.

Limited Technical Staff - NBS/ICST, primarily a research organization, 
does not have the personnel to staff a heavy coding effort such as that 
associated with the development of custom programs. Two full-time e m p l o y 
ees of the Data Center, a Database Administrator and a mid-level 
progr a m m e r / a n a l y s t , interface with data providers and users, monitor c o n 
tractors and operate the Data Center. After the development effort is c o m 
pleted ICST will serve only in an advisory capacity; responsibility for 
day-to-day operations will belong to the Data Center staff.

Lagging Requirements Definition - Initially, data collection activities 
progressed faster and further than the definition of user requirements. 
Consequently, data were being collected before many users were identified 
and their requirements defined.

Diverse User Access Requirements - The diverse nature of the user c o m m u n i 
ty requires that access to the database be provided via several high- 
level languages.

Post Processing - Post processing of data extracted from the database us 
ing various statistical and other tools is necessary.

Privacy Constraints - The Privacy act of 1974 imposes stringent r e q uire
ments for limiting access to information that could threaten individual 
privacy. Consequently, security and integrity constraints were a major 
consideration in the design and acquisition of software for the Data 
C e n t e r .

Use of Existing Computer Facility - There was a strong p r e disposition on 
the part of funding agencies and Data Center users to utilize the NBS 
computer facility. This resource currently includes a Univac 1108 p r o c e s 
sor and related peripherals.

- 260 -



4. EVALUATION OF DESIGN CONSTRAINTS

The contradictory nature of design constraints made the decision of 
whether to "go database" a difficult one. The factors listed above both 
suggest and discourage the application of generalized database management 
software. On the positive side, the availability of data prior to deter
mination of user requirements indicates a need for the flexibility prom
ised by GDMS packages. The complex structural relationships and privacy 
requirements also point to the use of database technology.

On the other hand, the generation of many of the desired printed re
ports can be accomplished using software tools other than GDMS; report 
generators and file management systems are generally both easier to use 
and less expensive than database manangement software. Also on the nega
tive side is the question of whether GDMS available in the marketplace can 
completely satisfy the requirements for post-processing and access via 
multiple high-level languages. Finally, the list of available GDMS for the 
NBS Computer configuration is limited.

Two design constraints were not not seen as clearly positive or nega
tive with regard to the use of GDMS software. The requirement for answer
ing on-line queries could be satisfied by some database management sys
tems, but not by others. Other, less costly and less complex, software 
packages could provide on-line retrieval capability. The limited availa
bility of technical personnel also did not clearly indicate whether a GDMS 
should be used; a staff that is not large enough to develop a custom 
software system, might not be of sufficient size for building and/or sup
porting a complex database. While the development could be done by an 
outside contractor, project management wanted the day-to-day operation and 
administration of the database to be an in-house function.

Because no clear conclusions regarding the use of GDMS followed from 
an analysis of Data Center functions and design constraints, a modified 
database approach was chosen; GDMS software is being applied where it is 
clearly desirable. In addition, an array of software tools is available 
for augmenting the capabilities of the GDMS and for satisfying processing 
requirements not particularly suited to database solutions. The modified 
database approach for developing the Solar Heating and Cooling Data Center 
is described in the following section.

5. ROLE OF GENERALIZED DATABASE MANAGEMENT SYSTEMS

The three part conceptual overview of Data Center functions appearing 
in figure 1 also illustrates the planned cross-functional utilization of 
generalized database management systems. The shaded area in the figure 
identifies the functions planned for GDMS based implementation and the 
utilization of these generalized software packages for both generation of 
printed reports and ad hoc processing. The use of a computerized data 
d i c t i o n a ry/directory for supporting the receipt and maintenance of data as 
well as database design and administration activities is also depicted.

Because of the range and uncertainty of requirements —  rich struc
ture, on-line query, generation of hard-copy reports, response to ad hoc 
requests —  a hierarchy of software tools including multiple generalized 
database m anagement packages are available for implementing Data Center 
applications. In addition to conventional software tools such as language

- 261 -



translators, report generators and statistical packages, two types of gen
eralized database management systems are used by the Data Center. While 
the bulk of report generation requirements are satisfied using a general
ized report generator, the production of complex reports and the retention 
and analysis of data that is richly structured (as in the case of the com
ponent tree and failure data) is accomplished using a CODASYL type G D M S . 
This type of data management tool uses a high-level programming language 
as a host? that is, it is invoked by imbedding references to the database 
in application programs written in COBOL or other high-level languages.

A second class of database management system is used when selected 
subsets of the data maintained by the center are identified as objects for 
on-line retrieval. Two on-line query systems have been acquired. One, 
developed by a U.S. Federal Agency, provides a capability for establishing 
a database in a short period of time that can respond to on-line requests. 
It is not suited for maintaining large volumes of data nor does it handle 
complex structures efficiently, however. The second system is a commercial 
package that provides a query language interface for the CODASYL database 
management system. While not as flexible as a self-contained query- 
response system, this alternative is attractive because it allows re
trieval from databases established for other (e.g., complex report genera
tion) purposes.

The link between the file oriented receipt and maintenance function 
and the database(s) serving Data Center users is provided by a comprehen
sive data dictionary/directory. This automated compendium has entries for 
every data item and aggregate. Entry of data item definitions using 
software developed by NBS has been underway for several months but is not 
complete; it is viewed as a continuing task. The data dictionary grows and 
changes as the amount of data received increases, databases are esta
blished and applications are developed.

6. SUMMARY

The Solar Heating and Cooling Data Center maintains a large database 
serving a diverse community of users. Because the application of GDMS 
technology is not clearly preferable to other less complex and less costly 
alternatives for all aspects of Data Center operation, a modified database 
approach is being used. While generalized database management software is 
applied wherever requirements demand, other software tools are also used. 
To date, this approach has provided the desired flexibility with a minimum 
of design and development costs.

- 262 -



SDI-PROGRAHS FOR SMALL COMPUTERS USING THE INIS-LATABASE

A, Nevyjel, ôsterreichische Studiengesellschaft 
fttr Atomenergie Ges.m.b.H.

Scientific data handling activities in Austria are in general 
restricted to using existing databases and participating in international 
information systems. As in other smaller countries, the requirements in 
manpower and computer equipment would be too large to allow for producing 
databases of our own. Furthermore, rather modest computer installations 
impose the use of "simple tape storage systems", very similar to the 
Geneva INFOL system, discussed earlier in this report (1).

In planning a national automatic information retrieval system 
using the tape services of international documentation organizations as 
a database the question arises "What program philosophy and file organi
zations are practicable and advantageous for the computer equipment 
available?". There exist some information retrieval programs developed 
by the computer manufacturers, but the layout of most of these programs 
is for very large computer installations, since the file organizations 
used are very expensive. For smaller computers it is more practicable 
to use the magnetic tape received from an international organization 
directly as a database for information retrieval. That means that the 
file of documents stored on tape is scanned sequentially in the search 
run, while random access storage on disk is used only for temporary work 
files. In this way the programs can manage with a minimum of one disk 
drive with about 7 million byte storage capacity.

On the other hand the response time in such file searches is 
relatively slow, since a complete file scan is needed before any informa
tion can be retrieved. So the main problem in using such a program philo
sophy is to accelerate the working process of the computer. A high speed 
performance can be reached, if a machine readable thesaurus is used and if 
besides the descriptors the descriptor numbers are also included in the 
records on tape. This implies the restriction that only descriptors recog
nized by the thesaurus can be used as keywords in the search profiles cur
rently maintained by the Austrian information service.

This program philosophy is described in a report of the Austrian 
Research Centre Seibersdorf (2) and was also discussed in a paper presen
ted at the International Symposium on Information Systems in Varna 197^9 
Bulgaria (3). The so-called direct file organization in batch processing 
procedures implies that there should be a large amount of profiles pro
cessed together using a rather small database. So SDI is a form of infor
mation service well suited to these programs. The monthly INIS output 
tapes (about 6000 items/month) are used as a database for the SDI.

- 263 -



For the query formulation we have a standardized internal format, 
which enables the user to submit one or more profiles for one or more prob
lems. The profiles are formed as Boolean expressions of keywords. These 
profiles are exclusively decisive for the search run. But the user has 
the possibility to include also the free text formulation and other re
marks for his problems in the submitted deck of cards. This information 
is then printed out on the first page of the user*s listing of results 
and gives an additional identification of the listings.

At present the programs are used to provide a monthly SDI-service 
for about 500 profiles, to about 130 users, using the monthly INIS out- 
puttape as a database.

Our information centre in Seibersdorf services all universities 
of Austria and some industries with the INIS data. So about 50% of the 
users are from universities, 5% from industry and 45% in-house users.
In future it is planned to extend the information available to include 
some international data services (e.g. RECON) by terminal, so as to allow 
for retrospective searches and for extension of the subject scope covered.

With regard to a GIMS containing numerical data, no development 
in the longer term is envisaged in the Austrian Nuclear Research Center, 
since the manpower needed for an effort of this kind could not be justi
fied. However, great interest exists in implementing a suitable sys
tem developed elsewhere, or if it is more appropriate from the tech
nical and economical standpoint a link to an established computer centre 
should be envisaged. International work to find the best solution for 
the customer is strongly recommended by the Austrian delegate to the 
NEA-NINF working group.

References

1) Moorhead, G. and Tubbs, N.

An introduction to Generalized Data Management Systems (in this report)

2) Nevyjel, A.

SDI-SGAE, SDI-programs for small computers, program description 1974, 
available from NEA-CPL Computer Program Library.

3) Nevyjel, A.

Problems of automatic information retrieval at the Austrian Research 
Centre Seibersdorf.
Proceedings of the International Symposium on Information Systems, 
their interconnection and compatibility, Varna 1974-, Bulgaria 
IAEA-SM-189/20, pp. 61-69

- 264 -



SCIENTIFIC DATA HANDLING, NEEDS AND PROBLEMS AT THE 
ZENTRALSTELLE FÜR ATOMKERNENERGIE-DOKUMENTATION (ZAED)

W. Bau and H. Behrens
Zentralstelle für Atomkernenergie-Dokumentation (ZAED) 
Federal Republic of Germany

I. Introduction

In 197^ the Federal Government passed the "Programme of the 
Federal Authority for the Promotion of Information and Documen- 
t a t i o n 11 (IuD Programme) which intends 16 Specialised Information 
Systems to be established,, the core of each one to be a Specia
lised Information Center. The Zentralstelle für Atomkernenergie- 
D o kumentation (ZAED) together with the Zentralstelle für Luft- 
und Raumfahrtdokumentation und -information, the Physikalische 
Berichte and the Zentralblatt für Didaktik der Mathematik will 
be the center of the Specialised Information System 4, which 
will cover the fields of energy, physics and mathematics. It 
will be located at the Karlsruhe Nuclear Research Center.

As it belongs to the tasks of Specialised Information Centers 
not only to look after literature documentation and information 
but also to extend this service quite explicitely to data the 
ZAED has been commissioned, in anticipation of the establishment 
of the Specialised Information Centre, by the Federal Ministry 
for Research and Technology to substantially improve the situa
tion in the field of physics data by establishing a data infor
mation system. For this purpose, data compilations are regularly 
to be published - and at the same time to be recorded on m agne
tic tape - in a number of physics subfields, and to be kept up 
to date. Moreover, as complete as possible, a list of existing 
data compilations in the world is to be compiled in order to be 
able to give information on these and to facilitate the search 
for data. Another task will be the collection and distribution 
of existing data compilations for the Federal Republic of G er
many. This applies in particular to data compilations on magnetic 
tape, for which ZAED, at a later date the Specialised Information 
Center of course, will act as a distribution center. In order 
to avoid duplication of work in compiling physics data, ZAED 
will also have the task of coordinating to a certain degree the

- 265 -



activities in this field. At the same time, close international 
cooperation is envisaged.

II.Requirements for a physical data bank

a) Definition of physical data
It has to be made very clear, that whenever the term ,!d a t a tT 
is used, we are thinking of physical data, e.g. density, t e m 
peratures, melting points, cross sections, etc.
This is important, as in computer terminologie the term ndata 
has been applied to too many things which are quite foreign 
to the matter which is under discussion here.

b) It is our aim not only to publish physical data in printed 
form, but at the same time also to establish a data file
in machine-readable form. The latter point is of importance 
for small- and large-scale data compilations alike as only 
with the aid of a computer a quick and uncomplicated update 
procedure can be achieved.
In addition, in the case of large-scale data compilations 
it is inescapable to have the magnetic tape version in order 
to be able to retrieve and select, and also in order to be 
in a position to handle the data in a practical way.
However, as the user continuously makes bigger demands on 
retrieval, demands which cannot be satisfied with an ordinary 
data file, e.g. to establish logical connections between v a 
rious data, to retrieve numerical values within a given inter 
val, to resort the data according to new criteria, etc., it 
is consequently necessary to extend the file to a data b a n k .

c) Building a physical data bank, in our opinion, should entail 
the following:

- To store matrices (data tables) with m columns and n rows 
(m and n to stand for any specific number), whereby the 
elements of these matrices can contain numerical as well 
as alphamerical information. Thus, it will be c h a r a c t e r i 
stic for a data bank to have a lot of matrices of this 
type.

- It should not only be possible to sort rows and columns 
according to new criteria within one matrix, but also to 
combine certain rows and/or columns from different matrices 
into a new one.

- With references to the update procedure it is necessary 
to be able to replace the elements of a matrix by new 
ones in a unique way. Furthermore, it will also be n e 
cessary on the one hand to increase the number of rows and 
columns of the matrix, and on the other to add new matrices 
The first point (replacing elements) is of particular im
portance for data banks which contain evaluated data only; 
the latter points are particularly relevant as far as data 
banks containing experimental data are concerned.

- A data bank, besides these matrices, would also include 
bibliographic items, e.g. in the case of a data bank with 
experimental data, the bibliographic part would contain

- 266 -



bibliographic data of the literature from which the data 
o r i g i n a t e s .
Last but not least, it should be mentioned that the ZAED 
will apply the International Nuclear Information System 
(INIS) for this bibliographic part.

- Another part which a data bank must have is reserved for 
the necessary information relevant to the data, e.g. name 
of material, chemical formulae, material composition, data 
type, method of determination.
As in the case of the bibliographic part, the information 
part, too, has to be related to the data in question.
Some of the information will be standardized by the use 
of key words.

III.Concept

a) As already mentioned in the introduction, ZAED intends
to operate as a distribution center for existing data files 
and data banks, which should run on the ZAED-own computer 
Siemens System 7.755-J.
Existing data files and banks, however, have been built or 
have accomplished the requirements for a data bank outlined 
under chapter II in completely different fashions. This fact 
entails that the format and structure of the parts described 
above, are not compatible with each other, and this is the 
reason why ZAED uses in each case the programmes belonging 
to the data file or bank in question. It goes without saying, 
that these programmes are as different from each other as 
the data files or banks they belong to. However, compatibi
lity of these programmes, in our opinion, does not seam 
feasible in the near future.

b) Another of our targets, also mentioned in the introduction, 
is to develop and to establish data files and data banks
in fields of physics not yet covered. At the moment we are 
in the process of establishing a data compilation on super
conductivity which is to grow gradually into a data bank 
for this field. We realize the requirements for a data bank, 
as described under chapter II for this particular project 
as follows:

Information part
Name of material or trade name
Chemical formulae
Material composition
M aterial description
e t c .

Bibliographic part
Title
Author (s)
Literature reference 
e t c .

Data part
This part contains the matrices with the data as described 
under II, c), for example: Difference of entropy in normal 
states and in superconducting states as a function of tempera 
ture. Information belonging to this matrices, such as descrip 
tion of the quantity measured, other parameters, validity 
range, data type, measuring method, etc., are - according to 
our system - recorded under the information part.

- 267 -



PROBLEMS OF A NUCLEAR DATA CENTRE IN AN INTERNATIONAL

NETWORK

P.M. Attree, IAEA Nuclear Data Section, Vienna

!• Introduction

This paper presents the environment within which the Nuclear Data Section (NDS) 
of the International Atomic Energy Agency (IAEA) operates, the systems which currently 
exist, and examines possible NDS use of the ADABAS system when it becomes available for 
general use within the IAEA at the end of 1977*

2. Computer environment of the Nuclear Data Section

Following a recent upgrade, the IAEA is serviced by an IBM 370/158 with
3 Mbytes central memory, six 3330 and three 3350 disc units, as well as the usual tape 
and card handling equipment. Further significant upgrades are anticipated in 1978 and 
1979* Regarding software, the usual programming languages are available, the change to 
MVS operating system was made recently and, most significantly, ADABAS was installed 
during 1977 will be available for general use at the end of the year.

NDS is located in an annex, so that its work must pass through an RJE station 
for inclusion in the batch stream of the 370/158. Currently, NDS uses about 4% of the 
capacity of the 370/158, but the load is expected to increase with the widening scope of 
the Section*s activities. The systems in operation at the moment were developed and 
programmed at NDS, using PL/l and, to a lesser extent, FORTRAN.

3# NDS participation in the international exchange of nuclear data

For neutron-induced nuclear reactions NDS is one of the nodes in a 4-centre 
data exchange network. The data centres are located in:

Brookhaven, USA National Nuclear Data Center (NNDC)*
Obninsk, USSR Centr po Jadonym Dannym (CJD)*
Saclay, France OECD/NEA Neutron Data Compilation Centre (CCDN),
Vienna, Austria IAEA Nuclear Data Section (NDS),

For experimental neutron data the world is divided into four areas: each centre compiles 
data produced in its area and transmits the information to the other three centres* Thus 
the data files should be identical at each of the four centres. Each centre services 
requests for information from its own area. This data is exchanged in the EXFOR format, 
developed in common by these four centres. Besides simplifying this four-way exchange of 
data, an additional aim of EXFOR is to standardize the content of compilations by means 
of a combination of controlled keywords with associated codes, which can be used for 
retrieval purposes, and free text explanation.

- 268 -



It is important to realize that although each centre may maintain different 
systems internallyf it is essential that the structure of EXFOR is not violated for 
exchange purposes* This is clearly a major constraint when considering revisions to 
internal systems. A short guide to EXPOR is given in Appendix I.

In order to maintain the consistency of the information in EXFOR, a series of 
dictionaries are maintained. These are used to control the codes which are permitted 
with each keyword. It is the duty of NDS to maintain these dictionaries, and regularly 
to send up-dates to the other centres.

The structure of EXPOR was designed in such a way that the scope of information 
compiled could fairly readily be extended. This has recently been done to include 
charged particle data« and the network has been enlarged by three other centres. However, 
in this case, the Karlsruhe Charged Particle Group is responsible for collating the 
compilations and transmitting the complete master file (at the moment rather small) to 
the remaining centres at regular intervals. It must be foreseen that in the future both 
the scope of information compiled and the number of centres involved will expand.

Each of the four nuclear data centres is responsible for servicing requests 
from its area for evaluated data. The content and format of the evaluated data files are 
controlled Toy the originators of these files. There are three or four major files, all 
having different formats which are updated intermittently by the originators and used 
for selective retrievals for users. There are also specialized evaluations, which are 
usually received from evaluators and transmitted to users and other centres in toto.

Another area of inter-centre co-operation is CINDA. The master file is main
tained by CCDN, Saclay, but the other centres provide input to the system. NDS is 
responsible for the production of the CINDA book. NDS also receives the complete master 
file about four times per year which is used for in-house operations. Although it is 
possible to generate computer links between CINDA and the EXPOR data, these are not 
maintained at NDS except in the form of a number of common dictionaries.

The final area of co-operation between the four nuclear data centres is 
WRENDA — World request list for nuclear data« a list of measurements or evaluations which 
are requested to "be made, and not to be confused with requests for data from existing 
files. This is a low level activity at NDS which peaks around the publication date of 
the list. The master file is maintained by NDS and input is received from the other 
centres. There is no direct overlap between WRENDA and the other systems, the WRENDA 
tables and files being almost completely independent, with the exception of some of the 
EXPOR dictionaries.

4« Current operations at NDS

4.1 Dictionary maintenance for EXPOR

The master file, which is kept on tape, contains about 6000 logical records of 
88 characters each. The file is updated as needed, usually once or twice per month. 
Immediately following each update three ISAM files are created, from the tape, on disc. 
These are used extensively for checking purposes and also to provide code-expansions for 
edited listings. The dictionary master file is transmitted to the other centres every 
three months, at which time listings are also produced for data-centre physicists.

4«2 Libraries in EXPOR format

All master files are kept on tape. The regular neutron reaction experimental 
data library resides on 4 high density tapes, split according to the code of the centre 
from which the data originated.

- 269 -



Area Approximate number of records

1 - nndc 830,000

2 - CCDN 810,000

3 - NDS 120,000

4 - CJD 110,000 

Total 1.87 million

Each record is 80 characters in length#

In addition there are tx*o sub-master files, containing data from the period 
before the 4-centre network existed, with a total of about 700,000 records# The 
additions to the regular master files are roughly constant each year# In 197^ this 
amounted to an increase in file size of about 25$#

There are two additional master files in the same format} one containing 
evaluated data not yet included in any other library (about 6,000 records) and the 
other containing the charged particle data (about 12,000 records)#

The master files are each updated about once every three months upon receipt of 
a transmission tape containing new and revised entries# Data compiled at NDS is kept on 
tape as a separate file (LIMBO) until it has been thoroughly checked# It is then 
transmitted to the other centres and added to the master file#

When data are added to the master files the index is updated# The index is a 
very important part of the system. Data-elements which may be required for retrieval 
purposes are extracted from the EXFOR entries and stored in the index master file in a 
standardized form# At retrieval time, the index is matched against the request; when an 
equivalence is found, the index record points to the required sub—entry on the master 
file by its accession number# Listings of the index are also used extensively by the 
compilers at NDS. The current index—master file resides on tape; it contains about
40,000 logical records each of 200 characters.

The flow of data in the EXFOR system, as it currently exists at NDS, is shown 
schematically in Appendix II. The EXFOR libraries are accessed about three times per 
month for requests from users in the NDS service area; the index is accessed far more 
frequently. Output from the files is in the form of either edited listings (see examples 
in Appendix i) or in standard format, usually on magnetic tape# Both are accompanied by 
an index-listing of the data retrieved#

4*3 Evaluated data libraries

The number of data libraries originating outside NDS, but held for distribu
tion to requesters in the NDS service area, has grown over the years from 4 in 1970 to 
14 in 1974 to 32 in 1976# It should be noted that in addition to evaluated data libr
aries, this figure includes specialized compilations of experimental data# Many of them 
are simply copied in toto and sent to users on request# Several, however, are large 
libraries in one or the other standard evaluated data format# From these libraries 
selective retrievals are made on the basis of reaction plus isotope or data-set number#
No computerized index is kept of these libraries, but the contents of each is published 
in CINDU-11, which is updated regularly# The standard evaluated data libraries are 
accessed several times per month to satisfy requests from users in the NDS area# All 
libraries are stored on tape# The output is either in the original format (usually on 
tape) or as edited listings#

-  270 -



5. Future plans of the NDS data centre

As is probably the case in most data-centres, the various systems in operation 
at NDS have grown to meet immediate needs and to satisfy the commitments within the 
four—centre network. This has often meant ad hoc patching as the environments have 
changed and in particular as extensions to EXFOR have been introduced. This type of 
growth has been useful in so far as it has given us considerable experience in operating 
a data centre without massive expenditure on systems which may then have been difficult 
to modify as requirements changed. The NDS EXFOR system, for example, uses some 20 
independently compiled programs, and can easily be reconfigured as changes are required.

However, the time has now come to integrate and improve the NDS systems, with
out discarding all that exists at the moment. In particular we need to improve in-house 
operation by:

— co-ordinating the dictionaries and various tables which are used by the 
different systems, keeping in mind that these will grow as the scope of 
EXFOR is extended to other types of data;

- extending the EXFOR index to include other retrieval-fields;

— including the contents of the standard evaluated data files in this index;

— automating all book-keeping associated with user requests.

We need to improve the services to our user community by:

- providing data in a variety of computation formats better suited for input 
to calculation programs;

- providing graphical plots of the data, if requested.

Keeping in mind limited man-power and limited budget and noting that ADABAS 
will be available at IAEA, we must decide whether to ®go data-base* and if so, to what 
extent.

The data index is the nucleus of the data-centre operation. It is also the 
area where modifications and extensions are most needed. We have therefore recently 
decided to experiment with ADABAS to see if it satisfies our requirements. In parti
cular we need to investigate the query language and output capabilities, to ensure that 
these are adequate without having to write a great deal of host language software. Our 
first tentative attempt at data definition indicates that out of 43 data-fields, 21 need 
to be defined as ♦descriptors1 (that is fields which can be used as search criteria).
The highly complex structure of the nuclear reaction coding apparently requires 14 
descriptor fields in order to enable querying to a sufficient depth of detail. Many 
requests for data specify not only the nuclear reaction of interest but also an energy 
range of the incident particle. We must therefore investigate carefully how to handle 
the problem in ADABAS of searching on floating-point data.

If this experiment proves satisfactory we will load the EXFOR index into the 
data-base, adding at a later date the index to the major evaluated data files and the 
book—keeping files. We do not anticipate loading our actual data files into the data
base because of the large volume and the comparitively infrequent access. Queries to 
the index will give the accession numbers of the data-sets required, which will then be 
retrieved from the master file tapes.

Initially all our operations will be in batch mode. This will be true in the 
long term for updating the index because it involves bulk changes and additions at rather 
infrequent intervals. On the other hand, querying the index in the interactive mode is 
foreseen in order to facilitate the work of the physicists at the data centre.

A new project has recently been discussed in NDS, namely a compilation of 
isotope decay properties. This is a potential GDMS application, however its implementa
tion will depend upon the suitability of ADABAS for handling scientific data.

- 271 -



SHORT GUIDE TO EXFOR
Appendix I

EXFOR — a computerized Exchange FORmat - presents in a convenient compact form 
experimental numerical data as well as physical information necessary to understand the 
experiment and interpret the data» Keywords and codes make the information computer 
intelligible. The structure of EXFOR is briefly described in the following.

Each EXFOR "entry” consists of two or more "subentries". The first subentry 
of an entry contains information which is common to all the following subentries of 
that entry. Each subentry may include two types of information: descriptive text 
information and numerical data. Each item of descriptive text information is identified 
by keywords such as TITLE, STANDARD, ISO^QUANT, which may exhibit a code within parent
hesis, such as (GELl), (SCIN) for the keyword DETECTOR or (TOF), (COINC) for the keyword 
METHOD. The meaning of most keywords is self-explanatory. The meaning of most codes is 
given in the free text following the code. Of particular importance is the keyword 
"ISO-QUANT". Under this keyword are coded the "isotope and quantity" or, in other 
words, the reaction and parameter measured.

EXFOR information is available in two formats:

— the "standard format" primarily designed for the international exchange of 
data in computer processable form, and

— the "edited format" in which coded information and data tables are edited 
in an easily legible form.

The EXFOR structure, the standard and edited formats are illustrated in
example 1.

There are several categories of numerical data:

— In the DATA TABLE the numerical data of the quantity defined above under 
ISO-QUANT are given under DATA (or RATIO) together with the columns of 
independent variables, errors, etc.

— Constant numerical values which are common to the entire data table of a 
given subentry, are given in the CON ST AM* PARAMETERS (also called COMMON 
in the standard format) section«,

— Constant numerical values which are common to all subentries of a given 
entryf are given in the CONSTANT PARAMETERS (resp. COMMON) section of the 
first subentry of that entry.

All numerical data are defined by Data-heading keywords (e.g. DATA, EN = inci
dent neutron energy, STAND = standard) and by Data-unit keywords (e.g. EV, LIB).

Some data tables may have a more complex structure, for example there may be 
several ISO-QUANT per subentry; in this case each ISO-QUANT is connected to its perti
nent column in the DATA TABLE by means of a "pointer", as illustrated in example 2.
More generally a pointer can be used to connect related pieces of information (see 
example 3)*

-  272 -



Example 1

NUCLEAR OATA SICTI<K< INTERNATIONAL ATOMIC EMERCY ACENCT• VIENNA. accession  number EXFOR ENTRY 30282.

TMC A M V I IirO M ATlC N  APPLIES TC ALL SUC-ACCESSION NUMBERS STARTING ftlTH 302( 2.

BIBLIOCRARHV. EVERIRENTAL OCBCRIRTIC*. EXPLANATIONS SUB-ACCESSION NIMBL- »r-
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S E C O N D  SUBENTRY 30282.002

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------r ----------------------------------------------------------------------------------TOTen t
I T0-RT-190 RARTL.IN.CAMMA» CS TC METAST ABLE STATE s iB

«7B-RT-ICS.NC..DSI 
.IRB ( ML I  REASUREO BV AUThOR
X I  |OC> TH* TCTAL INTERNAL CCKVERSICN COEFFICIENT OF THE 

) M  KEV .TRANSITION IS ABOUT 0. 1« (FRCM M.A.aAHLGREN. 
« • » • H U H ,  F H fS .M « il> S ( l* S < ll« I  I

IS3-OUANT 
HALF—L I FE 
PART-DET

CONSTANT RAMAMCTCBS

-CONSTANT PARAMETERS -  
VALIO FOR SUBENTRY 

30282 002 ONLY

OATA TABLE
OATA 01* IM  

OATA

"DATA" DEFINED UNDER ■ 
ISO-QUANT OF 

SUBENTRY 30282 002

30262002 7.1205
3 S

( 7S-PT-190.N G ..M SI
(ML I .7 0 -P T -1  99-N ) MEASURED BY AUTHOR 
IOC» THE TOTAL INTERNAL CONVERSION COEFFI( 
392 KEV TRANSITION IS ABOUT 0 .1 « (FROM M.J 
« . « .MEINKt. PHY £.R E V .115(1959 >191»

u i u M t o o n i
3020200200002
H M IO tM O M l
3020200200004

OATA-ERR

3020200200000 
3020200200007 
3020200200000

3020200200013
3020200200014 
30202002000 I 5 
302020020001*  
3020200200017 
3020200200010 
3020200299999

0 IBL IOGMAFH*. E V E R I RENTAL DESCRIPTION. EXRLAfcAT1CKS sub- accession NUMBER ucos- j u m a m ;  THIRD SUBENTRY 30282J003

I TO-RT-190 «N.SABRAI CROSS-SECT ION

<7«-PT 'lf« .M C >
HALF-LIFE IW . I .T M T > I I« I  CIVIK BY COMPILER
RART-OET (OSI TMC >1« . 4*J  ANO 942 KEV TRANSITIONS .ERE MEASURED 

RON TNC DETERMINATICI! OP THE TOTAL (N. CAMMA I CROSS—SEC
TION.

CONSTANT R ARAME TER«

OATA TASK
DATA OSTINI 

OATA

— CONSTANT PARAMETERS -  
VALID FOR SUBENTRY 

30282 003 ONLY

♦  "DATA" DEFINED UNDER — 
ISO-QUANT OF 

SUBENTRY 30282 003.

SUBCNT
BIB
ISO-QUANT
HALF-LIFE
PART-OET

ENDCONMON
OATA
OATA

30202003 11 205

< 7 0 -P T -I9 8 .N O
(H L 1 .7 0 -P T -I9 9 I GIVEN BY COMPILER 
I K I  THE 3 1 «. 403 A NO 542 KEV TRANSITIONS MERE 
FOR THfc DETERMINATION OF THE TOTAL (N.SAMMAI Cl 
T ION •

OATA-ERR

3020200300001
3020200300002 
302B200300003 
3020200300004

NEASUREO3O202OO3OO0O9 
(OSS-SEC-302*290300000 

3020200300007 
3020200300000 
302020030000«
3020200300010
3020200300011
3020200300012 
3020200300019 
3020200 300014 
3020200 300013 
3020200300010 
3020200300017 
3020200 300010 
302020039999«

Appendix 
I



"EDITED" LISTING "STANDARD" LISTING Example 2



2
7
5

Appendix 
II



THE NEA COMPUTER PROGRAM LIBRARY: A POSSIBLE GDMS APPLICATION

W. Schuler, NEA Computer Program Library, Ispra, Italy

Abstract NEA Computer Program Library maintains a series of eleven 
sequential computer files, used for linked applications in managing 
their stock of computer ccdes for nuclear reactor calculations, 
storing index and program abstract information, and admininstering 
their service to requesters. The high data redundancy between the 
files suggests that a data base approach would be valid and this paper 
suggests a possible ’schema* for a CODASYL GDMS.

1. Introduction: The NEA Computer Program Library

Since 1964, the Nuclear Energy Agency of OECD has operated 
in Ispra, Italy, a Computer Program Library (CPL) which as its principal 
assignment collects and disseminates computer programs in the area of 
nuclear reactor design. To inform users of the programs available 
from the collection, descriptive catalogues going into different levels 
of detail are prepared and published periodically and distributed to all 
users of the service. In addition, CPL is engaged in a number of 
supplementary activities, such as the organisation of specialist meetings 
on selected topics of computer code application and a Service on 
Experience of Code Utilisation. The services of CPL are open to all 
member countries of NEA, including the United States and Canada. By a 
special arrangement with the International Atomic Energy Agency in Vienna, 
non-NEA countries may also participate. Institutions interested in the 
service, e.g. research centres or commercial firms may apply for nomin~ 
ation and be registered as member establishments. The CPL is supported 
by government contributions. No fees are charged to member establishments.

A proposal has been made to transfer the services now carried 
out by the Library to a new NEA Data Bank in Saclay, France, where a 
CODASYL GDMS would be implemented (initially IDMS on an IBM 370/125 com
puter, and later the very similar DBMS-11 system on a DEC PDP 11/70.

2. CPL Operations

This presentation will deal only with CPL activity in computer 
program collection, storage and redistribution. The physical unit that 
is managed by CPL is the "program package". The complete package con
sists of the program source deck, mostly in Fortran, input data and corres
ponding output of one or more typical problems, plus if necessary such 
additional data as cross section libraries, and documentation. In general, 
the package should be complete to such an extent as to render the program

- 276 -



operable as much as possible independent of any special computer 
environment.

The program package undergoes a series of operational phases 
from acquisition by CPL to redistribution to a requester:

(a) The program is offered by a member establishment to CPL.

(b) On the basis of documentation supplied by the author, CPL 
decides if the offered program lies within the subject scope 
of CPL and if it may be of general interest. It may then 
request the program for inclusion in the collection. In practice, 
CPL frequently takes own initiatives by requesting programs from 
their authors the existence of which it had known through other 
sources than through a direct offer by the author.

(c) The program arrives at CPL.

(d) In general, programs are only redistributed after they have 
successfully been tested. This testing which is normally per
formed by CPL staff, consists in a check for completeness of 
the package according to the definition given above and a re-run 
of the typical cases.

(e) The tested program package is stored in a standard form on a 
master-tape.

(f) The program may be requested by a member establishment. In case 
that it has not yet been tested, it will be tested upon arrival 
of a first request for it.

(g) Tested and requested programs are then dispatched, as tape copies 
from the master-tape. Documentation is also included.

For administrative purposes, each of these phases is recorded 
on one or more computer files.

For the descriptive catalogues, an abstract consisting of 18 
standard abstract items and an 80-byte short description are also prepared 
for each program and stored on tape. From these tapes, abstract folders 
and KWIC index booklets are prepared twice each year and mailed to all 
members. They are the main reference catalogues of the program 
collection.

3. Bookkeeping and Publication files

Both the customer information services of CPL and its informal 
administration have progressively been more computerised so that there now 
exists the typical situation where a total of eleven sequential tape 
files have to be updated periodically. The files, moreover, contain a 
considerable amount of redundant data, i.e. information stored identically 
several times on different files. Table I illustrates schematically 
this redundancy. The first two columns lists record types which will 
be used later in the data base schema proposed. Columns 3 to 13 represent 
the files used in the present system. At the intersections marked nx", 
the same data exist on a CPL file and a data base record. Where more 
than one "x" appears on the same line, data are redundant.

Abstracts file. This file contains abstract descriptions of each 
program in a standard format under 18 subject items, e.g.

- Nature of Physical Problem Solved

- 277 -



- Method of Solution

- Hardware requirements

- Programming Language,

etc.

Within each item paragraph free-format text is used. The file 
is updated twice per year and edited and published as "Nuclear Program 
Abstractsff folders.

KWIC file. For each program, an 80-byte description which includes 
program-name, abstract-number and subject category under which the pro
gram falls, is stored on this file. A KWIC Index is prepared from this 
file once or twice each year and published in booklet form.

Index file. This file contains an index to announcements or notes 
on programs, given in the bulletin "NEWS from CPL" which is published 
four times each year.

Program file. Each 80-byte record of this file describes the 
physical contents and availability status (arrived, tested, etc.) for one 
program package. It should be noted that one program abstract may 
cover more than one program package. Different packages of the same pro
gram normally represent versions written for and/or running on different 
computers. The file is updated every week.

Request file. All requests for programs made by member establish
ments are recorded on this file for the time that the request remains 
pending. The file is updated every week.

Dispatch file. When a program requested has been mailed, the 
corresponding entry is transferred from the request to the dispatch file. 
The file is updated every week.

Obsolete programs file. With the mutual agreement of program authors 
and users, CPL from time to time decides to delete old programs from the 
"active" Program file. In order that these programs shall remain trace
able they are transferred to this file. The file is updated at most 
once every year.

Installations file. This file contains all member establishment 
abbreviation codes, liaison officer names and addresses and in addition 
special mailing instructions such as number of.copies to be sent to a 
particular member for a particular publication. The file serves to 
produce address stickers and to calculate postage fees. It is normally 
updated before bulk dispatches to all members are planned, i.e. approxi
mately ten times per year.

Computing Facilities file. Here details about the computer equip
ment available to each member establishment are stored. The format is 
similar to that of the Abstracts file. At present, no publication is 
prepared from this file. It serves only for internal consultation by 
the Library.

Tape File. The file contains for all "archive" tapes - tapes con
taining original program material - the shelf numbers where they can be 
found. The file is used to assign cupboard space and to remove tapes 
no longer used from the archive. The file is updated every month.

- 278 -



Dispatched tape file. Here numbers and destinations of all tapes 
used for dispatches are stored. It serves to recover CPL proprietary 
tapes sent out. The file is updated every month.

4. Size of CPL Operations

I would now like to give some figures which reflect the size of 
the CPL services. These figures will then serve to estimate access 
frequencies to various data items of the data base which I will then 
propose.

- The latest published catalogue lists about 1100 program packages 
which are currently available.

- To this figure, about 100 to 150 new programs have to be added 
each year.

- About 100 programs are also tested each year.

- In 1976, about 750 complete packages were mailed and in addition 
about 250 program reports.

- The user community of CPL now comprises about 350 registered 
establishments.

5. Integrated Data Base Management System

In order to avoid the disadvantages of the file system described, 
the schema of Fig. 1 for a data base is proposed. Its logical structure 
is such as is supported by the system IDMS of Cullinane Corporation, and 
the nomenclature used is that of this system. The data base itself can 
to a large extent be generated from the data now available on tape files.

The following conventions have been used when drawing up the
schema:

- A square box represents a record type.

- Within a record type,

the first line gives the record-name

the second line contains the record-id and

the location-mode: CALC - the record location is calculated
from the data-item within the record 
as given on the third line by a hash 
algorithm

VIA - all record occurrences are stored 
near the owner record occurrence 
within the set given on the third 
line.

- A pair of record types connected by an arrow represents a "set".
The arrow points from the owner to the member of the set.

Table II lists and describes all record types and estimates 
their occurrences within the data base, their total lengths and the 
number of accesses to them per month. For each record type, data items 
are described. Records which contain free-format data have variable

- 279 -



length. For these records, therefore, total lengths are maximum 
lengths.

Within the schema of Fig. 1 we note a principal logical division 
between the record type PROGRAM on the left and PACKAGE on the right side. 
One occurrence of PROGRAM represents one abstract of a program. In fact, 
abstract items (indicated by bracketed numbers) 3, 4, 5, 6, 7, 14, 15,
18 appear as member records in sets with PROGRAM as owner and are also 
stored VIA these sets. PACKAGE on the other side represents one program 
version as a physical unit in the whole collection. Consequently it is 
stored as a member within the set linking it to PROGRAM which allows for 
more than one PACKAGE occurrence for one PROGRAM (-Abstract) occurrence. 
Abstract items 8, 9, 10, 11, 13, 16 which may be specific to one par
ticular program version are linked to PACKAGE and stored near their 
PACKAGE occurrence.

The scope of the CPL program collection is formally sub
divided into a number of subject categories, which are the occurrences 
of the record type CATEGORY in the schema. CATEGORY is linked as set 
owner with PROGRAM. This means that a specific category, e.g. "Reactor 
Safety Analysis", is an owner occurrence of all PROGRAMS falling into 
the category "Reactor Safety Analysis".

In a similar manner, records ORIG-COMP (original computer), 
TEST-COMP, ORIG-LANG, and TEST-LANG are linked as set owners with 
PACKAGE.

To further illustrate the logical structure of the schema 
Fig.1 , I will now discuss several practical examples.

1. Store a new package REQUEST.

(a) Locate the PACKAGE occurrence containing the name of the 
program package requested.

(b) Locate the requester INSTALLATION.

(c) Store the new REQUEST record giving a request number and 
date.

In IDMS, since memberships have been defined OPTIONAL AUTOMATIC 
(OA), the REQUEST occurrence just stored is automatically linked with the 
PACKAGE and INSTALLATION occurrences located before.

(d) If further specification of the material requested is 
necessary, all required occurrences of DOCUMENT and MATERIAL 
associated with the PACKAGE are located and in this case 
manually connected to the REQUEST occurrence.

(e) If the request requires special comments, they may be stored 
in REQ-COM.

2. Record a package dispatch

(a) Locate the REQUEST record in question by its request-no.

(b) Insert into this REQUEST record, date and tape-no. of the 
dispatch.

3. Find all open requests for one requester INSTALLATION.

(a) Locate the INSTALLATION occurrence by its abbreviation code.

- 280 -



(b) Find within the INSTALLATION-REQUEST set all member
occurrences of REQUEST which have the located INSTALLATION 
as owner occurrence.

(c) To find the name of the package requested, locate likewise 
for each REQUEST the member occurrence of PACKAGE.

(d) Find for each REQUEST possible occurrences of DOC, MATERIAL 
and REQ-COM.

6. Conclusion

The introduction of an integrated data base management system 
offers a number of obvious advantages over the present file-based 
system:

- T h e  maintenance and editing of the Program Abstracts file in the 
present form is a time-consuming task requiring one to two man- 
months per year of senior staff. The updating of this file has 
therefore been mainly restricted to the insertion of new abstracts 
for new programs. If abstracts data are integrated into a data 
base they will automatically be brought up to date whenever changes 
to package descriptions have to be made. The preparation of the 
publication itself could be reduced to a simple report generation 
from the data base. In this way, the value of the publication 
as a general reference manual could be considerably enhanced. At 
the same time a saving in manpower may be possible.

- In general, the reduction or even complete elimination of data 
redundancy would render system maintenance easier, more efficient 
and less error-prone. At this point it should be noted that due 
to the staff structure and resources of CPL, most of the staff 
have to devote part of their time to some kind of file maintenance. 
This constitutes a burdensome overhead to other assignments and 
could no doubt be considerably reduced with the introduction of an 
easily manageable integrated system.

On the other hand, it is clear that the rather moderate demands 
on such a system, in particular as far as disk storage and access times 
are concerned, would probably not be enough to justify the introduction 
of highly sophisticated software only for the tasks which I have outlined 
above« The whole proposal should therefore be seen in a context where 
a data management system is likely to be already available for other more 
demanding projects.

The most important data missing from the schema presented are 
the CPL 'master files' of program packages tested and available for 
distribution. The volume of source code stored on tape is large and, 
once tested, a program may be considered simply as a block of text to 
be copied for the benefit of requesters. In view of their large volume 
and apparent lack of informal structure, the CPL master files would at 
least initially continue to be stored on tape, outside the data base.

- 281 -



Table I

DATA REDUNDANCY BETWEEN C P L  FILES

Redundant information
Liz



283

Figure 1

P R E L I M I N A R Y  I D M S  SCH EM A

(17) CATEGORY

117 CALC

C A T- CODE

PROGRAM

101 CALC

AB- NO

PR118 MA

ASC KEYWORD, DN

P R O G -P A C  FIRST NPO

P R O G -R EQ  LAST NO

C O U N TR Y -NAME

o
 

- 
<

 
Q. KAGE (

» 201 CALC ,

VERSION - NAME

IND, LAST, NO, OA

PAC202, ASC VE RS -N A M E, DN, OA

P A C -REO 

ASC

VERS-NAM E

INSTA LLA TION

IN S T -CODE

(14)

PR114

ORIG- COMP

202 CALC

COMP -CO DE

T E S T -COMP

C O M P -CODE

ORIG ■■LANG

212 C ALC

l a n g - CODE

TES T- l a n g

912 CALC

LANG- CODE



REC record-name
ID

loc mode data item description length total occ ac
(bytes)(kbyte) /mtb

100 MASTER GALC publications record
NEADTE date of last NEA abstracts
NEATYPE type of issue: 1 - update

2 - complete
N3A1AST last abstract no. published
USDTE date of last US abstracts
USTYPE type of issue
ULAST last USCC abstract no. pubi.
CLASS! last R3IC abstract no, pubi*
KWICDTE date of last KWIC issue
NEWS DTE date of last NEWS issue

47 .05

101 PROGRAM CALC
AB-NO

logical program unit

PROG-NAiviE name of computer program 
AB-NO abstract no.
KWIC KWIC title

1500 iy

14
5

65

103 PROBLEM VIA 
PR 10 3

PROB

Nature of physical problem solved 

(free-format description) 2000 3000

1500 15

104 METHOD VIA
PR 10 4

METH

Method of solution 

(free-format description) 1500 2250

1500 15

105 RESTRICT VIA
PR105

RE STR

Restrictions on the complexity 
of the problem 

(free-format description) 1500 2250
1500 15

106 EXTIME VIA
PR106

EXTME

Typical running time 

(free-format description) 1000 1500

1500 15

107 FEATURES VIA
PR107

' PEAT

Unusual features of the program 
or restrictions 

(free-format description) 1000 200
200 if

115 AUTHOR VIA
PR115
*N NAME

ADDRESS

Name and establishment of author

Author name . 50 
Address 200

' . 250 750

3000 17

118 KEYWORD VIA 
PR 118

KWORD

Descriptor

Keyword 50 25

500 15

201 PACKAGE CALC
VERSION
NAME

VERSION
NAME

Physical code package description 

Name of program . package 14 28

2000 400

TABLE II

- 284 -



REC record-name loc mode data item description
ID

Length total occ ac
(byteq) (kbyte) /mtb

214 REMARKS' VIA’ '' Any other programming or operating ..... 500 15
PAC214 information or restrictions

OP (free-format description) 10C0 500

216 MATERIAL VIA Material available
PAC216

MAT material code:
S - source deck 
D - test- case data 
L - test case printout 
P - test case punch 
T - library data BCT 
C -  library data binary 
M .- load module 
X - auxiliary program(s) 
R - report
W - working description

229 STATCOM VIA
ST

COM209

Remarks on availability status 

(free-format text) 500 250

500 20

239 DOCOM VIA
DC

COM210

Remarks on documentation 

(free-format text) 500 500

1000 100

249 MATCOM VIA
MA

COM219

Remarks on available material 

(free-format text) 500 400

800 300

301 REQUEST CALC
REQ-NO

REQ-NO
REQ-DTE
DIoP-DTE

program request record

Request sequence no. 
Date of request 
Date of dispatch

4
6
6

5000 200

" DTSP-TAPE Tape mailed 16 8o

302 REQ-COM VIA
REQ

C0M301

Remarks on request 

(free-format text) 500 250

500 200

410 INSTALLATION CALC Member establishment 300 20
HTST-CODE

INST-CODE Member establishment code name 10 
LIAISON-
OFFICER Name of Liaison Officer 50
ADDRESS Mailing address of L.O. 200
SPECIAL Flag for IAEA or other special

status 4
MAIL Special mailing details 4

■ZSB---So

TABLE II (Contd.)

8000 300
1 8

-  285 -



BEC record-naine loc mode data item description 
ID

Length total occ ac
(bytes) (kbyte) /mth

(202.COMPUTES} VIA - Computer.on which .program is
PAC202 operable 2000 4C

COMPÌ Computer for which the program is
designed 10

COMP2 other computer on which the
program is running 10

"So 40

208 AOZ-rHOG VIA
PAC20Ô

NAME
BESCR

Related and auxiliary programs

Program name 
Program description

500 20

14
486_____
500 250

209" STATUS VIA
PAC209

TAPE
BOX
TCODE
ICODE

availability status of code

STATDTE 
STATCODE

date of status 
status code: 0 

D 
A 
P 
T 
S 
X

change
- offered
- requested
- arrived
- prepared
- tested
- test suspended
- not to be tested

Tape no.
place where tape is stored 
code letter of tester 
installation code of testing 

establishment

4000 100

10
75 IÖ4

210 DOC VIA
PAC210

Documentation record

REP Reference no. of document
AUTHOR Author name
DOCSTAT availability status:

D - requested
T - distributed if STATCODE =T 
X - distributed if STATCODE ¿T 
A - available but not distr.
N - not distributed 

COPIES no. of copies on stock 
DOCDTE date of status change

20
50
1

4
6

BT"

4000 200

124

211 HARDWARE, VIA
PAC211

HARD

Machine requirements 

(free-format description) 500 750

1500 15

(212 LANG ̂ VIA
PAC212

LANG1
LANG2

Programming language used

language of original program 
language of adaptation

10
10
20 40

2000 30

213 SYSTEM VIA
PAC213

SYST

Operating system or monitor under 
which program is executed 
(free-format -description) 500 1000

2000 30

TABLE II (Contd.)

-  286 -



REC record-name loc mode data item description 
ID ___________________________________________

length total occ ac
(bytes) (kbyte) /mth

oO
J1̂" COUNTRY CALC

C0ÜNTRY-
NALIE

COUNTRY-
NAI'ilE
SPEC

Member country

Country name 46 
Flag for IAEA or special stats. 4

-50 1

50 3

430 COMP-FAC VIA
INST

TEXT

Computing Facilities 

(Standard-format description)8000 400

50 10Q

117 CATEGORY CALC
CAT

Subject category

CAT Category code letter 1 
CAT-TITLE Category title 200 
CAT-DESC Category specification 500

701 21

30 20

230 INDEX VIA
IND

NEWS-NO

NEWS from CPL Index

Issue no. of NEWS from CPL 6 18

3000 100

TOTAL STORAGE REQUIREMENT FOR DATA BASE: 14269 kbytes

TABLE II (Contd.)

- 287 -



COMPUTERIZED DATA HANDLING IN THE ENVIRONMENTAL 
CHEMICALS DATA AND INFORMATION NETWORK

J.H. Petrie, J. Powell, W.G. Town*
Commission of the European Communities 

Joint Research Centre - Ispra Establishment
21020 Ispra (Va) - Italy

Introduction

ECDIN (Environmental Chemicals Data and Information Network) is a pilot project to study the feasibility of 
setting up an information network for chemical substances and their effects on the environment. The project 
will constitute a valuable contribution to the European Communities EMIN (Environmental Management In
formation Network). ECDIN is a research project of the European Communities; work is being done both by 
the Joint Research Centre of the EC and by institutions in the EC member states under contract w ithin the 
framework of the Environmental Research Programme. Data being collected by these institutions are being 
brought together at the EC Joint Research Centre in Ispra, Italy.
The aim of the project is to establish a data bank containing the information required for decision making in 
environmental management. In addition to establishing which data elements are necessary for environmental 
impact assessment and control, consideration has been given to the chemical compounds to be included. In our 
view, effective control of environmental chemicals depends not only on the monitoring at known environmental 
stresses, but also on the systematic collection and organization of
- a) all chemicals manufactured in large quantities,
- b) all toxic chemicals which are manufactured,
- c) all metabolites and degradation products of compounds in a) and b) and by products resulting from

their manufacture.

It is estimated that in an operational system these criteria could lead to a file of about 30,000 compounds. 
However, in the pilot phase we have limited the file to 5000 compounds.

SIMAS information retrieval system

From the start of the project it was decided to set up a computerized system using the SIMAS information 
retrieval system which was developed at JRC-lspra. Although it was already clear in 1972 that SIMAS was not 
an ideal system for ECDIN, it had the advantage that, as it was a local system, limited improvements to the 
system for the ECDIN application were possible.

SIMAS was originally designed for the library of computer programs of EUROCOPI (European Computer 
Programs Institute). SIMAS allows the system designer to set up a number of classes each containing objects 
which may be catalogued. In addition, keywords and searchable identifiers may be assigned to the 'objects'.

* To whom all queries should be addressed

- 288 -



In the ECDIN implementation we chose to use one 'class' in which the 'objects' were chemical compounds as 
it was not possible to search across classes. One implication of this decision was that the logical record of the 
ECDIN file would have a hierarchical structure with the chemical compound as the root of the tree. The pro
blems arising from this record structure will be considered later in greater detail.

To enable the data stored in SIMAS to become retrievable, it was necessary to develop a thesaurus for ECDIN. 
The SIMAS system contains procedures for thesaurus construction and maintenance. The thesaurus is orga
nized in a number of broad keyword groups each of which may contain a number of narrow keyword groups. 
Each 'narrow keyword group' may in turn contain a hierarchy of keywords. One improvement of the SIMAS 
system introduced for the ECDIN implementation was the ability to associate numerical values with keywords 
and to search them with operators such as: equals, less than, greater than, less than or equal to, greater than 
or equal to, between (for ranges), error (to allow for uncertainty in data). Further the units in which the 
original measurement was made, could be input and automatically translated into a standard unit. This facility 
was also made available to the searcher.

ECDIN input format

In addition to imposing a hierarchical data structure on ECDIN, the SIMAS system imposes other severe 
constraints. Firstly, in SIMAS we could not easily represent in fine enough detail the data structure which we 
felt to be appropriate to ECDIN. Secondly, the facilities for data management in SIMAS (like most other in
formation retrieval systems) were minimal. In order to change one digit in the data record for a compound, it 
was necessary to reload the whole display file for the compound. Similarly in order to change or add one 
keyword, it was necessary to reload all keywords for a compound.

As a result it was decided from the outset to develop an ECDIN input format which would have the following 
advantages:
- a) the ECDIN data bank was not too dependent on SIMAS and the change to a new system would be

facilitated,
- b) there would be more flex ib ility  to represent the data as it should be stored,
- c) the design of the format could be improved as a greater understanding of the inherent data structure was

obtained.

However, the ECDIN input format was of necessity still conditioned by the constraints of the SIMAS system 
and we were forced to adapt a hierarchical data structure for the ECDIN input format record.

Data structure of the ECDIN record

The data elements considered appropriate to the aims of ECDIN were organized into ten categories, each of 
which was divided into fields and, where necessary, subfields. The ten data categories are listed in Fig. 1 and 
the field structures of two of these categories are shown in Figs. 2 and 3. In some cases a field may occur once 
only (e.g. preferred systematic name in category 1) while in other cases the field may be repeated (e.g. trade 
names in category 1). For some fields it has been necessary to introduce a repeating group of subfields. For 
example, a chemical compound may have many producers and for each producer we may wish to record the 
following data elements:

- company name
- plant location
- plant capacity
- process used
- merchant capacity
- material source

Each of these data elements becomes a subfield in a group of subfields which describes a producer and the 
group may be repeated as many times as there are producers for the compound (see Fig. 4). Often the hierar
chical structure inadequately represents the true data structure. There may be a need to refer from one field 
to another, as is the case with chemical processes in the example above or it may be necessary to refer to other 
compound records.

In certain fields (mostly in categories 8 and 9) a free text condensate is used to present an abstract of the 
state-of-the-art for the compound in the field. Several bibliographic references may be used in preparing the 
condensate and these are listed after the condensate (see Fig. 5). Each element of the bibliographic reference is 
tagged as a subfield. The concept of the 'condensate' was introduced partly to overcome the space limitations

- 289 -



1. Identification of the chemical (IDN)

2. Chemical structure information (CSI)

3. Physical and chemical properties (PCP)

4. Chemical analysis data and methods (CAD)

5. Supply - production and trade (SPL)

6. Transport, packing, handling, storage and hazards (TPH)

7. Use and disposal (USE)

8. Dispersion and transformation in the environment (DTE)

9. Effects of the chemical on the environment (incl. toxicity) (TOX)

10. Regulatory data (CRR)

Fig. 1 : ECDIN data categories

ECDIN number
- Preferred systematic name

—  Other systematic name(s)
—  Trivial names 

Abbreviated chemical name(s)
—  Danish chemical names 

Dutch chemical names 
French chemical names

—  German chemical names
—  Italian chemical nsmes
—  Trade names
—  CAS registry number
—  Wiswesser Line Notatien
—  Other numbers

Fig. 2 : Field structure of category 1

CATEGORY 1. 

Identification

CATEGORY 5.

Supply production 
and trade (SPL)

Producers 

Total capacity 

Production

Manufacturing processes 

Foreign trade 

Domestic supply 

Bulk displacements

Process chemistry 
Reaction 
By products 
Side reactions 

-> Process emission control 
Employment statistics 
Co-products 
Prime product(s) 
Functional adjuncts 
Yield factor 
Product specifications

Fig. 3 : Field structure for category 5

Only the data for the field "manufacturing processes" are expanded. Data for other fields are similarly divided.

- 290 -



Company name Montedison

Plant location Porto Marghera, 1-30100

Plant capacity 7 KT

Process used No. 1 (Cross reference)

Plant location Villadossola, I-28039

Plant capacity 7 KT

Process used : No. 1 (Cross reference)

Company name BASF

Plant location Ludwigshafen, D-6700

Plant capacity 20 KT

Fig. 4 : Example of data : chemical producers

CONDENSATE

Primary clinical pathological changes are formation of 

methaemoglobin with resulting cyanosis at 10 - 15% conversion

and anoxemia at about 30% conversion......................................

.................... failure and death (1). Absorption through

skin is frequently main route of e n try ........................................

several hours exposure (2).

References

1. International Labour Office. Encyclopaedia of 

Occupational Safety and Health.

ILO, Geneva, 1971 (2 Vol.), p. 98

2. etc.

Fig. 5 : Example of data for category 9 field: "Effect on Man"

- 291 -



of the SIMAS field. In the future, a structured data representation w ill be introduced in some of these fields 
and the 'condensate' w ill be reserved for comment on or evaluation of the data.

Present data management system

As a consequence of adapting the ECDIN input format, it was necessary to develop a conversion program 
which would reformat ECDIN data into SIMAS input format. During the conversion process much of the fine 
structure of the record is lost. Since data management in SIMAS is d ifficu lt and since, in any case, we would 
have lost the fine structure of the record in SIMAS, it was also necessary to develop file maintenance routines 
for the ECDIN input format.

It is not necessary here to describe in detail the file maintenance system but the following list of system ele
ments will show that it is non-trivial:
- sorting and merging of files in ECDIN input format
- error detection routines
- editing routines
- file statistics
- selection of data by compound
- selection of data by data field
- creation of file subsets according to characteristics of data records
- maintenance routines of ECDIN compound registry file (an authority file)

The maintenance of two sets of files is wasteful of time and effort. Furthermore, the file conversion and re
trieval file updating are expensive and complex procedures and as a result the retrieval file is updated at in
frequent intervals.

Summary of reasons for changing to DBMS

The advantages to be gained from a change to DBMS are of two types:
- elimination of the disadvantages of SIMAS,
- improvements in retrieval and data management offered by DBMS.

One of the chief disadvantages of SIMAS is the imposition of a hierarchical data structure. This results in re
dundancy of information (e.g. producers, processes, bibliographic references) and as a result of this redundancy 
it is d ifficu lt to ensure that exactly the same form of, for example, a producer's name is stored everywhere in 
the data base. Redundant storage of information can also lead to increased updating since, for example, when 
a company name changes, all records in the data file containing the name must also be changed. Furthermore, 
the hierarchical structure distorts the true data structure causing problems of cross referencing as already 
mentioned.

Even though the association of values with keywords was an improvement in SIMAS, this feature is still in
adequate to deal with all relationships which should become searchable. Consider, fo r example, the concept of 
'production in a region'. H£re there are three values or attributes related to this concept, namely:
- region or country
- year of production
- quantity of production

As SIMAS allows the association of only one value with a concept, we are forced to multiply the number of 
keywords used to represent this relationship in SIMAS. For example, we could do this with keywords of the 
following type:

- production in Italy in 1977
- production in Italy in 1976, etc.
- production in France in 1977, etc.

This is clearly inadequate for a data bank such as ECDIN. The positive gains to be expected of a DBMS are:
- better representation of the ECDIN data relationships in a network structure
- more efficient data management
- greater flexib ility to change data structures
- dynamic hierarchy definition.

An idea of the complexity of these data relationships is shown in Fig. 6.

- 292 -



Fig. 6 : A model of ECDIN using a network data structure

With such a model of ECDIN we would be able to answer more easily questions directed to the manufacturers, 
to chemical processes, to administrative regions or eventually even to hydrographic basins. Clearly, as before, 
questions directed to the chemical compound will be of importance. Obviously, relationships between com
pounds also exist and the above diagram should not be regarded as exhaustive.

Study of software needs fo r JRC-lspra data banks

In view of the obvious inadequacies of SIMAS for ECDIN and the need to replace SIMAS with a new system, 
a study contract was awarded to an external consultant who was given the task of examining the six data 
banks which are proposed or operating in the JRC-lspra and, in the light of the available commercial software, 
of making recommendations for an eventual replacement for SIMAS. As a result of the first part of the study, 
a class of DBMS software (inverted file systems) was recommended as a replacement of SIMAS. In the second 
part of the study, three of the JRC-lspra data banks (including ECDIN) were examined in turn with each of 
three DBMS packages (ADABAS, INQUIRE, SYSTEM 2000) to determine the problems likely to arise. The 
choice between ADABAS and INQUIRE was d ifficult but on the grounds of easier extendability, the former 
system was chosen. Trials with ADABAS at JRC-lspra should begin in the last quarter of 1977.

Conversion o f ECDIN to  ADABAS

The existence of the ECDIN input format should facilitate the conversion of ECDIN to ADABAS. A study of 
the problems involved for certain parts of the data base has already begun and a number of computer pro
grams has been written to facilitate the conversion process. To ensure a realistic test of ADABAS, it was de
cided to select data according to the following criteria:
- data required to be searchable but which are not searchable at present,
- data which are not adequately searchable at present,
- data which would test the features of ADACOM (a new command language available with ADABAS),
- data having a close association which would enable realistic questions to be asked.

- 293 -



Accordingly, the initial conversion w ill be made on chemical names, producers and chemical processes.

Consideration of the characteristics of the data in ECDIN category 1 (identification) and the limitations of 
ADABAS system has led to the proposal of the following record structure fo r chemical names:

I ECDIN No. , NAME TYPEi______________NAME t ___________________________ [
i________ ii________ ii________ i

i.e. one record for each name with a multiple field for name type. The following requirements are satisfied by 
this structure:
- 1) to be able to search for chemical compounds using all chemical names present in the data base,
- 2) to be able to identify chemical names by name type,
- 3) to link chemical names with other files containing data which relate to chemical compounds (i.e. pro

duction, chemical processes, etc.)

The data in ECDIN input format on chemical producers is stored redundantly in each compound record and, 
as a result, the company names and plant locations must be standardarized before we can create separate 
company and plant files. Computer programs have been written to sort the existing data by company name, 
plant location and ECDIN number and to convert various non-standard forms of company name and plant 
addresses into a standard representation. These programs can be easily modified to produce files for direct 
input to ADABAS Having the following record structures:

Company file record structure

COMPANY . COMPANY NAME 
CODE

I--------------------------------- i----------------------------------------------------------------------------------------i

Plant file record structure

PLANT f  PLANT POSTAL f  PRODUCTS f  PROCESSES 
CODE T ADDRESS CODE T PRODUCED T EMPLOYED

i_________ !__________ I__________ I____________ I_
I_________________ L_
i_________________L_I___________i_

The plant code is a combination of the owning company code and an " id io t"  number. The company code 
portion of the plant code could be used for direct coupling of the Plant and Company Files.

The products produced are the ECDIN numbers of the compounds produced at that plant.

The following search requirements may be satisfied with these two record structures:
- 1) to search for where a chemical compound is produced,
- 2) to search for what companies produce a chemical compound,
- 3) to search for what chemical processes a plant employs,
- 4) to search for what chemicals are produced in a certain country/region/area,
- 5) to link chemical producers with other files containing data which relate to chemicals and their produc

tion (i.e. chemical names, chemical processes).

The existing data in ECDIN input format on chemical processes also requires standardization but it is in
adequately indexed in terms of cross references to other compounds. Rather than to convert this data by pro
gram, a new format has been designed and the data are being manually recoded into this new format. As the 
volume of this file was small, it was felt that programmed conversion was not justified in this case. However, 
a selected data printout is being used to facilitate recoding. Once this file entered into ADABAS it should be 
easier to eliminate redundancy and standardize process descriptions. The record structure developed fo r this 
file is shown in Fig. 7.

Hence, in many cases direct conversion from the ECDIN input format has proved feasible and even when this 
is not the case, the conversion process may still be greatly facilitated.

- 294- -



The authors would like to thank the many organisations and individuals who have contributed to the ECDIN 
project.

Acknowledgements

Role in process: Multiple fields containing ECDIN numbers

PROCESS PROCESS MAIN BY FUNCT. IMPURITIES INGREDIENTS
NUMBER DESCRIPTION PRODUCTS PRODUCTS ADJUNCTS

J _______________ i_________________ {__________________ I_________________ i___________________I—
_L_

Fig. 7 : Record structure for chemical processes

- 295 -



PART IV
THE DIRECTION OF GDMS DEVELOPMENT

PARTIE IV
LE DEVELOPPEMENT DES SGBD DANS L’AVENIR



THE RATIONALE OF A STANDARD INTERCHANGE FORMAT

A. A. Brooks

Computer Sciences Division 
at Oak Ridge National Laboratory 

Union Carbide Corporation, Nuclear Division* 
Oak Ridge, Tennessee, USA

ABSTRACT

The proposed draft, AmoAlcan Ncutionat Standa/id S p d c ll ld a tio m  ion. a Vcuta Vte&vLptLvo. 
TMLd fiosi in lonm vtion  InteAchange., which is in development by the ANSI/X3L5 committee 
is described. The standard is suited for R&D data interchange in an ASCII character 
mode.

The interchange of information between n dissimilar information systems can be 
accomplished by the construction of n(n-l) ad hoc interfaces between pairs of systems 
or by the construction of 2n interfaces between the systems and a suitable common 
interchange system commonly called an interchange format. The latter approach was 
adopted in 1976 after considerable debate by the ERDA Inter-Laboratory Working Group 
for Data Exchange. An interchange format was devised and reported1 in that year and 
implemented in part during 1977. During the latter part of 1976 the American National 
Standards Institute Subcommittee on Labels and File Structure (X3L5) assumed further 
work in its project on Interchangeable ASCII Data Files and is currently working on a 
proposed draft standard.2 This paper discusses the properties of such an interchange 
file.

It is assumed that the dissimilar systems have equivalent processing algorithms and 
sufficient capability for the expression of the inherent logical structure and form of 
the information; otherwise the act of interchange would be an exercise in futility. We 
set forth some necessary characteristics of the interchange format:

1. It must be capable of accepting from any system the atomic data elements to be
interchanged in a form accessible to all systems.

*Prime contractor for the Energy Research and Development Administration

- 297 -



2. It must be capable of expressing the logical structure inherent in the information 
and convenient to the pragmatic organization of the information.

3. It must admit the construction of automated interfaces to all of the n-dissimilar 
systems, particularly to data base and file management systems.

4. It must offer processing efficiency as a desirable rather than an essential 
feature since the act of interchange is an occasional occurrence by comparison 
to internal processing.

5. It must be acceptable to a wide variety of users and must be extendable as new 
needs and data forms arise.

An examination of the wide spectrum of information to be interchanged reveals the
following:

1. The atomic data elements are usually logically expressible as alphanumeric 
characters.

2. The most sophisticated inherent logical structures found are graphs, directed 
graphs and networks (in the mathematical sense); but these structures are 
represented by simpler structures and associated algorithms or by highly system- 
dependent pointers or access methods.

3. The vast majority of the data can be represented in structures no more complicated 
than rooted trees and often in simple vectors and/or regular arrays.

4. There exist several standard content-oriented interchange systems3 for textual 
information all conceptually based on ISO 27091* and that the concepts therein can 
be generalized to media- and content-independent standard.

5. The most significant interchange media today is magnetic tape but is rapidly 
changing to other surfaces and to transmission.

6. Complex logical structures may be defined in terms of simple structures and are 
expressible in them (for example, a digraph is a set of elements and a relation 
on the set). In these simpler structures logical linkages are expressed as 
information values to be used in the formation of logical associations.

A consideration of the above objectives and observations led to the following
conclusions:

1. The standard should be media-independent; i.e., it should specify the format of 
logical records which, when written on a specific media, can conform to the 
standards for that media.

2. The atomic data elements should be alphanumeric strings expressing text or numeric 
strings expressing numbers.

3. The atomic data elements should optionally be aggregated into vectors or arrays 
placed into fields which can further optionally be aggregated into a hierarchical 
(i.e. rooted tree) structure to comprise a logical record.

4. The logical records would be repetitive occurrences of the above structure whose 
description should accompany the interchange on the same media. The information 
records and the descriptive record should each constitute a separate file.

5. The format should attempt to include, insofar as reasonable, the existing standard 
systems of the ISO 2709 family as special cases.

- 298 -



6. ANSI X3.4-19685 should be used for control fields between systems which do not
support the same character code set. The code extension techniques of X3.41-19746 
should be adopted for data fields but not control fields.

The interchange standard can be described briefly by the following.

1. The standard draws upon the concepts of ISO 2709 for the logical record format 
composed of:

a) A leader containing controls.

b) A directory of field tags, printers and field lengths.

c) Variable length data fields containing data elements.

2. An interchange is comprised of a pair of files:

a) A data descriptive file which describes the data file giving i) a data base 
name and optional generic hierarchical structure information and ii) a 
field-wise description of each data field including field names, optional 
subfield names, data type, structure and format information as well as 
character code set.

b) A data file composed of repetitive logical records comprised of data fields 
which are an instance of their description in the descriptive file.

c) Multiple file pairs are permitted.

3. The data types permitted are text and the three numeric representations of 
X3.42-19757; i.e., implicit point, explicit point and explicit point scaled.

4. The structures permitted as data elements are a) atomic, b) vector, and c) multiply- 
dimensional arrays of the allowed data types or mixtures thereof.

5. The data subfields are defined by formats or delimiters.

6. Any rooted tree structure of the fields within the logical record is optionally 
described by a preorder traversal sequence of the data tags in the directory.

7. A G1 extended character code set may be declared for the entire file or for each 
data field and further escape sequences are permitted.

8. An externally defined subsystem which conforms to the leader, directory and 
variable data field requirements of ISO 2709 can be declared in lieu of complete 
data field descriptions in the data descriptive file.

9. Three implementation levels are defined plus an extended character code set 
implementation.

10. The standard is designed for extension to new sets of data field descriptions 
and data elements.

Complex structures such as cyclic graphs may be fragmented into trees and 
interchanged by replacing "address pointers" with logical pointers. Acyclic digraphs 
such as rooted tree structures and simpler structures such as vectors, arrays, or 
relations can be transmitted directly. Relations can be transmitted as a set of 
vectors. Where very short, regular structures such as vectors, arrays, or relations 
are involved, a packing into pseudo-logical records may be desirable to reduce 
overhead.

- 299 -



The discussion by Date8 of the equivalence of forms between the most prominent 
data base models suggests ways they can be converted into suitable interchange struc
tures. These techniques presume the capability of the receiving system to house and 
reconstruct the structure. In short, the exchange format is a tool which like most 
sophisticated tools will require some reflection before use.

A Level 1 implementation for tape has been programmed for both IBM and CDC 
equipment at eight ERDA installations. The implementation is for a magnetic-tape 
environment and draws an ANSI X3.27-19779 as the tape label and file structure 
standard. The implementations provide interfaces for text streams from local DBMS 
(S2000 and ORCHIS) and "card image" input. File pairs of arbitrary level can be 
prepared by forming appropriate text strings. Documentation is being issued and 
implementation of "FORTRAN environment" input stream software for vectors and arrays 
is scheduled for next year. Automation of more complex forms is planned but 
presumes a DBMS equivalent and will be installation-dependent.

Copies of the current working draft of the proposed standard in microfiche 
form (48x) are available to interested parties from the author.

ACKNOWLEDGMENTS

The author wishes to acknowledge the partial support of implementation by the 
Savannah River Laboratory —  Light Water Reactor Program and the personal efforts 
of C. Benkovitz, BNL; B. McNeely, ORNL; and R. Wiley, LASL, as well as the many 
contributions of the IWGDE members and X3L5 members to the concepts of the standard.

- 300 -



REFERENCES

Merril, Dean (ed.), Annual Report o{ the Inter-Laboratory Working Group {osi Vata 
Exchange., Lawrence Berkeley Laboratory. (IWGDE has representation for Argonne 
National Laboratory, Brookhaven National Laboratory, Los Alamos Scientific 
Laboratory, Lawrence Berkeley Laboratory, Lawrence Livermore Laboratory, Oak Ridge 
National Laboratory, Pacific Northwest Laboratory and Savannah River Laboratory).

Brooks, A. A. (ed.), Draft Proposed: American National Standard Specl{icatlons 
{or a Vata Vescnlptive Vile. {or In{ormatlon Interchange, ANSI-X3L5/646F,
September 26, 1977.

Martin, M. D., Re{erence Manual {or Machine. Readable Bibliographic Vescnlptlons, 
UNISIST SC.74/WS/20, UNESCO, Paris, 1974.

INIS: Magnetic Tape. Specl{ications and Record Format, IAEA-INIS-9 (Rev. 1); 
International Atomic Energy Agency, Vienna, 1971.

American National Standard {ok Bibliographic In{ormatlon Interchange, on Magnetic 
Tape., Z39.2-1971; ANSI, New York City, 1971.

UNIMARC - Universal MARC Format; International Federation of Library Associations 
and Institutes; London, 1977 (draft version).

AEC/T1C Magnetic Tape Format {or Bibliographic Citation* and Indexing, TID-4581-R2; 
Technical Information Center, Oak Ridge, Tennessee, 1974.

Vocumentation Format {or Bibliographic In{ormation Interchange, on Magnetic Tape,
ISO 2709-1973(E) ; International Organization for Standardization, Paris, 1973 
(available from ANSI).

American National Standard Code {or In{ormatlon Exchange, X3.4-1968; American 
National Standards Institute (ANSI), New York City, 1968.

American National Standard Code Extension* Techniques {or Uòe uiith a 7-Bit 
Coded Character Set o{ American National Standard Code {or In{ormation Exchange,
X3.41-1974; ANSI, New York City, 1974.

American National Standard* Representation o{ Numeric Values in Character String6 
{or In{ormatlon Interchange, X3.42-1975; ANSI, New York City, 1975.

Date, C. J., An Introduction to Vata Base System , Addison-Westley Publishing 
Company, Reading, Massachusetts, 1975.

American National Standard {or Magnetic Tape Labels and File Structure {or 
In{ormation Interchange, X3.27-1977; ANSI, New York City, 1977.



FUTURE DIRECTIONS IN GDMS DEVELOPMENT 
AND DATABASE CONVERSION

A. Shoshani 
Lawrence Berkeley Laboratory 

Berkeley, California

The development of Data Management techniques has progressed significantly over the 
last 10 - 15 years. The main reason to the advances in this area is the tremendous im
provement in hardware cost and performance. It became possible to store large amounts 
of data on random access devices (such as discs), and to afford the overhead of using 
generalized techniques in order to save special purpose software development costs. In 
turn, the easier and more efficient was the process of accessing and maintaining data, 
the more data was collected and relied on for daily operations. The current stage of 
this process is that more and more users who are not computer specialists need to use 
computers for their data management needs, and the amounts of data needed to be managed 
is getting larger and larger. It is with this picture in mind that future development is 
presented here. We will discuss Hardware Development trends for making data management a 
more efficient process, Software Development trends for making GDMSs more useful and easy 
to use by different types of users, Distributed Databases to allow the distribution of 
data over a computer network, and Database Conversion to provide software tools for 
moving data from one computer environment to another.

1. HARDWARE DEVELOPMENT TRENDS

The most significant impact expected to take place is as a result of storage hard
ware development. In addition, improvements in cost effectiveness of hardware logic will 
influence the Data Management areas. We will concentrate here on specialized machines 
for data management, on hardware for large databases, and on ’’Back-End Machines” which 
will perform data management functions exclusively.

1.1 Specialized Machines for Data Management
Data Management can be thought of to a large degree as the process of associating 

data. For example, a search for all records that satisfy a certain criteria (e.g.
SEX = MALE and SALARY < 20000) requires the association of the values in records with 
the values in the criteria. Using a general purpose serial machine is quite inefficient 
for this type of operation. Therefore indexing techniques, ’’hashing” techniques and the 
like have to be used. However, these techniques introduce more storage inefficiency and 
data management overhead.

It has been realized in the past that an ’’associative processor” would be more 
efficient for data management functions. In the example above the entire search could be 
done in one hardware (super) operation if we have all the data in an ’’associative mem
ory.” However, the cost of such an associative memory and processor are too high to be 
practical.

The introduction of conceptual models (discussed in more detail in Section 2 below), 
and especially the ’’relational” model served to emphasize the usefulness of a large scale

- 302 -



associative processor for data management. With the reduction in hardware costs there 
are several attempts of constructing such machines (e.g. [1,2,3]), by having specialized 
logic circuits associated directly with a large scale storage device (for example, add
ing this logic as part of read/write heads of disc units) . One can expect this kind of 
work to become cost effective in the future, thus having essentially very efficient 
special purpose machines for accessing and manipulating databases.

1.2 Hardware for Large Databases
9 10Large databases in the order of 10 -10 characters are now a reality. Data can be 

generated very fast, for example, in a scientific experiment or a large scale survey 
(e.g. census). The major problems are in storing them in a useful way. Devices such as 
tapes are not adequate for these situations, since one needs hundreds of tapes to hold 
this amount of data. In addition, the search of the data is very slow and expensive.

There are a few so-called ’’mass storage devices” in existence today that can store 
and access large amounts of data. However, they did not proliferate mainly because of 
high cost. These devices rely on some mechanical mechanism to get the data. Some ex
amples are: the IBM 1360 photo-digital storage system, the IBM 3850 cartridge tape de
vice or the CALCOMP automatic tape library. Some of the devices require long mainten
ance procedures and some are too slow for many applications. It is still the case that 
large databases are managed inefficiently using large discs or tapes. The management 
overhead is large, because the system needs to decide what parts of the database should 
be kept at what level of storage devices, and manage swapping large amounts of data 
between primary and secondary storage devices.

However, there is some hope that in the future reliable cost-effective mass storage 
devices would become a reality. Devices such as the video disk, bubble memories, and 
electron-beam access method (EBAM), show much promise of success. It is conceivable that 
dedicated mini-computers will be connected to these devices for the purpose of data man
agement and data transfer.

1.3 Back-End Machines

Large scale scientific computers (e.g. CDC 7600) are not designed to perform ef
ficiently data management functions (their capabilities are wasted while waiting for I/O 
operations. Therefore the idea of using a dedicated Mback-endM machine to perform data 
management functions has been pursued, while complex analysis of the data (e.g. 
statistical analysis) after the data are retrieved is done at the main machine. In 
addition, as the number of data management applications grow, it seems more justified to 
have such a dedicated back-end machine to perform data management functions. With the 
current technology and the size of databases growing, it seems more and more attractive 
to have an I/O-oriented mini-computer configuration as the back-end machine. Of course, 
when Data Management machines (discussed in 1.1) become a reality they could serve as 
the back-end machine.

Back-end machines require the design of software for operating system, data 
management and communication functions that will operate efficiently in this special
ized environment. Computer networking, process-to-process communication and data 
management techniques have advanced over the last several years to such a degree, that 
there is little doubt that efficient cost effective back-end machines can be designed.

2. SOFTWARE DEVELOPMENT TRENDS

Much of the work over the last few years in the data management field has concen
trated on developing techniques that will make GDMSs more user oriented. The concept of 
"data independence” was introduced to emphasize that users do not need to be exposed to 
the details of physical organization of a database, but only to the logical relationships 
between data elements. Similarly, the ability to provide the user with a ”non-procediral"

- 503 -



query language is considered advantageous to a user. Roughly speaking a non-procedural 
language gives the user the capabilities to describe what he wants to retrieve (search) 
or modify without the need to specify how the system is to get the data. Attention to 
proper user interfaces is coming about because more and more people who are not computer 
specialists need to use data, and they need a functional view of data management that is 
simple and easy to learn. This can be compared to driving an automatic car, where the 
burden of shifting gears is left to some automatic device that is part of the machine.
The following discussion of data management software development is motivated by the need 
for user oriented software.

2.1 Conceptual Views and User Views

The conceptual view of a database is a model that describes the logical relation
ships of data elements in the database. A conceptual view usually starts with the en
tities which describe the data, then the attributes of these entities and then the re
lationships (associations) between these entities. Entities are characterized by an 
independent existence while attributes and relationships do not. Quite often, it is hard 
to draw the distinction between entities and attributes, because they reflect the way in 
which the database is intended to be used.

Different conceptual models that have been developed over the last few years (e.g. 
relational [4], entity-relationship [5], entity set [6]) emphasize different aspects of 
logical structures, but they all share the characteristic of being independent of physi
cal database organization. Systems based on these models are still experimental, and 
commercial GDMSs (including COSASYL-based systems [7]) reflect in varying degrees a 
dependency of the logical model on the physical organization. Usually, this is done in 
order to provide more control to the user, so that he can write programs that process the 
data efficiently. At the same time it places the burden on him to write complex and de
tailed commands for effecting the retrieval or manipulation of the data.

The trend today is clearly oriented in the diretion of alleviating the user from 
knowing and controlling the details of "navigating” through the database. Instead, soft
ware development is progressing with the goal of performing optimal searches automati
cally, based on the analysis of the query and knowledge of the physical structures. To 
perform this process properly the system must also maintain statistical information about 
the data. All this adds to overhead costs that introduce some inefficiency. However, 
this cost may be worthwhile when considering the much simplified task of the user.

In addition to freeing the user from the need to know about details of the physical 
organization of the data, there is a possibility of providing him with tools to define 
his own view of the database. The user view may not coincide with the conceptual model, 
or include only a subset of it. Such techniques are only in their infancy, the diffi
culty being the need to map from user views to conceptual views dynamically. We can 
expect the ability to define user views to be a standard part of future GDMSs.

One of the data models that was most influential in the trend discussed above is 
the "relational” data model. This model introduced by Codd [4] (many additional refer
ences can be found in the March 1976 issue of Computing Surveys, Volume 8, Number 7), is 
based on representing data into ’'relations" which are essentially tables or matrices.
The columns of the tables represent data elements of fields and rows represent specific 
instances for all fields. For example a relation called "employee" could have columns 
called "name", "salary", "age", and "department." A row representing a certain employee 
could contain for example "Jack Jones, 15000, 37, Research" corresponding to his name, 
salary, age and department. This example represents no more than a "flat file." However, 
in the relational model the user can use a language to relate any two relations for the 
purpose of query or modification of the data. For example if there was another relation 
on departments having columns containing "name" and "manager," then one would ask about 
all employees that earn more than 15000 and work for a certain manager, by writing an 
appropriate command linking the two relations. In this model, the user does not need 
to be aware of the physical structure implementing the relations and can access the data

-  304 -



involving any number of relations. This model is attractive because of its simplicity 
and the ability to perform complex associations using a powerful query and modification 
language. Other models are also based on the "independence" from physical implementa
tion, but emphasize different aspects of the semantics (meaning) of the database.

2.2 Multiple User Interfaces

Experience with data models indicates that different users prefer to use different 
conceptual models for the same database depending on the application needs they have. 
Some databases can be modeled, for example, quite naturally as hierarchies while others 
require richer models, such as the relational model. However, trying to represent a 
hierarchical database as a set of relations can introduce redundancy of data. At the 
same time trying to represent a relational database as a hierarchy may prohibit some 
relationships and introduce other unnatural relationships.

To accomodate multiple models for users one needs an underlying conceptual model 
that is rich enough to accomodate the different models. This in itself is not a dif
ficult task. The difficulty is in transforming dynamically queries based on one model 
structure to queries in the conceptual model without introducing inefficiencies and 
inconsistencies. Research is still in progress in this area, and we can expect to have 
an efficient solution in the future.

2.3 Interfaces to Other Software Packages

With current GDMSs, after a user retrieves the data, he often needs to go 
through extensive reformatting process in order to input it to another program, such 
as a graphics package or a statistical package. This process is often difficult and 
cumbersome.

We should expect that in the future GDMSs will be able to interface directly to 
other software packages, thus alleviating the user from the task of reformatting and 
initiating these packages. Some activities defining and adopting standard forms for 
data streams are already taking place (for example [8]).

2.4 Flexibility of Physical Organization

Another area that should improve with future systems, is the flexibility to have 
a large spectrum of physical organizations available in a GDMS. Furthermore, it should 
be possible to change the physical organization without affecting the application 
programs. In current systems the number of possible choices of physical structures is 
rather limited and non-flexible.

In future systems physical organization of data will clearly be affected by 
hardware advances, but no matter how much the cost-effectiveness improves, there will 
always be a need for organizing and managing database as they grow in size. The 
ultimate solution will be the development of techniques for reorganizing the physical 
structure of a database automatically as the use of the database changes in time.

3. DISTRIBUTED DATABASE SYSTEMS

Recent advancements in computer networking technology bring about the potential of 
using computer systems in new cooperative ways. One of the most exciting and promising 
areas is that of distributed data bases. There are many reasons for the need to have 
data distributed, but the most prevalent is the organization of data according to their 
functionality, thus allowing for local applications to be performed efficiently, while 
still permitting global operationg to take place. For example, consider several hos

- 305 -



pitals being put on a computer network. Most of the processing needed will be done 
locally for every hospital, but some global operations, such as statistics, summaries, or 
search for an appropriate donor, could be performed over the network involving several or 
all of the hospitals. Similar situations and applications can be imagined in enterprises 
such as banking, inventory management, libraries, and research facilities. Another need 
for distributed data might arise when very large databases exist. In that case, data can 
be distributed over several facilities for the purpose of parallel access to the data.

Distributed databases impose several problems that are beyond the technology of 
computer network communication. In order to achieve distributed database systems, it is 
necessary to smooth out the differences between the (possibly) disparate data management 
systems (DMSs) that manipulate data on the network. It is also necessary to interface 
these systems in such a way that a user will be unaware of the fact that he is dealing 
with different systems across a network. Finally, when a user deals with data that is 
physically distributed over several systems, he should be able to think and refer to it 
as a single database.

Some of the properties that are desired in distributed database systems are dis
cussed below.

a. Allow different DMSs to exist on the network. Different DMSs exist, because 
they offer different cost effective features suitable for certain applications. 
For example, a system designed for fast retrieval requires index mechanisms 
which tend to slow down updating.

b. Allow data existing on different systems to be shared. Mechanisms for cor
relating existing databases are necessary if databases need to be physically 
distributed.

c. Allow evolutionary integration of the DMSs. When a new DMS is added to the 
network or replaces an existing DMS, it should cause a minimum of disruption 
to the network.

d. Fail-soft properties. A distributed database system should allow for a 
degraded service in case of a local failure.

e. The additional cost for achieving distributed database systems in terms of 
response-time and implementation should be small relative to the cost of 
database management and insignificant relative to the benefits achieved.

There are several problems that need to be solved before distributed databases can 
be used effectively. The most important ones are concurrency, integrity and distributed 
control. Concurrency is the problem of permitting multiple users to access and modify a 
distributed database, without interfering with the consistency of each other’s results. 
Integrity is the problem of maintaining a valid content of the distributed database in 
view of the non-synchronous nature of computer network communication. Distributed 
control is the problem of devising algorithms that do not require control and director
ies for the access of distributed databases to be located in one central location. 
Centralization of control is not desirable because of traffic jams and reliability in 
the case that the central node fails. Extensive research is already taking place in 
these areas, and we should expect solutions to these problems to prevail in the future.

4. DATABASE CONVERSION

Although it has been recognized that generalized database conversion tools are 
quite useful, the development and proliferation of such tools have not taken place at a 
large scale. There are only a handful of limited attempts in the industry, and a few 
more ambitious projects at universities and research institutions (for example [9,10]).

I

- 306 -



Conversion tools are necessary for any enterprise dealing with data. The ability 
to reorganize a database easily after its creation and to introduce dynamic improvements 
are as critical as the initial decisions in the database structure. It is unrealistic to 
expect in most cases, that the initial specification of a database would always be cor
rect, or that the use of the database would not change in time. It is also naive to 
assume that once a data management system is selected (hardware and software) there
will not be a need to move databases to other systems because of technological advances 
or new application needs. The lack of conversion tools is stifling to an enterprise 
because its databases stay fixed and stagnant. Distributed databases also require con
version tools. In order to facilitate distributed databases, it might be necessary to 
transfer databases from one application environment to another across computer network 
nodes. In addition, if a dynamic distributed data management is to exist, it is neces
sary that data organized by existing application systems can be converted and transferred 
into new more advanced systems. These are some of the reasons for the search of general
ized tools for database conversion and transfer.

A database conversion process can be thought of as taking place in stages. First, 
the source data needs to be read from its physical environment into a data stream (called 
the "unload" process), then the data stream is reformatted into a standard form, then a 
restructuring process (where a logical reorganization of the database) takes place 
because of changes required in the logical view of the data or a change in conceptual 
models from the source to the target system. The result of the restructuring process is 
a standard form and then the process reverses itself. Reformatting takes place into a 
data stream acceptable by the target "load" process, followed by the load process itself 
to generate the target physical structure.

The strategy for future development should include a consideration for ease of use 
of conversion tools, and the modularity of these tools. The best hope in having usable 
conversion tools is by simplifying the conversion process to the point that a non-data
base expert can use it. For this reason there is a need for unload and load tools that 
eliminate the need to have knowledge of physical organization of databases. This can be 
achieved by designing future GDMSs to include them as standard facilities. Similarly, 
the reformatting process should be made transparent as a result of using a standard form. 
The entire conversion process should be stated only in logical data structure terms. The 
methodology for the restructurer should allow for logical database descriptions in dis
similar models for the source and the target. In this way each description will be as 
close as necessary to the DMS it is associated with, and efficient restructuring could be 
performed minimizing the overhead. Also, error detection facility and automatic conver
sion checks should be provided by the system.

Over the last several years, the state-of-the-art have advanced enough to give hope 
for generalized tools. Within the next five years we can expect more conversion systems 
to become operational, but they would not be completely generalized. We can expect to 
have a standard form developed and agreed upon. It will probably take longer before 
manufacturers will see the benefit of adopting a standard form and provide load and 
unload facilities using it. However, we can expect them to provide some conversion tools 
to convert databases from other systems to their own. It will probably take as much as 
ten years before a generalized converter would be available commercially, and manufac- 
tuers adhering to a standard form. Another area of concern is the application program 
conversion that is required as a result of database conversion. This is a difficult 
technical problem even within one data model, and still requires much research. It is 
hard to expect that a generalized solution for this problem will be achieved within the 
next five years.

- 307 -



REFERENCES

1. Ozkarahan, E. A., Schuster, S. A., and Smith, K. C., MRAP - An Associative Proces
sor for Data Base Management,” Proceedings of the National Computer Conference, 
1975, pp. 370 - 387.

2. Su, Stanly Y. W. and Lipovski, G. J., "CASSM: A Cellular System for Very Large 
Data Bases," Proceedings of the International Conference on Very Large Data Bases, 
Farmingham, Massachusetts, September 1975, pp. 456 - 472.

3. Lin, C. S., Smith, D. P. C., and Smith, J. M., "The Design of Rotating Associative 
Memory for Relational Data Base Applications," ACM Transactions on Data Base 
Systems, Vol. 1, No. 1, November 1976, pp. 53 - 65.

4. Codd, E. F., "A Relational Model of Data for Large Shared Data Banks, " Communi
cations ACM 13, pp. 377 - 387, 1970.

5. Chen, P. P.-S., "The Entity-Relationship Model: Toward A Unified View of Data," 
ACM Transactions on Database Systems 1, pp. 9 - 36, 1976.

6. Senko, M. B. , Altman, E. B. , Astrahan, M. M. and Fehder, P. L., "Data Structures 
and Accessing in Data-Base Systems, " IBM Systems Journal 12, pp. 30 - 93, 1973.

7. CODASYL Data Base Task Group Report, April 1971, ACM, New York.

8. Brooks, A. A., "The Rationale of a Standard Interchange Format," in this report.

9. Birss, E. W., and Fry, J. P., "Generalized Software for Translating Data," 
Proceeding of the 1976 National Computer Conference, AFIPS press, Montvale,
New Jersey, 1976, pp. 889 - 899.

10. Shu, N. C. et al, "Express: A Data Extraction, Processing and Restructuring 
System," ACM Transactions on Database Systems 2, 2, June 1977.

- 308 -



E P I L O G U E  : THE COMPOSITION OF THE STUDY, AND ITS CONCLUSIONS

THE COMPOSITION OP THE STUDY
This study on the use of Generalized Data Management Systems 

has brought together thirty-seven participants from twenty-two organisa
tions, in its two meetings held in Europe and in the United States. The 
organizers put their best efforts towards recruiting a well-mixed group 
of scientific information specialists, scientists constrained by their 
work to maintain large data collections, data base systems specialists, 
and managers in the field of scientific information.

The relatively high proportion of computer-oriented participants 
reflects the novelty of the data base approach in scientific information 
work and in science itself : very few of the GDMS applications discussed 
were more than two years old, and many of the case studies discussed in 
Section III of the report refer to pilot developments and feasibility 
studies. Most scientific applications which are up and running are still 
too modest to test the real capacity of the data management systems which 
carry them.

Within these limitations, contributions cover a very wide range 
of topics in the general field of scientific information handling : 
numerical data compilations (whether carried out by data centres or 'data- 
handling scientists1), bibliographic indices and library administration.
The computer systems contributors are engaged both in GDMS systems develop
ment and as data base administrators. Two 'systems' papers cover a highly 
integrated approach to scientific calculations, so far limited to nuclear 
technology : the modular codes used for a very wide range of reactor cal
culations, each module accessing a common data store maintained by a 
purpose-built data base management system.
CONCLUSIONS

During the second meeting in Berkeley, the study group attempted 
to draw conclusions as to the value of the data management approach to 
scientific information. Generalized Data Management Systems were agreed 
to be useful for a wide range of scientific applications, and we could 
identify some criteria which would help users in deciding whether or not 
to take a data management approach to their own information handling 
problems.

- 309 -



Criteria for GDMS use
An integrated approach to data base construction, using GDMS 

software, is likely to be very worthwhile under one or more of these 
conditions :

- Where a data base needs to be shared between, and perhaps 
modified by, several users.

- Where reasonably complex logical interrelations between data 
exist and are to be made explicit, perhaps by linking several 
separate collections of data files.
For data bases in the size range from a few million characters 
to a few hundred million.
If user queries cannot be predicted when the data base is 
established, or may change with time.

- Where the organization does not have the manpower, time or 
expertise to develop a special-purpose system and to maintain 
it, or where a GDMS is already available within the organiza
tion.

- Where data users are not computer programmers and do not want 
to be drawn into programming.

The effect of data base size
For data bases somewhere below one million characters in size, 

and depending on the use made of the data, the demands made on a GDMS 
may be relatively trivial, so that home-made storage and retrieval pro
grams could give good results more cheaply. Where a GDMS is already 
available, and users are familiar with it, some of them prefer to use it 
for even the simplest application, since in this way they can use the 
full range of GDMS facilities without the trouble and expense of writing 
the underlying data handling programs.

The advantages of current GDMS are most apparent for data bases 
between a few million characters and a few hundred million. In the ’grey 
area1 beginning around 3 x 10^ and extending up beyond 109 characters, 
storage costs on disc or other high-speed memory devices become appreci
able, and the performance of systems in which external memory is reached 
through the operating system’s file manager may no longer be adequate.

For very large data bases, a few billion characters or more, 
a dedicated computer and corresponding investment in special-purpose 
software is likely to be necessary, and justifiable by the cost of acqui
ring the data. A data base of this size probably contains 'raw' data 
from interrelated experimental measurements, and the flexible, high-level 
user view which GDMS are aiming for is surely essential if such masses of 
data are to be adequately assimilated. While very large semi-fast storage 
devices have been developed, correspondingly efficient access software is 
not yet available, and data management systems must be able to work effi
ciently under the constraint that most of the data will at any given time 
be 'backed off1 from fast memory on to slower devices (currently tapes).

- 310 -



Choosing data management software
The meeting agreed that it was fruitless to propose any water

tight definition of a GDMS, although the management of logical structure 
within the data base, providing user access through a high-level access 
language, seemed promising as a test differentiating GDMS from file 
managers and information retrieval systems. Many potential users are 
not interested to know whether or not a given system is a GDMS : what 
they want is software which works for them.

However, in discussing systems requirements, the point was re- 
repeatedly made that the data base and its management software must be 
open-ended to permit developments not foreseen when the project was first 
planned. It is not certain that money will be saved by using a GDMS 
rather than writing special-purpose programs, but users will gain flexi
bility and so be able to use data in the long term better than they other
wise could. Project managers would be wise to choose data management 
software offering more flexibility than they think they are likely to 
need.

It is in this light that readers may find it useful to study 
the papers in Section II about scientific GDMS, and requirements for 
scientific data handling : there is a surprising degree of overlap between 
these independent analyses, and readers may discover that they want some 
of these features too. Chapter 2 gives a list of data handling software, 
which is necessarily incomplete, but covers a range of packages from full 
GDMS to proprietary file management systems, information retrieval systems 
designed primarily for text searching, and report generators. It offers 
a possible starting point in deciding which packages to review for a spe
cific scientific data or information project.

Very large or very small data bases may be better served with 
special-purpose programs. For smaller data bases, Chapter 4- presents an 
approach using one particular very high level programming language, APL. 
The author makes the point that an apparently complex collection of data 
may often in practice be resolved into a number of smaller, simpler and 
nearly independent data bases which may be administered more cheaply 
using special-purpose programs. Well-written structured programs in a 
high-level language should then be easy to extend as the need arises. In 
his view, the need for data protection (security and integrity in shared 
data bases, for example) as provided by many GDMS is as important as logi
cal complexity in deciding whether or not to use a GDMS package.
Limitations of currently available GDMS

Although a fair proportion of the requirements for scientific 
GDMS presented in Section II are not filled by the systems presently 
available to the public, it seems clear that for a given scientific data 
project one or more systems can bebfound which will do most of what its 
programmers want, and so help towards their goal of a satisfactory overall 
system. Three very prominent limitations are :

It is not yet possible to offer a fully general representation 
of data structures without sacrificing performance. Most 
commercially available systems offer a more limited data 
model, which may force the user to adapt his applications to 
the constraints of the system.
In particular, commercially available systems do not support 
some of the structures inherent to scientific data, such as 
vectors and arrays. Most such systems do not recognize

- 311 -



numerical data types such as floating point : these data are 
treated as characters and must be interpreted outside the GDMS. 
It would also seem natural to store data tables and text strings 
in variable length records at appropriate points in the logical 
structure of the data base. This approach would for scientific 
data give rise to extreme variations in record length, over one 
or two orders of magnitude, and cannot easily be implemented in 
current systems.
Systems presently on the market do not provide full data restruc
turing facilities. Fundamental restructuring of a data base 
whose use has changed may be expensive both in programmer time 
and computer running time.

The cost of using GDMS
Chapter III develops a methodology for identifying the costs of 

mounting a GDMS application, and compares these with the cost of special- 
purpose software in one particular project. One can conclude in general 
that where GDMS installation is charged to the project, costs are brought 
forward in the project life-span as compared to special-purpose programs, 
but initial costs will be of the same order. However :

The second and subsequent applications using the GDMS will be 
cheaper (the GDMS costs are already written off).
Applications using GDMS will be more flexible, and so have a 
longer useful life.
The continuing maintenance costs will be lower using GDMS.
Besides initial purchase of the GDMS package, allowance must 

be made for training, maintenance charges for the GDMS, the cost of 
likely increases in disc storage required and on-line use of the computer, 
and the computer time used. The main benefits of GDMS lie in the better 
use that can be made of the data base and of computer personnel rather 
than in their longer-term financial advantage. Further study of GDM& 
costs and benefits relative to straightforward programming is needed, but 
is limited precisely because these applications are rarely comparable :
GDMS programmers will be tempted to use the system at full stretch, and 
do more with the data.
GDMS performance

This study turned up only very limited information about data 
base performance. Prospective users would surely like to compare running 
times of a particular application using GDMS or special-purpose programs, 
particularly for large data bases on small computers where poor perfor
mance could make GDMS impracticable. When users have eliminated data 
base design errors (later seen as ’obvious’), are there non-linear effects 
which will degrade performance as the data base is fully populated ? Most 
GDMS applications are new, with small data bases, rather than conversions 
of existing data files, so that comparisons are again difficult.

The NEA Neutron Data Compilation Centre (CCDN) is the GDMS 
user with the smallest computer in this group, an IBM 370/125 with 128 
Kbytes main memory, later to be replaced by a DEC PDP11/70. Tests on 
reasonably large sections of their projected data base (using IDMS, a 
CODASYL GDMS) suggest that, for a well-timed logical ’schema', retrieval 
performance will be comparable on the small IBM computer with that of 
current ISAM file-based programs. Data loading without the fast load utili
ty may absorb up to 60 hours running time for the whole 160 Mbyte data base,

- 312 -



but this is considered acceptable for a one-off operation tbat can be 
interrupted at will. A limited benchmark comparison suggests that over
all performance of IDMS functions, especially loading, will be faster 
on the PDP 11/70.

While these tentative conclusions can be extrapolated only with 
great caution to other data bases and other computers, CCDN experience 
suggests that the GDMS approach is viable even with very modest hardware.
Future development in GDMS

We hope that software producers will recognize the important 
place likely to be taken by GDMS in handling scientific information, 
and take into account in their systems design the requirements discussed 
in Section II. The spectrum of applications to be covered by the next 
generation of GDMS is so diverse that it seems unlikely that a single 
system can handle all of them well. A modular approach to GDMS may 
prove more satisfactory.

An important stumbling block in the use of GDMS by non-program- 
mers is the failure of current systems to achieve full data independence. 
Future development should concentrate on providing users with a logical 
model (data structures and manipulation language) independent of the 
physical representation of the data base. The continuing fall in hardware 
component costs may make it possible to absorb the performance overhead 
necessary to provide full data independence. People time, rather than 
computer time, will become the major cost factor in data processing, and 
future GDMS design should continue striving to save it.

- 313 -



APPENDIX

A SELECTION OP REFERENCES TO GDMS LITERATURE 

N. Tubbs, OECD Nuclear Energy Agency

This general reference list is intended to supplement the more 
specialised tests included with some of the papers in this report. 
Comprehensive bibliographies on Data Base Management are hard to find, 
perhaps because many of the introductory and GDMS overview publications 
come from small or little known publishers : the present list is delibe
rately short, and is limited to

- Review books and articles about GDMS, particularly intro
ductions to the subject.

- Comparisons between different GDMS.
- A limited selection of 'technical overview1 articles and 

documents, for only a few systems, and chosen on the basis 
of readability.
Prench and Germany references are included besides English, and 

there is even one in Japanese. We recognize that this list is still very 
incomplete. The notes about individual publications reflect only the 
author's personal opinion.

I. BOOKS and Monographs
1. The March 1976 issue of ACM Computing Surveys is devoted entirely 

to Data fease Management Systems, and gives a very good introduc
tory treatment. See 10 below if you read Prench.

2a. Data Base Management Systems L.J. Cohen
b. Systems descriptions of :

IMSAS TOTAL ADABAS SYSTEM 2000 IDMS
c. Data Base Systems : a practical reference I.R. Palmer
d. Monographs, No. 1 : "Access Mechanisms and Data Structure 

Support in DBMS11 R.lf. Curtice
gives a very clear presentation in sixty pages.
All published by QED Information Sciences

P.O. Box 181
141 Linden Street
Wellesley, Mass. 02181

- 314- -



3. Selection and. Acquisition of Data Base Management Systems
A Report of the CODASYL Systems Committee, March 1976
(ACM order dept. P.O. Box 121055 Church St. Station,
Hew York, NY 1024-9 #12)

A '"black "box' approach tells you all about what they do, and how 
to choose and "buy them, but not really what they are.

4. An Introduction to Data Base Systems 
C.J. Date, Addison-Wesley, 1975 
ISBN 0-201-14452-2
Textbook, introduces relational data base ideas and gives an exten
sive treatment of IMS. The treatment of CODASYL systems seemed 
less good to me.

5. Computer Data Base Organization 
J. Martin, Prentice-Hall, 1975

6. Organisation de données (Cours MIAG, première année)
Co Delobel, Grenoble 1975? in French

7* Infotech International State of the Art Reports
Infotech Internat. Ltd.
Nicholson House 
MAIDENHEAD SL6 1LD 
Berkshire (England)
- DATA BASE SYSTEMS (1975)
- ON-LINE DATA BASES (1977)

8. DATENBANKORGMISATION (in German)
H. Merten, Verlag Rudolf Mueller, Köln 1972 
ISBN 3-481-35496-7
The presentation is highly systematic. As it is an enunciation of 
design principles rather than a treatment of specific software it 
may be useful in spite of its age.

9. Gesellschaft für Mathematik u. Datenverarbeitung (GMD)
BONN, Federal Republic of Germany
Reports in German of the Institut für Informationssystemen
- Kurzbeschreibung von Information Storage und Retrieval Systemen
- Datenbanksysteme - Erfahrungsberichte

10. Guide Pratique des Bases de Données
Tricot (ed), 1976, in French. ISBN 2-901001-02-5
Editions d 'Informatique 
82 rue Lauriston 
75116 PARIS
Very complete and well written, probably one of the best books 
available on GDMS. A theoretical section covering logical struc
tures and their physical implementation is followed by information 
and user comments (including performance figures) on most systems 
on the French market. Good bibliography.

- 315 -



Tsichritzis and Lochovsky, Academic Press 1977 
ISBN 0-12-701740-2
Clear and pleasant presentation, leading in to GDMS from the 
general context of data handling and the need for multiple views 
of data, via general data models and particular implementations. 
Chapters on IMS, S2K, IDMS, TOTAL and ADABAS. Many worked 
examples and reader exercises.

II. Reports, articles, etc. (introductions to GDHS or systems
comparisons) '

10 Six Data Base Management Systems : Feature analysis and user 
experiences.
UBS Technical Note 887
This and many other U.S. Govt, publications can be bought from :

National Technical Information Service 
U.S. Dept, of Commerce 
5285 Port Royal Road 
Springfield, VA 22161

2. Joho Shori (Information Processing Society of Japan)
Vol. 17, No. 10, October 1976 is a special issue on GDMS 
in Japanese

3. Data Base Management : What's it all about ?
A very good general introduction.
DEC Internal Report DEC-00-XDBMA-A-D

4. Datapro A buyer1s guide to DBMS
70E-010-61a Software 

and Datapro reports : 70E-491-01 IMS
DL/1 DOSAS 

70E-132-01 TOTAL 
70E-757-01 ADABAS

Data Research Corp. 70E-762-01 Sys 2K
1805 Underwood Blvd. 70E-282-02 IDMS
Delran, NJ 08075
The feature comparison in these reports might be of little use 
to readers who do not yet understand DBMS.

5. User ratings of software packages Datamation
Articles published in December of 1975 and 1976 include ratings 
of GDMS.

6. EDP Analyzer February 1974, Vol. 12 No. 2 
The Current Status of Data Management

7 . Elements of Data Management Systems
G,G. Dodd, ACM Computing Surveys Vol. 1, No. 2, June 1969
This pre-GDMS article gives a very good exposition of the basic 
physical file access methods underlying GDMS. The high-level 
features of the various GDMS are sometimes more, but usually 
less, transparent implementations of these storage strategies.

1 1 . Data Base Management Systems

- 316 -



8. Eigenschaften von Dateribanksys temen - ein Vergleich
M. Plesch, J. Griese : Angewandte Informatik 11, 489 (1972)
The characteristics of a number of GDMS, and the data structures
which may be represented, are reviewed. The explanation of data
structures is clear, but clearly the systems have evolved since 
the article was written. In German.

9. Performance Assessment of Data Management Systems
A SCICON (London, U.K.) report on a series of performance predic
tion program packages, currently available for IDMS (in IBM and 
ICL versions) and planned for TOTAL, ADABAS and DMS 1100.

10: Presentation et Analyse de SGBD commercialises en France
Bazillon and Benci, 1975? in French
IRIA, Domaine de Voluceau 
Rocquencourt
78150 Le Chesnay, France
Relatively superficial presentation of the characteristics of the 
main systems available in France. Most useful as a reference 
guide for readers already familiar with GDMS structure.

III. GDMS Technical Overview Documentation
Many such publications are glossy and uninformative, or less glossy 
and still hard to understand unless you already know the system. 
Fuller documentation is of course available from software vendors, 
and juxtaposed or comparative introductions to some better-known 
systems can be found in several of the publications listed in 
Sections I and II. The limited list below references some presenta
tions which may help the reader form a clearer view in his own mind 
of how a given system works.
1. System 2000 General Information Manual (MRI Systems Corp.)

Concepts et Possibilités (CAP-SOGETI, in French),
Reference manuals are supplied by Cincom Systems 
for TOTAL as implemented on a nimber of different 
computers. The introductory section is very clearly 
written : like TOTAL itself, the manual is relative
ly.compact. A brief systems summary nThe TOTAL Data 
Base Management System" is available in French from 
their Paris office.
Concepts and Facilities manual, available from 
Cullinane Corp., Wellesley, Mass. Clear and with 
abundant diagrams and worked examples on data base 
structure ; from a simple start it goes quite deeply 
into system working and data base design. Valuable 
to anyone interested in CODASYL systems. A short 
overview is available in French from SEMA Infor
matique.
See the books by Date (Part I, 4) or Tsichritzis 
(Part I, 11) or attend a one-day IBM course on IMS. 
See also IBM Systems Journal.

2. TOTAL

3. IDMS

4. IMS

-  317 -



5. ADABAS See the chapter on ADABAS in Tsichritzis (Part 1,11) 
or contact Software AG., Darmstadt, Germany.

These five systems are also covered by QED Information Sciences 
systems descriptions (Part I, 2h and 2d).

Relational Systems
6. INGRES A good overall description of this relational GDMS

is given in "The Design and Implementation of INGRES" 
(Stonebraker et al). ACM Trans, on DB Systems Yol.1, 
p. 189 (1976)* Also issued as U. California,
Berkeley, ERL-M577.

7* System R IBM's major relational DB project. See, for example, 
"System R : a Relational Approach to DB Management". 
(Astrakan et al, ACM Trans, on DB Systems, June 1976) <

Scientific Data Management Systems
8. BASIS Capabilities Description is available from Battelle 

Columbus Laboratories. Clearly written and compre
hensive.

9. BDMS

10. ORCHIS

Berkeley Data-Base Management System Users Manual 
(LBL-4-683 and later versions). See the paper in this 
report.
Oak Ridge Computerized Hierarchical Information 
System. See for example ORNL-4-929 (July 1973)-

11. Master Control
The introduction to the Users' 
system gives an overview.

Manual of this LLL

12. OMNIDATA A users' manual will be issued as NBS Handbook 123 
by the Office of Standard Reference Data.

COSMOS (UKAEA), JOSHUA (Savannah River Laboratory) and RSYST (Univer
sity of Stuttgart) are examples of modular systems for nuclear reactors 
calculations, with more or less generalized facilities for handling 
structured data incorporated as part of the system. See for example 
the report on JOSHUA (DP-1380, April 1975) and the papers on COSMOS 
and JOSHUA in this report.

- 318 -



PART V 

FRENCH TRANSLATIONS

PARTIE V 

TRADUCTIONS FRANÇAISES





INTRODUCTION GENERALE

Ce rapport vise tant les scientifiques, tels physiciens, chimistes, 
biologistes, etc., que le personnel administratif. Il devrait stimuler 
une prise de conscience parmi les scientifiques de toutes disciplines, en 
ce qui concerne l’utilisation des Systèmes de Gestion de Bases de Données 
(SGBD) pour le stockage, la manipulation et les recherches de leurs données 
collectees qui doivent souvent être partagées. Le rapport devrait égale
ment intéresser les fonctionnaires et programmeurs qui seront appeles à 
prendre des décisions sur la gestion de données scientifiques (numériques 
ou non). De plus, le rapport a pour objet d'identifier les caractéris
tiques spécifiques que devrait posséder un SGBD pour supporter les données 
scientifiques, notamment la gamme de représentations et de fonctions spé
ciales pour manipulation de données.

Nous espérons que la présentation du rapport sera utile pour ceux 
qui n'ont pas de connaissance préalable sur les SGBD. Un traitement des 
conceptes de base et de la terminologie SGBD, est suivi par une discussion 
des besoins en systèmes SGBD pour les données scientifiques, illustrée par 
des études de cas. Le lecteur qui a déjà de l'expérience en SGBD pourra 
bénéficier des conseils sur les systèmes, ainsi que des fonctions SGBD 
utiles pour la manipulation des données scientifiques. En particulier, ce 
rapport s'efforce :

a. d'exposer clairement ce que sont les SGBD, dans quel cas ils 
peuvent être utiles et quel est le matériel informatique 
nécessaire ;

b. de présenter une liste des performances nécessaires des 
systèmes généralisés de gestion de bases de données devant 
servir à la manipulation des données scientifiques. Un tel 
inventaire, présente à un moment où l'on investit un effort 
considérable dans le perfectionnement du logiciel SGBD ̂ 
pourrait influencer les spécifications de cette troisième 
génération de systèmes de gestion des données ;

c. de comparer les SGBD avec d'autres possibilités, telles que 
les logiciels élaborés sur place, l'APL et les systèmes de 
gestion de fichiers ;

d. de montrer par des études de cas d'une grande diversité 
d'applications actuelles ou possibles de SGBD à des données 
scientifiques (dans différents domaines, au caractère plus 
ou moins numérique) ce qui est impliqué lors de l'utilisa
tion des SGBD et quels avantages peuvent en résulter ;

e. de suivre l'orientation des travaux de perfectionnement des 
SGBD : systèmes de base de données relationnels, traitement 
des donnees distribuées et conversion de bases de données.

- 321 -



En tant ^ue système, un SGBD offre certains outils logiques 
d'application générale, permettant de structurer une base de donnees, de 
charger les données et de les modifier, et d'organiser la base de données 
de façon à favoriser des recherches efficaces, avec mise en page des 
données. Un Système de gestion de données dit "généralisé" comporte un 
langage oriente vers l'utilisateur pour la commande des différentes fonc
tions, permettant ainsi de définir une quelconque nouvelle base de données 
et sa structure interne^ de retrouver et de modifier les données sans 
qu'il y ait besoin de développer un logiciel (programmes) propre à chaque 
nouvelle base de données. D'un récent examen des SGBD nous citons les 
fonctions principales de ces systèmes

o Faciliter l'accès par une communauté hétérogène d'utilisa
teurs à une collection intégrée de données ;

. Maintenir la qualité et l'intégrité des données ;

. Garantir la confidentialité par des mesures de sécurité 
prises à l'intérieur même du système

• Permettre un contrôle centralisé de la base, condition néces
saire d'une gestion efficaces des données.

Du point de vue de l'utilisateur, le SGBD devra offrir :
. Une indépendance réciproque données-logiciel (ainsi il ne 
sera pas nécessaire de modifier les programmes d'application 
lors d'un changement de données ou de leur structure)

. Les langages et autres programmes utilitaires nécessaires à 
l'exécution de toute la gamme des fonctions de gestion de 
données : définition des structures logiques, chargement et 
mise à jour des données, recherche de données d'après des 
critères définis, sortie des données avec mise en page.
Suivant le mode d'opération et les besoins de l'application, 
ces fonctions s'exécuteront soit en ligne, soit en traitement 
par lots.

. Répresentation interne et accès explicits tant des données 
numériques que de celles en format "caractères".

Ces points seront discutés plus en détail dans la première partie du 
rapport.

L'utilisation d'un SGBD peut apporter de nombreux avantages, 
mais pour beaucoup de scientifiques et autres utilisateurs non spécia
lisés en informatique (et qui n'ont pas le temps de se recycler en pro
grammation) l'avantage principal est sa disponibilité immédiate. Si 
leurs besoins en manipulation de données sont relativement simples^ ceux- 
ci peuvent éventuellement être satisfaits sans programmation supplémen
taire en exploitant les possibilités du langage dfinterrogation/utilitaire 
d'édition (Report Writerj d'un SGBD bien choisi. L'utilisateur ayant 
des applications SGBD plus compliquées pourra écrire ses programmes 
d'applications en un "langage-hôte" à haut niveau (tel FORTRAN ou COBOL) 
pour les relier à la base de données par des commandes spéciales, employ
ant le Langage de Manipulation de Données du SGBD et intégrées dans les 
programmes d'application. Ainsi l'effort de programmation disponible 
peut être dirige vers la solution de ses problèmes propres.

Le logiciel SGBD permettant nécessairement une mise en oeuvre 
très générale, son utilisation dans une application donnée peut donner

- 322 -



des performances moindres, comparées à un programme écrit dans ce but 
précis. En général, cette perte de performances est largement compensée 
par des économies de temps et de coût dans le développement du logiciel, 
par la disponibilité des données pour de nombreuses applications, et par^ 
les protections intégrité/sécurité des données, ainsi que par la facilité 
de la mise à jour et de la manipulation des données. Comme 19 accès en 
temps partagé aux ordinateurs â partir de différents terminaux, et comme 
l'utilisation de langages de programmation évolués à la place de l'assem
bleur, la gestion des bases de données est le dernier en date des compro
mis dans lesquels la commodité d'utilisation est augmentée, au prix d'une 
augmentation de la puissance du système requis. Les coûts de ce "sacri
fice" sont initialement élevés, mais le materiel et le logiciel ont histo
riquement évolué de telle façon que le prix de cette commodité s'est 
réduit.

Il semble évident que les données scientifiques peuvent avoir 
des caractéristiques différentes des données "commerciales", et le but 
de cette étude est d'explorer ces différences, et d'identifier les sys
tèmes ayant des caractéristiques bien adaptées à la manipulation des 
données scientifiques. Ainsi, les participants à l'étude ont été choisis 
tant dans la communauté scientifique que dans le domaine de l'informatique. 
Le rapport comprend en particulier des études de cas d'applications des 
SGBD aux données scientifiques.

Le rapport présente d'abord la gamme des solutions et techniques 
SGBD, et leur terminologie. Ce chapitre examine les SGBD au niveau fonc
tionnel, sans entrer dans le détail de leur fonctionnement interne. Le 
chapitre suivant passe en revue certaines caractéristiques des systèmes 
disponibles (pour la plupart commerciaux) et offre des bases de comparai
son. Dans la partie suivante sont discutés les besoins en capacités spé
ciales pour la manipulation des données scientifiques; plusieurs SGBD 
conçus spéciquement pour la manipulation des donnees scientifiques sont 
présentés. Les sections suivantes présentent un certain nombre d'applica
tions réussies des SGBD dans le domaine scientifique, ainsi que diverses 
applications potentielles actuellement en considération.. La dernière 
partie comporte une discussion des directions d'avenir dans le développe
ment des SGBD et autres logiciels accessoires, pour que le lecteur puisse 
prendre en considération leur conséquences possibles pour son environne
ment informatique. En conclusion (dans 1'"Epilogue") nous résumons les 
points de vue des participants sur les deux grandes questions de l'étude : 
quand utiliser un SGBD, et et quel résultat attendre de son utilisation.

REFERENCE
H7 James P. Fry and Edgar H. Sibley, "Evolution of Data-Base Management 

Systems," Computing Surveys, Toi. 8, No. 1, March. 1976, (le numéro 
entier est consacré à la gestion des Bases de Données)

- 323 -



INTRODUCTION AUX SYSTEMES DE BASES DE DONNEES GENERALISES

G, Moorhead, CERN, Genève 
N. Tubbs, OCDE/AEN, Paris

I. Q.UfEST-CE QU'UN SYSTEME DE BASES DE DONNEES ?
1• Traitement de données scientifiques par ordinateur

Les programmes scientifiques et d'ingénierie traitent des données 
provenant de diverses sources. Le processus dans lequel des données bru
tes produites dans des expériences sont améliorées en vue de leur utili
sation finale dans le domaine de la technologie, comprend typiquement 
trois phases. En premier lieu les données brutes sont saisies sur un 
équipement expérimental ; elles sont ensuite analysées par les expéri
mentateurs en vue de leur publication. Au cours de la phase finale, dite 
d f"évaluation”, les résultats expérimentaux sont examinés, comparés et 
regroupés en un ensemble de données final, recommandé, qui peut être uti
lisé en tant que données pour des calculs relatifs à de nombreuses appli
cations technologiques différentes ; on parle alors de données ’’évaluées”. 
Une application scientifique peut demander des données initiales dans 
l ’une quelconque de ces phases ; elles seront introduites à l'aide d'un 
ou plusieurs équipements de types variés. Ces données ont pu être ini
tialement perforées sur des cartes ou sur un ruban perforé, frappées au 
clavier d'un terminal conversationnel ou saisies directement sur une 
expérience et enregistrées sur bande magnétique. A une certaine étape, 
les données aboutissent dans les fichiers d'un ordinateur et un programme 
d'analyse lira ces fichiers pour fournir un ensemble de résultats présen
tés sous la forme d'histogrammes, de graphes, de valeurs calculées ou de 
simples tableaux imprimés.

Tous les grands ordinateurs disposent d'un -programme de gestion 
de fichiers qui fait partie de leur système d'exploitation et qui permet 
au programmeur de déclarer des fichiers logiques identifiés par un nom, 
et de spécifier sur quels dispositifs physiques de mémoire ils doivent 
résider. Le système organisera l'espace physique, y écrira des données 
ou les y lira lorsqu'un programme d'utilisateur le lui demandera. Un 
programme d'analyse typique sera rédigé en FORTRAN, et la disposition 
des données dans les fichiers sera précisée par les instructions FORMAT 
qui y figurent. Cette technique ne présente aucune difficulté lorsque 
les fichiers sont créés qu'une seule fois puis utilisés dans un seul 
programme, avec éventuellement de légères variantes.

Toutefois il se rencontre de nombreuses situations dans lesquelles 
plusieurs programmes différents doivent pouvoir accéder à des fichiers 
logiquement interreliés. La complexité sera plus grande encore si ces

- 324- -



fichiers sont fréquemment mis à  jour ; ils peuvent également faire 
l ’objet de modifications indépendantes par plusieurs utilisateurs auto
risés .

C'est dans de tels cas que la solution des systèmes de bases de 
données généralisés (SBDG-) peut être d ’une grande utilité, et il existe 
actuellement de nombreux exemples de son emploi fructueux dans des ap
plications scientifiques ou d ’ingénierie. Pour l ’essentiel, un SBDG- offre 
un langage évolué pour la description et la manipulation de données, qui 
constitue ainsi un complément par rapport aux langages de programmation 
tels que le FORTRAN (surtout conçu pour la réalisation des calculs), le 
COBOL ou le PL/1, et qui permet de maintenir une base de données intégrée 
et cohérente, en vue de son emploi dans de nombreuses applications dif
férentes .
2. Le rôle d ’un SBDG-

Un système de base de données généralisé se présente à l ’utili
sateur sous la forme d ’un interface logiciel entre les programmes d ’une 
part, et le système d ’exploitation et l ’équipement de mémoire externe 
d ’autre part, lors de tout accès à un ensemble de données intégré, soumis 
à un contrôle central et partagé par un certain nombre d ’utilisateurs.
Cet ensemble est appelé une base de données. Le système fournit des res
sources pour la définition de la structure physique de la base de données 
et des relations logiques internes, pour le chargement et la modification 
des données, pour la protection de la base de données contre une dété
rioration accidentelle ou des accès non autorisés, et pour une recherche 
de données efficace. Le bons systèmes à usage spécialisé peuvent offrir 
un grand nombre de ces ressources. Un système de base de données est 
’’généralisé” lorsqu’il fournit un langage de commande orienté utilisateur 
pour toutes ces différentes fonctions, qui est applicable à toute nouvelle 
base de données, indépendamment de son organisation interne ; il supprime 
donc la nécessité de rédiger de nouveaux programmes de manipulation de 
données pour chaque nouvelle base de données.

Lors de la lecture d ’un fichier par un programme d ’analyse clas
sique, on lit habituellement les divers ’’enregistrements” un à un ; un 
enregistrement est un ensemble d ’ ’’articles” contenant des informations 
logiquement associées telles que les mesures effectuées en un certain 
endroit et/ou à un certain instant, au cours d ’une recherche scientifi
que. En général, un fichier ne contient que des enregistrements d ’une 
même forme, qui peuvent, par exemple, être lus à l ’aide d ’instructions 
FORTRAN d ’un même type. Les fichiers qui seront intégrés dans une base 
de données peuvent présenter un nombre égal de différents types d ’enre
gistrements ; chacun d ’eux peut contenir à son tour des éléments de 
données ayant des caractéristiques formelles différentes (nombre entier, 
nombre en virgule flottante, données alphanumériques ...). Un SBDG- offre 
des ressources pour manipuler ces enregistrements et ces données soit 
individuellement, soit par groupes, en utilisant des ordres de manipula
tion de données ne dépendant que de la structure logique de la base de 
données. La répartition des enregistrements entre divers fichiers et la 
disposition réelle des enregistrements et des fichiers sur les disposi
tifs physiques de stockage sont pratiquement invisibles pour l ’utilisa
teur.

Il faut remarquer qu’un programme-produit fournissant la majeure 
partie des possibilités fondamentales d ’un SBLG- qui sont décrites ci- 
dessous peut être lui-même rédigé dans un langage plus évolué tel que le 
FORTRAN, en utilisant l ’interface standard pour la manipulation des

- 325 -



fichiers qui est contenu dans ce langage. En règle générale, le dévelop
pement d ’un tel programme-produit n !exige que quelques années-homme, 
mais ce programme peut comporter des insuffisances en matière de géné
ralité, fiabilité et efficacité.
II. LES POSSIBILITES OFFERTES PAR UN SBDG-
3. Indépendance des programmes des utilisateurs par rapport aux données

Un SBLG- permet à un utilisateur de faire référence et d ’extraire 
directement des articles isolés présents dans un enregistrement, en les 
désignant par leur nom, sans qu’il soit nécessaire de déclarer la struc
ture de 1 fenregistrement dans le programme de 1 futilisateur. La struc
ture de la base de données (structure des enregistrements, noms des ar
ticles contenant les données et relations liant les différents types 
d ’enregistrements) est déclarée indépendamment des programmes individuels, 
pour toutes les applications. Cette déclaration intervient dans une phase 
initiale appelée définition des données.

Lès qu’une base de données existe et qu’elle contient des données, 
un utilisateur particulier n ’a quTà se préoccuper des noms des articles 
qui 1 1 intéressent, et un programme d ’application référence seulement les 
articles dont il a besoin. Cette possibilité est loin d ’être négligeable, 
comme on peut le constater dans une application réelle d ’un SBLG- à la 
recherche océanographique, dans laquelle chaque enregistrement ne contient 
pas moins de 73 articles allant de la latitude et la longitude aux pour
centages des différents minéraux dans les échantillons qui ont été étu
diés (x). Naturellement, la même information aurait pu être divisée entre 
plusieurs fichiers qui se recouvrent et qui comprendraient des enregis
trements plus courts, mais une telle division impliquerait la nécessité 
d ’une gestion des relations entre les enregistrements correspondants 
rencontrés dans les différents fichiers, gestion qui devrait être réali
sée par programme et par inclusion d ’informations de chaînage. Cela 
constitue en soi une fonction très importante d ’un SBLG-.

Le fait que toute information explicite sur la structure physique 
et logique des données se trouve extraite des programmes des utilisateurs 
pour résider dans un "schéma” central, auquel on a accès par l ’intermé
diaire du SBLG-, confère à ces mêmes programmes un certain degré d ! "indé
pendance par rapport aux données". Lans ce rapport d !étude, d ’autres 
articles montreront que l ’indépendance par rapport aux données est loin 
d ’être complète dans la plupart des systèmes actuellement disponibles.
4. Possibilités de mise à jour

Le système de base de données offre des possibilités de mise à 
jour pour le stockage, la modification ou la suppression de données dans 
la base de données. Lorsque cette base est mise à jour, soit en y insérant 
des enregistrements totalement nouveaux soit en modifiant les valeurs des 
articles contenus dans les enregistrements, le système vérifie et conver
tit automatiquement les données conformément aux caractéristiques formel
les de l ’article, qui sont habituellement indiquées par l ’utilisateur 
lorsque cet article a été défini en vue de son inclusion dans le schéma 
de la base de données. Un article peut être du type nombre entier, donnée 
alphanumérique (par exemple un texte alphanumérique), date, nombre réel,

Note (x) Cette base de données est utilisée par le Centre National pour 
1 ’Exploitation des Océans (CNEXO), au Centre Océanographique de 
Bretagne, à Brest (France)

- 326 -



etc. A titre d fexemple de validation notons que "1A34M ne serait pas 
accepté à la place de 1234 comme valeur d fun article appelé LENG-TH 
(longueur) et décrit comme nombre entier. Certains systèmes permettent 
également à 1 ’utilisateur de spécifier une gamme ou un ensemble de va
leurs acceptables pour un certain article, ou même des conditions de 
validation encore plus générales.

La recherche rapide d ’articles contenant des données, en opérant 
soit à partir d ?un fichier classique, soit à partir d ’une base de données, 
exige habituellement que ces données soient stockées physiquement sur un 
dispositif de mémoire à accès aléatoire (actuellement des disques). Dans 
la programmation des opérations de mise à jour des données pour des fi
chiers à accès aléatoire, l ’un des problèmes les plus difficiles consiste 
à garantir la récupération d ’un fichier au cas où il se trouve détérioré 
au cours de la mise à jour, à la suite d ’une erreur de programme ou d ’une 
panne de l ’ordinateur. Dans un SBDG- permettant à plusieurs utilisateurs 
de travailler en parallèle lors de la mise à jour de la base de données, 
il est important que non seulement les erreurs dues à l ’un d ’eux puissent 
être corrigées, mais également que cette opération se réalise sans effacer 
pour autant le travail qui a été effectué entre temps par les autres uti
lisateurs. De nombreux SBDG- offrent des possibilités de récupération de 
la base de données à la suite d ’un incident affectant l ’un des fichiers 
qui la constituent ou de l ’inclusion de données non valides. Pour ce 
faire, on peut réaliser périodiquement des copies de la totalité de la 
base, complétées par 1 ’enregistrement de toutes les transactions de mise 
à j our.
5. Recherche de données

La fonction la plus importante d ’un SBDG- est de permettre la 
recherche de données selon certains critères. Sous sa forme la plus 
simple, cette recherche peut consister en l ’extraction, dans un programme 
d ’application, d ’un enregistrement isolé contenant des valeurs spécifiées 
dans des articles déterminés qui ont été déclarés comme articles-clé, par 
exemple l ’article PARTICLE=PROTON et l ’article PLAB=1260. Une variante 
de cette opération, qui reste facile à mettre en oeuvre, consiste à re
chercher tous les enregistrements correspondant à une gamme de valeurs 
des articles-clé, par exemple PARTICLE=PROTON et PLAB compris entre 
12000 et 13000 ; les divers enregistrements sont alors fournis au pro
gramme d ’application sur sa demande. Toutefois certains systèmes limitent 
à un le nombre des articles-clé possibles; il peut s ’agir alors simple
ment d ’un numéro d ’identification pour l ’enregistrement.

Il est facile de comprendre qu’un fichier puisse être organisé 
de telle sorte que la recherche des enregistrements, en utilisant des 
clés déclarées, soit efficace. En fait, des organisations de fichiers 
des types ’’séquentiel indexé” ou ’’accès aléatoire” sont prévues à cet 
effet dans la plupart des systèmes d ’exploitation. Toutefois 1 ’avantage 
d ’un SBDG- tient au fait que l ’utilisateur a simplement à indiquer quels 
sont ceux de ses articles identifiés par un nom, qui doivent être uti
lisés comme clés ; le SBDG- prend alors en charge un important volume 
d ’opérations de gestion afin de créer les fichiers et d ’organiser la 
mise à jour et la recherche.

De plus, un SBDG- offre la possibilité de poser facilement des 
questions d ’une nature qui a pu être envisagée ou non lors de la créa
tion de la base de données. Pour cela, l ’une des solutions évidentes, 
qui n ’est cependant pas la plus facile, consiste à passer en revue tous 
les enregistrements d ’un type donné, en examinant les valeurs de certains 
articles. Les articles demandés seraient obtenus en utilisant des ordres



CALL transmis au SBDG-, et les tests,, seraient effectués en employant les 
instructions IF du "langage hôte", tel que le FORTRAN, à partir duquel 
sont lancés les ordres CALL. La plupart des SBDG- permettent de créer 
des enregistrements de différents types pouvant être scrutés simulta
nément, ce qui permet un travail équivalent à une recherche sur plusieurs 
fichiers. Certains systèmes présentent une autre caractéristique appeléé 
recherche en format libre, consistant en un examen d fun texte alphanu
mérique caractère par caractère, en vue de repérer une sous-chaîne par
ticulière qu'il contient.

Les SBDG- les plus perfectionnés fournissent en plus un langage 
d 1 interrogation évolué permettant d'exprimer des critères de recherche 
de maniéré naturelle. Ce même langage peut être utilisé pour les mises 
à jour. Les conditions de recherche consistent habituellement en de 
simples prédicats dans lesquels des articles sont comparés à une cons
tante (par exemple : PARTICLE=PROTON) ou liés ensemble par des opérateurs 
logiques comme dans l'expression ci-après : (PARTICLE=PROTON OR PARTICLE= 
ANTIPROTON) AND PLAB GE 12000 AND PLAB LE 13000. En plus de la recherche 
d'enregistrements isolés, le SBDG- offre souvent des fonctions statisti
ques fondamentales telles que les moyennes, variances et analyses de 
régression ; il peut même présenter les résultats d'une recherche sous 
la forme d'histogrammes.

La confidentialité des données peut être assurée en limitant 
l'accès des utilisateurs à certains fichiers (ou types d'enregistrements) 
ou à un sous-ensemble logique de la base de données qui est appelé 
11 subschéma" dans certains SBDG. Le degré de discrimination entre les 
utilisateurs qui peut être imposé par ces "verrous de confidentialité" 
dépend du système ; plusieurs systèmes peuvent permettre à l'utilisateur 
d'accéder à des articles de données spécifiés, mais seulement dans un 
type donné d'enregistrement.

Quelquefois il est permis essentiellement à l'utilisateur de 
déclarer en premier lieu le type de questions qu'il pense poser fréquem
ment ; le système crée alors des "voies d'accès" en vue d'une recherche 
plus rapide, au détriment du temps de mise à jour et de l'espace néces
saire pour le stockage. Toutefois, la possibilité de poser des questions 
imprévues, sans avoir à rédiger et à tester un programme spécial, reste 
une des caractéristiques les plus agréables d'un SBDG.

Pour des applications commerciales il est très important de pou
voir présenter les données fournies par la recherche sous la forme de 
rapports mis en page et triés, avec titres et sous-titres, notes de bas 
de page, résumés, totaux partiels, etc. Le fait que dans un SBDG standard 
on puisse disposer de "report générâtors" (éditeurs) très élaborés, de 
tel ou tel type, peut être de peu d'intérêt dans la majorité des appli
cations scientifiques, mais ces programmes peuvent s'avérer extrêmement 
utiles lorsque des listes imprimées sont exigées. Malheureusement une 
sortie de résultats sous forme de graphiques qui est évidemment souhai
table pour des applications scientifiques n'est habituellement pas dis
ponible avec les éditeurs, mais il est clair qu'un langage hôte interfacé 
à la fois avec un SBDG et un programme-produit infographique offre cette 
possibilité au prix d'un certain codage supplémentaire.
6. Contrôle de la redondance entre les données

Une base de données regroupe sous forme plus ou moins intégrée 
les données qui autrement seraient dispersées sur un certain nombre de 
fichiers se recouvrant partiellement. Dans le cas des fichiers, leur

- 328 -



recouvrement logique se réalise par enregistrement des mêmes valeurs pour 
plusieurs articles de données dans deux ou plusieurs fichiers. A l ’inté
rieur de 1 ’ensemble des données considéré comme une entité définie, et 
stocké dans une base de données intégrée, on peut estimer que ces données 
répétées sont redondantes. L ’information structurelle exprimée dans les 
fichiers qui se recouvrent par la répétition des valeurs de certaines 
données peut maintenant être gérée par le SBDG- et apparaître sous la 
forme de pointeurs d ’adresse ou d ?indices croisés, transparents pour 
1 ’utilisateur.

L ’une des raisons d ’éviter l ’inclusion d ’une information redon
dante dans la base de données tient au gaspillage d ’espace de stockage 
qui en résulte. Une autre raison encore plus importante (du fait que de 
nombreuses bases de données occupent davantage d ’espace que les fichiers 
qu’elles remplacent) est que la redondance qui n ’est pas contrôlée par 
le SBDG- lui-même peut entraîner des erreurs qui détériorent gravement 
la base de données. Au niveau des articles de données, la redondance 
peut être réduite en limitant le nombre d ’occurrences des enregistrements 
d ’un article donné dans la base de données ; l ’information structurelle 
contenue dans le système qui lie les différents types d ’enregistrements 
se référant à l ’article en question remplacera la répétition de ce même 
article. Au niveau des articles, une autre méthode consiste à stocker 
seulement une fois tout long texte qui apparaît de nombreuses fois en 
tant que valeur d ’un article alphanumérique, ou tout ensemble de valeurs 
de différents articles qui sont toujours associées à une valeur parti
culière d ’un autre article, par exemple les propriétés d ’un composé chi
mique. Pour l ’utilisateur,' la caractéristique importante tient au fait 
qu’il n ’a besoin de conserver qu’en une seule place les données décri
vant complètement par exemple une particule ou un composé chimique qui 
est identifié ailleurs dans la base de données à l ’aide d ’un nom ou d ’un 
code court. Une réduction de la quantité des données stockées peut en
traîner une amélioration de la qualité.
III. STRUCTURES DES DONNEES

Les possibilités fondamentales offertes par la majorité des SBDG 
ont été maintenant passées en revue. Dans les descriptions des actuels 
SBDG- on insiste habituellement beaucoup sur le type de structure logique 
que l ’utilisateur est autorisé à employer pour stocker ses données. Dans 
la pratique courante cette structure logique est inextricablement liée 
à la structure physique ou aux méthodes d ’accès utilisées. Les structu
res logiques offertes par divers SBDG- peuvent être suffisamment diffé
rentes pour que leurs caractéristiques influencent le choix en faveur de 
tel système plutôt que de tel autre, pour une classe particulière 
d ’applications ; toutefois ces différences ne sont pas habituellement 
assez importantes pour qu’elles entraînent une invalidation générale de 
l ’emploi d ’un SBDG- donné.
7. Structure hiérarchique à l ’intérieur d ’un enregistrement individuel

La hiérarchie intra-enregistrement est un type courant de struc
ture logique dans laquelle les articles composant un enregistrement sont 
organisés suivant une structure hiérarchique ou arborescente. Elle peut 
se limiter à une arborescence à deux niveaux dans laquelle un article 
du premier niveau peut comprendre un nombre indéfini de sous-articles 
du second niveau, en étant en quelque sorte analogue à un vecteur. Plus 
généralement, certains systèmes prévoient une hiérarchie à plusieurs 
niveaux dans laquelle des sous-articles eux-mêmes peuvent être formés 
de plusieurs sous-articles, et ainsi de suite. Par exemple, une parti
cule isolée peut se désintégrer en plusieurs particules, et l ’une

- 329 -



quelconque d ’entre elles peut à son tour se désintégrer en d ’autres par
ticules, etc. Naturellement le système gère tous les pointeurs internes 
qui sont nécessaires pour mettre en oeuvre une telle hiérarchie et la 
recherche de l ’utilisateur à travers 1 ’arborescence s ’effectue selon 
une procédure adaptée à l ’application. Historiquement, des structures 
intra-enregistrement de ce type formaient la hase des premiers SBLG- car 
les enregistrements devaient être stockés dans un fichier séquentiel sur 
bande magnétique. La principale difficulté tenait au fait que le fichier 
devait être copié en totalité lorsque l ’on procédait à une mise à jour 
(ce qui était nécessaire de toute manière pour des fichiers sur bande 
magnétique), alors que la recherche elle-même pouvait également exiger 
la lecture de l ’ensemble du fichier.

Comme exemples de systèmes utilisant des hiérarchies intra- 
enregistrement on peut citer le système INEOL, déjà ancien ; mais qui 
reste en usage pour des applications scientifiques au CERN, et qui a 
été initialement rédigé par T.W. 011e vers 1965, ainsi que le système 
ORCHIS d ’Oak Ridge. La figure 1 présente une hiérarchie intra- 
enregistrement. Lans la liste figurant à la fin de ce rapport on trouvera 
des références aux divers systèmes discutés.
8. Hiérarchie des enregistrements

Lu fait que la diminution des coûts permettait de stocker de 
grandes bases de données sur des mémoires de masse, tels que les disques 
ou les tambours, présentant des caractéristiques d ’accès semi-aléatoire, 
la recherche à partir d ’une structure hiérarchique intra-enregistrement 
devint plus efficace car, à condition de savoir où regarder, la décou
verte d ’un enregistrement isolé n ’impliquait plus une recherche à travers 
la totalité du fichier. Il devint possible de permettre au SBLG- de mani
puler plusieurs fichiers constituant alors une base de données unique, 
et pour l ’utilisateur, le temps d ’accès à un article quelconque présent 
dans l ’un quelconque de ces fichiers s’exprima alors en millisecondes. 
L ’utilisation du stockage sur disque entraîna le développement de struc
tures plus puissantes tenant compte de plus en plus des exigences des 
utilisateurs plutôt que des contraintes de la machine.

Une structure hiérarchique étendue, telle que celle qui est mise 
en oeuvre dans le SYSTEM 2000 et qui est présentée sur la figure 2, peut 
être complétée par des fichiers inversés permettant un accès direct à 
des articles de données spécifiés, par l ’intermédiaire de l ’adresse sur 
le disque qui se trouve dans ces fichiers, au lieu d ’avoir à suivre 
l ’arborescence depuis le bas jusqu’au sommet. Lans la hiérarchie logique, 
les différents niveaux sont représentés par des ensembles d ’enregistre
ments distincts (appelés ”repeating groups”) au lieu de correspondre à 
des articles dans un seul enregistrement. Une telle structure hiérar
chique ne permet pas de chaînages directs entre des articles ou des en
registrements appartenant à des hiérarchies différentes.
9. Structures en réseau

Les structures logiques en réseau se basent sur la notion 
d ’f?ensembles” interconnectés, comprenant chacun un enregistrement 
principal (”owner record”) et un ou plusieurs enregistrements secon
daires T ”member records”). Un ensemble peut se présenter sous la forme 
d ’une liste circulaire chaînée, et la recherche peut s ’effectuer suivant 
une séquence logique en entrant au niveau de l ’enregistrement principal 
et en scrutant successivement les enregistrements secondaires jusqu’à ce 
que l ’enregistrement recherché soit identifié.

- 330 -



Un enregistrement donné peut être à la fois principal dans un 
ensemble et secondaire dans un autre, et dans ce cas il est possible de 
représenter directement une hiérarchie en utilisant seulement des ensem
bles, mais ils ne peuvent être à la fois principal et secondaire. Bien 
qu'un plus grand nombre de niveaux puissent être représentés indirecte
ment, la représentation directe se trouve ainsi limitée à une hiérarchie 
à deux niveaux. Des systèmes conformes aux spécifications du CODASYL 
(voir paragraphe 13, ci-après) ne comportent pas cette restriction et 
ils peuvent représenter des hiérarchies complètes.

La plus grande puissance des réseaux par rapport aux structures 
hiérarchiques tient à la possibilité d'associer un type d'enregistrement 
à presque n'importe quel autre. Au lieu d'adapter la structure de la 
base de données à l'ensemble limité des associations permises par une 
structure hiérarchique, l'utilisateur peut commencer par définir les 
types d'enregistrements intéressants pour son application puis exprimer 
dans le schéma de la base de données toutes les associations qui existent 
entre ces mêmes enregistrements. Une arborescence pure peut être consi
dérée comme le cas le plus simple d'un réseau, dans lequel un enregis
trement secondaire ne peut appartenir qu'à un seul ensemble.
10. Bases de données relationnelles

Le modèle relationnel développé ultérieurement et mis en oeuvre 
jusqu'à maintenant dans un certain nombre de systèmes expérimentaux re
présente une approche davantage orientée utilisateur, pour les structures 
de bases de données. Dans ce modèle, une base de données est considérée 
comme un ensemble de relations n-aires de tables homogènes dont chaque 
ligne est analogue à un enregistrement contenant n articles, mais aucun 
d'eux ne peut avoir des occurrences multiples. Lors de la définition des 
relations, la cohérence et la non-redondance peuvent être garanties à 
condition de suivre un ensemble de règles formelles assurant que toutes 
les relations soient en "troisième forme normale".

Il existe une algèbre fermée des opérations appelées union, pro
jection, etc., qui peuvent être effectuées sur des relations, et l'inter
rogation d'une base de données relationnelle consiste à appliquer cette 
algèbre. Lors de la définition des relations, l'utilisateur n'a pas à 
spécifier des voies d'accès, bien que de telles voies soient en fait 
utilisées lors de la réalisation d'unions et qu'elles ne puissent être 
totalement ignorées. Aucun SBDG- relationnel n'est encore disponible sur 
le marché. La figure 4 montre schématiquement comment une hiérarchie 
peut être représentée à l'aide d ’un ensemble de tables de relations dans 
lesquelles sont stockées les données.
11. Stockage physique des données

Il convient de préciser que les structures logiques qui peuvent 
être exprimées par un SBDG n'ont pas nécessairement une incidence directe 
sur le mode de stockage sur disque des enregistrements de données. Par 
exemple, dans des systèmes basés sur des structures en réseau, les enre
gistrements auxquels on accède par l'intermédiaire de leurs clés logiques 
sont souvent répartis sur le disque avec des adresses apparemment aléa
toires, dans le cadre d'un fichier défini par le système. Ces adresses 
sur le disque sont souvent obtenues à partir des clés logiques par un 
algorithme d 'adressage dispersé ("hashing"), et le but de cette procé
dure est d'assurer une distribution uniforme des données dans l'espace 
disponible sur le disque. Dans le SYSTEM 2000, l'information structurelle 
qui constitue la hiérarchie est stockée dans des "tables d'adresses hié
rarchiques" (index) qui sont séparées des enregistrements de données

- 331 -



eux-mêmes ; ces derniers sont stockés sur le disque dans un ordre proche 
de celui suivant lequel ils ont été chargés. Dans des systèmes en réseau 
les ensembles et la structure hiérarchique sont habituellement exprimés 
à l ’aide de pointeurs d ’adresses ; ces ensembles ou ces hiérarchies peu
vent très bien être physiquement mélangés et se présenter sous forme dé
sordonnée, par rapport à l ’ordre logique qui est exprimé par les pointeurs 
créés par le système.

Bien que 1 ’ implantation physique d ’une base de données puisse ne 
pas être très analogue aux structures logiques qu!elle représente, les 
caractéristiques du système peuvent cependant être considérablement 
affectées par le mode d ’"adaptation" du stockage des données afin de 
correspondre à la structure logique et aux voies d faccès les plus cou
rantes des programmes des utilisateurs à travers la base de données. 
Inversement, ces mêmes caractéristiques peuvent être détériorées si la 
base de données est représentée -directement sous la forme de l ’aspect 
logique propre à 1 futilisateur ; par ailleurs, les caractéristiques d fun 
programme particulier seront en tout cas détériorées lorsque la structure 
de la base de données aura été conçue en vue de satisfaire à des exigences 
élevées pour des applications multiples.
IV. NOMENCLATURE

Nous présenterons maintenant quelques autres caractéristiques des 
SBDG- actuels afin d ’introduire certains termes qui seront utilisés ulté
rieurement dans ce rapport.

Les innovations concernant les structures de base de données qui 
sont devenues possibles à la suite de l femploi du stockage sur disque ont 
été discutées aux paragraphes 8 à 11 , ci-dessus. On peut atteindre direc
tement les données stockées dans des fichiers à accès aléatoire sur 
disque en obtenant 1 1 emplacement sur le disque (c’est-à-dire 1 ’"adresse") 
par 1 ’intermédiaire d fun algorithme d f"adressage dispersé" ou à partir 
d ’un index (un index est un répertoire dans lequel une valeur-clé logique 
peut être examinée pour découvrir les emplacements physiques des enre
gistrements dans lesquels cette valeur-clé est présente et qui peut être 
mis en oeuvre à l fintérieur du système selon diverses modalités, y compris 
1 ’adressage dispersé). Dans un contexte de base de données, des pointeurs 
se réfèrent à des adresses créées par le SBDG- et incluses dans les enre
gistrements de la base de données afin de fournir directement l ’emplace
ment physique des enregistrements adjacents dans la structure logique.
Des pointeurs étaient déjà utilisés dans les hiérarchies intra- 
enregistrements des premiers SBDG-, avec stockage sur bande magnétique ; 
ils constituent le support principal pour la mise en oeuvre des réseaux 
du CODASYL.
12. Un exemple de l ’un des premiers SBDG- : le système INEOL

La plupart des caractéristiques importantes des actuels SBDG- se 
retrouvent dans les versions les plus récentes du système simple INEOL 
qui a été mentionné au paragraphe 7. INEOL est un système entièrement 
non procédural possédant son propre langage d ’interrogation et de mise à 
jour. Il se différencie de la plupart des systèmes ultérieurs par le fait 
que l ’accès ne peut se réaliser à l ’aide d ’ordres CALL figurant dans un 
langage hôte tel que le COBOL ou le FORTRAN. Ces langages des utilisateurs 
permettent de formuler des ordres à un "niveau évolué" d ’abstraction lo
gique ; ils se distinguent ainsi des langages "peu évolués" (tel que le 
langage assembleur) qui sont beaucoup plus proches du langage machine de 
l ’ordinateur utilisé. Bien que la version originale d ’INEOL ait été 
rédigée en code d ’assemblage pour des ordinateurs CDC 3600/3800, ce

- 332 -



système a acquis une importante -portabilité après avoir été rédigé à 
nouveau en FORTRAN standard. Une autre nouvelle caractéristique concerne 
la possibilité de l ’utiliser en mode conversationnel (c’est-à-dire à 
partir d ’un terminal équipé d ’un clavier) aussi bien qu’en mode différé 
(c’est-à-dire en utilisant un lecteur de cartes et une imprimante par 
lignes).

INFOL a été conçu pour le stockage sur bande magnétique et il 
possède une structure de fichier séquentielle, avec hiérarchie intra- 
enregistr'ement. Les données sont décrites par l ’utilisateur dans une 
phase de définition en utilisant ce qui serait maintenant appelé un 
langage de description de données (LLL). Lans ce cas la description des 
donnees consiste seulement en des descriptions logiques des articles 
à l ’intérieur d ’un enregistrement ; elle est stockée dans le fichier en 
étant séparée des données elles-mêmes. Lans l ’enregistrement il ne peut 
y avoir qu’un seul article ayant le statut d ’article-clé ; dans le fichier 
les enregistrements sont rangés d ’après la valeur de cet article. Un ar
ticle peut être déclaré multiple (il est plus généralement appelé répété), 
c ’est-à-dire qu’il peut présenter un nombre indéfini d ’occurrences.

Le chargement initial des données dans une base de données vide 
est appelé peuplement de cette base. Lans le cas du système INFOL cela 
peut être réalisé dans la phase de mise à .jour dans laquelle des données 
déjà chargées peuvent également être modifiées ou supprimées.

Les articles sont vérifiés avant leur insertion. Comme exemple 
de validation automatique dans INFOL, notons qu’une date est vérifiée 
pour constater s ’il s ’agit d ’une date calendaire correcte, en tenant 
même compte des années bissextiles. Lu fait que la mise à jour se réalise 
par copie de la totalité du fichier séquentiel, on dispose habituellement 
d ’un double de sécurité et ainsi 1 ’intégrité est facilement garantie, au 
détriment de 1 1 efficacité.

La recherche s’effectue au cours d ’une phase d ’interrogation en 
utilisant un langage d ’interrogation dans lequel des criteres de recher
che peuvent être spécifiés, comme cela a déjà été décrit précédemment. 
Comme un enregistrement INFOL ne possède qu’un article-clé et que de 
toute manière il s ’agit d ’un fichier séquentiel, toute interrogation est 
virtuellement une question imprévue, ce qui implique une scrutation de 
tous les enregistrements constituant le fichier0 Lorsque les enregistre
ments recherchés ont été découverts, ils peuvent être affichés partiel
lement ou complètement, selon des modalités faciles à définir, en utili
sant un éditeur de puissance limitée qui n ’offre pas la totalité de la 
gamme des facilités de mise en page que possèdent des éditeurs plus 
élaborés.

Finalement INFOL permet une restrueturation par modification de 
la description des articles existants ou par addition de nouveaux arti
cles. Ces opérations sont facilitées par le fait qu’après toute modifi
cation des données ou de la description, la base de données est copiée 
en totalité.
1 3. Les systèmes du COLASYL

Le rapport 1971 du Groupe de Travail sur les bases de données 
du COLASYL a défini des normes pour un SBLG devant être avant tout uti
lise-avêc"le COBOL comme langage hôte. Il est proposé d ’utiliser une 
structure en réseau (voir paragraphe 9) pour modéliser les relations 
entre les enregistrements dans la base de données. Les relations hiérar
chiques ne constituent qu’un cas particulier simple d ’une chaîne d ’en
sembles en réseau ; elles peuvent donc également être représentées.

- 333 -



Le rapport fournit une syntaxe détaillée pour un langage de défi
nition de données (LDD) et pour un langage de manipulation de donnees 
(LMD) en vue de leur inclusion dans le langage COBOL. Une description 
de "base de données est appelée un schéma et 1 !aspect du schéma qui est 
nécessaire à un utilisateur programmant en COBOL, ou qu'il est autorisé 
à détenir, est appelé "subschema" (sous-schéma). Dans le LDD, l'utili
sateur dispose d fun choix de méthodes d'accès pour rechercher des enre
gistrements dans des ensembles ou pour atteindre un type donné d T enre
gistrement ; de ce fait, l'utilisateur peut donc tenir compte de l'effi
cacité pour des recherches prévues. Lorsqu'il utilise le LMD, le program
meur travaillant en COBOL navigue en quelque sorte à travers le réseau, 
en passant d'un ensemble à un autre.

Aucun langage d'interrogation n'est proposé dans le rapport du 
CODASYL, mais par contre la question de l'interaction entre de multiples 
utilisateurs est traitée un peu superficiellement. Des règles sont pres
crites pour éviter les conflits qui peuvent apparaître lorsque deux uti
lisateurs tentent de mettre à jour simultanément des données identiques 
ou étroitement liées.

De même, la sécurité à tous les niveaux est garantie pour res
treindre l'accès à l'information contenue dans la base de données.

Parmi les systèmes CODASYL bien connus on peut citer 1'IDMS 
(Cullinane Co pour les ordinateurs IBM, ICL et autres), le DMS 1100 
(Univac), les DBMS-10 et -11 (DEC) et l'IDS-II (Honeywell).
14. Futurs développements des SBDG-

Les SBDG- relationnels ont été discutés au paragraphe 10 et c'est 
ce modèle de données qui actuellement retient le plus l'attention dans le 
développement de nouveaux systèmes. Indépendamment du modèle de données 
utilisé, il a été considéré comme important d'établir un cadre général 
de normes pour les futures conceptions des SBDG-. Les propositions de 
1975 de l'ANSI SPARC qui ont été très largement acceptées, prévoient 
une séparation nette entre : a) le schéma externe par l'intermédiaire 
duquel les programmes des utilisateurs ont accès aux données, et qui 
peut être des types relationnel, ou en réseau, ou correspondre à tout 
mode d'interface qui semble plus naturel à l'utilisateur, b) le schéma 
conceptuel qui contient la structure intrinsèque de l'entreprise modé- 
lisée, et c) le schéma interne qui contrôle le stockage physique dans la 
base de données. Le schéma interne peut être adapté, par exemple en ajou
tant ou en supprimant des voies d'accès afin de correspondre à l'usage 
actuel de la base de données. EDMS (rédigé par CDC, Bruxelles et par 
certaines universités) est un système qui commence à se rapprocher de 
cette conception.

On peut penser que les futurs SBDG- disposeront d'interfaces pour 
les utilisateurs permettant d ’effectuer des interrogations dans un lan
gage plus ou moins naturel ou dans un langage formel puissant, selon la 
préférence de l'utilisateur. Ces bases de données elles-mêmes pourront 
être réparties entre plusieurs ordinateurs intégrés dans un réseau de 
communications.

- 334- -



Numéro Masse Période 
atomique atomique Période

Fig. 1: Une hiérarchie intra-enregistrement à trois niveaux avec tua 
unregistrement par élément. L'exemple présente une partie 
d'un enregistrement pour le manganèse, Z=2J?. Les flèches 
montrent la structure logique.

A,période

Niveau d'énergie 
hspin, parité

1 —1 M l U L1;

Desintegration 
y ’s ;

Y l l Y21Y22 Y31

— S* ■ Une structure hiérarchique complète présentant d'autres
détails^de la structure nucléaire. Sur la gauche, chaque 
cadre définit un groupe répété, et sur la droite, l'exemple 
montre comment une "branche de l'article Z de la hiérarchie peut être peuplée.

- 335 -



Particules émises lors 
de la désintégration

A Z ZA

ZA
période

Autres niveaux d1 énergie 
spin, parité, X COMPRIS 
des valeurs de E y  dans la 
désintégration^

Isomères, t4v> 1 s 
Y COMPRIS valeurs de 
dans la désintégration y

a) Exemple d'une structure en réseau limitée

b) Exemple d'une structure complète en réseau

Exemples de structure en réseau présentant d'autres détails 
de la structure nucléaire.

- 336 -



Domaine Z A Niveau d'E Spin Parité

Tuple' 1 25 50 El • • •

2 25 50 e2 • • •

3 25 51 e3 • • • • • •

4 25 51 • • • • • • • • •

Domaine 7 A Niveau d'E Gamma ...

Tuple;1 25 50 El Y il

2 25 50 e2 Y21 • • •

3 25 50 e2 Y22 • • •

4 25 50 e 3 Y31 • • •
...

Fig. 4: Elements de relations représentant des details de 
la structure nucléaire correspondant à la fig. 2. 
Dans une base de données réele, les paramètres 
E. seraient des valeurs effectives.

- 337 -



CONSIDERATIONS FINALES : L ’ETUDE ET SES CONCLUSIONS

ORGANISATION DE L ’ ETUDE
Cette étude relative à l ’utilisation des Systèmes de gestion de 

bases de données (SGBD) a permis à trente-sept participants appartenant 
à vingt-deux organismes de se réunir à deux reprises en Europe et aux 
Etats-Unis. Les organisateurs de ces réunions ont fait tout leur pos
sible pour rassembler un groupe bien équilibré de spécialistes de l ’in
formation scientifique, de chercheurs astreints par leur travail à 
entretenir d ’importantes collections de données, de spécialistes des 
systèmes de bases de données et de responsables de la gestion dans le 
domaine de la documentation et des données scientifiques.

La proportion relativement élevée de participants, dont les acti
vités sont axées sur l ’informatique, reflète la nouveauté que constitue 
l ’utilisation des bases de données dans les travaux de documentation 
scientifique et dans les sciences elles-mêmes. Parmi les applications 
des Systèmes de gestion de bases de données, qui ont été examinées, très 
peu remontaient à plus de deux ans et nombre des études de cas considé
rées dans la troisième partie du rapport, ont trait à des travaux pilotes 
de mise au point et à des études de faisabilité. La plupart des applica
tions scientifiques, qui sont au point et fonctionnent depuis un certain 
temps, sont encore trop modestes pour qu’on puisse tester la capacité 
réelle des systèmes de gestion de données sur lesquels elles s’appuient.

Dans ces limites, les contributions couvrent un très large éventail 
de sujets dans le domaine général du traitement de l ’information scien
tifique : compilations de données numériques (qu’elles soient exécutées 
par des centres de données ou par des ’’chercheurs manipulateurs de don
nées”), index bibliographiques et administration de bibliothèques. Les 
informaticiens, auteurs de contributions, s’occupent à la fois de la 
mise au point de Systèmes de gestion de bases de données et de l ’admi
nistration de bases de données. Deux rapports sur des ’’systèmes”, trai
tent d ’une méthode hautement intégrée utilisée pour aborder des calculs 
scientifiques, mais limitée jusqu’à présent à la technologie nucléaire.
Il s ’agit de programmes modulaires employés pour une très large gamme 
de calculs de réacteurs, chaque module permettant d ’accéder à un stock 
commun de données conservé par un système de gestion de bases de données 
spécialement conçu à cet effet.

CONCLUSIONS
Au cours de la deuxième réunion, tenue à Berkeley, le groupe d ’étude 

s’est efforcé de tirer des conclusions quant à l ’intérêt que présente la 
méthode de gestion intégrée de données pour la documentation et les

- 338 -



données scientifiques. On s'accorde à considérer que les Systèmes de 
gestion de bases de données sont intéressants pour un large éventail 
d'applications scientifiques et on a pu définir certains critères sus
ceptibles d'aider les utilisateurs à décider s'ils doivent ou non adopter 
un tel logiciel pour résoudre leurs propres problèmes de traitement de 
1 1 information.

Critères applicables à l'utilisation des SGBD
Une approche intégrée de l'établissement des bases de données, uti

lisant un logiciel constitué par un SGBD, est susceptible d'être très 
intéressante lorsque sont remplies une ou plusieurs des conditions 
suivantes :

- lorsqu'une base de données doit être partagée entre plusieurs 
utilisateurs et éventuellement modifiée par ces derniers ;

- lorsqu'il existe entre les données des interrelations logiques 
raisonnablement complexes, qui doivent être rendues explicites 
en reliant éventuellement plusieurs collections distinctes
de fichiers de données ;

- dans le cas de bases de données, dont les dimensions sont 
comprises entre quelques millions et quelques centaines de 
millions de caractères ;

- s'il n'est pas possible de prévoir les demandes des utilisateurs 
au moment où la base de données est établie ou si ces demandes 
peuvent évoluer avec le temps ;

- lorsque l'organisation ne possède ni le personnel, ni le temps, 
ni les connaissances nécessaires pour mettre au point un système 
spécialisé et pour en assurer l'entretien, ou si un SGBD est 
déjà disponible à l'intérieur de l'organisation ;

- si les utilisateurs des données ne sont pas des programmeurs 
d'ordinateurs et ne souhaitent pas être entraînés à exécuter 
des travaux de programmation.

L'effet des dimensions de la base de données
En ce qui concerne les bases de données, dont les dimensions se 

situent en-dessous d'un million de caractères et selon l'usage qui est 
fait de ces données, les besoins qu'un SGBD peut être appelé à satisfaire, 
peuvent être relativement insignifiants, de sorte que des programmes de 
mise en mémoire et d'extraction conçus sur place pourraient donner de 
bons résultats à meilleur compte. Lorsqu'on dispose déjà d'un SGBD et 
que les utilisateurs sont familiarisés avec son utilisation, certains 
d'entre eux préféreront l'utiliser même pour l'application la plus 
simple car de cette manière, ils pourront exploiter toute la gamme des 
moyens offerts par leur SGBD sans avoir à prendre la peine et à encourir 
le coût de rédiger les programmes sous-jacents de traitement des données.

Les avantages des actuels SGBD sont les plus manifestes dans le cas 
des bases de données de quelques millions à quelques centaines de mil
lions de caractères. Dans les zones intermédiaires, allant de 3 x 108 
caractères et s'étendant au-delà de 109 caractères, les coûts de mise 
en mémoire sur disques ou sur d'autres dispositifs de stockage à grande 
vitesse, deviennent appréciables et la vitesse de fonctionnement des 
systèmes dans lesquels on accède à la mémoire externe par l'intermédiaire 
du système de gestion de fichiers du système d'exploitation peut ne plus 
être adéquate.

- 339 -



En ce qui concerne les très grandes bases de données, de quelques 
milliards de caractères ou davantage, un ordinateur spécialisé et l ’in
vestissement correspondant en logiciel “spécial sont susceptibles d fêtre 
nécessaires et de se justifier, vu le coût de la saisie des données.
Une base de données de cette importance contient probablement des don
nées "brutes", provenant de mesures expérimentales présentant des inter
relations et la grande latitude dans le choix de l ’aspect macroscopique 
que les SGBD ont pour but d ’offrir à l ’utilisateur constitue certainement 
un facteur essentiel, si l ’on veut que de telles masses de données soient 
convenablement assimilées. Alors que de très grands dispositifs de 
stockage à accès semi-rapide ont été mis au point, le logiciel d ’accès 
présentant une efficacité correspondante n ’est pas encore disponible 
et le système de gestion de données doit être néanmoins capable de fonc
tionner de façon efficace, la contrainte étant que la plupart des don
nées se trouverait à un moment donné "renvoyées" de la mémoire rapide 
sur des dispositifs plus lents (habituellement des bandes).

Choix du logiciel de gestion de données
Les participants à la réunion sont convenus qu’il est stérile de 

proposer une quelconque définition rigide d ’un SGBD, bien que la gestion 
d ’une structure logique à l ’intérieur de la base de données, permettant 
l ’accès de l ’utilisateur par l ’intermédiaire d ’un langage évolué, semble 
prometteuse en tant que critère en vue de différencier les SGBD des sys
tèmes de gestion de fichiers et des systèmes d ’extraction de l ’informa
tion. De nombreux utilisateurs potentiels ne se préoccupent pas de savoir 
si un système donné est ou non un SGBD : ce qu’ils veulent, c ’est un 
logiciel qui fasse leur travail.

Cependant, lors des échanges de vues sur les besoins en matière de 
systèmes, les participants ont, à de nombreuses reprises, insisté sur 
le fait que la base de données et son logiciel de gestion doivent être 
extensibles de manière à permettre des développements qui n ’étaient pas 
envisagés lorsque le projet a d’abord été préparé. Il n ’est pas certain 
que l ’on réalisera des économies en utilisant un SGBD plutôt qu’en rédi
geant des programmes spécialisés, mais les utilisateurs disposeront de 
davantage de souplesse et seront ainsi capables d ’utiliser des données 
à long terme mieux qu’ils ne le pourraient autrement. Les chefs de projet 
seraient avisés de choisir un logiciel de gestion de données qui offre 
davantage de souplesse que ce qu’ils jugent susceptible de leur être 
nécessaire.

C ’est dans ce contexte que les lecteurs peuvent estimer utile 
d ’étudier les rapports présentés dans la deuxième partie relative aux 
SGBD scientifiques et aux spécifications applicables au traitement des 
données scientifiques : il est surprenant de constater combien certaines 
de ces analyses indépendantes se recoupent et des lecteurs peuvent aussi 
estimer que certaines de ces caractéristiques leur seront également 
utiles. Le Chapitre 2 donne une liste de logiciels de traitement des 
données, qui est nécessairement incomplète, mais qui couvre une gamme 
de programmes-produits allant de SGBD complets à des systèmes de gestion 
de fichiers commercialisés indépendamment des constructeurs, des systèmes 
d ’extraction de l ’information principalement conçus pour la recherche 
dans le texte et des programmes d ’édition (Report Generators). Il offre 
un point de départ possible pour décider quels programmes-produits il 
convient d ’examiner en vue d ’un projet spécifique de documentation et 
de données scientifiques.

- 340 -



De très grandes ou de très petites bases de données peuvent être 
mieux desservies par des programmes spécialisés. Dans le cas de très 
petites bases de données, le Chapitre 4 présente une méthode utilisant 
un langage de programmation particulier très évolué, l fAPL. L fauteur 
démontre qufune collection de données apparemment complexe peut souvent, 
dans la pratique, être décomposée en un certain nombre de bases de don
nées plus petites, plus simples et pratiquement indépendantes, qui peu
vent être administrées à meilleur compte à l ’aide de programmes spécia
lisés. Des programmes structurés, convenablement rédigés dans un langage 
évolué, devraient alors pouvoir être aisément développés à mesure que le 
besoin s’en fait sentir. Selon l ’auteur de ce rapport, la nécessité de 
protéger les données (d’assurer la sécurité et l ’intégrité dans des bases 
de données partagées, par exemple) qui est prévue dans le cas de nombreux 
SGBD, est tout aussi importante que la complexité logique, lorsqu’on 
décide s’il y a ou non lieu d ’utiliser un Système de gestion de bases 
de données.

Limites des SGBD actuellement disponibles
Bien que les spécifications relatives aux SGBD scientifiques, pré

sentées dans la deuxième partie, ne soient pas, pour une bonne part, 
satisfaites par les systèmes actuellement disponibles sur le marché, il 
semble manifeste que dans le cas d’un projet déterminé de données scien
tifiques, l ’on puisse trouver un ou plusieurs systèmes qui exécuteront 
la plupart des tâches souhaitées par les programmeurs chargés du projet 
et les aideront ainsi à parvenir à l ’objectif visé, qui est d’établir 
un système global satisfaisant. Il existe trois limites très évidentes, 
à savoir :

- Il n ’est pas encore possible d ’offrir une représentation par
faitement générale des structures de données sans sacrifier 
la performance. La plupart des systèmes disponibles dans le 
commerce offrent un modèle de données plus limité, qui peut 
obliger l ’utilisateur à adapter ses applications aux contraintes 
du système.

- En particulier, les systèmes disponibles dans le commerce 
n ’admettent pas certaines des structures inhérentes aux données 
scientifiques, telles que les vecteurs et les rangées. La plu
part de ces systèmes ne reconnaissent pas des types de données 
numériques telles que la virgule flottante : ces données sont 
traitées comme des caractères et doivent être interprétées en 
dehors du SGBD. Il semblerait également naturel de stocker des 
tableaux de données et des suites de textes dans les enregis
trements de longueur variable en des points appropriés de la 
structure logique de la base de données. Dans le cas des données 
scientifiques, cette méthode donnerait lieu à des variations 
extrêmes de la longueur des enregistrements (de un à deux ordres 
de grandeur) et ne peut être aisément mise en œuvre dans les 
systèmes actuels.

- Les systèmes actuellement disponibles sur le marché ne prévoient 
pas de moyens de restructurer complètement les données. La re
structuration fondamentale d’une base de données, dont l’utili
sation a été modifiée, peut être coûteuse en temps de programmeur 
et en temps d ’exploitation de l ’ordinateur.

- 341 -



Le coût d utilisation d’un SGBD
Le Chapitre 3 expose une méthodologie permettant de déterminer les 

coûts de mise en place d ’une application de SGBD et de les comparer au 
coût du logiciel spécialisé dans le cadre d ’un projet particulier, On  ̂
peut conclure en général que, lorsque la mise en place d ’un SGBD est à 
la charge du projet, les coûts répartis sur toute la durée du projet 
sont moindres si on les compare à ceux des programmes spécialisés, 
mais les mises de fonds initiales seront du même ordre. Toutefois :

- La deuxième application utilisant le SGBD et celles qui suivent, 
seront moins coûteuses (les coûts du SGBD étant déjà amortis).

- Les applications utilisant les SGBD seront plus souples et auront 
donc une durée de vie utile plus longue.

- Les coûts réguliers de maintenance seront inférieurs si l'on 
utilise un SGBD.

Mise à part l ’acquisition initiale du programme-produit de gestion 
de bases des données, il faut tenir compte des frais de formation et 
d’entretien relatifs aux SGBD, du coût supplémentaire probable du 
stockage sur disques qui est nécessaire et de l ’utilisation en ligne de 
l ’ordinateur, ainsi que du temps-machine requis. Les principaux avantages 
du SGBD tiennent à ce qu’il permet une meilleure utilisation de la base 
de donnees et du personnel informaticien plutôt qu’à des avantages fi
nanciers a long terme. Il est nécessaire de poursuivre l ’étude des coûts 
et avantages des SGBD par rapport à la programmation simple, mais cette 
étude présentera des limites, précisément du fait que ces applications 
sont rarement comparables : les programmeurs de SGBD seront tentés 
d’utiliser le système à plein et de faire davantage avec les données 
disponibles.

Performance des SGBD
La présente étude n ’a permis d ’obtenir que des renseignements très 

limités sur les performances des bases de données. De futurs utilisa
teurs souhaiteront certainement comparer les temps d ’exploitation d ’une 
application particulière utilisant soft un SGBD, soit des programmes 
spécialisés, en particulier dans le cas de grandes bases de données sur 
de petits ordinateurs, où des performances médiocres pourraient rendre 
le SGBD impraticable. Lorsque les utilisateurs ont éliminé les erreurs 
de conception de la base de données (considérées ultérieurement comme 
étant "évidentes"), existe-t-il des effets non linéaires, qui entraîne
ront une dégradation des performances à mesure que la base de données 
se remplira complètement ? La plupart des applications de SGBD sont nou
velles, portant sur de petites bases de données, plutôt que sur des 
conversions de fichiers existants, de sorte que là encore les comparai
sons sont difficiles.

Le Centre de Compilation de Données Neutroniques (CCDN) de l ’AEN 
est, parmi les utilisateurs de SGBD, celui qui est doté du plus petit 
ordinateur, à savoir l ’IBM 370/125, ayant une mémoire centrale de 128K 
octets, lequel doit ultérieurement être remplacé par un DEC PDP 11/70.
Des essais portant sur des fractions raisonnablement importantes de la 
base de données projetée (à l ’aide du logiciel IDMS, qui est un système 
généralisé de gestion des données conforme aux spécifications CODASYL), 
semblent indiquer que dans le cas d ’un "schéma" logique bien conçu, les 
performances d ’extraction obtenues sur le petit ordinateur IBM, seront 
comparables à celles des programmes existants utilisant des fichiers en 
séquentiel indexé. Le chargement des données, sans l ’utilitaire de

- 342 -



chargement rapide, peut exiger jusqu’à 60 heures de temps d’exploitation 
pour l ’ensemble de la base de données, mais cela est considéré comme ac
ceptable pour une opération unique, qui peut être interrompue à volonté. 
Une comparaison limitée des performances semble indiquer que l’ensemble 
de l ’exécution des fonctions IDMS, notamment le chargement, sera plus 
rapide sur le PDP 11/70.

Alors que ces conclusions provisoires ne peuvent être extrapolées 
qu’avec une extrême prudence à d ’autres bases de données et à d ’autres 
ordinateurs, il ressort de l ’expérience pratique acquise par le CCDN, 
que la méthode des SGBD est viable même avec un matériel très modeste.

Evolution future des SGBD
Il est à espérer que les producteurs de logiciels reconnaîtront la 

place importante que les SGBD sont appelés à prendre dans le traitement 
de l ’information scientifique et tiendront compte, dans leur conception 
des systèmes, des spécifications étudiées à la deuxième partie du rap
port. La gamme des applications que la prochaine génération de SGBD 
devra couvrir, est si variée qu’il semble peu probable qu’un seul sys
tème soit capable de les traiter toutes convenablement. Une approche 
modulaire des SGBD peut s’avérer plus satisfaisante.

Un obstacle important, auquel se heurte l’utilisation des SGBD par 
des non-programmateurs, tient au fait “que les systèmes actuels ne per
mettent pas de parvenir à une indépendance totale à l ’égard des données. 
On devrait s’attacher à l ’avenir à élaborer, à l ’intention des utilisa
teurs, un modèle logique (structures des données et langage de manipula
tion) indépendant de la représentation physique de la base de données.
La baisse continue des coûts des composants du matériel peut rendre sup
portables les frais supplémentaires d ’exploitation nécessaires pour as
surer cette indépendance totale à l’égard des données. Le temps du 
personnel, bien plus que le temps-machine, deviendra le principal fac
teur de coût dans le traitement des données et dans la conception des 
futures SGBD, on devrait continuer à s’efforcer de l ’économiser.

- 343 -



AUTHOR INDEX. WITH ADDRESSES OF PARTICIPANTS
REPERTOIRE DES AUTEURS. AVEC LES ADRESSES DES PARTICIPANTS

Attree, Ms. P. 
(.Chapter 24)

Bau, Dr. W
Behrens, Dr. H. 
(.Chapter 23)

Birss, Dr. E.
(.Chapter 8)

Brooks, Dr. A. 
(.Chapters 5 and- 27)

Collica, Dr. J
Deutsch, Dr. D. 
(.Chapters 2, 3 em-d 21)

Dunford, Dr. C. 
(.Chapter 18)

Fong, Ms. E
Fu.ja, Ms. P. 
(.Chapter 12)

Gersbacher, Dr. W . 
(.Chapter 6;

Gottschalk. Dr. C.

Haire, Ms. G.

Hampel, Dr. V. 
(.Chapter 7)
Hilsenrath, Dr. J.

International Atomic Energy Agency 
Nuclear Data Section 
KSrntnerring 11, 1011 Vienna 
Austria
See Behrens (Chapter 23)
Zentralstelle fttr AtomkernEnergie 
Dokumentation (ZAED), Kernforschungs
zentrum Karlsruhe, 75'1/)- Eggenstein- Leopoldshafen, F.R. Germany
Lawrence Livermore Laboratory
Box 808, Livermore, California 94550U.S.A.
Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37830 
U.S.A.
See Deutsch (Chapter 3)
National Bureau of Standards 
Washington, D.C. 20234 
U.S.A.
National Nuclear Data Centre 
Brookhaven National Laboratory 
Upton, N.Y. 11973 
U.S.A.
See Deutsch (Chapters 2 and 3)
Argonne National Laboratory 
Argonne, Illinois 60439 
U.S.A.
Battelle Memorial Institute 
Information Systems Section 
Battelle Columbus Laboratories 
Columbus, Ohio 43201 
U.S.A.
Office of Technical Information 
Department of Energy 
Washington, D.C. 20545 U.S.A.
Lawrence Berkeley Laboratory 
Information Research Group 
Berkeley, California 94720 
U.S.A.
Lawrence Livermore Laboratory 
Box 808,Livermore, California 94550
National Bureau of Standards 
Washington, D.C. 20234

-  344 -



Honeck, Dr. H.
(Chapter 10)

Hsu, Dr. K. 
(Chapter 16)

Hughes, Mr. T.

Johnston, Dr. P.

Jones, Dr. E. 
(.Chapter 8)

Knoll, Dr. D.

Leralle, Mr. J.
Lindeman, Mr. A.
Martin, Mr. G. 
(.Chapters 4 and 15)

Montgomery, Mr. K. 
(.Chapters 11 and 20)

Moorhead, Dr. G. 
(.Chapters 1 and 14)

Nevy.iel, Dr. A. 
(.Chapter 22)

Pellegrino, Mr. L. 
Perschke, Dr. S.

Petrie, Dr. J. 
(.Chapter 26)

Powell, Mr. J. 
(.Chapter 26)

Savannah River Laboratory 
Aiken, South Carolina 29801 
U.S.A.
Battelle Memorial Institute 
Information Systems Section 
Battelle Columbus Laboratories 
Columbus, Ohio 43201 U.S.A.
Library of Congress
Science and Technology Division
Washington, D.C. 20540U.S.A.
OECD Nuclear Energy Agency 
Neutron Data Compilation Centre (CCDN) 
B.P. No. 9, 91190 Gif-sur-Yvette 
France
Lawrence Livermore Laboratory
Box 808, Livermore, California 94550
U.S.A.
National Oceanographic Data Centre 
2001 Wisconsin Avenue 
Washington, D.C. 20235
See Martin (Chapter 15)
See Fu.i a (Chapter 12)
Compagnie Internationale de Services 
en Informatique (CISI)
B.P. No. 24
91190 Gif-sur-Yvette
Prance
United Kingdom Atomic Energy Authority
Risley, Warrington WA3 6AT
U.S.A.
CERN Laboratoire I 
DD-Division 
1211 G-eneva 23 
Switzerland
Österreichische Studiengesellschaft 
für Atomenergie, GmbH,
Lenaugasse 10, 1082 Vienna 
Austria
See Schofield, Tubbs (Chapter 19)
Commission of the European Communities 
Joint Research Centre 
21020 Ispra (Varese)
Italy
Commission of the European Communities 
Joint Research Centre 
21020 Ispra (Varese)
Italy
Commission of the European Communities 
Joint Research Centre 
21020 Ispra (Varese)
Italy

- 34-5 -



Richards, Dr. D.
(.Chapter 9)

Ries, Dr. D. 
(Chapters 7 and 8)

Rietveld, Dr. H. 
(.Chapter 1 7 )

Rittenberg, Dr. A. 
Robinson, Ms. J.

Schofield, Dr. A. 
(Chapter 19)

Schuler, Dr. ¥. 
(Chapter 25)

Shoshani, Dr. A. 
(Chapter 28)

Stevens, Dr. P. 
(Chapter 13)

Suich, Dr. J. 
(Chapter 10)

Szczesny, Dr. K. (Chapter 6)

Town, Dr. W.
Tubbs, Dr. N. (Chapters 1, 19 and appendix)
Yamamoto, Dr. T. 
XSnex~to Chapter 2)

Yeb, Mr. J.

Lawrence Berkeley Laboratory 
Computer Science 
Berkeley, California 94720 
U.S.A.
Lawrence Livermore Laboratory
Box 808, Livermore, California 94550
U.S.A.
Netherlands Energy Research Foundation 
Dept, of Scientific and Technical 
Information, Petten (N.H.)
The Netherlands
See Stevens (Chapter 13)
Lawrence Berkeley Laboratory 
Information Research Group 
Berkeley, California 94720 
U.S.A.
OECD Nuclear Energy Agency
Neutron Data Compilation Centre(CCDN)
B.P. No. 9» 91190 Gif-sur-Yvette 
Prance
OECD Nuclear Energy Agency 
Computer Program Library
C.P. No. 15, 21027 Ispra (Varese)
Italy
Lawrence Berkeley Laboratory 
Computer Science 
Berkeley, California 94720 
U.S.A.
California Institute of Technology 
Physics Department 356-48 
Pasadena, California 91125 U.S.A.
Savannah River Laboratory 
Aiken, South Carolina 29801 
U.S.A.
Battelle Memorial Institute 
Information Systems Section 
Battelle Columbus Laboratories 
Columbus, Ohio 43201
See Petrie, Powell, (Chapter 26)
OECD Nuclear Energy Agency 
38 Boulevard Suchet 
75016 Paris 
France
University of Tokyo, Computer Centre 
2-11-16 Yayoi, Bunkyo-Ku, Tokyo 113 
Japan
See Birss, Jones, Ries, (Chapter 8)

- 346 -




