Dr A Nevyjel

Wien Sgae

M G Prance

CISI Martin

Dr H Behrens

Dr T Yamamoto

Mr K Montgomery

Ukaea Risley

Dr E Birss

Dr A Lll

ORNL Brooks

Dr D Deutsch

Dr C Dunford

Ms P Fuja

Ms G Hair

Dr V Hampel

Dr J Hilsenrath

Dr H Honeck

Savannah River

K Hsu

Battelle Mr T Hughes

Dr E Jones

Dr D Knoll

Dr D Richards

Dr D Ries

Ms J Lll

LBL Robinson

Dr A Shoshani

Dr P Stevens

Dr Cal Tech

J Suich

Savannah River Lab

Dr K Szczesny

Dr G Moorhead

Dr S Perschke

Dr J Petrie

Mr J Powell

Ms P Attree

Dr P Johnston

Dr Ccdn A Saclay

Ccdn Schofield

Dr W Saclay

Cpl Schuler

Dr N Ispra

Tubbs

J Ries

Yeb

P Fuja

A Lindeman

N Tubbs

E Fong

J Collica

A Brooks

W Gersbacher

S Jones

J Yeb

A Lindeman -7 -

N Pellegrino

PART I : AN INTEGRATED APPROACH TO DATA MANAGEMENT 1. An introduction to Generalized Data Management Systems

The Organisation for Economic Co-operation and Development (O EC D) was set up un der a Convention signed in Paris on 14th December, 1960, which provides that the OECD shall promote policies designed:

-to achieve the highest sustainable economic growth and employment and a rising standard o f living in Member countries, while maintaining financial stability, and thus to contribute to the development o f the world econom y; -to contribute to sound economic expansion in Member as well as non-member countries in the process o f economic development; -to contribute to the expansion o f world trade on a multilateral, non-discriminatory basis in accordance with international obligations.

GENERAL INTRODUCTION

This report is aimed at people with scientific background, such as physicists, chemists, biologists, etc. as well as management personnel. Its purpose is to stimulate scientists of all disciplines to consider the advantages of using a generalized data management system (GDMS) for storage, manipulation and retrieval of the data they col lect and often need to share. The report should also be of interest to managers and programmers who need to make decisions on the management of scientific (numeric or non numeric) data. Another goal of this report is to expose the features that a GDMS should have which are specifically necessary to support scientific data, such as data types and special manipulation functions.

It is hoped that the way the report is organized, starting with basic concepts and the terminology of GDMS, then discussing the requirements of GDMS for scientific data, and describing case studies, will be of value to people who have not been exposed to GDMS before. At the same time, the reader more familiar with GDMS can benefit from guidance on available systems, from discussion of other users' experience, and capabilities in GDMS helpful in handling scientific data. More specifically, the report will: A GDMS is a system that provides generalized tools for the purpose of defining a database structure, for loading the data, for modification of the data, and for organiz ing the database for efficient retrieval and formatted output. A data management system is ' 'generalized" when it provides a user-oriented language for the different functions, so that it is possible to define any new database, its internal organization, and to retrieve and modify the data without the need to develop special purpose software (program) for each new database. The main purposes of a GDMS are quoted from a recent survey [1]:

•
to make an integrated collection of data available to a wide variety of users; • to provide for quality and integrity of the data; • to ensure retention of privacy through security measures within the system; and • to allow centralized control of the database, which is necessary for efficient -11 -data administration.

From the user point of view GDMS should provide:

• data independence, i.e. that application software does not need to be modified when data or data structures are changed • languages and facilities to perform the spectrum of data management functions: data definition, data entry and updating, conditional search and data retrie val, and data output and report generation. These facilities could be avail able in on-line or batch mode depending on the needs of the application. • the representation and access of both numerical and literal data.

The above points will be discussed in more detail in the next section of the report.

The advantages of using a GDMS are numerous, but for scientists and other users who are not computer specialists (and who cannot afford the time to become expert program mers) the main advantage is the immediate availability of a system for database handling. If their data handling requirements are relatively simple, these may perhaps be satisfied without further programming by use of the query language/report writer facilities of a suitable GDMS. Where user requirements are more complicated, applications programs in a high-level 'host language* (such as COBOL or FORTRAN) may be linked to the database by embedding GDMS Data Manipulation Language statements in those programs. The available programming effort can be concentrated on the specific problems in hand.

The generality of GDMS can sometimes degrade the efficiency of an application com pared to a specially developed program, but this consideration is usually outweighed by the savings in software development time and cost, by the availability of the data for numerous applications, and by facilities providing integrity and security and easy modification and manipulation of the data. Database management, like the use of highlevel programming languages instead of assembler, is the latest in a long series of compromises in which increased user convenience is traded against computer efficiency. Although initially these trade-offs are expensive, hardware and software have historical ly tended to evolve in a way which reduces the cost of convenience.

Recognizing that scientific data may have different characteristic? from ' 'commer cial" data, it is the aim of this study to explore the differences and point out systems that have features amenable to the handling of scientific data. Therefore, the people involved in the study were selected both from the scientific community and the computer field. In particular, cases where GDMS were used for the handling of scientific data are described.

The report introduces first the spectrum of GDMS approaches, techniques and ter minology. This is done at a level which describes the functionality of GDMS without going into the details of how it is achieved. Then a survey of (mostly commercially) available systems is given, together with comparative features. This is followed by a discussion of requirements and capabilities needed to deal with scientific data and a description'of several data management systems designed specifically to handle scientific data. In the next sections several example scientific applications that use GDMS successfully are described, followed by examples of potential applications now under consideration. Finally, a discussion of future trends in the development of G D M S and related areas is given so that the reader may consider their possible effect on his environment. In the conclusion section (part of the epilogue) we summarize the viewpoints of participants relative to when should G D M S be used and what to expect in using them. 1. Scientific data handling by computer Scientific and engineering programs handle data from diverse sources. The process by which data generated in experiments is refined for ultimate use in technology typically covers three stages. Raw data is first collected from experimental equipment, then later analyzed by the individual experimenters for publication. In the final "evaluation* stage, experimental results are reviewed, compared and aggregated into a final recommended data set, which may be used as the input data for cal culations in many different technological applications, and is called "evaluated9 data. A scientific data handling application may be required to accept source data at any one of these stages, and on one or more of a variety of media. They may originally have been punched on cards or paper tape, keyed in at an interactive terminal, or have been read out directly from an experiment on to magnetic tape. At some stage, the data ends up in computer files and an analysis program will read these files to produce a set of results which may be histograms, graphs, com puted values or simply listings.

All major computers have a file manager as part of their opera ting system allowing the programmer to declare named logical files and specify on which physical storage devices they are to reside. The system will organize the physical space and write data to it or read data from it when requested to do so by a user program. A typical analysis pro gram will be written in FORTRAN, and the layout of data in the files will be reflected in its FORMAT statements. This approach causes no problems where the files are created only once, and then used in a single program or slight variants of it.

However there are many situations in which logically interrela ted files may be accessed by several different programs. Matters will be complicated further if these files are frequently updated; they may also be subject to independent modification by several authorised users.

It is in such cases that the Generalized Data Management System (GDMS) approach can be of great utility, and there are now many examples of its successful use in scientific or engineering applications. What a GDMS offers is, essentially, a high level language for describing and manipulating data to complement programming languages such as PORTRAIT (which is designed primarily for performing calculations), COBOL or PL/1 in maintaining an integrated and logically consistent data base for use in a variety of different applications.

The function of a GDMS

A Generalized Data Management System appears to the user as a software interface separating him and his programs from the operating system and the external storage hardware, in respect of all access to a centrally controlled and integrated data collection, shared by a number of users and referred to as a Data Base. The system provides tools for defining the physical structure of the data base and the logical relations within it, for loading and modifying the data, for protection of the data base against accidental damage and unauthorised access, and for efficient data retrieval. Good special-purpose systems may provide many of these facilities. A data management system is "generalized" when it provides a user-oriented command language for all these different functions, applicable to any new data base regardless of its internal organisation, thus removing the need to write new data handling programs for each new data base.

When a file is read by a conventional analysis program, usually one ^record9 is read from it at a time where a record is a collection of 9items1 of logically associated information, such as the measurements made at one location and/or at one particular time, during a scientific inves tigation. A file usually contains only records of the same form, and which can, for example, be read by similar PORTRAIT statements. The files to be integrated in a data base may represent an equal number of different record types, each containing data items with varying formal attributes (integer, floating point, character data...). A GDMS offers facilities for handling these records and data items individually or in sets, using data manipulation commands dependent only on the logical structure of the data base. The division of records into files, and the actual disposi tion of records and files on the physical storage devices, is almost in visible to the user.

It should be remarked that a software package providing most of the basic GDMS facilities described below can itself be written in a higher-level language such as PORTRAIT, making use of the standard inter face for file-handling provided in that language. Typically, such a package can be developed with a few man-years of effort, but may be found lacking in generality, reliability and efficiency.

II. THE FACILITIES OFFERED BY A GDMS

Data independence of user programs

A GDMS allows the user to refer to and retrieve individual items in a record directly by name, without the need to declare the record structure in the user program. The structure of the data base (record structures, names of data items and the relations linking different record types) is declared independently from individual programs, for all appli cations, in an initial phase known as Data Definition.

Once a data base exists and contains data, a particular user has only to be concerned with the names of those items which are of interest to him, and an application program need only refer to those items which it needs. This facility is by no means negligible as can be seen in a real life GDMS application for oceanographical research where each record con tains no less than 73 items ranging from the latitude and longitude to percentages of different minerals in samples brought up.* The same infor mation could of course' have been split between several overlapping files of shorter records, but such a split would bring with it the need to ad minister, by program and by the inclusion of link; information, the rela tions between corresponding records in the different files. This is in itself a major function of a GDMS.

The removal of explicit information about the physical and logi cal structure of the data from the user programs to a central schema accessed through the GDMS is said to confer a degree of 9data indepen dence 9 on the user programs. It will be seen from later articles in this study-report that data independence is far from complete in most present ly available systems.

Updating facilities

The data management system provides updating facilities for storing, modifying or deleting data from the data base. When the data base is updated either by inserting completely new records or by modifying the values of items in existing records, the system automatically validates and converts the data according to the formal attributes of the item, which are usually supplied by the user when the item is named for inclusion in the schema of the data base. An item may be of the type Integer, Character (i.e. alphanumeric text), Date, Real, etc. As an example of validation, 11A34l would not be accepted in place of 1234 as the value of an item named LENGTH and described as Integer. Some systems also allow the user to specify a range or set of acceptable values for an item, or even more general validation conditions. Rapid retrieval of specified data items, whether from a classi cal file or from a data base, usually requires the data to be kept physi cally on a random access storage device (currently discs). One of the more difficult problems in programming data update operations for random access files is to ensure that the file can be recovered if it is corrup ted during update following a program error or a computer breakdown. In a GDMS which permits several users to work in'parallel updating the data base, it is important not only to be able to correct errors due to one of them, but also to do this without rubbing out the work done in the mean time by the other users. Many GDMS provide utilities for data base recovery following an accident to one of the constituent files, or the inclusion of invalid data. These facilities may be obtained by taking periodic copies of the whole base, supplemented by the logging of all update transactions.

5* Data retrieval

The most important function of a GDMS is to allow the retrieval of data according to prescribed criteria. At its simplest, retrieval may consist of obtaining, in an application program, a single record contai ning specified values in particular items which have been declared as key items, for example, Item PARTICLE = PROTON and Item PLAB = 1260. An easy variant of this is to retrieve all records satisfied by a range of key item values, for example, PARTICLE = PROTON, and PLAB between 12000 and 13000, the successive records being supplied to the application program on request. However, some useful systems limit the number of possible key items to one, which could simply be an identification number for the record. Centre National pour 1 'Exploitation des Oceans, Centre Océanographique de Bretagne, Brest.

It is easy to see that a file can he organized so that records may he retrieved efficiently by declared keys. Indeed, file organizations such as "indexed sequential" or "random access" are provided for this purpose by most operating systems. However, the advantage of a GDMS is that the user has simply to state which of his named items are to be used as keys, and the GDMS takes care of a non-trivial amount of housekeeping in order to set up the files and organize the updating and retrieval.

In addition, a GDMS offers the possibility of easily posing questions of a kind which may or may not have been envisaged when the data base was created. One obvious way of doing this, though not the easiest, is to pass through all the records of a given type in turn looking at the values of some items. The required items would be fetched using CALL®s to the GDMS, and the tests would be made using the IF state ments of the "host language" such as FORTRAN, from which the CALLs are made. Most GDMS allow records of several different types to be scanned simultaneously, thus allowing the equivalent of multi-file retrieval. Another feature of some systems is free-text search, or examination of an alphanumeric item character by character, looking for a particular sub string in ito

The more advanced GDMS provide, in addition, a high-level query language for expressing retrieval criteria in a natural manner. This same language may be used for making updates. The retrieval condi tions usually consist of simple predicates in which items are compared to a constant (e.g. PARTICLE e PROTON) or linked together by logical operators, as in (PARTICLE = PROTON OR PARTICLE = ANTIPROTON) AND PLAB GE 12000 AND PLAB LE 13000. As well as retrieving individual records, the GDMS often provides basic statistical functions such as means, variances, regression analysis or even presentation in histogram form of the results of a search.

Privacy of data may be ensured by limiting a userf i s access to certain files (or record types), or to a logical subset of the data base, which in some GDMS is referred to as a subschema. The degree of discri mination between users which can be imposed by these privacy locks depends on the system : several systems can allow a user access to spe cified data items only within a given record type.

Sometimes the user is allowed, essentially, to declare before hand the type of question he expects to ask frequently, and the system then creates "access paths" for faster retrieval at the expense of upda ting time and storage space. However, the possibility of asking unfore seen questions without writing and testing a special program is one of the more pleasant features of GDMS.

For commercial applications, presentation of the retrieved out put in formatted and sorted reports with headings and subheadings, foo tings, summaries, sub-totals, etc., is a very important requirement. The fact that sophisticated report generators are available in some form or other with standard GDMS may not matter for the majority of scientific applications, but it can be extremely useful in a few cases where printed compilations are required. Unfortunately graphical output, which is obviously desirable for scientific applications, is not usually available with report generators, but clearly a host language which interfaces to both a GDMS and a graphics package offers this possibility at the cost of some coding.

6* Control of redundancy " between data

A data " base carries, in more or less integrated form, the data which would otherwise be dispersed over a number of overlapping files. In the case of the files, their logical overlap is expressed by recording the same values for various data items in two or more files. Within the data collection seen as a whole, and stored in an integrated data base, these repeated data may be seen as redundant. The structural information expressed in the overlapping files by repetition of data values is now handled by the GDMS, and may appear as address pointers or cross-indexing transparent to the user.

One reason for avoiding the inclusion of redundant information in the data base is that it wastes storage space. A more important one (since many data bases occupy more storage space than the files they replace) is that redundancy which is not controlled by the GDMS itself may result in errors which will seriously corrupt the data base. At the level of data items redundancy can be reduced by limiting the number of times a given item is recorded in the data base : system structural information linking the different record types referring to the item will replace re petition of the item. Another method at the item level is to store once only any long text which appears many times as the value of an alpha numeric item, or any set of values of different items which are always associated with a particular value of one other item, for example the properties of a chemical compound. The important feature for the user is that he need keep in only one place the full descriptive data concer ning, for example, a particle or a chemical compound which is known elsewhere in the data base by a short name or code. A reduction in quantity of data stored may bring an improvement in quality.

III. DATA STRUCTURES

The basic facilities which are provided by the majority of GDMS have now been outlined. In descriptions of current GDMS, much em phasis is usually placed on the kind of logical structure in which the user is allowed to store his data. In present-day practice, this logical structure is inextricably bound up with the physical structure or acces sing methods used. The logical structures offered by various GDMS may differ sufficiently to influence the choice in favour of some rather than of others for a particular class of applications, but not usually enough to invalidate the use of any given GDMS altogether.

7•

Hierarchical structure within a single record A common kind of logical structure is the intra-record hier archy in which items within a record are organized in a hierarchy or tree structure. This may be restricted to be a two-level tree in which an item at the first level may consist of an indefinite number of sub-items, rather like a vector, at the second level. More generally, some systems allow a multilevel hierarchy in which sub-items themselves can consist of sub-items, and so on; for example, an elementary particle can decay into several particles, any one of which may decay into other particles, etc. Naturally, the system looks after all the internal pointers needed to implement such a hierarchy and the user searches through the tree in an application-oriented manner. Historically, intra-record structures of this type formed the basis of early GDMS because the records could be maintained in a sequential file on magnetic tape. The main problem was that the entire file had to be copied when an update was performed (neces sary anyway for tape files), while a search might likewise require the whole file to be read.

Examples of systems using intra-record, hierarchies are the early INEOL system, still used for scientific applications in CERN and origi nally written by T.W. Olle around 1965? and the Oak Ridge ORCHIS system. Eig. 1 shows an intra-record hierarchy; references to individual systems discussed will be found in the list at the end of this report.

Hierarchies of records

As falling costs made it possible to store large data bases on rotating mass storage devices such as disks or drums, with their semi random access capability, retrieval from an intra-record hierarchical structure became more efficient because (provided one knew where to look for it) finding an individual record no longer involved a search of the whole file. It became possible to allow GDMS to handle several files as a single data base, with user access in milliseconds to any item in any one of them. The use of disc storage led to the development of more powerful structures, increasingly oriented by user requirements rather than machine constraints.

An extended hierarchical structure, as implemented in SYSTEM 2000 and shown in Eig. 2, may be supplemented by inverted indices allowing specified data items to be accessed directly at the disc address given in the index rather than by following the hierarchy down from the top. Different levels in the logical hierarchy are represented by distinct sets of records (called ^repeating groups5) rather than by items in one record. Such a hierarchical structure does not permit direct links between items or records in different hierarchies.

9* Network structures

Logical network structures are based on the concept of inter locking 9 sets9 each consisting of an owner record and one or more member records. A set can be implemented as a circular linked list, and may be searched in logical sequence by entering at the owner record and accessing members in succession until the required member record is identified.

Depending on whether a given record may be both owner of one set and member in another, it may or may not be possible to represent a hierarchy directly using only sets of this type : Eig. 3 makes the point clear. The very widely-used TOTAL system allows records to be owners or members in many sets, but not to be both owner and member. Although more levels can be represented indirectly, direct representation is thus limi ted to a two-level hierarchy. Systems conforming to CODASYL specifica tions (see Section 13 below; do not have this restriction, and can represent full hierarchies.

The greater power of networks, as compared to hierarchical structures, lies in the possibility of associating one record type with (almost) any other. Rather than adapting the data base structure to the limited set of associations permitted by a hierarchical structure, the user may start by defining the record types of interest to his applica tion, and then express in the data base schema all the associations that exist between them. A pure hierarchical structure can be seen as a de generate case of a network, in which no record may be a member in more than one set.

Relational data bases

The relational model, developed later and so far implemented in a number of experimental systems, is a more user-oriented approach to data base structures. In this model, a data base is viewed as a collec tion of n-ary relations or homogeneous tables, each row of which is analo gous to a record containing n items, none of which can have multiple occurrences. When defining relations, consistency and non-redundancy can be guaranteed by following a set of formal rules which ensure that the relations are all in so called Third Normal Form.

There is a closed algebra of operations called join, projection etc., which can be performed on relations, and interrogation of a rela tional data base consists in applying this algebra. The user is freed from specifying access paths when defining relations, though access paths are indeed used when making joins, and cannot be entirely ignored. No relational GDMS is yet commercially available. Fig. 4 -shows schematically how a hierarchy may be represented by a collection of relation tables in which data are stored.

Physical storage of data

It must be made clear that the logical structures which can be expressed by a GDMS need not be directly reflected in the way in which data records are stored on disc. In systems based on network structures, for example, records accessed by their logical keys are often distributed at apparently random disc addresses within a system-defined file. These disc addresses are often obtained from the logical keys by a 'hashing' algorithm and the aim of this procedure is to ensure even distribution of data over the available disc space. In SYSTEM 2000 the structural information which constitutes the hierarchy is stored in 'hierarchical location tables' (indices) separate from the data records themselves, which are stored on disc in approximately the order in which they are loaded. Sets (in network systems) and hierarchical structure are usually expressed by address pointers, and sets or hierarchies may well be physi cally intermingled and disordered as compared to the logical order expressed by the system-generated pointers.

Although the physical layout of the data base may not be very similar to the logical structures it represents, the performance of the system may still be very much affected by the way the data storage is 'tuned' to match the logical structure and the commoner user program paths through the data base. Conversely, it may degrade performance to represent a data base directly as the logical view of the user, while performance of a particular program may in any case be degraded when the data base structure is designed to satisfy the overall performance requirements of multiple applications.

IV. NOMENCLATURE Some further features of, present-day GDMS will now be consi dered in order to introduce terms which will be used later in this report.

The innovations in data base structures which became possible with the use of disc storage have been discussed in Sections 8-11 above. Data stored in random access disc files may be reached directly by obtai ning the disc location (its 9 address8) through a randomizing algorithm (^hashing1) or from an index (an index is a directory in which a logical key value may be looked up to find the physical locations of the records in which that key value occurs and which may be implemented internally in various ways, including hashing). Pointers in a data base context refer to addresses generated by the GDMS and embedded in the data base records to give directly the physical location of the adjacent records in the logical structure. Pointers were already used in the intra-record hierarchies of the early tape storage GDMS, and are the main support for the implementa tion of CODASYL networks.

12. An example of early GDMS : INFOL Most of the important characteristics of current GDMS can be found in the later versions of the simple INFOL system mentioned in Section 7* INPOL is an entirely self-contained system with its own query update language. In contrast to most later systems, it cannot be acces sed by CALL statements from a host language such as COBOL or FORTRAN. These user languages allow commands at a 'high level8 of logical abstrac tion, in contrast to 8low level1 languages (such as assembler language), much closer to the machine language of the computer in use. Although the original INPOL was written in assembly code for CDC J600/3800 compu ters, it has acquired portability by being rewritten in standard PORTRAN. Another new feature is the possibility of its being used interactively (that is from a terminal with keyboard) as well as in batch mode I that is using card reader and line printer).

INPOL was designed for tape storage, and has a sequential file structure with an intra-record hierarchy. The data is described by the user in an establishment phase using what would now be called a Data Description Language (DDLj . The data description, which in this case consists only of logical descriptions of items in a record is stored in the file separately from the data itself. Only one item in the record can have the privilege of being a key item, and records in the file are ordered according to the value of that item. An item may be declared to be multiple (more generally called repeating); that is it may have an indefinite number of occurrences.

The initial loading of data into an empty data base is known as population of the data base. In the case of INPOL, this may be done in the updating phase, in which data already loaded may also be modified or deleted. Items are checked or validated before being inserted. An example of automatic validation in INPOL is that a date is checked to see if it is a proper calendar date, even taking into account leap-years. Because updating is performed by copying the complete sequential file, a back-up copy is usually available, and thus integrity is easily ensured, at the expense of computer efficiency.

Retrieval is performed in an interrogation phase, using a query language, in which search criteria can be specified, as already described above. As an INPOL record has only one key item and as the file is sequen tial anyway, virtually any query is an unforeseen question and implies an examination of all the records in the file. When the desired records have been retrieved, they can be displayed partially or completely, in an easily prescribed manner using a modest report generator, which lacks the full spectrum of facilities for page layout provided by more sophisticated report generators.

Finally INFOL allows restructuring by change of description of existing items, or by addition of new items. This is facilitated by the fact that after any change to data or description, the entire data base is copied.

CODASYL systems

The 1971 report of the CODASYL Data Base Task Group defined stan dards for a GDMS to be used primarily with COBOL as the host language. It proposed the use of a network structure (see Section 9) to model the relations between records in the data base. Hierarchical relationships are a simple special case of a chain of network sets, and so can also be represented.

The report gives the detailed syntax for a Data Definition Language (DDL) , and a Data Manipulation Language (DML) for inclusion in the COBOL language. A Data Base Description is called a schema, and the view of the schema which an individual COBOL user needs, or is allowed to have, is called a sub-schema. In the DDL the user is allowed a choice of accessing methods for records in sets and by record type, and thus can take account of efficiency for foreseen retrievals. Using the DML, the COBOL programmer figuratively navigates through the network as he moves from set to set.

No query language is proposed in the CODASYL report, while the question of multi-user interaction is dealt with to some extent. Rules are prescribed for avoiding the conflicts which can arise when two users try to update simultaneously the same or closely related data. Also security at all levels is provided for restricting access to information m the data base. Some well-known CODASYL systems are IDMS (Cullinane Corp., for IBM, I CL and other computers), DMS 1100 (Univac), DBMS-10 and -11 (DEC), and IDS-II (Honeywell).

Future GDMS development

Relational GDMS were discussed in Section 10, and it is this data model which is currently receiving the most attention in new systems development. Independently of the data model used, it was felt important to establish a broad outline of standards for future GDMS designs. The 1975 ANSI SPARC proposals, which have been widely accepted, foresee a clear separation between (a) the external schema through which the data is accessed by user programs, and which may be relational, network or which ever interface is more natural to the user, (b) the conceptual schema which carries the intrinsic structure of the enterprise being modelled, and (c) the internal schema which controls the physical storage in the data base. The internal schema can be tuned, for example by adding or removing access paths, to match data base use. A system which starts to approach this design is EDMS (by CDC, Brussels, and some universities).

Future GDMS can be expected to have user interfaces allowing queries to be made in more or less natural language, or in a powerful formal language according to convenience. The data bases themselves may be distributed over many computers in a communications network. The complexity and diversity of modern Generalized Database Manage ment Systems (GDMS) make them difficult to characterize.

An understanding of the current state of GDMS technology is important, however, for those considering the use of these powerful software tools.

Database management systems are software products used for implement ing application systems.

The increasing use of GDMS packages attests to the success of many database applications.

Unfortunately, many others do not achieve desired levels of performance within expected resource expen diture levels.

Often unsuccessful systems utilize GDMS software that is not well matched to application requirements. This paper is aimed at those whose interest in the application of GDMS technology exceeds their knowledge of these new software tools.

The following sections review database management acquisition sources and characteristics of GDMS currently available in the marketplace.

The appendix contains a list of commercially available GDMS and related software packages and the hardware on which they are operable. Specific database management products and their vendors are identi fied for illustrative purposes in the following sections and in the appen dix.

Inclusion or omission of specific systems should not be construed as a judgement, endorsement, or recommendation by the National Bureau of Standards.

GDMS ACQUISITION SOURCES

Database management software can be acquired in several ways and from many sources. Acquisition methods include lease (rental) and purchase agreements where GDMS products are considered separate from other system software, and "bundled" arrangements where GDMS software is paid for as part of a complete package of hardware and software. GDMS providers in clude: hardware vendors, software vendors, computer services, universi ties, and other sources.

Each of these sources is discussed in turn below.

Tables listing a few GDMS packages available from each of the source types are presented for illustrative purposes.

Hardware Vendors

Computer hardware suppliers have traditionally provided operating systems and support software to their customers. GDMS software is also marketed in this way.

Like other software products, GDMS packages are in some cases priced separately and in others "bundled" with the hardware. In either case, the hardware vendor is also responsible for GDMS software support.

Many users believe that dealing with a single vendor eliminates possible conflicts and clarifies responsiblity. Conversely, detractors of this acquisition method claim hardware vendors have a vested interest in developing software that "locks-in" users.

That is, GDMS as well as other software products may be developed in a manner that makes it difficult to transport applications to other hardware systems.

Some GDMS provided by hardware vendors appear in Table I. --------------------i 2. 3 Computer Services

Access to GDMS software can be acquired through the purchase of com puter services. The user pays for on-line and/or batch access to a hardware system that provides one or more GDMS packages (often at an addi tional charge). This type of arrangement is sometimes advantageous: it allows access to GDMS software without acquisition of specific hardware; the burden of installation and maintenance of the GDMS software falls on the computer service organization rather than on the user; and a prototype application can be developed prior to a total commitment to a specific GDMS.

A disadvantage can be cost; time-sharing (on-line) and servicebureau (batch) charges often exceed those of in-house GDMS installations. Some organizations do not like to be dependent on outside computer service firms because they believe it reduces their control over critical applica tions and information.

GDMS provided by computer time-sharing and service firms vary with the hardware systems used.

Table III shows some GDMS packages provided by major domestic U.S. computer service organizations.

-29 - Several state-of-the-art systems are currently available from their developing institutions. While these systems generally employ innovative techniques, they are rarely as com plete and as fully tested as those available commercially. The systems are frequently distributed free or with only a nominal charge, but test ing, maintenance and support can not be expected to meet commercial stan dards.

The systems are therefore typically of interest primarily to other research installations.

Examples of GDMS implemented by universities and available for a nominal fee appear in Table IV.

Table IV -GDMS Implemented by Universities

PACKAGE NAME IMPLEMENTER

1--------------------------------1 ------------------------------- A method for describing and classifying GDMS software is necessary so that capabilities can be matched to application requirements. Unfortunately, there is no taxonomy for GDMS that is both comprehensive and unambiguous. This paper discusses some of the features that characterize and dif ferentiate GDMS software packages.

It is recognized that specific GDMS products may not be easily described in this framework; some may seem to fit in several classes while others may not be properly described by any. The feature analysis approach, however, does appear to be useful for understanding the nature of any differences among currently available GDMS software p a c k a g e s .

The feature list approach for description of database management software is not new. Two previous efforts were widely distributed and provided the framework for this analysis:

the CODASYL Technical Report of May 1971 [1], and NBS Technical Note 887 issued in November 1975 [4].

The features of GDMS software are described below under five major headings:

computer environment, secondary storage structures, user inter faces, security features, and implementation orientation.

Each heading is further subdivided as necessary to describe more detailed capabilities and f u n c t i o n s .

-31 -Whenever a GDMS is acquired it must be carefully matched to the com puter environment in which it will be used. GDMS packages are generally designed to operate on a specific manufacturer's hardware and to interface with particular operating systems, telecommunications packages, and the like.

Some important considerations regarding computer hardware and sys tems software are discussed below.

Hard w a r e . Database management systems are generally developed for one or more specific mainframes or family of central processors.

With the exception of systems designed by hardware vendors specifically for their own equipment, GDMS packages are most often developed to operate on IBM equipment because of the large number of IBM installations.

Nevertheless, an increasing number of these software packages are developed specifically or converted for use on hardware manufactured by other vendors.

Even when a GDMS will be used on hardware produced by a specified vendor, the confi guration must be adequate to support the GDMS software. Some hardware characteristics that impact GDMS software are: indeed, it is sometimes useful to think of a GDMS as an exten sion of the operating system.

This close working relationship causes the GDMS to be very sensitive to apparently minor (from the user's perspec tive) differences in systems software.

Types of systems software that must be carefully matched to specific versions required by candidate GDMS i nclude:

Secondary Storage Structures

Database management systems are concerned with storing, maintaining and retrieving large quantities of data.

To accomplish these objectives, GDMS provide mechanisms for structuring data on mass-storage devices. Two conceptual views of data characterize modern GDMS packages: the logical, or user's view, and the actual physical representation of data in computer storage.

Each is discussed below.

Logical view of d a t a . The logical view of data deals with the users' perception of data without concern for how data items are physical ly stored.

The sum of all aspects of the logical view of data for a GDMS is sometimes referred to as the applicable "data model". The interfaces between users and GDMS vary greatly both with respect to capabilities that can be invoked and ease of use.

Five aspects of user database interface are discussed below: data definition, external link ages, database maintenance, data retrieval, and user aids.

.3.1 Data defi n i t i o n . Generalized database management systems provide a facility

for data definition that is separate from data manipulation pro cedures.

Data definition languages (DDL) take different forms; some are highly tabular, others have positional (card column) orientations, and a few are relatively free form.

A DDL is used for specifying names, types, and special characteristics for data entities. Relationships among data item classes are usually communicated through the DDL, for example, which fields are to function as selection "keys." Security and integrity res trictions may also be specified with the DDL.

The resulting definition is sometimes called a "schema".

.3_.2

External Lin k a g e s . User written programs often require access to data maintained by a GDMS. Some GDMS provide an external programming language interface as the sole or primary access mechanism.

In addition to these "host language" GDMS, some systems which are "self-contained" (in that they have their own query language) also provide procedural language interfaces. External linkages usually take the form of subroutine calls that can be embedded in programs written in languages such as COBOL, FOR TRAN, PL/1 or assembly language. Some host language systems provide GDMS macros that are inserted in user programs and translated into the ap propriate subroutine calls by a preprocessor. Some GDMS provide no inter face at all to external programming languages.

3 .3^. 3 Database main t e n a n c e . Database maintenance refers to the initial loading of a database, database restructuring, and updating existing data bases.

These three maintenance tasks are described and features charac terizing alternative GDMS products are listed in the following paragraphs.

Database Loading -provides the initial instance of the database. This process is sometimes termed "population" as it involves filling out the data framework established by the Data Definition Language with an actual "population" of data instances.

Aspects of population facilities include:

-nature of data source • media (i.e., cards, tape, disk)

• organization (usually sequential)

-data integrity features The most straightforward way to restructure is to unload the database, change the definition, and populate the database using the modified schema. Some GDMS products provide utility programs for assisting the user in the res tructuring task.

Others allow limited restructuring without going through the tedious and costly unloading and repopulating process.

A few GDMS software packages offer extensive restructuring capabilities that are au tomatically invoked via a structure modification language.

Database Updating -is concerned with changing the data contents of an ex isting database without modifying the data definition.

Data instances are added, changed and deleted using GDMS updating features. GDMS packages having their own query language often have a similar language for updat ing.

Other systems allow updating from high-level language programs. Some aspects of database updating facilities are listed below.

-level where update may occur

• individual data items/attribute values • data records/tuples • files/relations • entire databases -pointer consistency assurance (system automatically adjusts pointer references when necessary) -Integrity constraints (validation of updates similar to that provided for database population)

-security features (see below)

-lockout (protection against simultaneous update by 2 or more users)

• level of lockout (record, file, etc.)

• type of access precluded (update only, update and query access, etc.)

-restart and recovery (see section 3.4.3., below)

Data retrieval. Retrieval features of GDMS packages allow users to select and extract data from a database, to order and perform calculations on that data, and to format and display the results.

Data retrieval capa bilities vary widely in available GDMS software. Characteristics of data retrieval mechanisms are listed below.

Selection -is concerned with identification of the specific data items that are of interest to the user.

The selection process may be specified in a "host" programming language through calls to the GDMS, or may be c o m municated to the GDMS through a "query" language.

In the latter case, several query language features that should be considered when evaluating alternative GDMS include:

-general language format

• system prompted, with "menu" choices • English-like, with keyword commands While all GDMS packages provide some output facilities, their capabilities range from standard "unformatted" displays to sophisticated report writers. Some GDMS require that user written programs do all out put.

Many GDMS offer an array of output facilities.

Features of output facilities include:

-method of obtaining output

• user written programs • selection among options -i.e., response to system prompted dialogue • standard "unformatted" output -display media flexibility

• primary system 1/0 device (e.g. , t erminal) • on-line printer • off-line printer • graphic display • other, e.g. photocomposition devices --machine readable files produced

• media • format

report formatting • titles • headers • totals and subtotals

Computation -facilities usually in the form of arithmetic and statistical functions allow users to process retrieved data. Built in capabilities most often include the determination of totals, averages, counts, maxima and minima. Some systems also provide limited statistical functions such as calculation of variances and standard deviations.

Of course, many GDMS allow user programs to access databases; when these systems are employed, any computation possible in the host (user program) language can be done on data retrieved from the database.

Sorting -is the ordering of retrieved data in a specified sequence using one or more data items as "sort keys". Some GDMS provide sorting facili ties that can be invoked on-line; others are available only to batch users. When a GDMS does not have an integral sorting capability, one is often available as a utility program in the operating system library. Features that differentiate available GDMS sorting facilities include:

-mode of access -phonetics, i.e., same sounding but differently spelled data names recognized in search requests -synonyms -access to (display of) data element dictionary -"natural English" recognized * Other GDMS usage aids such as:

-"HELP" or "EXPLAIN" command -on-line documentation -"browsing" feature to scan data

Security Features

GDMS security features provide mechanisms for selectively limiting access to the database, for identification of legitimate users, and for backup, restart and recovery.

Each of these security functions is d i s cussed below.

3.4._1 Database p r o t e c t i o n . Modern GDMS packages provide security

"locks" at various levels; that is, classes of users may be allowed to reference specified portions of the database and precluded from accessing others. Some GDMS can differentiate according to type of activity, allowing, for instance, retrieval but not update. Important characteristics of GDMS protection capabilities are described in the following paragraphs.

Protection level -is concerned with the logical levels at which users can specify access controls. Many GDMS permit the user to define security locks at several different levels including: for the entire database; for specific files, relations or realms; and for specific data elements or at tributes.

More advanced systems may be able to differentiate among records or tuples according to the contents of data fields; for instance, allowing mid-level managers to retrieve personnel records for all those under their supervision but not for their superiors.

Activity differentiation -is the ability to differentiate among classes of users and to provide different database access privileges to each user class.

Some users may be allowed only to retrieve, some to retrieve and modify, others to create and delete data, and a few to restructure and d e fine databases.

Implementation Orientation

This final feature class is a catch-all for GDMS characteristics that do not fall in the previous four categories.

The heading, implementation orientation, refers to the fact that many of the features describe imple mentation details and design decisions that impact the orientation of a GDMS; that is, they affect the type, mode and level of usage for which the systems are most suited.

Included in this potpourri of system charac teristics are the items discussed below.

.5.1

Host language versus own language. Most GDMS currently available were initially developed as either host language or self-contained systems with their own user interface language (see "user Interfaces -External Linkages" above) . Today many host language systems offer query language processors and many own language GDMS provide procedural language -39 -interfaces.

Nevertheless, the initial orientation of the GDMS often is indicative of system strengths and weaknesses.

.5.2 Mo(3e of u s e . Closely related to the host versus self-contained d i chotomy

is the orientation of GDMS toward batch or on-line usage. Host language systems tend to be batch oriented while own language GDMS are designed primarily for on-line query processing.

Because GDMS are embed ded in and closely tied to operating system hosts they share many of the same performance characteristics including any orientation toward on-line or batch operation.

Available systems differ with respect to the capabilities that are available to the on-line user and those that can be performed in batch mode.

Few GDMS provide all system facilities on-line. GDMS capabilities that may be either on-line and/or batch include: * Data definition If the data communica tion system used by a GDMS is single-thread, it serves only one user at a time; when the teleprocessing interface software receives a transaction it serves only that user until all requirements have been satisfied and the result is returned to the user. Multi-thread communication software al lows for convenient use by more than one user.

.5 ._5 Centralized versus d ispersed. GDMS have traditionally been designed

to maintain one or more large databases at a central processing location. This is contrasted to distributed database environments where data and/or processing facilities are distributed among multiple hardware systems. Distributed databases are receiving increasing attention in universities and research laboratories.

While all of the implementation problems asso ciated with distributed processing have not been solved or even identi fied, it is evident that database software must bear a substantial part of the burden imposed by dispersed storage and processing of data [7].

.5.6

Design trade-o f f s . When the array of available GDMS packages is re viewed, it is important to recognize that all systems represent design and implementation compromises.

Two important GDMS software design trade-offs are described in the following paragraphs.

Update versus retrieval speed -Fast response

to queries is generally achieved through complex data structuring that requires substantial machine resources and time to update. The converse is also generally true; rapid updates can occur only when the data structuring used to speed re trieval is relatively simple and easy to modify.

Response time versus mass-storage utilization -the complex data relation ships necessary for fast response to user commands generally require sub stantial amounts of secondary storage; one modern GDMS generates an object database that is seven to eight (7 to 8) times as large as the source data when all fields are inverted (indexed).

On the other hand, one research system that achieves a data explosion factor of less than one by exploit ing redundancy does so at the cost of increased processor time and slower response to some user demands.

SUMMARY

Many database management systems have been developed in recent years. The proliferation of these software tools makes the selection of GDMS for specific applications difficult.

The previous sections presented informa tion designed to assist the potential user of GDMS technology by surveying acquisition sources and describing important features that characterize and differentiate GDMS products. These general guidelines are applicable to specific database management software evaluation and selection tasks. To serve a variety of users, the criteria for inclusion of software systems were broad, and consisted of the following:

1.

The software system had to be classified either as a database management system, as a retrieval and report formatting sys tem, or as a bibliographic and text searching system.

2.

The software system could not have been designed solely for in-house use; it had to be available to the general public.

3.

The software system had to be applicable to a range of infor mation processing problems; that is, it had to be generalized rather than designed for a special processing purpose.

4.

The software system had to be operational.

It should be noted that these criteria allowed the inclusion of software not strictly classified as generalized database management sys tems.

Included in the list are software products that are correctly described as bibliographic and text searching systems, or as retrieval and report writing systems.

An attempt has been made to label in the 're marks' column systems falling in these categories to differentiate them from true GDMS.

Systems that are available only for minicomputer instal lation are also noted.

The decision to be inclusive rather than limiting the entries in this appendix to only products fitting some narrow definition for GDMS was motivated by the belief that potential users are not concerned with wheth er a specific system is strictly defined as a GDMS; what they want is knowledge of candidate software from which they can select tools for solv ing their particular problems. It is in this spirit that the list is p r e s e n t e d . System trade names, vendors or other system sources, and descriptive remarks appear in tabular form in the following listing. Inclusion of a system in no case implies a recommendation or endorsement by the National Bureau of Standards.

Similarly, the omission of a system does not imply that its capabilities are less than those of included systems.

The infor mation presented was obtained primarily from existing literature and new products announcements [1][2][3][4][5][6]8]. The size and complexity of the costbenefit analysis problem for GDMS versus non-DMS based systems preclude development of a complete solution here.

GDMS commercially available in Japan

A necessary first step, the ca taloging of cost factors, and an overview of a methodology for estimating GDMS application costs is presented in the following sections.

The question of benefits derived from GDMS versus non-GDMS based ap plications is not considered.

The reader should be aware, however, of the importance of the benefits dimension when evaluating potential uses of GDMS technology. While costs of GDMS based systems may exceed those for applications using traditional software, database systems often provide information that would not be produced by traditional software. Indeed, the most important determinant of success is often the benefits derived from the GDMS application.

Costs must be within reasonable limits, of course; but, many database management applications that cannot be justi fied on the basis of reduced costs are considered overwhelming successes because of the additional information and flexibility they provide.

Overview

The following sections describe a proposed GDMS cost evaluation methodology based on identification of GDMS life cycle functions and re lated cost factors.

First an overview of the costing methodology is presented.

Then the GDMS application development life cycle is discussed. Next functions associated with each of the life cycle phases are listed. Cost characteristics and a framework for costing GDMS applications are presented in the following section.

Finally, hypotheses pertaining to costs for GDMS versus traditional software systems are discussed.

The ap pendix contains budget guidelines for estimating GDMS application costs derived from the authors' experience with several actual systems and ap plications.

PROPOSED GDMS COST EVALUATION METHODOLOGY

Any methodology for evaluating costs must identify specific factors contributing to total cost. A well established approach is to describe the process for which costs must be determined first at a high level, and then in increasingly greater detail until quantifiable cost factors have been identified [2]. Such an approach is proposed for evaluating GDMS c o s t s .

The proposed cost evaluation methodology starts with a GDMS applica tion life cycle description of the phases, from perception of need to operation, that all database applications go through.

For each life cycle phase, functions are identified. Then, specific cost factors are associ ated with each function.

Finally, units of measure and important parame ters for describing cost factors are incorporated in functional relation ships suitable for deriving cost estimates. Also included on the figure are references to the subsequent sections of this report.

The dotted line separates the topics addressed by this paper from those left for future work; no attempt is made to determine quantifiers, parameters or functional relationships, nor to present a comprehensive example of the cost evaluation methodology. The following three sections consider the nature of the GDMS application life cycle, a preliminary list of functions performed within each of the life cycle phases, and approaches to the GDMS application costing problem respectively.

COST ESTIMATES

GDMS APPLICATION COST EVALUATION METHODOLOGY

(With Reference to Report Sections)

Figure 1 -52 -3.

GDMS APPLICATION LIFE CYCLE

The life cycle concept is widely accepted and used for understanding and controlling software application systems.

Although there is no agree ment on specific phases and terminology, there is a consensus regarding the essential characteristics of life cycles [3,4].

The life cycle phases illustrated in Figure 2 are both consistent with others appearing in the literature and descriptive of GDMS applications throughout all stages of their existence.

tools

GDMS APPLICATION LIFE CYCLE PHASES

Perception of Need

The application life cycle begins when there is a recognition of an information processing problem or need for information. This recognition must be at an organizational level that is sufficiently high to commit the resources required to develop a problem solution. When there is a predisposition toward one solution technique this phase may include a study to determine the feasibility of the proposed approach. Once an in formation requirement is recognized, this life cycle phase is concerned with establishing a mechanism for developing a system to satisfy the need.

Analysis and General Design

The analysis and general design phase deals with surveying informa tion requirements and preparing general specifications for processing sys tems to satisfy these requirements.

This life cycle phase includes sys tems analysis and general design activities similar to those carried out in traditional (non-GDMS based) software development efforts.

Information and processing requirements are documented in sufficient detail to support subsequent design, acquisition and development decisions.

System Engineering

System engineering is concerned with identifying and acquiring the software and hardware capabilities necessary for satisfying requirements identified during the analysis and general design phase.

Activities occuring during this phase are all directed toward providing the tools re quired to solve the information processing problem.

For database oriented systems, acquisition of the most suitable GDMS software tool can be a com plex and costly problem that has no parallel in non-GDMS based software development projects.

Application Development

The application development phase includes all of the activities necessary to build an information processing system. Using the hardware and software tools acquired during system engineering, this phase is con cerned with the design and implementation of a GDMS application system. Tasks carried out include the creation of data dictionary/directory en tries, design and definition of logical and physical database structures, and construction and integration of the application system. Embodied in this phase are the traditional "programming" tasks of coding, debugging, testing and documenting.

Operation

The last life cycle phase includes all of the activities related to the day-to-day use of the application system. Operation is concerned also with maintenance and modification of the application system. Mainte nance must be performed because imperfections ("bugs") are present in even the best software.

Modifications are required because organizations and _ 5 4 _ their environments are dynamic; the systems that serve them can not be static.

Throughout the life of an information system, continual maintenance and modification is necessary in order to respond to changing requirements and to retain an acceptable performance level.

Note that the essence of the life "cycle" concept is reflected by the arrow from operation to per ception of need in Figure 2.

When changes that are necessary to maintain performance and/or to meet changing requirements become too difficult or costly, the cycle begins again with a new perception of need.

GDMS APPLICATION LIFE CYCLE FUNCTIONS

The proposed cost evaluation methodology requires the identification of specific functions performed within the framework of the GDMS applica tion life cycle.

The objective is to catalog activities for which costs are incurred.

Then, the function list can be used as a guideline for those evaluating costs associated with existing or proposed GDMS applica tions .

In the following sections, functions are listed and briefly discussed for each of the five life cycle phases defined above: A feasibility study attempts to determine the gross feasibility of a particular solution approach through a cursory review of system requirements and their match to the capabilities of the proposed solution.

Feasibility studies are frequently carried out for po tential GDMS applications. When an existing system made up of traditional software is straining under the load of continually changing requirements, there is often a strong inclination to gain the needed flexibility though the use of GDMS technology. Consequently, the decision to use any GDMS software that is not currently installed and operational must be considered carefully.

A pru dent approach is to both install and use, possibly on a prototype applica tion, a new GDMS to assure its viability (see "installation and testing" below). On-line data entry is especially useful when the insertion of data points into the database is desirable as soon as they occur.

The resources necessary for this task depend on the volume of data and the mode of data entry. Manual and computer procedures are modified to reflect changing needs.

For GDMS based applications, database restructur ing is included in the application maintenance function.

Logical and phy sical database organizations are modified to reflect changing requirements and to improve operational efficiency. Finally, some guidelines for applying the proposed cost evaluation methodology appear.

5.

COSTING GDMS APPLICATIONS

Cost Characteristics

Total GDMS application cost can be broken down in several ways. Two important classifications are concerned with the recurrence of costs over time and with the dichotomy between personnel and other costs.

Each clas sification is described briefly below.

Framework for Costing GDMS Applications

Using the life cycle functions and the cost categories described above, a mechanism for determining total life cycle cost for GDMS applica tions is presented.

A worksheet for recording quantities and extending cost factors appears in Figure 3.

The worksheet illustrates the various dimensions of total GDMS application cost.

It is intended as an example of the proposed cost analysis procedures, not as a definitive statement of cost factors.

Worksheet entries are described below. For recurring expenses, the number and period (e.g. weekly, monthly, quarterly, etc.) of repetitions is specified. For continuing expenses and for one-time costs that will be incurred in the future, a present value factor is specified. This is a coefficient that converts one or more future payments into current year equivalent amounts.

GDMS application life cycle

G D M S A P P L I C A T I O N L I F E C Y C L E C O S T F A C T O R S O N E T I M E V S C O N T I N U O U S P V F A C T O R T O T

The PV factor should be 1 for a one-time current year expenditure, less than 1 for a single payment in some future year, and greater than 1 but less than 2 for two future payments. The sum of the resulting products represents a total life cycle cost stated in terms of current year monetary units.

Guidelines for Applying the Proposed Methodology

The worksheet provides a framework for identifying and quantifying important factors that determine total life cycle cost for GDMS applica tions.

It should be useful as a checklist to assure that pertinent costs are not overlooked. One contribution of the life cycle approach may be to provide a perspective.

Because acquisition costs are only a small part of total cost, an apparently expedient acquisition of a GDMS that is not well matched to system requirements may be more costly than other alternatives.

COSTS FOR GDMS VERSUS TRADITIONAL SOFTWARE

The most frequently asked questions pertaining to costs for GDMSbased systems are concerned with their magnitudes relative to those for applications using traditional software.

Cost Relationship Hypotheses

In spite of these barriers and with the caveat that no empirical data will be cited to support the conjectures, we present four hypotheses, la beled HI -H4, about the relationships among GDMS and traditional software costs.

These hypotheses were developed over several years of experience and observation of GDMS application.

They are largely intuitive and cer tainly do not represent a consensus of any group other than the authors. Application construction, where the bulk of programming for traditional systems occurs, may require little or no effort once the database has been established. This is the case, for example, when a question answering system is established using a GDMS that has its own query language.

Traditional software

EXTENSION OF LIFE CYCLES OVER TIME FOR GDMS VS TRADITIONAL SOFTWARE APPLICATIONS

Figure 5 -64--

COST PER APPLICATION FOR GDMS VS TRADITIONAL SOFTWARE

Empirical Results

One reason hypotheses like those presented in the previous section have not been proven or contradicted is the lack of empirical data. Rare ly is the same application implemented using both traditional and GDMS software.

Although database oriented systems frequently replace tradi tional software, the new system is generally greatly enhanced, and there fore not comparable to the original. Even in the rare case when directly comparable GDMS and traditional systems are implemented, data are not col lected about relative system costs. ---------------------------------|

TABLE Is COST COMPARISON OF COBOL VERSUS GDMS IMPLEMENTATION

1----------------------------------1 . I COST FACTORS

1 1 1 1 1 1 _ _ _ _ - 1 - IMPLEMENTATION | COBOL GDMS | 1 1 1 1 I TOTAL PERSONNEL TIME | 1 1 63 MAN-DAYS 69 MAN-DAYS | 1 1 I SECONDARY STORAGE REQUIRED | 1 1 171K bytes 520K bytes I 1 1 I COMPUTER CHARGES I 1 1 |-
- $8K $6K |
The most surprising finding was that total personnel time in man-days did not differ significantly between the COBOL and GDMS implementations. This can be attributed to the fact that the COBOL validation and load fa cilities were required by the GDMS implementation as well. Furthermore, although it had been physically installed, this was the first usage of the particular GDMS package. The only safe conclusion is that each potential GDMS implementation represents a unique situation that must be evaluated to determine its costs and benefits relative to alternative implementation approaches.

SUMMARY

An important prerequisite to the development of a methodology for evaluating costs and benefits associated with the use of generalized data base management systems is the identification of pertinent cost factors. The cost identification problem is considered in this paper.

A methodolo gy for evaluating GDMS application costs using a life cycle perspective is proposed.

The nature of the life cycle is discussed where the reduction is done along the first dimension for the case where A is an array (e.g. NAMES); the dimension specification is irrelevant for a vector.

The mean salary of these individuals is simply M ■*-MEAN OF SALARIES FOR AGES > 30

For those people who find the symbol > too mathematical, one may define the function GREATER THAN.

To understand better some APL Data Base Systems, it is interesting to show the direct APL formulation of the above expression:

where MASK/SALARIES defines a restricted access to the file SALARIES.

Binary vectors and arrays (masks) are often used in APL because of the efficiency in processing: a binary number is represented as a single bit of memory and logical operations (AND, OR, NAND, NOR, NOT...) are very fast. On the other hand, it is natural to introduce a separation between search and computation, if only in order to avoid unnecessary computations.

Updating our Data Base will be easy to do by using direct APL expressions or natural language formulations, e.g.

»SALARIES1 BECOME (SALARIES + 200) WHEN (CHILDREN ^ 3) AND (SALARIES < 10 000)

When an expression has been entered, the user gets an answer immediately: the correct result or an error message. The APL language was designed to run in an interactive environment: APL expressions are interpreted at execution time, and all entities are accessed through descriptors. This principle will be used for APL Data Bases to ensure Data Independence: files (in core or on external devices) will be described by tables and the various tables will be related by common roots (logical names, rather than physical addresses). This is the general approach of Relational Data Bases JTJ, and the basic relational operators (JOIN, DIVIDE, ...) are easy to implement in APL.

The interpretative structure of APL is well illustrated by the primitivei(Execute) which allows dynamic execution of expressions. Combining this with the primitives OCR (canonical representation of a function, i.e. a character form) and QFX (fixing a canonical representation onto a function), it is possible to record on files not only data (variables) but also programmes (functions) so as to record actions. These actions may correspond to 1hooks1 in the main programme, initiating predefined action when given situations arise0 It is not our purpose to introduce all the concepts and primitives of APL, even in the context of a Data Base. arithmetic (+ ,x,circular,exponential ...),relational (= ,^t,<,$,€ .. *), logical (and, or, nand, nor ...), selection (indexing, take, drop ...), structural (grade up and down, transpose, rotate <,..). These primitives operate on (rectangular) arrays.

It is enough to say that APL contains a rich set of primitives:

The semantics of APL being so rich, it will be difficult to choose the right way to implement a given system (the same is true of a good GDMS). The most important choice concerns the data structures /2/. In our previous example, we have chosen a representation by characteristics, i.e. by a set of vectors managed in parallel.

In some other circumstances ' ^ ' ?nt, inventory ...) an array representation is more Trees and lists are not usual in APL because they need normally to be processed element by element, which may lead to long running time: loops are not natural in APL. However, lists can be very useful in con junction with recursive functions, and by definition any APL function may be recursive. Such structures are used in graphics (databases of images), system description (hardware configurations, plants, reliability, net works, ...) and so on. But genuinely recursive structures are not so frequent as is supposed by too many database specialists.

In any case, they are easy to implement in APL /T+7 and seem not to be primitive notions.

In building APL databases, we try to keep in mind the basic virtues of APL: uniformity, brevity, generality, simplicity and familiarity /57. Starting from good data structures, it is very easy to construct a set of primitive notions (APL functions and variables) directly related to the user (in management, econometry, crystallography, reliability, etc.) instead of forcing the end-user to apply general (EDP) concepts not directly related to his daily problems. The dialogue will be adapted to the user, or personalized: a set of primitives, natural language, prompting, computer aided instruction, ... Keeping compatibility with APL (syntax and data structures) will allow us directly to use the APL libraries within database systems: plots, graphics, data analysis, linear algebra, ... Since APL is interpreted, it can be chosen as a machine language. Various APL microcodes are already implemented on minicomputers such as the MCM or the IBM 5100, or on larger size computers like the IBM 370/148. The most recent improvement to APL was the introduction in 1973 of Shared Variables.

Shared Variables allow the description of concurrent processes, and provide an interface with resources external to APL. Their use will be illustrated in the following sections.

The computers to be built in the near future (gigasystems) will require hardware languages to describe architectures based on array processing and multiple processors. One can imagine that (an extended) APL would provide a solution.

INTRODUCTION TO APL SYSTEMS

Let us take as our example the APL-SV system (IBM) used at the French Atomic Energy Commission (CEA). Basically, an APL system is composed of three (logical) parts: a terminal control system, an APL interpreter and a workspace manager.

To each active user is attached a workspace containing its data and functions. Workspaces are organized in (public and private) libraries. Normally, two active users may exchange informations only through system commands (LOAD, COPY, SAVE) outside the control of the APL interpreter (i.e. system commands are not part of the language). The need for external support (files) was recognized very early: a file system, APL*PLUS, was made available in

S v p

TJSiO APL-SAS P A PL -Fo r t

At the French CEA, we run an APL-SV system on a dedicated machine, and have developed an AP providing an interface with the CEA network (IBM 360/91, 370/168, 2 x 370/158, CDC 7600, 6600, CYBER 173 ... implemented around Europe) which allows the APL user to enter data or produce results at any node of the network. To improve the efficiency of our system, we have also implemen ted an AP, called APL-FORT, to link directly under APL some FORTRAN routines; this was done mainly to avoid a tremendous effort in conver ting existing routines: matrix inversion, eigenvalue computations, FFT, data analysis and so on. All these existing facilities will be used in conjunction with databases New developments are under study for graphics and specific database functions.

Fo R t R A K

One should notice that the APL dedicated machine is directly linked channel-to-channel to another IBM computer (the 360/91) and that they share their disk drives.

With such a configuration it is possible to combine conversational (APL) programmes and batch processing in order to achieve good performance. Of course it is transparent to the end-user, who will simply use APL functions put in public libraries. For example, to submit a FORTRAN job contained in the file FORT for execution on the CDC 7600, the user will copy the required function from the library 4 APLSASP)C0PY 4 APLSASP SUBMIT and enter the command SUBMIT »FORT, DESTINATION = 7600» Workspace limitations: direct use of files In the CEA system, the size of workspaces is limited to 80,000 bytes. This is not enough to manage data bases. Coming back to our example of a personnel database, one may define the characteristics of an employee as the result of a read operation from an external file. Suppose we have constructed the file PERSON as a set of records, the first giving the ages, the second the salaries, and so on. Using the file in direct access, one may define the functions AGES and SALARIES by All the expressions we have developed (such as MEAN OF SALARIES FOR AGES >30) remain valid. Within a workspace of 80K it is then possible to handle a large amount of data with the same simplicity as with pure APL data, any information (characteristics) being loaded (read) only when necessary.

Exchange of information between users

Two or more users may exchange information through shared variables or shared files. Although control on shared variables is easy to implement (by using APL primitives), it is not so easy to control the sharing of files, which must be protected against simultaneous read and write opera tions.

In this case, the shared variables can offer a very elegant solution either used as semaphores or as the basis for an APL written auxilliary processor /¿/ 77/.

Another way to control file access is to put in the file a special record which will be dynamically executed during the opening of the file (restriction to specific records,"authorisations to users, etc.).

Security and integrity

Any APL application is implicitly a multi-user application. Several protection levels are provided by the system a password may be associated to the sign-on number a password may be associated to each workspace to protect LOAD and COPY operations a function may be locked so that the semantics are unchanged but the code cannot be visualised: for example, we may protect the SALARIES function by testing whether the current user has been authorised to access it the APL primitives either on rectangular arrays or on arrays from which elements may be arrays. Such structures are obviously important for databases, where they may represent trees, lists or hierarchies. For example, an inverted file may be seen as a vector of vectors. One may hope that such extensions will be made available before 1980 (several models are already operational).

V R 4r-AGES JTJ R «r-GET 1 V ZI7 R 7 r SALARIES *r-GET 2 V ZI7 ZI7 ZI7

Under the new time-sharing system VSPC of IBM, it is possible to have virtual workspaces, i.e. to run large workspaces up to 16 millions of bytes (this possibility was available earlier under VM-CMS).

In such a context, a direct APL approach may be better than any DBMS. For example, using virtual workspace is (10 times) faster than using external files. One may also notice that the new IBM access method VSAM will be fully accessible through an auxilliary processor under APL, including (up to 14) alternate indices.

APL METHODOLOGY

Building a Database is not just a question of organising data or using a given GDMS. A Database system cannot be dissociated from its use: it is a tool within a problem solving environment and one has to follow rules in its use as with any other function of the related problem.

One may recall here the Scientific Problem Solving approach ¿ 1 5 / as presented in /27 In a recent Database implementation /167, we were faced with an interesting point of view, classical in chemistry: any plant realisation has to go through a 3 steps evaluation process, similar to the one above.

laboratory experiment 2. prototype 3. factory

The »factory* in this analogy would be a system for information retrieval and data analysis on a very large historical commercial file (50 millions of bytes for 2 years). The approach was the following:

1.

Demonstrations of DBMS capabilities on a reduced set of informations. A special APL DBMS was built within a week (using APL libraries), and designed to ensure good perfor mance. A proposal was made to the customer with estimations of exploitation costs.

2.

A decision was taken to use this APL solution for a limited period of time (6 months) and a subset of the file of the whole firm. An operational system was implemented within 2 months (for an effort of 3 man-months) with all DBMS facilities: security, integrity and privacy, in a multi-users environment. Our initial cost estimates have proved very accurate. We are now investigating the possibility of inter facing this DBMS with the BMDP statistical package (written in FORTRAN).

3.

The decision on full-scale implementation will be taken in October 1977.

A methodical approach of this kind can help in avoiding many mistakes in choosing and implementing a Data Base Management System.

In Rational Programming, conception, formulation, resolution and interpretation (of results) are four steps of the same Problem Solving process. They will obey the same general rules as above, and will lead to a functional decomposition of any complex problem onto a subset of simpler problems. Conception and Programming will naturally be conducted top-down.

Problem (input)

Function name formulation -analysis -approximation explicit resolution

Solution (output)

For example, a complex Database will be decomposed onto simpler interconnected Databases. The decomposition will continue until elementary structures (for the GDMS) are reached. The implementation of a given elementary Database will be decided on practical, economical and human criteria: manual or computerized, on local or central computer, real time or not, conversational or not, using APL or another system ... When deciding the separation onto subsystems, one has also to define the interface (data convention and communication protocol). The final integration will define the Database structure to be implemented.

With such a picture in mind, which is the way we implement our APL Databases, it is easy to achieve important requirements for GDMS: security (each DBA may choose his own protection rules), data coherence (each DBA will have the responsibility of his own Database) , performances (each Database will be implemented with the_best suited techniques). A more detailed discussion will be found in [v £ [. It is also easy to personalise each elementary Database.

Interconnection between Databases will be achieved by Relational Models in relation with files of actions (APL functions).

Indirect access to an elementary Database will generally be made possible through predefined queries (macros) which are the direct result of the various query languages.

4.

SOME FEATURES TYPICAL OF APL DATA BASES

Basic data structures

The elementary Databases mentioned in section 3 will be represented by parallel arrays depending on data types (binary, integer, real, character). Each array will be represented by a direct file (individual by individual) and an inverted file (characteristic by characteristic), the first being used for sequential processing (visualisation of one individual, sorting, lists ...) and the second for information retrieval and global computations. In case of failure, the process may be very simply restarted at the interruption or at a previous level.

2.. Removing information

For a large amount of data, it is not realistic to compress the file each time an individual data element is removed. One will associate to the file a binary vector indicating by 1 if the individual is active (present; and by 0 if passive (removed or not yet created). The next input data element will take the first free space available.

Replacing information: this is done by indexing.

In most cases (unless it is justified for economic reasons) we do not need to keep both files, and the data will be represented by the set of inverted files only. The extent area of the sequential files will be retained as a buffer for data entry.

Such an organisation requires only sequential and direct access methods which are directly provided by APL-SV. To improve perfor mance, we have implemented in Saclay a Fixed Block Access Method in which a physical block (set of records) is read into memory and used for input/output operations (with some optimisation). As long as this block contains all the information needed, it is kept in core. Swapping is done when another block is needed. This technique is very efficient when we need to access simultaneously several elements of the file.

Directories

Keyed access will be done through directories. The physical support may be seen as a set of blocks (e.g. tracks) of a given length. Some blocks will contain the association tables (key, address of element) and are referenced as "level 1 directory". Each block will be ordered by increasing keys. To describe the physical implementation of these blocks, one needs another association table

(key minimum, address of level 1 block)

where "key minimum" is the first key in the corresponding block. Such an association table will be referenced as part of the "level 2 directory". The "key min." are also ordered by increasing values.

One may have as many directory levels as necessary to address all elements in the file. The manipulation of directories is easily done with APL primitives.

Removing or replacing an element or a key is a trivial operation. Adding new elements is also simple: we read the level 1 block concerned and add (catenation) the new couples (key, address). The resulting array is ordered by increasing keys. If the number of rows is smaller than the capacity of a block, the updated block is written back on the disk. Otherwise, we split the block into two (half) blocks, one taking the place of the old one and the second the first place available in the system. The level 2 directory is then updated.

If BUF contains the new couples (key, address) and LEVEL is the sequence of the block numbers for the levels 1, 2, ... directories, the following APL (recursive) function carries out this operation, and offers a more formal description of it:

V BUF UPDATE LEVEL;T ;KEXMIN Cl] +0 ZZ 0 = p LEVEL [2]

BUF+BUF,Cl] GET LEVELl1]

A-eyloucje ^o c

Litauer, Le TLCjtt JSpjioO

N1

The file is structured by blocks. To each block is associated a binary value (Block indicator) to show whether the block contains relevant information or not. The set of block indicators related to a given query is represented as a column of the Block Indicators Table or BIT. For a given column (i.e. a query), each 1 will correspond to a binary mask for accessing the information in the related block of the file. Each binary mask will be represented as a row in the Selection Indicators Table or SIT. The number of rows associated to a given query is exactly the number-of active blocks (i.e. the number of binary Is in the corres ponding column of BIT). A special record (query number 99999) will be associated with the-current active selection. This record is initialized by any selection (query) through a decision tree (definition of the initial domain of a selection). The arrows in our figure are not real pointers because the relative locations of elements in arrays are implicit pointers in APL.

-The result of any selection (text and binary mask) may be recorded in that system. Two results may be combined directly by logical operations (AND, OR, NAND, NOR, =,?£...) to produce a new result without reformulating the original queries. This operational access method /.16/ was fully written within one week and has proved to be very efficient.

Some data reduction techniques

The original purpose of data reduction is obvious: to save storage space and often computer time. For example, 5 characters may be coded as one integer (4 bytes), some statistical series may be represented by their Pearson's coefficients (/*, , or their first cumulants (Kendall's expansions), a rectangular array may be reduced to its limited singular values decomposition (which is widely used in Data Analysis).

In general, these techniques are transforming a set of data of a given type into another set of data of another type, the transformation being nearly inversible.

An interesting paper / 2 0 j considers the representation of verbal information as unique numbers. When this paper was published (1972), no emphasis was put on distributed computing. Using the proposed techniques allows teleprocessing to be used in a very efficient way by implementing on both sides (emission and reception) common dictionaries instead of full verbs, while relatively small dictionaires are enough for many applications.

Such a technique may ensure good data privacy and be implemented cheaply using new technologies. The technique could be very useful for some Databases.

A more promising method of data reduction is the representation of complex data structures by programmes which may be dynamically executed.

Let us give a typical example. To compute the reliability factor of an electronic component you may use an analytic model or an approximate table /2l

Automatic Generation of Programmes

The most tedious tasks in Data Processing are data input and output. There are several ways to automatize them: Data Definition Languages, Report Generators ... After writing several similar applications, one may recognise that some operations are similar. One may define generalised programmes (e.g. macros) to assist the user and built-in Programme Libraries (or packages) adapted to a specific range of applications.

Another approach is to use some kind of definition to generate directly the programmes performing the required functions.

One may use two types of definition: dialogue /22/ and decision tables J2 ^J . With the first approach, the user has to call a programme and the dialogue will be conducted (and assisted) by this programme to produce the required APL code. The code generated may then be used directly or adapted to similar situations. It is interesting to note that the generated programmes are free of bugs. Two "automata" are available: one for entry, the second for reports.

In the second case, one has to define the decision table associated to the required function. An APL written translator will produce code in 3 possible languages: APL, PL/1 or COBOL J2J±J.

A similar approach was used to simulate microprocessors and produce automatically microcode from APL models /25/. This may be useful in the context of distributed Data Bases.

-

CONCLUSIONS

In the author's opinion, APL has proved to be the major contribution to Data Processing of the last decade. It is not the solution to all problems, but it does seem to offer a valid approach to solving day-to-day problems, and an important tool for defining the solution to larger ones.

The usefulness of APL for data management will depend on the user's systems environment as well as on the nature of his problem. The full range of options likely to be of interest is :

-Programming in a high level language such as COBOL, PL/1 or FORTRAN, using the file management facilities of the operating system.

-Programming as above, but using a 'host language' GDMS.

-Programming in APL, using the operating system file manager.

-Use of APL as the host language interfaced to a GDMS (which may or may not itself use APL;.

-Use of a self-contained GDMS.

(i) An integrated approach to data handling. Whatever the data handling problem, there are lessons to be learned from the approach to data management represented by GDMS : a collection of related data should be stored in an integrated way, and its structure shown explicitly ; the system should allow flexibi lity in the use of data for purposes not foreseen when the files were constituted; control of security and integrity must be programmed into the system; data redundancy should be avoided where possible, and in any case controlled by the system.

(

T t ô

Ajouter la température oorreepondant au domaine considéré de oet abaque à la température ambiant* pour obtenir la température de fonctionnement -T.. segments.

A T

G = <S,P(S)> S = A,B,C,D,E (nodes) P(S) = A B ,B C ,D C ,DB,DE,EB,AE (segments)

Figure 1 A graph is planar if it can be drawn in a surface topologically equivalent to a plane without intersecting segments, for example: Figure 2 -95 - Again we have depicted rather simple weights for each segment, and more complex ones may be required for a specific problem. The S = A,B,C,D,E,F P (S) = AB,BC,DB,FB,AE Figure 7 2.2.2 An oriented tree is a free tree with oriented (directed) segments between nodes. Such a tree is shown in Figure 8.

T = <S,P(S)> Unique Path Between Nodes

It can express "one to many" and "many to one" relationships between nodes.

T = <S,R(S)> S =A,B,C,D,E R (S) = A B ,BD ,BE,CB

A simpler case is the n-ary relation or collection of vectors.

•-•-

•-•-• •-•-+ -•-• etc.
This structure is the basis of the relational data base model.

2.4.4

The simplest case is a collection of atomic data elements which is called a set and could be represented without structure as:

Note that a set in general may consist of nonatomic elements and that all the collections shown here are indeed sets. The user must be assured that not only is a query possible with simple structures but that it is also reasonable to phrase it in the query system provided by the DBMS.

4.2.4

The query language supported by the DBMS may be low-level such as Boolean expressions, higher level such as predicate calculus, or a "natural" language.

Since a language which is natural for one user may not be "natural" for a different type of user, the need for an extensible language should be considered.

The examination of the relational model with the various language levels proposed will prove illuminating as an example of a simple basic structure combined with the powerful but awkward predicate calculus as a query language.

The potential user should realize that few DBMS have been designed to serve the broad range of scientific users. The user must be assured that whatever process is used, it can support the structure of his data and that essential associations are not lost.

When queries cannot be restricted to certain data fields, then total indexing (i.e.

file inversion) may be required. Even so, associations can be destroyed. When real-time response is not absolutely necessary and queries can be "stacked", there is a lot to be said regarding sequential access to a collection of inherent structures.

In even small-to medium-sized data bases (10 bytes), real-time response will often preclude sequential access; and the user must accept any limitations that the system places on his structure.

Data Base System Characteristics

DBMS reflect or should reflect the environment which nutured them and the needs of the users in that environment. Therefore, it is not surprising that a SDBMS should be different than the DBMS developed for a different environment. This section lists some facets of the R&D environment, some features of currently-available DBMS and some desirable features of a SDBMS.

R&D Data Base Environment

The following is a list of some attributes of the R&D data base environment which should affect the structures of a SDBMS.

1.

Users are many, autonomous and often small.

2.

Sophisticated and simple queries are required and are unpredictable.

3.

The same is true for analysis (processing) requirements.

4.

Has elaborate inherent structures and variable length data; many vectors, arrays and rooted trees.

5.

Has numerous independent collections of data about independent individuals.

6.

Requires "research reports" including graphics and plotting.

7.

Has users1with independent subject-oriented files, some very large (10 bytes) but also many small and ephemeral.

Currently Available DBMS

Most currently available DBMS were not developed for the scientific community and have the following characteristics:

1.

Assume a universe of coordinated users.

2.

Assume fixed field data in simple structures.

3.

Process simple queries with atomic operands.

4.

Have simple analysis queries but no extensive user module interface.

5.

Have "fiscal" report generators.

6.

Require a staff of surrogates and consultants.

" 103 -

Some Essential Characteristics of SDBMS

The following is a partial list of characteristics required of a SDBMS:

1.

Data Elements -Display and computation-oriented; variable length.

2.

Structures -Atomic, vector, array, rooted trees, cyclic structures represented by simple structures.

3*

Queries -Boolean, predicate calculus, natural language; structured operands.

* Analysis -Statistics; FORTRAN, & PL/I interfaces.

5.

Mode -Batch and online.

6.

Output -"Manuscript" generation, tables, graphics.

7.

Model Rationale -Content independent.

10.

Open-Ended -Multiple user schemas.

Caveats

The user should be reminded that these observations have been made in a large R&D environment and represent the collective needs of many potential users.

A single project will often be served by a less comprehensive system. Nonetheless, a system should be sought which will meet the expanded needs of, say, five years in the future.

CAVEAT EMPTOR

(c)

The GDBMS should support the storage of MxN matrics of data values. This must be done efficiently for both dense and sparse matrices.

One must be able to address individual elements of the matrix using vector notation (subscript notation), e.g., M(l,2,3).

The GDBMS should allow the user to retrieve the entire matrix with one call to the system. This may be accomplished by allowing a "hook1 1 to user written special routines or via host language facilities. (f) Many complex interrelationships will be present in scientific data. The consistent, conscientious utilization of a thesaurus in indexing will assure that technical information will be stored with maximum potential for retrievability.

(d)

The GDBMS should support validation of textual fields by using facilities such as code controls, authority lists, and dictionaries. Very large dictionaries (10,000-20,000 entries) should be accommodated by the system.

(e)

The GDBMS should allow one to store a compact code in a data field that can be expanded to a longer textual description when desired. This improves storage efficiency and maintains control of precise textual description of technical data.

(f) The system must be able to handle large volumes of textual data.

(g)

Sophisticated indexing and searching facilities should be supported that allow textual fields to be used in a powerful manner for retrieval.

(h)

Special symbols should be available in the character set used by GDBMS to represent scientific notation (e.g., greek symbols).

C. General Features Often Found in a GDBMS

That are Required to Handle Scientific and Technical Data

1.

Portability.

Because much scientific work involves collaboration among individuals at several institutions, it is highly desirable that the GDBMS be easily transportable to machines of different vendors.

The system should have a very easy to use general purpose interface that allows it to present information in a data base to external

programs such as statistics packages and other programs written in high level languages.

3.

It is desirable that the system support a host language interface in FORTRAN and other high level languages.

4.

The system should be easily used by non-programmer people.

The GDBMS must provide software that can be directly used on any data base under system control that allows users to search for and manipulate the data. One should not need to write a program every time the data base is used.

-109 -

5.

The ability to use the GDBMS for interactive access to a data base is desirable.

6.

If updates to the data base are made on-line in an interactive mode, then it is very important that adequate logging of transactions be done. One should be able to nroll back" and "roll forward1 1 transactions applied to the data base.

Accessing versus Updating.

A choice has always to be made between fast retrieval and easy updating.

In a scientific data base, there will normally be less updating as compared, for example, with an order-entry program, and emphasis can be placed on retrieval efficiency. Most updates will be additions of new material with some corrections to old data.

8.

The ability to search on data elements not specifically organized to facilitate searching (i.e., they are not primary search elements) should be possible.

9.

It is desirable that the GDBMS support extensive Report Generation and also that it, perhaps, supports Graphical output.

The GDBMS should have a fair degree of tunability.

That is, one should be able to adjust the system easily to weight some requirements over others. An example may be to give up updating efficiency to improve retrieval efficiency.

One should be able to tailor-make a set of applications

to the specific needs of the end-user by using facilities provided in the GDBMS.

One should be able to archive unused portions of the data base off-line and

bring them back on-line when required.

13. It is desirable that the indexes to large volumes of data could be available on-line with the actual data off-line.

One can narrow down a search on-line and retrieve the data off-line in batch.

14. One should be able to permanently store regularly used requests.

A capability for restricting access to sensitive data is desirable.

The use of encoding and decoding algorithms would be one possible technique for accomplishing this. tools for data validation and display. [5] For the purpose of this report it w i l l suffice that we point out only those aspects which we believe to be unique and s ig n ific a n t for s c i e n t i f i c work :

REQUIREMENTS FOR THE DESIGN OF A SCIENTIFIC DATA BASE MANAGEMENT SYSTEM (.Derived fro m Experience with different program m atic data bases at LLL

1.

Data types

A d d i t i o n a l S c i e n t i f i c F e a t u r e s :

S c i e n t i f i c a t t r i b u t e s are m a n d a t o r y

F i le St rue tures

V e c t o r s , m a t r i c e s , a r r a y s , etc.

F i le Creation

W i t h s c i e n t i f i c v a l i d a t i o n

4.

User Inter face

S e l f -g u i d e d y h i g h e r u s e r d i a l e c t s

3.

Re t r i eva I Sc Upda te

In d i f f e r e n t u n i t s o f m e a s u r e m e n t

Secur i ty

In the I n t e r e s t of n a t i o n a l d e f e n s e

S c i e n t i f i c R e f e r e n c e D a t a B a n k s

Depending upon the p a r tic u la r in s t a lla tio n and working environment, one or the other of these features w ill be emphasized or le ft out.

For the OCTOPUS secure operating system at LLL, for example, it would be added b a lla s t to carry along the overall se c u rity provision s necessary somewhere else, although sele ctive access control to individual data fie ld s would be desirab le. Of p a rticu la r importance for our work with s c ie n t if ic data is the a b i l i t y to annotate data with q u a li f i e r s , or a ttrib u te s , that support the datum. Both, for measured and evaluated p ro p e rties of m aterials, the following a ttr ib u te s are s ig n ific a n t:

Attributes of Scientific Data The c r i t e r i a that any user might apply, consciously or su b -c o n scio u sIy , by ease-of-use, convenience, and the accuracy and q u a lity of re su lts. We examine the above postulated requirements for a S D M S in retrospect. Only the large in s t a l la t i o n s have found it necessary to develop their own routines for s p e c ific a d m in is tra tiv e tasks.

. HISTORICAL BACKGROUND

Most business computer programs operate, even today, in the batch mode and are not re a d ily adaptable to s c i e n t i f i c needs.

Searching of Bibliographic Citations

Computer-a ssiste d searching of the world lite r a tu r e has become big business. -116 -

Absence of Coordination and Adequate Funding

The need for generalized management of s c i e n t i f i c and technological data was met by ERDA in a dece ntralized manner. Individual O ffice s, D iv is io n s , and Branches The maintenance of such mini-computer centers has not been in s ig n if ic a n t .

R e p o r t W r i t e r s , A r i t h m e t i c M a n i p u l a t i o n P a c k a g e s , R e c o v e r y P r o c e d u r e s

The whole approach was, therefore, successful where, in ad d ition , the purpose and bounds of the mini-system were well defined and enforced. -

I n t e r -L a b o r a t o r y W o r k i n g G r o u p for D a t a E x c h a n g e (I W G D E

. ADMINISTRATIVE AND TECHNICAL REQUIREM ENTS

S c i e n t i f i c D a t a M a n a g e m e n t S y s t e m s (S D M S)

Management Support

There

S c i e n t i f i c D a t a M a n a g e m e n t S y stem.

This approach is being taken at LLL by at least three unrelated programs:

(

S D M S

there also.

The S D M S should, therefore, be w ritten for use on large and smaI I machines.

It is s t i l l too early to state the degree of success for these so lu tio n s .

For the SHIVA and NURE p rojects which deal with r e l a t iv e ly routine operations, commercially a v a ila b le operating systems and data management systems were selected. For the DOE/STOR project with non-routine u t i l i z a t i o n , the UNIX/INGRES combination [START_REF] Deutsch | Produits-programmes à prendre en considération (Appendice) 4-3 -SGBD disponibles sur le marché japonais (T. Yamamoto) 4-9 3[END_REF] was chosen as the b asis un til the

S c i e n t i f i c D a t a B a s e M a n a g e m e n t S y s t e m (SDBMS) , under development by the Data Management Group

at LLL, becomes operational later next year.

Creation of Scientific and Technological Data Bases

Several efforts are under way to demonstrate the usefulness of genera I-interest numerical data bases. The Nuclear Data Section of the IAEA, for example, has -124-- -126 -

S D M S Design -A Colloborotive Project

The [2] [3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[1]

V

. E. Hampel , P r o b l e m s a n d So lut ions f o r the C r e a t i o n a n d U t i l i z a t i o n of L a r g e I n t e r d i s c i p l i n a r y C o m p u t e r i z e d D a t a B a n k s ,

C O N C O R D , A W o

L o c k h e e d I n f o r m a t i o n S e r v i c e s , P a l o A l t o , Ca; S y s t e m D e v e l o p m e n t C o r p o r a t i o n , S a n t a M o n i c a ,

Ca.; B i b l i o g r a p h i c R e t r i e v a l S e r v i c e s

A T e c h n i c a l I n d e x of I n t e r a c t i v e I n f o r m a t i o n

S y s t e m s , NBS Technical Note 819, 1974.

D. R. Richards, A n O v e r v i e w of B D M S : The B e r k e l e y D a t a b a s e M a n a g e m e n t

S yst e m , Refer to paper in these Proceedings.

W . Draisin, G I R L S -A G e neral I n f o r m a t i o n R e t r i e v a l a n d L i b r a r y S y s t e m t

Los Alamos Scientific Laboratory.

V. E. Hampel and J. A. Wade,

M A S T E R C O N T R O L -A U n i f y i n g F r e e -F o r m Data

-130 -

S t o r a g e a n d D a t a R e t r i e v a l S y s t e m f o r D i s s i m i l a r D a t a B a s e s ,

R. W. Kuhn, A N u m e r i c P r o c e s s o r a n d Text M a n i p u l a t o r f o r the M A S T E R C O N T R O L D a t a M a n a g e m e n t

Refer to the F e d e r a l I n f o r m a t i o n P r o c e s s i n g S t a n d a r d s Index, FIPS PUB 12-2 N a t i o n a l S t a n d a r d R e f e r e n c e D a t a S y s t e m , Publication

D. R. Ries, A n a l y z i n g U se r R e q u i r e m e n t s f o r D a t a M a n a g e m e n t Systems,

UCRL-79440, 1977. Lawrence Livermore Laboratory (LLL), with such diverse data applications as material compatibility, laser fusion, magnetic fusion, test, equation of state, weather, environmental and demographic data, has an acute need for a Scientific Data Base Management System (SDBMS). The large volume, the numeric values within an epsilon of accuracy, the unknown data relationships, the changing requirements, coupled with the overall goal of extracting new intelligence from the raw data, dictate a database system tailored toward scientific applications.

V. E. Hampel , D e c i s i o n M a k i n g w i t h I n t e r a c t i v e Access to A d m i n i s t r a t i v e 8c T e c h n o l o g i c a l D a t a B a s e s

Such an SDBMS should support scientific data types, a relational end user view, an interactive user language, interfaces to graphical and statistical packages, a programming language interface, interfaces to existing facilities, extensibility, portability, and use in a distributed env i ronment.

Addressing these needs, LLL has begun a project to develop a scientific data base management system.

A prototype has been implemented which uses a relational algebraic interactive user language. The software consists of a macro processor, a parser, a parse tree generator, a parse tree interpreter, semantic routines, and data base access routines.

Currently, the database access routines utilize a CODASYL database system for data storage.

INTRODUCTION

Energy research at Lawrence Livermore Laboratory (LLL) increasingly requires management of scientific data by computer.

The uniqueness of both the users' requirements and the computing environment dictate the development of a Scientific Data Base Management System (SDBMS). This paper illustrates these needs and provides an overview of the software development effort begun to fulfill them.

SCIENTIFIC DATA CHARACTERISTICS AT LLL

Livermore has large quantities of bulk data, numeric data within an epsilon of accuracy, unknown data relationships, and changing requirements.

The magnitude of the amounts of data is illustrated by the Magnetic Fusion Test Facility (MFTF) project.

The raw data produced by a half second shot will be on the order of two million bytes. Under maximal operational conditions, it is possible that one shot could occur every five minutes.

Computer controlled instruments can generate up to four million ten-bit integers from one expermimenta 1 shot of SHIVA's 20 lasers.

Much of this data consists of digital representations of photographs of laser beam cross sections.

The volume of experimental data exemplified by MFTF and SHIVA dictates that the physicists have efficient access to the collected information.

Epsilon-accurate data elements are exhibited by the National Uranium Resource Evaluation (NURE) project. This program's geologists and physicists gather soil and water samples and test them to find new reserves of uranium.

Sample tests generate medium volumes of floating point numbers.

To manage the epsilon-accurate data, additional parameters are stored with each real quantity. Some examples are: labels (such as concentration of uranium), units (such as parts per billion (ppb)), and error quantities (such as plus or minus ppb).

In working with such epsilon-accurate data, equality comparisons are not meaningful, instead small range comparisons are frequently used.

The NURE project also exhibits the characteristics of unknown data relationships and changing requirements.

The goal to find uranium resources is clear enough and the most obvious approach is to look at samples with large uranium concentrations.

Unfortunately, the uranium concentration is meaningless unless considered along with other environmental measurements and uranium concentrations in surrounding areas.

As more is discovered from data analysis, new tests are added, the data changes and new relationships of significance are discovered between uranium and other elements.

PROCESSING SCIENTIFIC DATA AT LLL

There is a large computer user community at LLL.

It consists of over 2000 physicists, chemists, engineers, and other scientists. Of these 2000, only about 300 are computer scientists.

Nearly all of these scientists use the main computer facility which consists of four CDC 7600 and two CDC STAR-100 computers.

Through a network of about 1000 terminals, the users interactively access any of the large computers.

Peripheral devices are shared by the large computers through several n e t w o r k s .

Mini-computer usage at LLL is increasing dramatically.

Many of these minis are utilized for data aquisition and reduction, and require data handling software compatible with that on the large computers.

The data collected by the minis must often be compared with simulation results generated on the large machines.

Thus data interface tools and translators are urgently needed.

With such a large user community, with diverse data including material compatibility, test, equation of state, weather, environmental and demographic data, the ultimate use of the data is seldom known. There are some generalizations of data usage that are of interest.

One class of applications involves the collection and analysis of experimental data.

Experimental data is analyzed to find out how an experiment worked.

The knowledge gained by this analysis is then used to reconfigure the experiment.

Comparisons are also made between the experimental results and the expected or theoretical results from analytical or simulation models to gain physics and experimental insight.

This type of analysis is usually performed only once, and consequently a specific program is not justified.

On the other end of the spectrum, other types of applications are much more static in nature.

Cataloging material properties, for example, is a rather static task.

Although relatively static, these databases usually are the type that require periodic standardized reports.

These databases last over long periods of time and change little.

GENERAL REQUIREMENTS FOR AN SDBMS

Based on these needs, the following are general requirements for a scientific DBMS at LLL. SCIENTIFIC DATA TYPES -Since virtually all of the applications at LLL have a scientific orientation, the SDBMS must have data types suitable for storing scientific data. These are typically integers, floating point numbers, and mu 11i-dimensiona1 FORTRAN-1 ike arrays. Additionally, vector data types for new vector processing machines such as the STAR-100 and the CRAY-1, plus character strings, bit strings, and date data types are needed.

RELATIONAL END USER VIEW -The relational data model [l] views data as a

set of interrelated relations which may be thought of as tables.

The simplicity of this model, its tablular view, and its ability to establish relationships dynamically make the relational approach well suited for scientific applications.

INTERACTIVE USER LANGUAGE -The need to perform one time analysis makes a general, interactive user language system attractive. With such a system, specific programs need not be designed, written, and debugged.

Furthermore, a good user language helps one get more useful information out of the database with less effort. A mechanism should be included to enable the user to tailor this interactive language to his application.

INTERFACES TO GRAPHICAL AND STATICAL PACKAGES -Because of the numeric

nature of scientific data, graphical, statistical, and numerical analysis tools are a needed extension to the data manipulation capabilities of a DBMS. Such tools are used by scientists to visualize and analyze their data, and to discover relationships not known a priori.

PROGRAMMING LANGUAGE INTERFACE -Interfaces to programming languages such as FORTRAN, are needed for sophisticated users who, for performance reasons or for a highly tailored user interface, wish to write their own specialized programs that access the database. In addition to permitting special purpose interfaces, a programming language interface will permit adoption of other analysis packages such as graphics, pattern recognition and statistics programs that presently use input data files.

INTERFACES TO EXISTING FACILITIES -Links to existing LLL facilities

such as text editors, report writers, secondary and tertiary storage devices, etc, are important in making the system easy to use. EXTENSIBILITY -The system must be extensible to adapt to changing requirements. Supplementing the language, for example, should not require extensive software modification.

Creating sequences of commands should be facilitated. PORTABILITY -The SDBMS must be able to operate on a wide variety of computer types. It must operate on the CDC 7600 and STAR computers, and on large minicomputers as well.

Such portability enhances the ability to share data, but dictates that the code be independent of word size, character set, and other hardware dependencies.

DISTRIBUTED ENVIRONMENT -To be most valuable at LLL, the SDBMS should evolve into a system suitable for use in a distributed environment. Databases on one machine should be accessible and modifiable by users on other machines without user-specific knowledge of the location of the data.

THE PROTOTYPE SDBMS

Two primary objectives guided our implementation of the SDBMS prototype:

it must become operational quickly and be easily modified. We wanted it operational quickly to demonstrate SDBMS capabilities and to enable users to suggest improvements. We want to iteratively enhance the user language to ensure that the language has the desired characteristics.

To accomplish these objectives, the language will be tested on a limited scale, and enhanced prior to general release. The iterative scheme is effective in demonstrating SDBMS capabilities to users and management, and is instrumental in obtaining support.

Our prototype must be easily modifiable so that the iterative development described above is achievable without extensive software revision, and so that the software maintenence activities are minimized. We thus have adhered to strict and uniform coding standards which stress logical clarity in coding and have documented the code extensively.

Our subroutines are designed to be logically independent so that entire portions might be replaced without side effects.

We chose standard FORTRAN as an implementation language because it is by far the most widely used language at LLL, and because it is available both on large Scientific Data Base Management at LLL scientific computers and on minis.

In order to hide word length and character set dependencies, we use functions and subroutines for all bit and character string handling.

We have done both design and implementation in a top-down fashion. The user's view of the system was designed, primarily consisting of the user language.

That language was implemented and debugged as the underlying functions were being formulated. We still have temporary structures underlying our system which will be replaced as the system so 1idi f ies.

THE PROTOTYPE'S USER LANGUAGE

The SDBMS user language is procedural, based on the relational algebra [2].

It is slightly "lower level" than some of the popular research languages such as QUEL [3] and SEQUEL 2 [4], but we feel it is simpler and more appropriate for our user community.

We are not initially addressing the query optimization issues that must be solved for a non-procedural language to achieve acceptable performance.

An SDBMS database consists of a set of TABLEs (relations) which have COLUMNs (attributes) containing values from a DOMAIN of values. For example, a WEIGHT column might contain values from the domain of positive real numbers.

We plan to associate integrity assertions with DOMAINS much as does McLeod [5].

DOMAINS These types provide for direct interfacing to FORTRAN programs using these structures.

To illustrate our language, consider a portion of a database from the NURE project.

A SAMPLE table contains information about each sample taken in the field.

Columns are SAMP-ID (a unique identifier), SAMP-TYPE, DATE-COL (date collected), and COMMENTS.

Samples, when analyzed, produce many measurements per sample.

Table MEASURE contains columns indicating the SAMP-ID of the sample, an ELEMENT found in the sample, its concentration in parts-per-bi11 ion (PPB), the ERR of the measurement (plus or minus ppb) and the date when the analysis was performed (DATE-ANAL).

The statements defining these tables are: DEFINE

ARCHITECTURE AND EXECUTION

The architecture of the prototype may be viewed as having seven logical levels:

Scientific Data Base Management at LLL MACRO PROCESSOR | SYNTACTIC COMPONENT v PARSER v PARSE TREE GENERATION v PARSE TREE INTERPRETER v SEMANTIC ROUTINES v DATA BASE ACCESS SEMANTIC COMPONENT I DATA MANIPULATION COMPONENT v ADBMS
A distributed macro processor which operates on lexical tokens sits between the parser's lexical scanner and the parser itself.

The parser is an LALR type, based on the work of DeReemer [6].

It is table driven, the tables being produced by a separate grammar analyzer.

Thus changes to the language require no changes to the parser (although code to process the commands must be written).

Having the parser independent of the language greatly eases language modification.

The macro processor and parser are quite logically separate from the rest of the program, having been previously developed for another project.

As the statements are parsed a tree structure of the command is generated.

Execution of the command occurs as this tree is traversed and pruned.

This tree is used as an intermediate structure of the comm an d : * to assure syntactic correctness of the entire command before it processed. * to store information that will be used repeatedly in the execution the command. * to allow global knowledge of the command's meaning thus allowing optimized processing of the request.

Nodes in the tree usually represent relations or operations which yield a relation.

Additional information is stored in auxilliary nodes which are attached to the tree.

During a postorder traversal of the tree, visiting nodes triggers actions which result in that node and its subtrees being reduced to a terminal node (relation). E x a m p l e : TABLE2 = (MEASURE WHERE ERR < 0.05) PROJ ELEMENT PPB;

Traversal of the tree causes first the evaluation of the WHERE node resulting in a temporary relation created from MEASURE.

The tree would then look like this:

Visiting the PROJECT node similarly yields another temporary relation which in turn is renamed TABLE2 when the ASSIGNMENT node is visited.

The semantic routines are those which perform the action specified in the language (select, project, join, print, etc.).

They are independent of the tree traversal just described; they do "atomic' ' functions given straightforward FORTRAN arguments as input. They typically have one or two relations and some auxilliary information as input and produce a temporary relation as output.

Thus these routines perform the basic relational functions while the command tree manipulation routines have the global awareness of the command process ing.

The relational access routines form the interface between the semantic routines and the data.

They are logical rather than physical in scope.

Functions include open a relation, get a tuple (row), store a tuple, etc.

The semantic routines have no knowledge of the underlying data structures or I/O mechanisms.

The access routines are currently built upon a CODASYL [7] type DBMS called ADBMS [8]. We used ADBMS in this way primarily to speed development.

This was much faster than writing our own I/O subsystem and thus allows earlier development of the upper level code. We plan to replace the CODASYL system with our own access methods at a later date.

The system is simplified by having working data, system data, and user data all stored as relations and accessed by the same routines. The data description components of the SDBMS are stored in the database as system-owned relations.

Similar to INGRES [9], these include a relation that describes relations in the database, a relation that describes attributes and a relation that describes domains. A tuple consists of a set of tuple content records, a mechanism for implementing tuples of various lengths. This simple schema has the advantage that there is little reliance on the ADBMS functions, thus replacement is eased.

It is necessary to achieve dynamic characteristics in a relational system that are unavailable in CODASYL systems (such as creating new relations at runt ime).

The disadvantages of using ADBMS are size and performance penalties.

We are certainly not using most of its capabilities and are paying for unneeded functions.

CURRENT STATUS AND FUTURE PLANS

We started in April of 1977 and have had two to three people working on the prototype and are encouraged with the results so far. Currently (September 1977) most of the prototype's commands are implemented, JOIN being the notable exception.

It runs in 45K (decimal) words.

It should be smaller when the code is overlayed and ADBMS is replaced.

Our future plans are divided into short-term and long-term plans. In the short-term we want to complete Nthe user interface. This task involves adding graphics and statistics interfaces, views and derived attributes, tertiary storage management, and perhaps a report-writer.

Views in this context are an application program's expectations of data stored in the data base, and a derived attribute is an item derived from other attributes stored in the same relation.

In addition to completing the user interface, we also intend to enhance the capabilities and performance of the SDBMS. We plan to replace the CODASYL base understrueture and develop our own access methods.

A variety of access methods are invisioned, including direct, indexed, and sequential. We may also develop access methods that have flexibile clustering mechanisms, for example, the ability to store tuples of one relation physically close to tuples of other relations (where keys of the tuples are s imi1a r).

Our long-term plans include developing a programming language interface, query optimization, performance optimization base on usage patterns, integrity constraints, and data base administration utilities. We also plan to convert the system to large minicomputers and use the system in a distributed environment. NOTICE "This report was prepared as an account of work sponsored by the United States Government.

Neither the United States nor the United States Energy Research 8c Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned r i ght s ." NOTICE "Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.

S. Energy Research and Development Administration to the exclusion of others that may be su i tab1e ." INTRODUCTION BDMS, the Berkeley Database Management Sys t e m 1 , is a hierarchical data base management system whose design was heavily influenced by the require ments of scientific data management.

It has its origin in the joint development of a Particle Physics Data System (PPDS)*' 3 by the Berkeley Particle Data Group (PDG) and the Caltech Data Compilation Group.

The original conception of the PPDS software called for a separate systen to manage each of the databases: a document system, a reaction data system, a particle properties system, a vocabulary control system, etc. In fact, by mid-1973 a prototype of each of these systems had been developed.

It rapidly became clear, however, that the task of modifying, extending, and even maintaining these specialized systems was beyond available resources. There was ample reason to expect that the require ments for these systems would never stop changing; the nature of particle physics data had changed significantly over the past decade as the field evolved and was expected to continue changing.

Searching for a different approach, we realized that it should be p o ssi ble to use a single database management system that would be general enough to manage all the databases and serve as the basis for the special ized software that would still be necessary. The broad spectrum of size, growth rate, volatility, and complexity encompassed by these databases and the complexity of their intended uses demanded capabilities not provided by any database management system then in existence that could be run on our hardware (CDC 6400, 6600, 7600).

Thus, we were led to develop our own system.

We are now painfully aware of the very large commitment of time and resources necessary for a project of this magnitude.

In fact, our naivete at that time was probably a major factor contributing to the eventual attainment of our goals, since if we had realized how difficult it would be, we might never have embarked on the project, instead simply reducing our expectations.

*This work was done with support from the U.S Department of Energy.

-

14-5 -

There is, on the other hand, a clear advantage in local control of system development. When some new capability is needed, it is possible to make a decision as to whether it is a general facility that is best built into the database system once and for all, or whether it deserves only to be put into the application software. With a system supplied by a commerical vendor, some very complicated and unattractive kludges may be necessary to add a capability, since the only option is building it outside of the existing system.

In the rest of this paper, the structure of a BDMS database will be defined and the facilities of the system (version 2.1) outlined. Some comments will be made concerning those aspects of the implementation that might affect its suitability for a proposed application.

Finally, our plans for future development will be outlined.

STRUCTURE QE A BDMS-DATABASE

A BDMS database is structured into reco r d s , the units in which data pass between the system and disk storage. Normally, a record will have some significance to the user, e.g. a record in a bibliographic database would be a description of a single document, but this is not always necessary or desirable.

The individual data items within a record are called data e l e m e n t s ; they are the smallest units of data with any meaning to the system, although an individual data element might have some internal structure known to an application program. A data element has a unique name and is normally referenced by name (or a synonym). There is essentially no limit on the number of data elements that may be defined f o r a database.

A hierarchical structure may be imposed on the information within a record when a database is defined. This means that some data elements are declared to be subordinate to other, p a r e n t , data elements.

Those data elements for which no parent is declared are called record-level data elements; it is often useful to consider the record itself to be their parent. There is essentially no limit on the number of levels which may be defined in the record structure.

Within a given record, each record-level data element may occur once, several times, or not at all. Likewise, each occurrence of a data element at any level in the hierarchy may have linked to it one, several, or no occurrences of each of its subordinate data elements.

There is e s s e n tially no limit on the number of times any data element may occur in a single record.

Data elements are classified into six types according to the values they can assume.

INTEGER, REAL, DOUBLE, CHAR, BIT, and NODE. Integer or real (floating point) data elements may be scalars (single numbers) or a r b i trary length vectors (i.e. an ordered set of numbers, which are the c o m p o nents of the vector). Real data elements may be single or double p r e cision. Character or bit strings may be of any length with no limit beyond that imposed by run-time memory restrictions. Any of the foregoing data element types may occur with a null value.

Pure node data elements carry no value; they may be used to link together subordinate data e l e ments in the record hierarchy or as flags.

Any data element, regardless of type, may serve as a node in the hierarchical record structure.

In general, if one of a group of related data elements may occur only once in each occurrence of the group, it should be made the parent of the rest of the data elements. However, if all of the data elements in such a group may occur multiply, they all must be linked to a pure node parent; since no single occurrence of any one of them can serve as the parent of the rest.

Any data element may be declared to be a record k e y . The system will then maintain an index for that data element to allow erficient retrieval.

In an index, key values have a fixed length that is declared in the database definition; data element values are truncated or padded as necessary when they are put into an index.

It is possible to declare a data element to be v i r t u a l . which means that it will be recognized in input data and appear in the record buffer, accessible to user-supplied processing routines, but will be discarded when the record is stored in the database. This is useful if the input contains data elements that one does not wish to store in the database at all. One might also wish to store some data element values only in the indices, where they point to the record, without permanently allocating space for them in the record itself. This is often the case if a key value is constructed from the values of one or more data elements by a user-supplied processing routine (discussed below).

In this case, a virtual data element is defined and is further specified to be a key.

It is then used to hold the key values temporarily; when the record is stored, these values will be indexed before the virtual data element is discarded.

The system assigns a record ID to each record as it is created. This guarantees that each record has a unique identifier by which it can be selectively retrieved even if none of its data elements is defined to be a key so that no indices are maintained. The ID is displayed whenever a record is listed by the system.

BDMS FACILITIES

BDMS comprises a database definition compiler, a database executive, and several utility programs.

The database definition compiler is used to create a new database.

It accepts a description of the logical record structure expressed in a d a t a base definition language (DDL) and generates tables describing the d a t a base. These tables then drive the rest of the system when that database is in use.

The database executive is a self-contained system providing a user interface to database maintenance and retrieval facilities through a highlevel language.

It has two major subsystems: an editor and a query language p r o c e s s o r .

The editor permits a user to enter data into a new record or modify an existing one by appending, inserting, replacing, or deleting data element occurrences by means of free-format editing commands. A string substitu tion facility is provided for modifying the values of character string data elements. Any change to the database made via the executive is immediately effective and reflected in the indices.

The BDMS query language permits a user to search a database for those records satisfying an arbitrarily complex condition on key (indexed) data element values.

The condition is constructed as a Boolean combination of key value specifications, including inequalities and ranges. Furthermore, it is possible to search for records having an occurrence of a specified data element regardless of value, or for those having an occurrence of the data element with a null value. Truncated value specification for character string keys may be used to search for those records having an occurrence of the data element beginning in a particular way. A par--ticular record ID or range of record IDs may be included in a query explicitly. The result of a query is the set of records that satisfy it. Any of them may be listed at the u s e r ' s terminal, printed, dumped, m o d i fied, or deleted.

Existing sets may be combined with other sets and still further conditions through the query language.

The utility programs provide for efficient initial database loading, full database dump, data file garbage collection, and rebuilding of indices for more efficient query processing and disk space utilization. Except for the utilities, which are batch programs, the system may be used in either batch or interactive mode by simply linking it to the proper set of low-level I/O routines. The user language is identical in either mode. BDMS also may be invoked procedurally from a user-written FORTRAN program by means of a small and carefully chosen set of subroutine cal ls .

The database executive incorporates exits to user-supplied processing routines to allow input data validation, and data transformation on input, output, during the creation of index entries, and the processing of 4ueries.

In addition, the user may supply routines that are called just before a record is stored or just after it is fetched from the disk. The store processor routine may perform more complex data validation involving correlation of several data element values and may generate additional data element values, e.g., keyed virtual data elements as discussed above. The fetch processor routine is primarily useful to rematerialize virtual data elements when it is desirable to make them visible to a user or application program. These ' ' s u b r o u t i n e hooks"' provide a powerful facility for tailoring the database executive for specific databases and applications without r e q u i r ing the user to write a completely new ' ' f r o n t e nd." They are particularly important to the management of scientific databases since even input data validation is likely to be too complex to be handled by the simple f acili ties (e.g. within a specified range or explicit list of values) typically provided by a commercially-oriented database management system.

IMPLEMENTATION

A BDMS database is divided into three system disk files: the data file, which contains the database definition and data records, the directory file, which contains the physical storage addresses of data records, and the inversion file, on which reside indices for key data elements.

On the disk, the hierarchical structure of a data record is represented by unidirectional pointers linking together the data element occurrences. There is no storage overhead associated with data elements that do not occur at all, either in the record or a particular occurrence of their parent. When a record is brought into the record buffer, it is r e s t r u c tured to facilitate access--the pointers are made bidirectional and relocated relative to the start of the work area, and entry pointers are allocated for all missing data elements to allow insertion. When the record is converted back into its disk-resident form prior to storage, all garbage resulting from updating activity is automatically eliminated.

If a modified record is no longer than it was prior to modification, it is stored back in its original location on the data file and any unused space following it is flagged as deleted for the data file garbage collection utility.

If the modified record is longer than it was, it is written at the end of the data file, its directory file entry is updated, and the original form of the record is flagged as deleted.

Numeric data element values are stored in the database in the internal binary format of the machine being used. This decision was based upon the assumption that much of the use of ascientifically-oriented database management system involves access to the data by analysis software requir ing numeric values in internal binary form. They must be converted into this form from their character representation only when initially input rather than every time they are read by an analysis program, as would be the case if they were stored in character form.

Paged, multilevel tree-structured indices are maintained by the system for data elements declared to be keys. These indices are updated auto matically whenever a new or modified record is stored in the database or a record is deleted. A ' ' l e a f " entry in an index tree is a unique value for the indexed data element followed by a list of record IDs for all records containing an occurrence of that data element with that value. The query language processor performs Boolean operations by merging these lists of records.

A single access to the directory file, with an entry address calculated from a record I D , provides the disk address and length of that record on the data file. This level of indirection was provided so that it is not necessary to update all index entries for a record that has been made larger by an update and has to be relocated; the only index entries that need to be changed are those for data elements whose values were actually modified. Likewise, when records are moved by the data file garbage collection utility, only their directory file entries need to be changed; all index entries remain correct. The BKY operating system,under which BDMS is run at LBL, makes no p r o v i sion for re-entrant code or updatable shared disk files, so BDMS was built as a single user system and does not support updatable shared dat a bases. However, BKY does allow shared access to a read-only (' ' p u b l i c ") disk file, so multiple users, each with his own copy of the database sys tem, can retrieve information from a common disk-resident database.

Likewise, BKY does not support permanent disk files, so elaborate crash recovery machinery in BDMS was not deemed necessary.

Normally, a data base is stored on tape, staged to a disk for use, and then staged back to another tape if it has been modified. One can then ' ' r o l l b ack" to a p r e vious state of the database provided that a sufficient number of tapes is used in the storage cycle.

The only situation in which a system crash can be a major annoyance is when an interactive user has made extensive changes to a database imme diately before the crash. To save such a user from having to re-key all those changes, the system records all user input on an audit file. If this file is maintained in such a way that it survives the crash (tape would be virtually foolproof), it can then be processed as batch input against the original version of the database. The audit file can also serve as a record of update activity if it is preserved as a part of normal operating procedure.

Since each user either uses a read-only public file or has his own copy of the database, we did not feel it was necessary to design an elaborate security mechanism to prevent unauthorized update. We are considering the addition of a password scheme, access control at the data element level, and possibly even selective encryption to ensure privacy of sensi tive information.

One of the design goals was easy transportibility. This was achieved by a) writing the major part of the system in a relatively machine-independent subset of FORTRAN IV, and b) careful modularization to isolate machine and operating system dependence in a few low-level interface r o u tines that can be recoded easily for another system. Versions of BDMS exist now for CDC 6600 and 7600 computer running BKY, and IBM 360 series machines. An experimental 7600 version has been run under SCOPE and we are currently working on a PDP-11 version for RSX and IAS systems.

FUTURE PLANS

Current plans for development of BDMS fall into two major areas: e x t e n sion to allow multiple record types (' ' m u l t i -f i l e databases"), and en h a n ce ment of the query facility to handle intra-record and non-key data e l e ment qualification. A consequence of providing multiple record types will be the ability to modify easily the definition of an existing database. The ability to formulate queries involving intra-record qualification will allow retrieval conditions to be specified in terms of the relative p o s i tion of data element occurrences in the record hierarchy. We are also considering the addition of multidimensional array data element types as well as the access protection machinery mentioned in the previous section.

As BDMS

SUMMARY

For the past ten years, a generalized data management system (GDMS) called JOSHUA has been in use at the Savannah River Laboratory. Originally designed and implemented to support nuclear reactor physics and safety computational applications, the system is now also supporting environmental science modeling and impact assessment.

Extensions to the original system are being developed to meet new data handling requirements, which include more general owner-member record r e lationships occurring in geographically encoded data sets, unstructured (relational) inquiry capability, cartographic analysis and display, and offsite data exchange. This paper discusses the need for these capabilities, places them in perspective as generic scientific data management activities, and presents the planned context-free extensions to the basic JOSHUA GDMS.

APPLICATIONS OVERVIEW

In recent years, there has been considerable discussion of the appli cation of data base management techniques to environmental d a t a . 1 At the Savannah River Laboratory (SRL), the concern has centered around the E n vironmental Transport D i v i s i o n' s (ETD) computer applications2 which n atur ally involve the JOSHUA data management system.3 In this manuscript, the JOSHUA system is the given basis for data management, and the emphasis will be on necessary extensions to support current and planned ETD applications. Clearly, not all applications demand new data management or even new systems extensions, but may be supported by new applications programs. In this manuscript, these teleological distinctions will not be much in evidence because at the present level of conceptualization one cannot distinguish the exact degree of generality an implementation will possess. However, the areas of most general need for new systematic capabilities probably shade from context-free data management (data base e x c h a n g e) , through context-free data manipulation services (information retrieval), to context-dependent data manipulation services (geocoded data management), and, finally, context-free data analysis (statistical analysis) for d e v e l oping applications based on generic functions (geographical data m a n i p u l a tion and d i s p l a y) . All such extensions will here be considered to be systems because they are not typical of programming done for any specific end-use and are sufficiently involved with the JOSHUA systems routines to require development and maintenance by Computer Sciences Section (CSS) p ersonnel.

The JOSHUA data management facilities were developed for reactor physics applications.

Subsequent use of these facilities for e n v iron mental science applications is straightforward where there is a comp u t a tional similarity to the original application. However, the JOSHUA f a c il ities require systems extensions to accommodate distinctively different computational features.

One case in point is the JOSHUA emergency and routine environmental impact assessment handler (JEREMIAH) subsystem, currently being developed under native JOSHUA capabilities. This computational system for advectivediffusive atmospheric transport and dose effects is implemented in exactly the same coupled module/data base approach as that used for nuclear r e a c tor physics and engineering applications.3 Taken as a system applicable to any geographical region, JEREMIAH would founder on J O S H U A ' S lack of facilities to deal with geographically encoded data. Taken as a system specific to the Savannah River Project site, however, the small scale of the region, the levelness of the terrain, and the fixed map locale have permitted the geographical problem to be made subordinate to J O S H U A ' S nongeographical, indexed (x,y) list handling c a p a b i l i t y .k * 5 This requirement for geographical data manipulation, analysis, and mapping is a generic one for E T D ' s applications, and constitutes the highest priority need for JOSHUA data management extension.

A second ETD application which illustrates the need for extended data management capability is the environmental impact study for the USERDA alternative fuel cycle technology study (AFCT). Because of the scope of this study, data bases and models at several ERDA and NOAA laboratories and a variety of computer systems have been used. The JOSHUA system c o n templated an offsite data base exchange only with the National Neutron Cross Section Center (NNCSC), and there only for a single, clearly defined, cross-section data set which could be defined to the system (in fact, this data set structure and definition was the system model). Thus, JOSHUA inherently incorporates the mechanism for definition of the necessary AFCT data sets, but provides no means for data set interchange beyond the NNCSC specific tape load routines. The ERDA Interlaboratory Working Group for Data Exchange (IWGDE) has been developing standards6 * for data base e x change and PL/1-FORTRAN interface routines to implement those standards. The JOSHUA data set definition facility now needs to be extended to permit input from, and output to, data sets in the exchange standard format. Recognition should be given to differences among SRL and other data centers in the use of formats, nomenclature, geocodes, and data structures. Much of the process of translation can be automated, and the present manpower intensive situation can be significantly improved.

The process of data archiving, retrieval, and evaluation was p r e sumed to have been done at the NNCS£ and additional support by the JOSHUA data management system was not contemplated. Several aspects of ETD's computing activities fall in this category, including ecological experi mental studies ^and assessment simulation studies. Because data evaluation is a relatively unstructured activity (it generally means whatever the individual evaluator does), it is difficult to support these activities at other than a very basic, context-free level. However, three such generic activities in data evaluation are evident in ETD programs: unstructured inquiry, statistical analysis, and data display.

The JOSHUA system provides for FORTRAN retrieval of an entire data record, given its complete name, and simply catalogues the FORTRAN I/O list to format the data record for terminal users.

In addition, FORTRAN callable routines and terminal commands are available to retrieve record names based on their unique names or their hierarchical tree structure. These routines and commands have been a very powerful and useful set of facilities for retrieving information for those applications in which in quiry keys can be thought out in advance and the inquiry response struc tured as hierarchically organized lists of names. This retrieval ability will be referred to here as structured inquiry to connote both the implied high degree of name and data organization, and the predefined problem solving which that structure supports. The unstructured inquiry, which characterizes data evaluation, violates both notions of structure. The data are often organized by experimental observation or acquisition number, with no predefined record name inquiry keys; and the inquiries likely to arise during evaluation are not predefined, but are themselves datad e p e n d e n t .

Unstructured information retrieval can readily be supported by a relational set of data bases, in which what is placed under control of the inquirer is the definition of relations among the data elements themselves. In this inquiry mode, the inquirer uses names as usual to select records for a subsequent search through the record itself to find data elements obeying the defined relational expression. All such groups of elements then constitute a sequential set on which an inquiry is simply answered by elementary ope r a t i o n s --count, average, variance, sort, list, etc. To implement these operations under JOSHUA, commands must be provided for record selection and retrieval of data elements within a record which satisfy the inquiry criteria. These commands are commonly implemented as arithmetic and Boolean logical operations on the data elements e n countered during record retrieval.8 ' 9

The requirement for statistical analysis of experimental or observa tional data is basic to both data evaluation and to ecosystems modeling (e.g., Reference 10) which are generally what the soft environmental sciences involve. The attractiveness of satellite packages, e.g., the Savannah River Project deer file (SASS) and the forest energy balance model (CSMP), is that the satellite packages offer an extensive set of statistical and time series analyses coupled with crude data management to extract a relational set and operate on it through a user-oriented command language. Until JOSHUA offers comparable facilities, the environ mental data base at SRL will remain fragmented and not supportive of integrated environmental model development.

The third general area where basic help can be given to evaluators is in computer graphics. The cartographic capability9 mentioned earlier is probably the most useful addition to present systems and has been actively sought by ETD for the past two years. This capability, when associated with thematic data, will enable the user to treat the graphics terminal as a map-like view of his data base, in contrast to today's numerical listing capability. Contouring, vector fields, and other t y p i cal graphic styles of data display should be implemented under the system as automatic display features.

DATA MANAGEMENT OVERVIEW

In this manuscript, the spectrum of data processing activities are segmented into three categories (Figure 1).

a COLLECTION---------j 2 REDUCTION j -experiment A RCH I V I N G ----1 ---- 3) IDENTIFICATION £ RETRIEVAL | -reference bo EVALUATION---- jj? SIMULATION [-assessment PREDICTION- Interpretation -* ■ Figure 1. Data Processing Categories
The systems involved in managing experimental data are at the lowest level of data aggregation and interpretation.

Such systems are least susceptible to generalization; their function is dictated by the e x peri mental equipment, data quality control, and so on.

It is probably u n avoidable that each experimental project must develop appropriate data management approaches to deliver its end-product to an archive.

At the other end of the spectrum are the assessment simulationmodeling systems.

Characterized by mathematical models, these are t y p i cally FORTRAN computer programs which have best-estimate (reference) data sets as input. These data sets are heavily interpreted aggregations of experimental data. As in the experimental information systems regime, data management is directed by the end product; however, effective record cataloging is provided by JOSHUA, at least for simple grids.

The systems involved in developing and distributing reference data sets provide the link between massive, raw-data sets and the highly a g gre gated, best-estimate, data sets used by models. At SRL, this type of application has not been well supported and, consequently, examples of this activity involve ad hoc use of various programming languages, e.g., MARK-IV, SASS, CSMP, and FORTRAN.

A second classification scheme will be used to relate data management facilities to application types (Figure 2).

In translating Figure 1 into Figure 2, interpretation was replaced with retrieval index structure, and aggregation was replaced with inquiry structure. Generally a strong correlation exists between these concepts; that is, the more that data have been subjected to the evaluative and interpretive process, the more, in general, these data have been subjected to correlative and classification schemes which produce names, indices, and structures which organize the data into forms suitable for retrieval Again, as data become more highly aggregated, the original diffuse nature of the inquiries to the data base become more structured along the lines of the aggregation processes themselves.

- 154 - 0 * 3 4 -> U 3 ? -■ + -> CO >> J h •H cr ö C OL L E C T I O N --------------- REDUCTION ARCHIVING IDENTIFICATION RETRIEVAL EVALUATION- SIMULATION PREDICTION - -relational retrieval structured retrieval Retrieval Index Structure
The more primitive relational inquiries are therefore of a relatively unstructured type (precise nature of the inquiry not known in advance), being based at inquiry time on the relationships between the (typically) disaggregated data themselves.

The structured type of retrieval is characterized by reliance on the data-group name and its internally associated data elements to respond to the inquiry. However, raw observational data are seldom so structured, but rather are stored as sequential data sets of records containing all variables for an individual observation, necessitating a search through many records to elicit all occurrences of the desired relationship. For this reason, JOSHUA data management does not provide any systematic facil ity for unstructured inquiry, and the aforementioned ETD applications falling in the experiment and evaluation categories are implemented in an ad hoc way using a variety of programming languages which address this type of inquiry with more or less sophistication. Clearly, if JOSHUA supported relational inquiry, there would be less incentive to go to other languages, and data captured for these purposes would then be more readily available for assessment modeling.

A third distinction between application and information retrieval types can readily be made on the basis of identification of geographical data, as shown in Figure 3. ---------------------- Here, the association of the experiment and evaluation systems with data recorded at points (normally latitude and longitude) and for areas (specially defined tracts such as census districts, or convenient political boundaries such as counties) is an obvious one. For evaluation and a s s ess ment, some data are most compactly stored as the measured characteristic of some derived area as, for example, soil type or geologic formation boundaries.

c T J bO

CD U bO bO < C OLLECTION-
Finally, the assessment and analytical application systems normally require some data to be interpolated onto a regular grid or n e t work for further modeling as, for example, in transport and diffusion models of the atmosphere or surface water systems.

Even within systems directly oriented to the manipulation, analysis, and display (mapping) of geographical data, a need exists to treat these various geographical indexing schemes as a proper data management function, because of the need of the geographical package to perform basis file mode conversions internally for the sake of efficiency of various algorithms, and to achieve comparability of various related data sets.

NEW JOSHUA DATA MANAGEMENT FACILITIES

The data manager in JOSHUA is called the basic named access method (BNAM). BNAM has been running successfully for nearly nine years, and has well-served the nuclear reactor numerical data handling needs at the Savannah River Plant.

In view of environmental science and analysis r e quirements, and the desire to use JOSHUA on non-IBM computers, a new version of BNAM is needed, and is now being designed.

JOSHUA can be used on most large IBM 360 or IBM 370 class computers. JOSHUA has been installed on an IBM 360/75 at Idaho Nuclear Engineering Laboratory (INEL) and on an IBM 360/91 at Oak Ridge National Laboratory (ORNL). The system was installed at ORNL to support a fast reactor safety data base called SACRD very successfully.11 BNAM provides the facilities for managing record names and storage locations. The contents (data elements) of a data record are not known to BNAM.

In the eight years since BNAM was developed, many advances have been made in data manager technology, and many of these advances could be incorporated into a new BNAM.

The extended relational capabilities required to meet the needs of the environmental sciences can be accommodated under this newer t e c h n o l ogy, as well as the inter-ERDA laboratory transport-ability requirement. The most economical approach, therefore, appears to be the development of a new JOSHUA generalized data management system (GDMS) which is upwardcompatible with the current version.

One component of a GDMS is used to manage the names of data records. This manager is called the JOSHUA System Name (JSN) manager. Another component is used to manage physical disk storage space. This manager is called the JOSHUA System Storage (JSS) manager. A third component is used to manage the establishment of relationships (owner/member sets) between data records. This latter component is called the JOSHUA System R e l a t i o n ship (JSR) manager. The implementation of the GDMS using these conceptual managers can be visualized in Figure 4. ---------------------------| relational element J S R - ----------------------------relational record J S N - ----------------------logical cell J S S ----------------physical DISK STORAGE-- The GDMS user should have access to to system with any or all of these views.

GDMS U S E R -

BNAM today roughly corresponds to the combination of name and storage managers (JSN and J S S) . Thus the JOSHUA user has access only to Views B and D in Figure 4.

The relational view (at the record level) has five components; i.e., application data set, data record, data name, record alias, and relation.

Application data sets are the logical subdivision of the data base. They correspond to JOSHUA job, user, and standard data sets and are named with a single qualifier. These data sets may be specified in a hierarchi cal sequence, so that each data set in the sequence is viewed as a m o d i fication of the next higher data set in the sequence.

Data records are contiguous collections of data elements. However, the data elements are not seen in this view. The data record is simply viewed as an arbitrary (but specified) length byte string.

Each data record has a single unique record name. The name consists of up to 16 alphanumeric qualifiers. The record names form a hierarchy with the qualifiers as the nodes. The hierarchy may have several root nodes, that is, it may be segmented into several application data sets. A data record may be associated with any node of the hierarchy, but any node need not have an associated data record.

If a terminal node does not have an associated record, the data are, in effect, the node qualifier.

A record may be given one or more alternate names. Each is called an alias. A name in the hierarchy must be either a record name or an alias, but not both. A record name may have several aliases, but an alias must be specific for a single record name.

Aliases establish relationships between data records supplementing those inherent in the hierarchical record names. These alias relation ships are managed directly by the GDMS user for such applications as The relational view at the element level managed by JSR provides system-maintained linkages between record names and/or alias names based upon specified set relations on the data element values.

These r e l a t i on ships establish a network of pointers which can be variously interpreted, and include a full directed graph, owner/member chains, and inverted lists. These linkages are established and maintained by JSR dynamically as data records are being catalogued by JSN.

The current version of JOSHUA provides only the views discussed above as application data set and record name.

The additional views are, of course, generally useful GDMS concepts; but they are particularly u s e ful in meeting the needs of geographical data handling, which requires maintenance of topological networks and directed graphs, and the a s s o c i ation of thematic data with the geographical-basis reference data sets. With the facilities provided by JSR, much of the algorithmic specification of geographical data relationships will be automatically provided by the system, and need not be hard-coded into applications packages. The UKAEA are currently operating a prototype fast reactor (PFR) at Dounreay, North Scotland. When the reactor is operating at full power, fuel burn-up rates in the inner core will be of the order of l-jj$ per reactor cycle of 6 weeks. The reactor contains 78 core region fuelled sub-assemblies (325 fuel pins per standard sub-assembly) and 42 breeder sub-assemblies (85 breeder fuel pins per sub-assembly) in the breeder zone. There are some 20 non-standard sub-assemblies in the core region.

2.

Fuel management strategy is vital to the efficient operation of this reactor, the strategy falling into three broad groups of planning, operational and post-operational activities. In brief, the principle objectives of each stage are as follows:-(i) Planning. To provide sets of workable and economic forward core loadings allowing fuel enrichment to be defined for replacement sub-assembly orders. To provide advanced data of predicted sub-assembly performances in respect of reactivity worths, heat ratings and maximum temperature requirements (for pre gagging the sub-assembly coolant flow).

(ii) Operational. To provide on demand fuel burn-up rates, power distributions, control rods worths, breeding gain, neutron balances and off-centre reaction rates.

(iii) Post Operational. To provide accurate reaction data for fuel element performance analysis, and to generate a permanent data store of fluxes, spectra and neutron group cross-sections in the PFR fuel data bank.

3.

The above is merely a brief outline of the objectives of the fuel management calculational requirements. Although there are many other aspects of calculational processes in the nuclear energy field that require the processing of large data sets, this paper will be restricted to an outline of the fuel management calculations as being typical of the processes involved. The unusual nature of the associated problems, the ideal requirements of the system to be adopted, and the present technique for their solution will be presented in outline form. Some of the essential requirements of a scientific data base to support such calculations will be defined.

PROGRAMMING OBJECTIVES

4.

Tasks in nuclear fuel management have three distinct characteristics, namely (i) large amounts of data require computerised manipulation and storage (ii) the computer programs that perform the calculations involve the iterative execution of several programs, each requiring data generated by the others in addition to user-input data.

(iii) program coding is necessarily divided between dispersed groups of programmers in different fields of expertise.

5« These characteristics give rise to two well-defined requirements of a system that will operate successfully under the above constraints, namely:

(i) a data storage and retrieval function possessing considerable data indépendance, controlled by a management suite and permitting volatile and non volatile files.

(ii) inter-code compatibility that will permit dispersed programmers to ' ' p l u g -i n " modules coded by other programmers to perform a particular set of the total algorithm.

COMPATIBLE OPEN SHOP MODULAR OPERATING SYSTEM (COSMOS)

6.

Many of the PFR nuclear energy calculations are performed within the COSMOS system, which is a general system of FORTRAN k coding handling a scientific database and a compatible code scheme and is devised to operate within the above constraints. For a detailed technical description of the system the paper by B r i s s e n d e n ^) should be consulted; the scope of the present paper is limited to a brief outline of some of the features of the COSMOS system.

7.

COSMOS has been in use since 1971 and its supporting database now contains some 300 Mbytes of information. It is a modular code scheme under which sets of programs designed to use common datafiles and programming conventions operate. Data handling is independent of the processing algorithms and communication facilities are provided between programs. Standard datafile accession routines for read/write options upon well ordered datafiles are built into the programs. COSMOS is integral with the computer system control in that the embedded accession sub-routines will locate and transfer datafiles from the database to programmer specified core storage. A program that performs a single part of a multi-function task is regarded as a ' module* of the program suite. Data generated by modules may be written to the database for subsequent modification within the total program execution or reserved for use by other programs at a much later date. A single database holds all the common data required by extant COSMOS modules.

8.

COSMOS is installed on the ICL ¿f-70 computer at the Atomic Energy Establishment at Winfrith, Dorset, England. It is coupled by data links to Risley (Cheshire, England) and the Prototype Fast Reactor (Dounreay, North Scotland). Modules are available for a range of calculations including Thermal Performance, Irradiation Swelling, Shielding and Fuel Management.

THE COSMOS DATABASE

9.

The datafiles are stored on EDS60 (Exchangeable disc system, 60 Mbytes) discs which are called the COSMOS Interface. The Interface is subdivided into many small libraries that give the user some independence in the storage of his own data. On average, each user tends to operate within about four libraries. The datafiles are generalised Fortran arrays of numeric data and the Nests are integer strings which describe the datablock structures and their parametric relationships. The datafiles are identified by Labels which normally have five components.

DATABLOCKS AND NESTS 10. The common understanding between all users of the definition of each datablock structure and the ability of all programs to interpret it guarantees the compatibility of each individually written program. This definition is given in the Nest linked to the datablock. To clarify the point, an example is given of a possible and conveniently simple datablock and its Nest, but it is not necessary for the user to be aware of each datablock/Nest definition since interpretive modules, such as NLOOK, are provided that unpick the datablock structure from the Nest for the user. The linear datablock could be written:

.076, -13 ^,0 ,0 ,0 ,0 ,0,0 ,0 ,0 , .2¥+,.10 1, . 1 7 6 , . 0^0,0,0 ,0,0 ,0,0,0 ,0 , .20*f, .0 11 Here, the column of data ' Density1, is the datablock and the relationship columns 'Nuclide1 and 'Region1 is the Nest. The Nest descriptor could be 3,8,11222233 for the linear string datablock. Noting further that successive nuclides are always in the same or next higher region, the datablock relationships could be expressed by a Nest 3,8,2^2.

and
12. -163 -

the datafile descriptor and up to 190 characters for the Nest components. a variable to augment the Display Name, to enter the datafile to the database. to record the individual computer runs of the same program, to identify the area of the database holding the datafile.

The parameters are punched on the label cards in the above sequence (with as the default character). The labels are specified by the user for all data, whether input from source, from the Interface, or output to the Interface.

1^. This brief outline of COSMOS has necessarily omitted several of the outstanding features of the system, such as Tracing Facilities, Database Integrity, Sequential Files and Management Control. Reference must however be made to the COSMOS FORTRAN IV program WORKSHOP that is used to service the database as its standard utility. The program can amend and store "decks" of cards on COSMOS files, and submit these "decks" to the job stream for execution. [START_REF]ffLADB Data Collection Manual,1 1 Information System Section[END_REF]. In nuclear physics calculations there are many examples of tasks that involve running a sequence of jobs using a number if distinct programs,that are linked by later jobs in the sequence. If the overall task can be programmed for consecutive operation without user intervention the risk of input error is reduced. The workshop program fE A S Y f can perform this function by issuing directives to the workshop to cause control to pass to a set of Fortran compiled statements. WORKSHOP 16. Workshop is a Fortran based program combining the card editing facilities and logic of simple Fortran. It supports a range of commands that handle the COSMOS system and has roll-in/roll-out facilities to enable it to roll-out into the database when not in use. Here it may remain until it resumes further execution at a later time. A workshop program can submit a program for execution, roll itself out into the database and resume execution on the completion of a set task. In this way, a workshop program can proceed intermittently over several days or weeks. It can be used for the automatic submission of reactor physics calculations. It can be used for the management of user resources such as opening new files, archiving old ones, deleting old libraries and renewing magnetic tapes, assigning run times and print-out. It interacts with the computer operators whilst rolled out from the database and can take remedial action in the event of a system crash. It can cycle indefinitely through the computer whilst performing database service tasks.

FUEL MANAGEMENT CALCULATIONS

17. A typical requirement would be to predict the parametric changes consequent upon a change to the reactor core loading. A sequence of calculational processes would be undertaken under the control of the Workshop COSMOS program EASY using modules for the solution of each stage of the process and would input data currently held on the COSMOS Interface in conjunction with the new data associated with the core change. A probable set of steps would be as follows: For the new core (1) source input data for the new core loading, (2) compute mean core burn-up, (3) computer macroscopic power crosssections, (k) compute neutron flux distribution, (5) compute power distribution; for the burnt-up core (6) compute nuclide composition after a specified time period, (7) compute macroscopic power cross-sections, (8) compute final neutron flux distribution, a .an d finally (9) display all computed information from the task in reactor zone plan format. [START_REF] Fried | BASIS On-line Retrieval and Analysis of Large Numeric Data Bases[END_REF]. A detailed statement of the Fuel Management processes has been published by Wardleworth and Wheeler (2). The following short description is only intended to indicate the interactive nature of the individual modules of the task and the inter dependence of the Interface datafiles and the module generated datafiles.

19* The compositions of the sub-assemblies are source input from Design Reports that detail the volume fractions of each constituent material for each sub-assembly type.

-164 -Their nuclide compositions are amplified through the modules SACOMP and RSSHIELD from the 37 group neutron cross-section library, the compositions of the individual materials and the fissile loading from the PFR Fuels Databank. These interactions create a subassembly data store on the Interface of nuclide densities and neutron cross-sections still tied to individual sub-assemblies for each sub-assembly type in the new core. The projected reactor loading is then input to relate new individual sub-assemblies to locations in the reactor. The reactor model is then constructed, using a definition of zone, group and mesh structure and weighting fluxes. The compositions and crosssections are smeared and condensed to form the macroscopic cross-sections required for the neutron diffusion theory program (TIGAR) which computes the neutron fluxes. Using these computed fluxes, the sub-assemblies from the data store are ' burnt-up1 as required and returned to the store which w i l l ultimately contain compositions at each stage of burn-up. It can be seen that many individual programs are involved and the input data at each stage is changing in a dynamic manner. The burden of the task is greatly reduced by the Workshop program. CONCLUSIONS 20. This paper has attempted to give an account of a practical application of scientific calculation in the nuclear energy field and to demonstrate the necessity of a supporting database structure and a compatible modular code scheme. The COSMOS databank differs from the General Database Management System IDMS in that it is a dynamic area in which any user may operate. Provided that the user conforms to set conventions, he may write datafiles to and read them from the database. By labelling the files and storing the labels in the Directory, these files are available for other users to employ. The files are related in the sense that they have been created within a chosen model and have used particular generations of files that are current on the database. The user name, program name, version number and run number all uniquely identify the file and its points of origin. In effect, all users are their own data base administrators, but the files that they have generated conform to the administra tion rules of the database. The files appear unrelated in that pointer navigational paths between files are not used; the files labels are used through their labels to point to generically related files. It is possibly superior to IDMS in possessing the additional attribute of interaction with the system and the system operators, and offers not only data independence but also program independence. Through its complexity it tends to possess a poor user image which is being improved through the continuing development of the system.

GENERAUZED DATA MANAGEMENTSYSTEMS A ND SCIENTIFIC INFORMATION SYSTÈMES D E GESTION DE BASES D E DONNÉES ET INFORMATION SCIENTIFIQUE report of the specialist study on com puter softw are rap po rt d 'étude de spécialistes sur le log iciel d 'ordinateur

The use of Generalized Data Management Systems for handling Scientific Information L'utilisation de systèmes de bases de données généralisés pour le traitement de la documentation et des données scientifiques In the Spring of 1975, several people felt the need for a data base management system and b egan defining management and system objectives in preparation for obtaining one. Several approaches were considered in obtaining a DBMS. First, where do y o u get one? Some national laboratories have been fortunate in receiving funding for designing and implementing their own software in the D M area. ANL felt that we were getting in to the D B M area rather late and in this case, a software development was unnecessary since there were commercial systems available. A second approach was to obtain a ' ' p u b lic" DBMS from another laboratory or possibly a university. Although this approach was considered, we found that some would not work on our computer, some d i d n !t have the needed features, and others h a d little or no documentation. Ultimately, we decided to analyze and select from commercially-available systems. This choice offered several advantages and some disadvantages:

There wer e a number of DBMS packages available for IBM hardware; there fore, we h a d a wide choice.

Companies selling systems generally support their products b y fixing bugs, providing documentation, and usually improving the package.

A substantive argument often raised against commercial systems is that the source code is usually not available. Therefore, n o enhancements suited to the local needs are possible. This can be an advantage, h o w ever, in maintaining compatability w i t h other installations having the same package.

A ft e r deciding to buy a commercial system, it was necessary to specify desired capabilities and then establish an evaluation methodology. Some of the desired ca p a bilities were: an English-like query language accommodate complex data structures efficient update and retrieval provide Interfaces w i t h high level programming languages report writer facility System 2000 was selected in the Summer of 1975 over several other products as the DBMS that was most compatible w i t h ANL requirements.

To give the reader some impressions on what has b e e n accomplished w i t h data base systems at ANL, several applications are briefly described.

WENDS

The WENDS system is a hierarchical data base where detailed information on energy R §D on a world-wide basis is stored for easy access b y scientists, engineers, and pro ject o r pr ogram managers. In addition to detailed technical data, material on economic, social, and political conditions for all nations covered in the p r o g r a m will provide additional perspective to users.

This application supports a hierarchical data base w here elementary components are units o f information called screens. A screen of information is defined as 22 lines o f text w i th 70 characters per line so that it fits w i t h i n the bounds o f most video terminals. The characters displayed within a screen are from the standard ASCII 96 character set whi c h includes both upper and lower case letters. All retrievals an d up dates for the prototype system are implemented w ith the S ystem 2000 Natural Language.

WENDS is constructed on three logic systems: 1. A geographic tree, in w h i c h specific information about the energy picture in any given nat i o n can b e quickly assessed, along with whatever specific data is desired on particular techno l o g i e s ; 2. A technology tree, whic h will allow users to obtain data on any given technology and the status o f projects, regardless o f where they are taking place; and 3. Tutorial data and discussions for background. It is anticipated that data will cover all countries affecting or r e lated to the energy situation in the U.S. They will encompass all m a j o r energy t e c h nologies on an unclassified basis.

INSITE

Interactive Nuclear Site data base was developed under contract for the Nuclear Regulator Commission. It contains site parameters on all commercial nuclear pow e r plants, proposed, under construction, or operating in the U.S. The data is to be accessed from state agencies and utilities across the country and has b e e n made available on a c o m mercial time sharing service network. Extensive use was made of the PL/I language rather than the System 2000 Natural Language to load data and to create conversational retrieval prog ra ms .

RADIATION EXPOSURE SYSTEM

The Occupational Health and Safety Division of A N L is responsible for maintaining current records for those personnel that may be exposed to radiation. To b etter a c c o mmo date these record-keeping responsibilities, a System 2000 data base o f pertinent exposure data has bee n implemented. In fact, the global query facilities and all report wr i t i ng features that are part of this system are provided b y System 2000.

Each enployee and visitor wh o has an assigned film b adge or dosimeter is included in the data base. Additional descriptive information, su c h as payroll number, b i r t h date, service date, and location is also included. All of the mon t h l y exposure details (rover, beta, gamma, xray, and neutron exposures) are retained for all sections in which the employee or visitor is monitored.

SPECIAL MATERIALS

A N L is developing a n e w Special Materials Information System for processing and analyzing all data on special nuclear materials (SNM) to provide current (daily) records of the quantities, movements, and locations of S N M in A N L custody. This system includes the capability of company b o o k values wit h measurement values and statistical analysis of the significance o f all differences.

The Syst e m 2000 data base is organized b y physical control area wi t h supporting data consisting of b a t c h definitions, starting balances, transactions, and physical inventories.

FERMI LAB

The Fermi Laboratory currently utilizes the A N L central computer facility for its administrative data processing and has implemented several data base applications: Financial Information System Capital Assets System Experiment Inventory for the Accelerator File of Experimentors and Institutions Some o f this data ha d previously been kept on other management systems but System 2000 gives m u c h more flexibility and provides for easier update than previously realized.

EXPECTED VERSUS A C T U A L US E OF SYSTEM 2000

For the purpose of this paper, it is desirable that w e class our data base appli cations into two categories--administrative and technical or scientific. A sijnple, broad definition of an administrative data base is an information system w h i c h w e use to run our organization an d support our paperwork. The technical data bases include the data we use to fulfill our contracts or do our research. Obviously, some data cannot be correctly classified into either of these categories. Some contract data bases are really adminis trative in nature or could be called management data b a s e s .

Most literature and educational material in the data base field has been directed toward administrative applications. The information needs in m a n y administrative functions fit quite naturally into the criteria for whi c h a data base implementation is appropriate. Some of these are: (1) a fairly well defined set o f data whi c h m a y need to be accessed in different ways (if separate files were kept, there w o u l d be considerable redundancy), (2) constant updating is needed, (3) protection or privacy o f data is needed, and (4) there are defined relationships between data items. It appears that the DBMS concept is a response to the needs o f commercial or administrative computer uses. In fact, the administrative users at A N L h a d a good idea what they needed in a DBMS and the effort required to imple m ent a data base application.

In contrast, technical users have had some difficulty in gaining the proper p e r spective. However, the DO E Laboratories have b e e n directing their efforts into fields where the data problems are massive, and some n e w type o f data management techniques seems n eces sary. At ANL, there have been many trial and error attempts to b uild useful data bases. M a n y of these attempts have succeeded but some have failed. It is our desire to attempt to classify some o f the reasons for success and failure so that others ma y benefit from our exp e r i e n c e .

Differences in technical and administrative data bases occur in the character of the data, the probable applications, and the methods or characteristics o f the people implementing or using the data base. We may consider each of these separately.

In System 2000, the available data types are integer, decimal, character, text, date, and money. The last three of these are rarely needed in scientific data bu t f loat ing point, vector, and matrix representations are needed. Presently, few D B M systems handle these data representations. Another tendency w i t h scientific data is that fewer updates are needed. Often, a set of data will be conpletely replaced rather than par tially updated. A third difference in the data is that privacy is seldom an issue but accuracy is very important.

Applications also tend to be different in administrative and technical or s c i e n t i fic data base systems. Administrative applications usually n e e d a small amount o f ari th metic capability and extensive report generating or information retrieval. Technical applications m a y require extensive calculations, statistics routines or graphical o u t put generation as well as report generation.

The last area of difference is in the people and their ways o f thinking. In the research mode, it is difficult to know what applications m a y be desirable from a data base. This tends to complicate the proper structuring of the data. Researchers tend also to be quite autonomous and the idea of a data base administrator w i t h b r o a d authority is many times unworkable. Lack of centeralized authority, however, inplies an increased need for education of users as wel l as a high level of technical consultation bei n g available.

In general, technical uses of a data base management system m a y require a system with broader capabilities than are needed for administrative applications. However, there are many technical users wh o can benefit from the D B M systems n o w available even with current limitations.

The following list of questions are given for consideration in deciding w h ether a given application should be done via a DBMS. They are not exhaustive but m a y uncover some possible difficulties.

1. Is the data going to be used long enough to warrant constructing a data base? Can it be updated or does the entire set of data need to be replaced?

2. Is there a variety of uses for the data? In some cases, a data base m a y be app r o p riate for only one application but it is more effective if m a n y applications can use the data. A related question is: Is the application too simple for the amount of data to be loaded?

3. Can an intelligent structure be defined for the data? Is it too simple or too c o m plicated?

4. Is it in a form to be conveniently loaded into the data base? Is a conversion to such a form worthwhile?

5. What other functions are needed for the data (statistics, graphics, extensive c a l culations) , and are the functions available within the DBMS? System 2000 provides several functions, high level language routines can be written, or records can be generated for the graphics or statistics packages through list or report generator facilities. Interactive use of such packages is not practical except through PL/1.

6. How much external calculations are needed? Calculations can certainly be done efficiently w i t h high level languages as everyone recognizes bu t data base structures do not lend themselves to matrix manipulation, for example.

Several of the advantages and disadvantages contained in Sytem 2000 have been mentioned throughout this discussion. There is always something that one finds a software package unable to do but this is an extensive system w i t h broad capabilities for doing administrative and technical data base management. It is a particular advant age that Sys t e m 2000 is available on IBM, CDC, and Uni vac hardware and that it has been acquired b y several DOE Laboratories.

System 2000 is designed to operate only w i t h hierarchical data. In the administra tive w o r k at Argonne, it is sometimes more convenient to utilize other data structures, particularly net w o r k structures.

Al th ou g h S ystem 2000 has proved to be inadequate for some needs, it certainly has many features that make it very useful. Data bases are accessible in either a batch or an interactive mode. It has a particularly good natural query language in which the string and function definition features give extensive capabilities. The report writer has limitations since disjoint portions of the hierarchical structure cannot be accessed in the same report. Since System 2000 interfaces to Cobol, Fortran, and PL/1, many r e ports are w r i t t e n in a higher level language. A capability not available that would be desirable w o u l d be to access more than one data base in the natural language. This feature is available in PL/I.

Because o f the flexibility of System 2000, the efficiency can vary widely. In large applications, therefore, attention to optimum data structuring and tuning is necessary. The availability of technical consultants wit h in-depth knowledge of the system is then critical. As mentioned previously, this has been a problem at ANL w h i c h has only r e cently b e en alleviated.

CURRENT A N L PLANNING ACTIVITIES

The complexity of the administrative structure at A N L gives rise to complex data structures in an overall administrative data base or w hat might be termed a laboratorywide data base environment for administrative information systems. System 2000 is not adequate for such an environment because it is limited to hierarchial data structures and because of the limited capacity to access more than one data base. Therefore, ANL has initiated a planning study to plan for and acquire software for the establishment of laboratory-wide data base environment for administrative information systems. ANL has recognized that the ultimate success of such an environment is critically dependent upon long-range planning.

W hy is a lab-wide administrative environment needed? Historically, most data bases have b e en installed to achieve efficient and flexible management and maintenance of data. However, commercial data base management systems have developed to the point that recent improvements in the area of data accessibility are dramatic. Current demands, such as the proposed DOE Un i f o r m Contractor Reporting Guidelines, require effective, flexible, and timely information retrieval abilities.

We see as one of the main goals of this planning effort the detennination of the most appropriate DBMS environment for the Laboratory; that is, one that has the optimum balance o f accessibility features, efficient organization, and growth potential. One DBMS may be outstanding in data accessibility, another m a y be more in line w i t h Tlwhere things are g o ing," and yet another m a y be most efficient. The state of the DBMS technologies will be thoroughly studied w i t h i n the context of ANL requirements. Part of the planning effort, then, is that the information objectives and requirements of key Laboratory administra tive areas are to be identified.

There are a number of software and hardware technologies that can be utilized to accomplish these objectives. One alternative is to keep the current file-oriented appli cation systems, b ut augment them b y additional report w riter software. This approach appears inadequate, b u t w ill be examined on the basis of its low cost and quick imple mentation .

In addition to this file-oriented approach, there are at least three forms of data base management technologies to consider: centralized, distributed, and back-end. C u r rently, the centralized DBMS is the most common: all software, including the TP monitor, is on the central computer and data storage is on attached disk drives. A distributed DBMS is where the data base resides on a number of computers and those computers and data base management systems communicate with each other.

The newer back-end DBMS concept involves off-loading the data base management function from the host C P U to a dedicated minicomputer, or ,rback-endff processor. A N L has only r e cently b e e n introduced to this approach for practical applications and it m a y be a p o tentially effective alternative for both high-volume centralized environments and also distributed processing networks.

The function of the back-end is to provide data base management services on beha l f of the host. The motivations generally given for development o f back-ends include: higher performance/cost ratios than w i t h a centralized CPU in executing data base-oriented tasks; increased independence between m a i n frames and secondary storage; enhanced data base s e curity, integrity and availability; and more effective sharing o f data among multiple hosts, When the technology develops, the extent to w hich a given b a ck-end system w i l l satisfy those objectives will depend greatly on key design issues (such as w o r d length, address space, instruction set characteristics, and multiprocessing support) and the degree of integration o f the back-end hardware and software architectures.

Both MRI Systems Corporation and the Cullinane Corporation have asserted that i m proved host throughput accounts for the major cost advantage o f ba c k-end DBMS. In fact, both Cullinane and MRI are currently developing prototype b a c k-end DBMS tec h n o l o g i e s . The Cullinane design currently employs an IBM 370/158 as the host w i t h a DEC PDP 11/70 minicomputer serving as the back-end processor. MRI Systems Corporation is developing the back-end DBMS technology using an Interdata 832 minicomputer. Both organizations claim that these products will be available in approximately one year.

The current state-of-the-art for DBMS technologies reminds the authors of the stories of the state-of-the-art of constructing bridges at the b eginning o f the century. A t that time, engineers estimated the load that the structure mus t bear, tried to make sure that enough steel and structural support would be provided to h o l d the load--and hoped. Not until fairly recently have we b e e n able to design structures to wi t h s t a n d wind, water, and ea rthquakes. It seems that w e are building our data bases n o w m u c h like w e built our bridges at the turn of the century. We are now evolving to a bet t e r design m e t h o d ology. INTRODUCTION In 1977, worldwide, there are approximately 7000 high energy, or particle, physicists (plus graduate students). Particle physics annual research budgets total to about $600,Q00,Q00 and some 300 experiments are under way at 16 major accelerator centers. Approximately 150 of these experiments are completed each year and the experimental data they produce are reported in approximately 1,500 preprints, reports, journal articles or theses. The data fall into two general categories: first, data on properties of elementary particles and resonances and, second, data on reactions.

In the area of particle properties, for the past 20 years the Particle Data Group, P D G , has, by itself, been able to handle all of the data and to satisfy the needs of all users world-wide.

In the area of particle reactions, PDG has been able to compile only a rather limited subset of the data. notably the CERN-HERA group in Geneva (see Dr. Moorhead' s contribution to this study) and, more recently, groups cooperating with ZAED Csee the talk of Drs. Bau and Behrens), the situation at present is not satisfying: in many areas no compilations exist at all, in others the compilations are not up-to-date, and in many cases the compilations are difficult either to obtain or to use. PDG, CERN-HERA, and ZAED are each currently trying to improve the situation but are using very different approaches. The availability, or lack thereof, of a suitable generalized database management system, GDMS, has influenced the approach each group has taken and the range of problems it is trying to resolve.

In the rest of this paper we look at these various approaches, especially that of PDG, and pay particular note of the role of GDMS. We also argue that scientific GDMS be able to handle multidimensional arrays and give an example of how PDG has implemented and is using such a capability.

II. THE NATURE OF THE DATA AND THE NEEDS OF USERS

Particle properties data and reaction data have very different characteristics and are used very differently.

Particle properties (masses, lifetimes, decays, spins, and so on) play an important role in all areas of particle physics, and in other areas, such as nuclear physics and astrophysics, as well. Each year about 1000 new results are reported in approximately 300 papers. Most particle physicists are only interested in averages and few of the widely used ones change in a given year.

PDG has developed a system for handling the particle properties data which consists of a great deal of specialist attention and a simple card-oriented, sequential file manipulated by a number of special-purpose computer programs. Biannually, annually, or biennially, depending on the state of the field, PDG publishes the data and printed averages and distributes them to most particle physicists Cl)• Because of the stability of the averages and the relatively small volume of data, this simple system has been able to serve both users and compilers very successfully for 20 years (2) . This system does not constitute a GDMS. On the basis of this operation alone, PDG could not justify conversion to a GDMS.

Particle reaction data are characterized by a very large number of possible measurements because the number of distinct reactions is very large, collisions between any two particles can result in the production of particles, and because the cross section for a given reaction can be a function of many variables, the number depending on what particles are scattered and on what particles are produced. Also, the description of reaction data is very complex, first, because there is no standardization in the choice of variables and units and, second, because combinations of cross sections may be measured and reported (i.e. ratios, products, sums, differences involving the same reaction or different reactions). These complications are inherent in the nature of particle physics because the field is highly research oriented and constantly changing. Different choices of the independent variables may be preferred in different theoretical models and the preferred choice may change as understanding of the data changes.

As experimental techniques improve, not only do data rates keep growing but data on more and more different reactions are measured, and for specific reactions cross sections are measured for larger ranges of the independent variables and with finer steps. Most new measurements reported in a given year are either entirely new, completely supersede existing measurements, or cover different ranges of the independent variables.

The number of potential users, for reaction data is smaller than for particle properties data but their needs are more demanding and varied. Some are interested in comparing many reactions at the same values of the independent variables; others in studying a few reactions as a function of all the independent variables. For some, a few sample points are sufficient; for others all existing data are necessary. Some require data many times a year; others seldom. In almost all cases, users want the data presented to them in units and variables that they select, regardless of how the data were reported.

III. EARLY COMPILATION EFFORTS

Early reaction-data compilations fell far short of being able to handle all data and of servicing all user n e e d s . In 1969 PDG and the CERN-HERA group in Geneva began to publish selected subsets of reaction data. Since the late 1 9 6 Q fs numerous other groups have also compiled subsets of reaction data but have done so primarily for their own research needs and few have published or distributed their compilations. The problems with these efforts were: they did not cover the field; each was done in its own format and each was handled by separate special-purpose programs; those published as printed reports quickly became out of date; those available on tape often required the user to write his or her own data extraction programs.

In 1975 the CERN-HERA group upgraded its system by adopting a relatively simple GDMS available at CERN called TABLOID. By limiting the scope of its compilations to reaction cross sections with all variables integrated out, CERN-HERA has been able to keep its compilations up to date. By using TABLOID it has allowed users direct access to the data and greatly facilitated the tasks of update, sorting, and report generation. The CERN-HERA effort is described in Dr. MoorheadTs contribution to this study.

In 1974 the Federal Republic of Germany established the Zentralstelle fur Atomkernenergie -Dokumentation (ZAED) whose mission, in the area of particle physics, was to coordinate compilation of reaction data and to encourage and facilitate the publication of printed compilations. ZAED helps compilers prepare their work for publication and publishes and distributes the printed reports (see the talk of Drs. Bau and Behrens) . As a result some compilations have been published which might otherwise have remained private and difficult to access. So far, however, ZAED has made no effort at completeness and, though its compilations are accessible, for many purposes they are still not easy to use since ZAED relies on the format and programs of the different compilers which vary from compilation to compilation.

IV. THE PDG SOLUTION

PDG has taken the point of view that most reaction data should be compiled and that most user needs should be met (clearly some data are of too limited interest to warrant compilation and some requests are too rare to justify setting-up general procedures or too difficult to service economically).

In 1971 PDG realized that the proliferation of many independent, special-purpose compilations would not satisfy user needs in the long run and so began a comprehensive review of its own operations and the data compilation needs of particle physics in general. As a result of this study, PDG decided to build a single system which could handle all data and data-related bibliographic information for particle physics.

In 1973 PDG decided that, to maintain the various databases of this unified system, it needed a GDMS. Furthermore, it decided to design and implement its own. The GDMS which resulted, the Berkeley Database Management System (BDMS), is described by Dr. Richards in another paper submitted to this study.

In 1975 a prototype of BDMS became operational and PDG began implementing its new BDMS-centered system of databases and operating procedures. At the same time PDG turned over primary development responsibility for BDMS to the Computer Sciences and Applied Mathematics Group of the Lawrence Berkeley Laboratory both because BDMS promised to be useful to other laboratory groups as a general scientific database management system and because its development was turning out to require greater resources than PDG had avai l a b l e .

-175 -The development of BDMS and of the BDMS-centered system of databases and operating procedures have been intricately related. Initially the needs of PDG and the users dictated features that BDMS should have. As BDMS became a more and more general system, features were added which could be of potential use to PDG and any scientific data compilation effort. Armed with greater capabilities in BDMS, PDG soon found ways to refine and extend its system which, in turn, led to the discovery of new features BDMS should have. Both BDMS and PDG's system have benefited immensely from this interplay, but an unfortunate consequence has been that both systems have taken much longer to develop than anticipated. Even now, in 1977, BDMS is still far from fully developed and PDG's BDMS-centered system is at least a year away from being fully operational. However, a version of BDMS is operational and has many powerful features; all major components of P D G ' s system are designed and are in various stages of being implemented. PDG's new unified system contains three major databases: the document file, the reaction-data file, and the particle-properties file. Each file has its own hierarchical intra-record structure and its own encoding language. Each language has some data elements which must be encoded in a controlled vocabulary, for example particle names, and some which must be written in a rigidly-defined syntax, for example reaction names. To a degree the files are interrelated in that some data elements appear in all three, for example particle names, and no matter where they appear they must be encoded in the same way. The controlled vocabularies and some syntax definitions are kept in auxiliary databases.

BDMS handles general database management operations for all databases: retrieval, update, storing, etc. Features of BDMS of special significance to P D G Ts application are: random access and update of individual records; batch and interactive capabilities with common command language; extensive retrieval facilities; hierarchical intra-record structure; support of character bit strings, integer or real (single or double precision) vectors; exits to user-supplied routines; and modular design and, for the most part, machine-independent FORTRAN IV coding (see Dr. Richards' talk for more details).

In addition PDG has interfaced to BDMS extensive special-purpose software for input data verification, syntax checking, controlled vocabulary checking, data transformation, and special-purpose report generating. For the document-file, the simplest of the major files, the data elements are still sufficiently complex that the amount of specialpurpose software is comparable to that of BDMS itself. For the more complex reactiondata file which is still under development, the relative amount of special-purpose software is expected to be much greater.

Most anticipated user queries can be handled by the BDMS retrieval features coupled with special PDG-supplied extensions. The BDMS query language (3) includes Boolean and relational operators, nested parentheses in search expressions, truncated and range search. Any data element value or quantity derived from it may be defined as a key. PDG-supplied software transforms some data element values before the keys are constructed, for example to ensure uniform units for the keys. PDG is also writing software to produce output in special formats most suitable to a given u s e r ' s needs or to interface to graphics.

The mere existence of PDG's system which is capable of handling all particle physics data is not sufficient to ensure that all data will be compiled. In fact, the volume of old uncompiled data, the production rate of new data and the amount of expertise necessary to compile all types of data are just too high for PDG to hope to do all steady-state encoding and catch up on the backlog by itself. With its unified encoding language, the powerful capabilities of the BDMS-plus-PDG software, and the transportability of the system, PDG has begun to recruit collaborators. The most likely candidates are the same groups that have produced or are producing the special-purpose compilations.

The document file plays a central role in PDG's effort to coordinate the efforts of the various groups which actually compile the data. It contains bibliographic information and experimental descriptions for all papers reporting new experimental data and keeps track of the encoding status of all data. This database is now operational and is being kept up to date. Users can alert themselves to the existence of newly published or preprinted data as soon as they become available and can simultaneously determine whether they are encoded, in process, or not to be encoded. The Crystalographic Data Centre in Cambridge also uses a document database to coordinate the activities of its center, see Kennard et al. (4).

At present, initial work on the reaction-data file is being carried out by a collaboration whose members are located in Berkeley and Pasadena, U.S.A.; Rutherford Laboratory and Durham, England; and Glasgow, Scotland. This geographically diverse collaboration is absolutely necessary because no one location has members with the required expertise in all the classes of reaction data being compiled nor with all the knowledge and skills in systems development. The unified encoding language and the single software system implemented on different computers have been crucial in making this collaboration work. So far emphasis has been on developing and refining the encoding language, software system and collaborative procedures, even while a useful and very large, though far from complete, database is being established. During this development phase, close communication between all collaborators is essential. This collaboration could not have gotten off the ground without an initial visit by all members to Berkeley where the main systems development work is being carried out and could not have been sustained without day-to-day communication via the ARPA-Network.

PDG has not yet begun conversion of its particle properties file to BDMS since its pre-BDMS operation is so successful. Given that it now has a GDMS, PDG does plan to convert these operations eventually.

V.

A DATA MODEL FOR TABULAR DATA When it designed BDMS, PDG felt that a sufficiently accurate model of the intrinsic logical structure of the data could be constructed using a hierarchical intra-record structure together with, among other things, data elements which were real vectors. However, the most common way in which data are presented in the literature is in the form of tables with column headings and row labels giving the names and values of the independent variables and the body of the table containing the data points. PDG could find no satisfactory way to model these tables and the associated labels using just the associations implied by a hierarchical structure. Instead, PDG designed a very efficient and accurate representation of tabular data in terms of a multi-dimensional array model. In PDG's implementation the data and labels are still stored and input in the same way as hierarchically associated quantities but special PDG add-on software applies and interprets additional associations which are nonhierarchical.

We feel the ability to input and manipulate tabular data conveniently and efficiently should be part of any scientific GDMS and so we briefly outline our particular method.

V 7 -

In this table the capital letters represent the names (and units) of all the independent variables which are needed to characterize the data points. The corresponding lower case letters represent the values of these independent variables. Finally, the y ^' s represent the data points (a n d errors). The association of independent variables and data points is obvious from the tabular representation. Now, consider the following fragment of a hierarchical record structure:

TABLE-NAME n o 5 e 1 r N V
where N contains the names (and units) of the independent variables, V their values, Y the data points (and errors), and NODE just links related names to values. A possible encoding language i s : It is very convenient to regard Y as a multidimensional array with the following structure: Y(n(Z),n(W),n(S,U),n(Xl,X2,X3)) where n(Z) is the number of distinct values of the variable Z (2 in the example), n(W) is similar, n(S,U) is the number of distinct pairs of s,u values (1), and finally, n(Xl,X2,X3) is the number of distinct (X1,X2,X3)triplet values (4). Z is the fastest running variable, the (XI,X2,X3)-triplet is the slowest. This array representation of the table makes it very easy to formulate and visualize any data selection or manipulation operation: for example, selecting data points with certain values of the independent variables amounts to_projecting out rows, columns, or planes from the table, or equivalently from the array Y (the example should be regarded as a 3-dimensional table with the (XI,X2,X3)-axis down, the Z-axis across, and the W-axis into the paper with the right half of the table as the second sheet) . This model resembles the relational model and shares its conceptual simplicity.

The convenience of using this model and its efficiency are related to the very precise way in which it models the intrinsic logical structure of the data. Consider a dependent variable y which is a function of n independent variables. Then y is a function in an n-dimensional space and the data points y^ may be regarded as lattice points in that space. Finally, a typical table will be a projection on 2, perhaps 3, dimensions of that n-dimensional lattice.

As an aside, we remark that PDG has experienced great difficulties in converting many non-BDMS files to B D M S . First, PDG had to overcome such tedious, yet straightforward, problems as translating free format quantities into controlled vocabularies, allowing for different encoding standards, correcting errors, removing duplication, and finding omissions. However, a much more difficult task was translating compilations where the data model used was not defined precisely enough and, as a result, there were ambiguities in what the actual associations between elements were. Such -178 -cases were quite common for descriptive information in compilations using sequential card-oriented formats and could only be resolved by looking at the source publications.

VI. CONCLUSIONS

The Particle Data Group has designed and is now implementing a system of databases, encoding languages, database management software, and operating procedures that it hopes will resolve most problems with data compilation and dissemination in particle physics. PDG's operation requires both extensive general database management capabilities as well as numerous capabilities particular to its application. There is no doubt that most of the general capabilities could be used in other scientific data handling operations and that, likewise, most of the general capabilities developed for other applications could be used productively by PDG. Since the development of a GDMS is so very difficult and time-consuming and at the same time so essential to operations such as P D G Ts, the highest priority should be given to prompt development of a GDMS suitable for most scientific applications and this development should be coordinated at the national, or perhaps even international, level. BDMS and some of the other systems described at this conference have many of the capabilities required of such a system.

An especially important characteristic of any GDMS is how well it can model the intrinsic logical structure of the data being handled. In this regard PDG found it necessary for the GDMS to be able to handle multidimensional arrays. Since such a capability is not yet in BDMS, PDG has implemented a scheme through special add-on software.

USE OF A GDMS FOR HIGH-ENERGY REACTION DATA W.G. Moorhead. CERN, Geneva, Switzerland 1. ABSTRACT At CERN, data on high-energy reactions is "being compiled using a Generalized Data Management System. The GDMS is a stand-alone system designed for administrative and engineering applications. The Data Base at present contains about 20,000 cross-section values, each linked to a description of a)

the corresponding reaction, and b) the publication from which the value was derived.

The immediate objective is to produce the widely circulated Compilation Reports, and the standard Report Generator of the GDMS is being used for this. Direct retrieval is also possible.

The GDMS

A generalized data base management system called TABLOID was imnlemented for the CDC 6000 Series Computers under SCOPE 3.4, primarily to meet some of the needs arising in the construction of the 300 GeY accele rator. From an external point of view, TABLOID is a self-contained GDMS by means of which Data Bases of a fairly general type m a y be defined, and procedures for update, retrieval, sorting and report generation specified, all in a (rather primitive) high level language. Internally, TABLOID interfaces with the CDC SCOPE Indexed Sequential (SIS) file organization module for storage and access of data on disks,.

In TABLOID, a Data Base consists essentially of an SIS file con taining variable length records composed of items, sub-items, and repeating items to one level only, the organization within a record being defined b y a schema. Some of the items are designated in the schema to be the com ponents of the unique Data Base Key used to access the records. The schema and the user-defined procedures written in the TABLOID language are kept in source form in a separate word-addressable file.

In addition, a second SIS file containing any nymber of "dictio naries" may be attached. Each dictionary has its own schema defining its record format and key, in the same way as the mai n Data Base. The k e y is generally an abbreviation which may occur many times as an item in the main Data Base, and the purpose of dictionaries is thus to avoid the r ea ding in and storing of excessive amounts of redundant information.

TABLOID is now used for about a dozen Data Bases relevant to the installation of cables, magnets and other equipment in the accelerator tunnels and auxiliary buildings, as well as for other applications.

One of the limitations of TABLOID is that it is used entirely in batch mode and no interactive facilities are envisaged for it, though batch ¿jobs may be submitted via an interactive terminal.

THE HIGH-ENERGY REACTION ANALYSIS APPLICATION

TABLOID is being used to produce compilations of cross-sections for certain classes of high-energy reactions. There is a main Data Base file containing at present about 20,000 records where each record represents one data point obtained from a publication. A data point is a crosssection and its errors for a particular reaction, with a specified energy of incident particles, and possibly with specified decay modes of second ary particles. A reaction is of the form

I + TA+B+C ••• ,
where I is an incident particle; T is a target particle and A, B, C, etc., are secondary particles, e.g., PI + P P + RHO + PI + PI°T he cross-section may, in fact, correspond only to a channel in which one (or more) of the secondary particles decay into other particles, which may in turn decay, etc. For example, a reaction can take the more general form :

I + T-*A + B + C ... L* D + E .. . U ^ g + ...
The Data Base key of the main file consists of the following items : i) an eight character code, such as A 100000, for the reaction;

ii) the energy of the incident particle in MeV/c; iii) a four character code, such as S102, for the publication reference; iv) the decay mode and particle number of the first secondary particle listed as decaying.

The records in the main file are thus kept in ascending order of these values, and it is possible to retrieve rapidly by reaction, code plus energy range.

There are five dictionaries of which the three most important are : i) a Reaction Dictionary containing fuller details of about 3 5 0 0 reactions referred to b y the eight character code in the main file. The incoming and outgoing particles are recorded in this dictionary, together with a threshold energy for the reaction;

ii)

a Particle Dictionary containing for each particle its mass and for each decay mode the decay products, together w ith the branching ratio and its error. The particle name which is used as key component in this dictionary has 10 characters, and m ay have occurred as a secondary in the Reaction Dictionary or as a decay product in the Particle Dictionary itself. There are about 6000 entries in this dictionary at present; Procedures for updating the main data file and the dictionaries have been provided for the end user, together with simple retrieval faci lities for sampling parts of the files. Pre-processing programs had to be provided to convert the variable field input cards preferred b y the user to the fixed field cards required by TABLOID.

An example of part of a page of the compilation report generated by TABLOID is shown in Pig. 1. Much calculation and dictionary searching can be performed in correcting the cross-section and its errors to take account of the decay modes, possibly to several levels. A table of contents is also produced, and output is generated for a post-processor program which makes histograms and graphical plots. In 1974-1 the Economic Information and Documentation Group of the Program Department within the French Atomic Energy Commission (CEA -DPg -GIDE) asked CISI, its EDP subsidiary, to develop a system for handling information about the nuclear power plants of the world.

As a government body, the CEA has to answer various questions about the nuclear market, which may condition political and economic decisions. The increasing number of queries made it necessary to ratio nalize this activity. Although the data are available, they are often hard to extract from the literature, or simply not published, and it seemed appropriate to store these data on computer media. While the data themselves do not change rapidly, the decision to go Data Base was jus tified b y the wide variety in type and the increasing number of queries.

A first attempt, using a conventional GDMS, proved ineffective, and was followed in 1976 by a feasibility study in order to choose b et ween APL and SYSTEM 2000. While SYSTEM 2000 seemed well adapted to the data structures to be represented, the choice of APL was motivated by the need to allow for unpredicted changes in the system, and for complex computations on the data carried within it.

In June 1977? all basic software for the system was available (data structures, access methods, reports, retrievals, etc....), but the data themselves were still incomplete, because of the need for meti culous checking. Some further delay was due to new demands on the sys tem from the users : new facilities can be implemented rather easily, which incites the users to ask for more.

The present system is a subset of a more general Data Manage ment System LGI written entirely in IBM APL-SV / ~2 ^7 and in which the concepts of the paper 9An APL approach to Data B a s e s 1 are fully im plemented. LGI is used by CISI for several data bases, in particular Sea Water Desalination Plant (this base will later be linked to the Nuclear Power Plant data), Plutonium Needles (a real-time data base for the Fontenay-aux-Roses production centre), computer systems in the CEA (there are 5^-0 systems with more than 4-K of memory) and some small commercial data bases.

DATA BASE ORGANISATION

2.1 Data structures Some criteria will have a single value for each plant (e.g. name, country, etc...) while some others will have multiple values. The first will be represented by vectors of numbers or arrays of characters (e.g. names) where each vector (or array) is a logical record in a file. This set of vectors constitute level 1 of our data base.

There are two types of multiple value criteria : the history of power changes (normally 2 or 3 changes during the life of the plant, with a maximum of 9) and the history of electricity production (one finds one set of data per time interval, normally for each month, though the perio dicity m a y vary between countries. A plant may have a life of 20 years. These two sets of data are normally described as Repeating Groups.

Power changes are few, so that one may represent each (multiple value) record as a matrix, in which a row carries one set of information for all the plants : the first row is the set of the first (initial) powers, etc... If we associate a relative pointer (number of the row) to this array structure, one may consider the level 2 information as similar to the level 1 information : access will he restricted to a single value of the pointer at any given time and the number of occur rences will he introduced as a direct (level 1) criterion to know whether a plant may he selected or not for a given value.

The set of data on the electricity production of a plant is known as the Operating Experience of that plant. It will constitute our level 3 information. A special access method (historic) has been developed to manage this information properly (see OJ>*. It will he possible to scan the history of the plants from the' beginning (e.g. the first 10 years of a set of plants), from the end (e.g. the last 5 years of the life of the plants) or from any random point (e.g. the 2 years after initial criticality or the 2 years before the date of cancelling). To increase the performance, some statistics will be automatically recom puted each time the level 3 data is updated (e.g. the production in the most recent period or for the past 12 months or for the current calendar year). In Prance, the PEON commission has defined an Energy Utilisation Factor k :

, _ 100 x gross electrical generation gross electrical power x related period For a set of plant units, one may compute the average of the k*s or estimate a parameter k in function of each individual period and gross electrical power.

The data structures of level 3 are defined but not yet loaded. The initial loading will be done in September 1977 and will take a few months (there are 220 active generating plants!;.

The data structures may be summarized as follows : LEVEL 2 (660) LEVEL 3 (220)

National "Reference Plants" (having characteristics defined b y the PEON commission) are also recorded, for comparison with a given reactor or class of reactors such as PWR.

System architecture

The APL functions are organized in 4 workspaces : each work space may he loaded independently.

Workspace DEFINITION

This workspace is under control of the Data Base Administrator (DBA) and contains functions for :

-file creation and deletion -initial data hase loading (in hatch mode) -updating the various tables -data base administration (various access tables) -program library maintenance.

The data structures of the present base were defined directly in APL. A Data Definition Language is under consideration* but the need for one is not immediately evident, since the APL coding of the present structure .took only one d a y 9s work. It may be preferable to employ the APL support specialists to code data structures rather than construct a DDL which will consume equal coding effort but may result in less effi cient data structures. So as to leave maximum memory in the SELECTION workspace, userdefined functions are stored in an overlay file which is maintained under the control of the DBA, using the DEFINITION workspace.

We may request a list of active keywords and tables (Fig. 1$J&; the display can be output in either French or English).

Workspace SELECTION

All search operations are run in the SELECTION workspace using the query language described in Section 3* Access to this workspace is in general open only to the DBA : the operations performed are :

-EDITION on high-speed printer or typewriter terminal -MAJ (mise h jour = update). Currently only the DBA is authorised to update this data base, and updates are performed interactively. Multiple-user updating could be quickly implemented using shared files and a shared variables lock/unlock control mechanism -BILAN produces balance sheet listings of power plant performance (level 2 data). These may be in standard form (balances b y country and type of reactor over a given period) or follow the user*s selec tion criteria -LISTE for a given keyword prints out all values within the required subset -VALEURS prints the complete set of values for a keyword.

In addition, system commands are available for routing output within the CISI network, dumping tables from the data base, query optimisation and query storage on the QUESTIONS file.

Workspace DUMP This workspace contains two main functions :

-dump of the full data base on a line printer (tables and formatted images for each plant)

-selective dump of a set of keywords on punched cards for large updates. Some information is pre-punched on the card (e.g. the internal address) to facilitate the updating operations.

Workspace QUESTIONS

In data bases using the LGI / "1 _ 7 software, this is the normal workspace for external users other than those authorized to use the SELECTION facilities. Any query may be saved from a SELECTION session. The optimized (compiled) search code is kept as well as the initial source for further visualization and use.

For technical and political reasons external users may not at present access directly this nuclear power plant data base. Queries are now handled b y the DBA, but client access to the data base is,under consideration,

Technical characteristics of the system

The system uses the standard 80 Kbyte workspaces of the APL-SV Release 2 system installed in CISI ; some 40 Kbytes remain free in a workspace for the user's current operations. Data are recorded on OS files, while APL functions are called for use in overlay from a library file. Some 350 Kbytes of disc space is sufficient to store the charac teristics of up to 900 power plants. The present population of the base is 660 plants (with data in levels 1 and 2) of which about 220 are producing electricity (level 3 data). System storage capacity can be extended b y reorganizing the disc space allocations. The cost of execu tion for each search expression in the SELECTION workspace is printed with the reply, and an accounting routine for cost survey and analysis is available in the APL public library.

THE QUERY LANGUAGE

The query language used is a subset of that used in LGI, and allows for execution, normally in the SELECTION workspace, of the various standard operations EDITION, LISTE, MAJ, etc. Pour types of expression are accepted :

-Logical expressions using arguments connected b y ET (and), OU (or), SAUF (and not), PAS (not). These arguments m a y be arithmetic expres sions involving keywords (keyword = xxx etc.) or the results of previous selections.

-Computational expressions yielding a value rather than acting as a selection mask.

-Directly executed APL expressions .

-System management commands.

(Typical selection sessions

The conversation "below (with, user commands outlined) is an example. Line numbering is done "by the system.

)L0AD SELECTION -----SAVED 1 8 . 1 7 . 5 The SELECTION function may be called tinder SELECTION to indicate that the last active mask in the workspace has to be used. : 73 2 " 67 [4] o" .TROUVES COUT :

User queries are free of the c o n s t r a i n t s i m p o s e d b y some i n f o r m a t i o n r e t r i e v a l systems. The r e s u l t s of a s e l e c t i o n m a y b e f u r t h e r r e f i n e d i n s u c c e e d i n g exp r e s s i o n s ^i n e £} or r e c a l l e d to b e c o m e the active s e l e c t i o n ^T i n e s 3 and 4 b e l o w 7 w h i c h m a y b e u s e f u l w h e n a s e l e c t i o n is empty, as i n the q u e s t i o n 'LISTE C O N S T R U C T E U R • o n line 3 b e l o w : this r e p r e s e n t s the i n t e r s e c t i o n of the f i r s t 3 s e a r

ET CONSTRUCTEUR=B*W ; 33 4.76 the a c t i v e m a s k is the r e s u l t of the line 2 i n t e r s e c t i o n w i t h a n e w c o n d i t i o n w h i c h is u s e f u l f o r the p a r a m e t e r i s a t i o n of the q u e s t i o n s recor d e d .

-190 -

L i s t i n g s a nd B a l a n c e Sheets O n e m a y continue w i t h a l i s t i n g of the s e l e c t e d s ubset (33 pl a n t s) j u s t b y e n t e r i n g E D I T I O N :

the s u b s e t is s m all e n o u g h (33).

O n e m a y edit a s h o r t report. 1. S e l e c t the k e y w o r d s . The s y s t e m a n s w e r s w i t h the p r i n t w i d t h (LARGEUR). O u r p r e s e n t r e p o r t w i l l h a v e a w i d t h of 74 c h a r a c ters.

S o r t p h a s e

C h a n g e s i n the s e q u e n c e (one b l a n k line w i l l b e inserted) 4. To a l low a u t o m a t i c p a g e f o r m a t t i n g f E n d of d a t a e n t r y symbol. D e f a u l t / o p t i o n s are t a k e n if it is the L o n l y answer. One m a y n o w g e t a p o w e r b a l a n c e (for the s e l e c t e d u n i t s) b y c a l l i n g the f u n c t i o n BILAB' : [5] BILAN

A p a u s e is n o w m a d e to allow p a p e r p o s i t i o n i n g , f o r example b e f o r e a n e w p a g e :

No NOM PAYS I F I L I E R E |CONSTRUCTEUR|S IT E |T Y P E \C0MPAGNIl ARKANSAS-ONE-1 US 1PWR \BaW 1 1 1COMMERC.\APL INDIAN-POINT-1 US 1PWR \BAW I 1 iCOMMERC.\C0N_ED MIDLAND-1 US IPWR \B*W I 1 1COMMERC. 1 CPC MIDLAND-2 US 1PWR \BAW I 1 1COMMERC.1 CPC GREENWOOD-2 US 1PWR \BAW I 1 1COMMERC. 1DETR. ED GREENWOOD-3 US IPWR \BaW I 1 1COMMERC. 1DETR. ED OCONEE-1 US 1PWR \BaW I 1 1COMMERC.1 DUKE OCONEE-2 US IPWR \BaW I 1 1COMMERC.1 DUKE OCONEE-3 US 1PWR \BaW ! 1 1 f f i T ~~ liíñlT - THREE-MILE-ISLAND-1 US\PWR T R R E E -M I L E -I S M J ¡P -~^J ? S | PWR ERIE-1: \BAW \BAW ________^trS^T^HANFORD -1 US 1PWR \BaW T21+3 WPPSS-H-HANFORD-3 US 1PWR \BAW 1159 CRYSTAL-RIVER-3 US 1PWR \BAW 1309 SOUTH-RIVER-1 US 1PWR 1 B a W 1310 SOUTH-RIVER-2 US 1PWR \BaW 1311 SOUTH-RIVER-3 US 1 PWR 1 B a W p . . 1 u vm MERu •TVEP 1 1COMMERC. I VEP 1 1COMMERC. 1 VEP 1 1COMMERC. 1WPPSS 1 ICOMMERC. 1WPPSS 2

U s i n g the a p p r o p r i a t e s y s t e m c o m m a n d w i l l p e r m i t th i s r e p o r t to "be k e p t as p a r t of t he s e l e c t i o n (saved as a q u e s t i o n) e i t h e r i n a' f i x e d c o n t e x t (output k e y w o r d s and sort c o n d i t i o n s) or l e a v i n g the

D i r e c t u s e of u s e r d e f i n e d f unctions

The B I L A N f u n c t i o n was s p e c i a l l y w r i t t e n f o r the N . P .

P . D a t a Base. T h ere are s e v eral o t h e r specific f u n c t i o n s . F o r example, one m a y compute the a v e r a g e p e r i o d b e t w e e n the s t art of c o n s t r u c t i o n (TRAVAUX) and the f i rst p r o d u c t i o n of e l e c t r i c i t y (G O U P L A G E) , i.e. the m e a n time to b e c o m e o p e r a t i o n a l :

I t is e a s y to instal l new f u n c t i o n s f r o m p u b l i c libraries. Fo r example, to i m p l e m e n t a h i s t o g r a m facility, w e d e f i n e a H I S T O G E A M W E f u n c t i o n w i t h the appropriate s p e c i f i c a t i o n s (as e x p l a i n e d i n and w e c o p y the r e q u i r e d f u n c tions as e x p l a i n e d i n the S T A T P A C K R e f e r e n c e

M a n u a l /~5_7. B y a)SAVE command, the n e w f u n c t i o n s are k e p t as p a r t of V R+PAS HISTOGRAMME 7 ; D J 0 ; Q P P

[i] uio+i

[2] GPP-f-6 [3] V+M&S1Î/V [4] ± (Pi45<0)/,7-t-(K^0)/7' [5] (iPytS

) DESCRIPTION V [6] R - 10 [7]
2 1 p ' '

V The H I S T O G R A M M E f u n c t i o n m a y n o w b e u s e d d i r e c t l y -under S ELECTION. It h a s t a k e n less t h a n one h o u r to f i n d the a p p r o p r i a t e f u n c tions, to w r i t e the i n t e r f a c e and to test it u n d e r S E L E C T I O N . I f this n e w c a p a b i l i t y is r e c o g n i z e d as important, one m a y ask the D a t a B a s e A d m i n i s t r a t o r to inc l u d e this set of f u n c t i o n s i n the d a t a b a s e l i b r a r y for d y n a m i c call, w h i c h w i l l reduce dem a n d s o n the u s e r * s w o r k s p a c e . The use of the H I S T O G R A M M E f u n c t i o n is s h o y n b e l o w :

SELECTION [T his e x a mple illustrates the p o w e r of a n i n t e r a c t i v e DBMS. -196 -

ENTER UPPER AND LOVER LIM IT S IN VECTOR FORM. I F THE COMPUTED MAX AND MIN ARE DESIRED , ENTER 0 □ : 3683 30 --

3*4-I n t e r a c t i v e u p d a t i n g C a l l i n g the M A J (update) f u n c t i o n u n d e r S E L E C T I O N w i l l allow i n t e r a c t i v e and c o n text orie n t e d u p d a t i n g .

M u l t i -u s e r d a t a b a s e A s a f i n a l example, let us see an A P L s e s s i o n f o r a u s e r w h o has b e e n p e r m i t t e d a r e s t r i c t e d use of the d a t a b a s e : r e l a t i v e l y f e w k e y w o r d s are a u t h o r i z e d a n d t h e access is r e s t r i c t e d to n o n m i l i t a r y p o w e r p l a nts.

)1001

OPRi

L I S T S D E S M O T S -C L E F S P O S S I B L E

S //• M O T -C L E F 1 S I G N I F I C A T I O N (L I B E L L E) N U M E R O 1 R E F E R E N C E I N T E R N E D E LA C E N T R A L E (//• D E S E Q U E N C E) N O M | N O M P A Y S \ P A Y S F I L I E R E | F I L I E R E B O U C L E I N O M B R E D E B O U C L E S C P T H I P U I S S A N C E T H E R M I Q U E (N I V E A U 2) P B R U T I P U I S S A N C E E L E C T R I Q U E B R U T E (N I V E A U

) P N E T } P U I S S A N C E E L E C T R I Q U E N E T T E (N I V E A U) P D A T E I D A T E D ' A P L I C A T I O N D U C H A N G E M E N T D E P U I S S A N C E (N I V E A U) a n O U P A G E | N O M B R E D E C H A N G E M E N T D E P U I S S A N C E (N I V E A U) T Y P E I C A R A C T E R E D E LA C E N T R A L E (C O M M E R C I A L E , M I L I 1 'AIRE ... ,) F R O I D 1 M O D E D E R E F R O I D I S S E M E N T D U C O N D E N S E U R P R I N C I P A L S I T E ! S I T U A T I O N G E O G R A P H I Q U E C O M M A N D E | D A T E D E C O M M A N D E C O N T R A T | D A T E D E C O N T R A T P R E V I S I O N | D A T E D E P R E V I S I O N I N I T I A L E D E M I S E E N E X P L 0 I 1 'ATION C O M M E R C I A L E C O N S T R U C T E U R ! C O N S T R U C T E U R D E LA C H A U D I E R E N U C L E A I R E C O M P A G N I E | C O M P A G N I E D ' E L E C T R I C I T E P R O P R I E T A I R E T U R B O | F O U R N I S S E U R D U T U R B O A L T E R N A T E U R C U V E | F O U R N I S S E U R D E LA C U V E O U D E L ' E N C E I N T E P R I M A I R E G V | F O U R N I S S E U R D U G E N E R A T E U R D E V A P E U R E C H A N G E U R j F O U R N I S S E U R D E S E C H A N G E U R S D E C H A L E U R A R C H I ! A R C H I T E C T E I N D U S T R I E L D D E P C | D A T E D E D E M A N D E D U P E R M I S D E C O N S T R U I R E P C O N S T 1 D A T E D ' O B T E N T I O N D U P E R M I S D E C O N S T R U I R E T R A V A U X | D A T E D E D E B U T D E S T R A V A U X D D E P E X P | D A T E D E D E M A N D E D U P E R M I S D ' E X P L O I T A T I O N P E X P P j D A T E D ' O B T E N T I O N D U P E R M I S D ' E X P L O I T A T I O N 29 C U C 0 M B 1 D A T E D E D E B U T D E C H A R G E M E N T D U C O M B U S T I B L E 30 D I V E R G E N C E J D A T E D E D I V E R G E N C E I N I T I A L E 31 C O U P L A G E 1 D A T E D E P R E M I E R C O U P L A G E A U R E S E A U 3E X P L O I T A T I O N 1 D A T E E F F E C T I V E D ' E X P L O I T A T I O N C O M M E R C I A L E

Fi 6

P M A X | P U I S S A N C E M A X I M A L E C O N T R A C T U E L L E A T T E I N T E 34 F I N D E S C R I P T I O N -----V ----j D A T E D E M I S E H O R S S E R V I C E O U D ' A B A N D O N I N E N G L I S H

vjJO tV syo-eft.

x cVcxVc cX V A c\ Îke-WÀ S M t 0^>CTCcVv0V\

L I S T O F P O S S I B L E K E Y W O R D S N o I K E Y W O R D \ M E A N I N G (L A B E L) N U M E R O N . P . P . I N T E R N A L R E F E R E N C E (S E Q U E N C E N U M B E R) N O M N A M E P A Y S C O U N T R Y 4-F I L I E R E T Y P E O F R E A C T O R B O U C L E N U M B E R O F L O O P S P T H • T H E R M A L P O W E R (L E V E L 2) P B R U T G R O S S E L E C T R I C A L P O W E R (L E V E L 2) P N E T N E T E L E C T R I C A L P O W E R (L E V E L 2) P D A T E E F F E C T I V E D A T E O F P O W E R C H A N G E (L E V E L 2) G R O U P A G E N U M B E R O F P O W E R C H A N G E S (L E V E L 2) T Y P E N A T U R E O F T H E P O W E R P L A N T (C O M M E R C I A L . M I L I T A R Y) F R O I D M A I N C 0 N D E N S 0 R C O O L I N G M E T H O D S I T E G E O G R A P H I C A L L O C A T I O N C O M M A N D E D A T E O F O R D E R C O N T R A T D A T E O F C O N T R A C T P R E V I S I O N O R I G I N A L D A T E O F C O M M I S S I O N I N G C O N S T R U C T E U R N . S . S . S . C O N S T R U C T E U R C O M P A G N I E U T I L I T Y T U R B O D E L I V E R Y C O N T R A C T A N T F O R T U R B I N E G E N E R A T O R C U V E D E L I V E R Y C O N T R A C T A N T F O R R E A C T O R V E S S E L G V D E L I V E R Y C O N T R A C T A N T F O R S T E A M G E N E R A T O R E C H A N G E U R D E L I V E R Y C O N T R A C T A N T F O R H E A T E X C H A N G E R A R C 11 I A R C H I T E C T E N G I N E E R D D E P C D A T E O F C O N S T R U C T I O N P E R M I T A P P L I C A T I O N P C O N S T D A T E O F C O N S T R U C T I O N P E R M I T I S S U A N C E T R A V A U X D A T E O F C O N S T R U C T I O N S T A R T D D E P E X P D A T E O F O P E R A T I N G L I C E N C E A P P L I C A T I O N P E X P P D A T E O F O P E R A T I N G L I C E N C E I S S U A N C E C H C O M B D A T E O F F U E L L O A D I N G B E G I N N I N G D I V E R G E N C E D A T E O F I N I T I A L C R I T I C A L I T Y C O U P L A G E D A T E O F I N I T I A L E L E C T R I C I T Y 3 E X P L O I T A T I O N D A T E O F C O M M E R C I A L O P E R A T I O N P M A X D E S I G N E L E C T R I C A L G R O S S P O W E R R E A C H E D F I N D A T E O F C A N C E L L I N G O R C O M P L E T E D O P E R A T I O N S

-199 - ; C\\^a*A.<JuÀ

I d e s c r i p t o r s o p p o s s i b l e k e y v o it u s F*' GÜ R.E & K E Y W O R D D A T A I F I L E B A V E I N A M E I N D E X I N T A B L E S (H 0 0 K S)

ZZQ/ZEU I ZZA I ZE.L I ZAI2 I Z M N U M B E R O F B L O C K S N U M E R O N O M P A Y S F I L I E R E B O U C L E P T U P B R

U T P N E T P D A T E G R O U P A G E T Y P E F R O I D S I T E C O M M A N D E C O N T R A T P R E V I S I O N C O N S T R U C T E U R C O M P A G N I E T U R B O C U V E G V E C H A N G E U R A R C H I D D E P C P C O N S T T R A V A U X D D E P E X P P E X P P CIICOMB D I V E R G E N C E C O U P L A G E E X P L O I T A T I O N

P M A X F I N h 0 o <o C E N T R 2 G

D E S C R I P T I O N O F T H E T A B L E S U S E D I N T H E D A T A B A S E

WoV Vjjte O^^ÌÀCaVìuv\ ftot acfcîv/e.

D E S C R I P T I O N _ 0 F _ Z I L E S _ T A B L E F I L E | B A S E | U S A G E I 0 I E M P T Y F I L E (K E Y W O R D N O T A C T I V E) C E N T R | 1 j N U C L E A R P O W E R P L A N T D A T A B A S E (L E V E L S 1 + 2)

ZIG. I Z Z D I D E S C R I P T I O N O F A C T I O N Q A Q I {¿DATE I C O N V E R S I O N O F C A L E N D A R D A T E S (D A Y , M O N T H . Y E A R) T O J U L I A N D A T E S (I N T E G E R S) CQ.Q I R O O D | S T R I N G O F 10 C H A R A C T E R S «-* 1 R E A L N U M B E R (8 B Y T E S) C O P 1 I & C 0 D 1 i S T R I N G O F 5 C H A R A C T E R S «-► 1 I N T E G E R (4 B Y T E S) M I C | P A I D j E X T E R N A L C O U N T R Y N A M E + + I N T E R N A L R E F E R E N C E I N A T A B L E (V A L I D I T Y C H E C K) R I M I Z I R D I W O C O D I N G (Z Z E £). P L A I N V A L U E (C H A R A C T E R S) R E S T I T U T E D F O R E D I T I O N . R L M I I N O C O D I N G / D E C O D I N G (N A M E S A R E N O T E N C O D E D) RU.ZC | m i D | F L O A T I N G N U M B E R (X D E C I M A L S) «--► I N T E G E R (M U L T I P L I C A T I O N B Y 10 P O W E R X) i i i^t l ^i i ^A l A ^^l ^-^^l ^J ^J ^i D ^O P E B A T I O N Z Z L 1 D E S C R I P T I O N O F A C T I O N ¡IQML I C A T E N A T I O N O F T H E 2 P A R T S O F N A M E F O R E D I T I O N ££7?3 I E X T R A C T I O N O F T H E C U R R E N T R O W (P O W E R) I N T H E L E V E L 2 R E C O R D itGQU I S P E C I A L T R E A T E M E N T F O R N E G A T I V E (I N C O M P L E T E) D A T E S C A R D | S A M E F O R L E V E L 2 D A T E S Z E Q I D E S C R I P T I O N O F A C T I O N U Q M O | R E P L A C E M E N T O F O P E R A T I O N = B Y T H E A P L E Q U I V A L E N T F O R A R R A Y S (a . =)

-200 -) is introduced along with a detailed description of the environmental husbandry factors, hematology, and clinical chemistry files of the LADB (Laboratory Animal Data Bank). This paper has attempted to show that LADB involves a great deal of data manipulation, data base management, and owncode interface software. LADB illustrates how a generalized data management system called BASIS can be utilized to handle both scientific and technical information processing tasks. This sophisticated yet easy-to-use LADB system has the potential to bring some dramatic impact in the research area of animal science.

INTRODUCTION

Currently the Information Systems Section of the Battelle Columbus Laboratories is conducting a research project to design and implement the Laboratory Animal Data Bank (LADB) sponsored by the National Library of Medicine and the Department of HealthjEducation and Welfare Committee to Coordinate Toxicology and Related Programs* The system design of the LADB is based on BASIS (Battelle Automated Search information System) which is a completely user-oriented, information storage, retrieval, and analysis system [1]. LADB represents a successful application of BASIS in the area of handling scientific and technical information tasks. The ultimate goal of this project is to design and implement LADB which is an on-line and easy-to-use laboratory animal data base comprising laboratory control animal data supplied by numerous research organizations with a wide range of environment conditions.

LADB is accessible via computer terminals allowing biomedical scientists, researchers, breeders, and managers of animal laboratories to search, retrieve, analyze, and statistically manipulate control animal information. There are several objectives of the LADB. Among The kinds of laboratory control animal data which are collected, screened, and stored in the LADB are data on animal species/strain, environmental and husbandry factors, physical characteristics, hematology, clinical chemistry, and pathology. The kinds of data described in this first paper are hematology, clinical chemistry, and environmental and husbandry factors. In addition to describing LADB, this paper also emphasizes the fact that the capabilities provided by BASIS can be efficiently utilized in handling scientific and technical information.

BASIS OVERVIEW

BASIS is a completely user-orientied, interactive information storage, retrieval, and analysis system. Operational since 1970, the storage and retrieval module has been designed to allow users to search large files of textual or numerical information by index terms or data values and rapidly retrieve information -2 0 2 -satisfying the search criterion [1]. BASIS supports sophisticated computational, owncode, profile, monitor, on-line sort, thesaurus control, range search, statistical analysis, interactive graphics, tabular reports, and generalized data base creations and maintenance capabilities. BASIS thereby fulfills the requirements crucial to GDMS (Generalized Data Management System) [3][4][5]. The system has been utilized to create and maintain over one hundred data bases that differ widely in size, complexity, and scope. These data bases comprise a national network for scientific and technical information [9], and cover such areas as materials and metals, medical and cancer research [6][7][8], social and economic, management, and library science [12].

BASIS is both economically viable and completely user oriented. No programming experience is needed to use the system. Response time to the entry of individual search parameters averages only a few seconds and output can be secured both on-line and off-line.

Since the BASIS software is written in a high level language (FORTRAN), it is adaptable to other computer systems.

BASIS is currently operational on the following computers; CDC 6000 series, UNIVAC 1100 series [10,[START_REF] Greene | C e n t r a l Computerized Data Base for LMFBR Safety Codes[END_REF], XEROX Sigma 9 [12], DEC 10, DEC 20, and IBM 360/370 series. Utilizing experience gained in the implementation of BASIS on these computer systems, there should be no major technical problems to implement BASIS on other third generation time-shared computer system. An organization may choose to implement their data bases on Battelle's computer or acquire BASIS to operate on their own computer.

BASIS ARCHITECTURE

BASIS is a completely modular software system [2,13,[START_REF] Fried | BASIS On-line Retrieval and Analysis of Large Numeric Data Bases[END_REF].

Each module has a number of submodules responsible for specialized functions. The BASIS system is simialr in many respects to other on-line storage and retrieval systems, but it provides a wide range of additional capabilities including:

(1) Combined TEXTUAL and NUMERIC DATA retrieval and analysis -203 -All of the above features are fully integrated, tested, and operational in a real-world production environment.

BASIS FILE ORGANIZATION

flFile organization11 is used to describe the manner in which a file is logically structured.

The file organizations designed for BASIS are meant to match the processing requirements of the BASIS system to the capabilities of the structures used.

In addition to the commonly used sequential and random file organizations, there are two more sophisticated file organizations designed and utilized by BASIS. They are symbolic keyed (SK) file and numeric keyed (NK) file which provide efficient and comprehensive capabilities for the BASIS user to directly access a record in a file at random [13]. Both SK and NK files access methods provide for a machine independent method for creating and maintaining large files of randomly stored variable size records that can be retrieved by logical sequential position, and appropriate keys (textual string key for SK files or numeric keys for NK files). The variable length records are stored in fixed length data blocks. Usually each block will contain several records. The records are scattered across the data blocks wherever they fit. A record space index is used to locate available space in the data blocks, and a new data block is only created when it is impossible for a new record to be placed in any existing data block. Old records may be replaced by different size new records. SK and NK files use the same kind of internal key index structure, index block splitting scheme, data blocks, record space index, and the file space allocation method. These carefully designed file organizations help make BASIS a generalized data management system.

LADB DESIGN

A conceptual system plan (Figure 1) for handling hematology and clinical chemistry data in LADB is presented here. This plan includes six major aspects: data specification and collection, the IADB (Individual Animal Data B a s e) , document set generation and data summarization, LADB (Laboratory Animal Data Bank), structured search mode, and a statistical interface program.

Prior to describing each of these six major aspects, it is important to describe the main reasons for summarizing individual animal information stored in IADB. Theoretically the IADB is suitable for searching. For example, a scientist could search IADB for hemoglobin on nine-month old female beagle dogs, via standard BASIS search mode, send the retrieved data to an interface program and perform appropriate statistical analysis. This approach does work yet it has drawbacks. The major problems of maintaining IADB on-line are: o Since each data element of every IADB record contains a single value for each individual control animal, a great deal of disk storage is required to handle thousands of individual animal records.

o More computer time is required to access each stored individual animal data value to perform statistical calculations.

To overcome these drawbacks, it was decided by both NLM and Battelle to build LADB (Laboratory Animal Data Bank) as a summarized version of IADB (Individual Animal Data Base). In addition to the standard BASIS search mode, LADB is also equipped with a menu-driven structured search mode which provides many comprehensive yet easy-to-use search, retrieval, and analysis capabilities for the LADB user. The combination of LADB and structured search mode reduces dramatically the cost of -204--using and maintaining LADB in terms of training time, disk space, and computer time.

LADB DATA SPECIFICATIONS AND COLLECTION

The primary goal of LADB is to collect pertinent data on certain strains of laboratory control animals, screen, summarize these data, and then build up an on-line and easy-to-use information system for use by any research scientist having need for such data.

The quality of the data which are collected, screened, summarized, and stored into LADB plays a critical role in the acceptance of LADB by the biomedical community.

The very first task involved in data collection is to work out the data element specifications.

Each LADB data element is carefully defined and specified in terms of both technical and system specifications. The technical specification for a LADB data element includes element name, synonym(s) or abbreviation, major data group and subgroup classification, general description, acceptance criteria, screen methods, and certain data attributes such as units of measurement, number of significant digits, and preferred measuring method. The system specification for each data element defines both search and display mnemonics, display label, field or data element number, and whether the data element is searchable, displayable, or manipulatable statistically in various level of data files.

With these well defined data element specifications, the next task is to design various data collection forms for recording the individual animal data. These Battelle designed data element specifications and LADB data collection forms can be found in the LADB Data Collection Manual [START_REF]ffLADB Data Collection Manual,1 1 Information System Section[END_REF]. Battelle has full responsibility to make contacts with potential data sources, evaluate the acceptability of data sources, identify and define the animal colonies, set up the conditions for data collection, define the mandatory data elements, establish procedures for data collection, actually collect the data, and screen the collected data.

The derivation of acceptance criteria was carefully undertaken but not without some difficulties. A realistic approach was required because if these criteria were too stringent, very little data would qualify for LADB and if the criteria were too loose, LADB would be meaningless.

These acceptance criteria represent a blend of required procedures, accepted procedures, and good laboratory practice, tempered with Battelle's years of research experience in biomedical and life sciences.

INDIVIDUAL ANIMAL DATA BASE

The IADB (Individual Animal Data Base) consists of four logical files which are the environmental and husbandry factors file, the hematology and clinical chemistry file, strain file, and the pathology file. As indicated in the Introduction, this paper only describes the first two logical files.

An animal colony is defined as a group of animals of the same strain, the same source laboratory, the same supplier (or breeder), the same microbial barrier, and maintained under the same or similar, control, environmental, and husbandry factors. In order to identify a unique animal colony, the environmental and husbandry factors logical file has more than a hundred data elements.

There are numerous data elements which have been defined and collected in the hematology and clinical chemistry logical files.

All of these hematology and clinical chemistry data elements are numeric. Each set of data has to be submitted by its data source together with its mandatory data elements. Where the data source uses units of measure different from LADB standard units, the Mnon-standard,f units and their conversion factors must be recorded. For the irreversible cases, IADB treats them as separate elements [START_REF]ffLADB Data Collection Manual,1 1 Information System Section[END_REF]. A free form keying format has been designed to key and verify all the individual animal data. A unique data collection form code is always assigned to each type of data.

The IADB is described to BASIS by using the BASIS Data Description Language (DDL) Compiler which creates a data base description for BASIS. The information from the data collection forms is keyed and then processed by IADB input processor (FORTRAN program) that presents the data to BASIS standard interface routines. BASIS then updates the data base via its data base maintenance facilities (Figure 1).

Data screening and quality control are a very significant part of the IADB input process (Figure 2). Using the facilities provided with BASIS, the IADB input processor plays a key role for handling data screening and quality control task for IADB.

It checks for the presence of mandatory data elements, certain attributes, expected formats and data element specifications. It also performs the range check on numeric data elements and spelling checks on textual data elements via various internal dictionaries. Error messages are issued by the IADB input processor where expected conditions and data standards are not met. While the IADB input processor is producing appropriate transactions for all the good data and issuing error messages for all the questionable data, it also generates a record transaction file with all the input data in it. All the questionable data rejected by the IADB input processor are printed out for subsequent review. Values falling outside established ranges and misspelled text are checked for data transcription errors, decimal point problems, and keying mistakes.

If none of these problems exist but the value is still outside the established normal range, Battelle veterinarians examine the data and decide whether this questionable data should be rejected, or accepted. Occasionally, the data source is recontacted to see if there is an explanation for this data value.

Normal ranges can be adjusted if data suggest a trend toward a larger normal range. A standard editing program can be used to access the data file to correct records.

Corrected data will be sent back to the IADB input processor for normal processing. In addition this error-free data file will be kept for future purposes.

SUMMARIZATION SCHEME AND LABORATORY ANIMAL DATA BANK

The Battelle-designed scheme used to summarize hematology and clinical chemistry data is a two-stage scheme (Figure 3). The first stage requires searching IADB via the standard search mode provided by BASIS. For hematology and clinical chemistry data, the search instructions are various unique combinations of animal colony, sex, age range (or body weight range for wild caught animals with unknown ages), observation date range, and the logical file (or subfile) type. The logical file (or subfile) search term SUBFILE:CH retrieves all the hematology and clinical chemistry records out of the IADB.

The animal colony search term (for example COL:00022) defines the environmental and husbandry factors associated with the animals.

The The summarization scheme currently utilized in the second stage to create the summary records is the one commonly used by statisticians to summarize the raw data into frequency distributions [START_REF] Snedecor | Statistical Method[END_REF]. For the purpose of minimizing the grouping error, the number of class intervals has been set to sixteen. The detailed procedure to create a summary record can be outlined as follows.

Step 1. Access the IADB to retrieve a set of individual animal records with identical colony, sex, age range, test year, and subfile type.

Step 2. For each numerical data field, find out its actual minimum (AMIN) and actual maximum (AMAX) data values, the unique animal count (UAC), and data field number (NFLD).

Step Step 4. Access the data values of this data field within the domain of the retrieved IADB records to find out the category frequencies (f^ , for the i-th class interval) via a binary search algorithm.

Step 5. Write out this portion of summary record according to the following format (each data element is separated by semicolon) NFLD;CMIN;CMAX;UAC;w;fi;f2 ;...;f1 6 ;

Step 6. Repeat Step 2 through Step 5 for all the other data fields required to be summarized for this retrieved IADB record set defined by Step 1.

Step This summary program will generate a summary transaction file which is the input file to the LADB input processor. Figure 4 is a schematic representation to illustrate the file relation between IADB and LADB. Based on the fact that a set of IADB records is often replaced by a single summary record, the disk space needed to maintain LADB as an on-line data bank is much less than IADB. The disk storage data included in Table 2 indicates that the amount of disk space saving is up to 86% [START_REF] Hsu | Laboratory Animal Data Bank[END_REF] . As it stands now, LADB contains data on 10 animal species/strains broken down into 71 distinct colonies which include 11,000 unique laboratory control animals.

STATISTICAL INTERFACE MODULE AND STATISTICAL ANALYSIS

One of the major objectives of LADB is to provide the baseline data in an easy-to-use manner.

For this reason, a BASIS OWNCODE module program has been designed and implemented to interface BASIS and the Statistical Package for Social Science (SPSS) [START_REF] Nie | Statistical Package for the Social Science[END_REF].

For a requested baseline data field, this interface module will access a set of LADB data records retrieved by the user via the structured search to build up the following files: (a) A SPSS input file which consists of its category frequencies (^) and its associated middle point value (X-^) for the requested data field, and (b) A set of SPSS control statements file which consists of the requested data field name and unit, statistic procedure name, desired variables, selected statistic options, and other necessary SPSS control statements.

With these SPSS input and SPSS control statements files and the on-line version of SPSS executed by the statistical interface module, the user will obtain the statistical analysis results automatically (Figure 5). Currently this statistical interface module provides capabilities to handle three SPSS procedures which are FREQUENCIES, BREAKDOWN, and CROSSTABS [START_REF] Nie | Statistical Package for the Social Science[END_REF]. The FREQUENCIES procedure is used to produce basic statistical information and an associated histogram (Appendix A). BREAKDOWN is used to make a breakdown results which may show the genetic drift. Finally, the CROSSTABS procedure can be used to generate a tabular report for the variables selected by the user. It is important to emphasize again that the BASIS OWNCODE module really makes BASIS an open-end generalized data management system which is very significant for handling the scientific and technical information tasks.

Environ

Output STATISTICAL INTERFACE FLOW CHART STRUCTURED SEARCH

A menu-driven structured search has been designed and implemented to ensure that the LADB is extremely user oriented (Figure 6). The standard BASIS search mode was modified to have tree type menus built in and provides the structured search capabilities.

The difference is that modified BASIS handles internally all the logical combinations based on the set and sequence of menus the user has chosen. All the menus used by LADB can be classified as one of the following types: o The basic LADB service selection menu is used to choose one of the LADB basic services including: o The data field search term(s) selection menu points to all the search terms associated with a specific data field. The user may 1) enter any stem term to bring in a list of search terms with the same stem for further selection via a "LOOK" option, or 2) ask the LADB to list a set of search terms associated with this specific data field for further selection via "LIST11 option, or 3) leave this data file as it was chosen and go on to the next data field via a "LEAVE" option. For each data set selected, the LADB system will provide prompting to allow the user to make selections.

o The control flow selection menu is used to choose what the user is going to do next at each logical end of a search activity. The user may choose to either run immediate search for results, save the data elements of the search as a profile for future search, or go back to the class(es) selection menu to perform further selections.

In case the user choose to run immediate search for result, the LADB will inform the user how many colony records were retrieved and ask the user to either make the profile more general/specific, or save the profile for future usage, or go back to the basic LADB service selection menu to select one of the basic services.

o The save profile menu provides the capabilities to save the current search profile for future usage.

o The previously saved profile selection menu provides the capabilities of letting the user retrieve one of the previously saved profiles.

o The work set construction menu allows the user to enter his own data. The -LADB system will process this set of data and offer a compatible statistical analysis.

o The statistical option selection menu is used to define the necessary information for performing requested statistical analysis. Options include data field, procedure name, and variable(s).

o The print reports selection menu is used to choose the contents of tabular reports.

INFORMATION CONTENT OF LABORATORY NUMERICAL DATA

The distribution of a set of laboratory numerical data can sometimes be described by Gaussians, or normal distribution (De Moivre, 1733). It is the theoretical distribution of the relative frequency of a large number of observations made under the same experimental conditions. This normal distribution has three distinct characteristics which are the major information content of any set of laboratory numerical data.

The first characteristics is the central tendency (or signal) represented commonly by arithmetic mean. The second characteristic is the measurement of variability (or noise) represented by standard deviation. The third characteristic is the range represented by confidence interval.

The theory of normal distribution was developed from a mathemetical theory of errors.

In the laboratory the researcher can not afford to make a large number of observations; as a result the researcher does not know the true populatoion mean and the true standard deviation by using the sample standard deviation. When the researcher does this, one should use the "Student's t-distribution" [START_REF]Student[END_REF] which is independent of true standard deviation and is dependent only on the sample size. The t-distribution is flatter than the normal distribution but approaches it as the sample size increases, becoming identical to the normal distribution as the sample size approaches infinity. For practical purposes, researchers sometimes use the normal distribution for sample sizes more than 30. It is seen that Student's t-distribution with 30 degrees of freedom has characteristics approximately equal those of the normal distribution. With more than 30 observations, this means the information content of a laboratory numerical data set is characterized by its central tendency (arithmetic mean), variability (standard deviation), and range (confidence interval), regardless of whether the t-distribution or normal distribution is used. The information content loss of the laboratory numerical data due to the summarization scheme can be studied by comparing its major information content for those prior to and after the summarization. A comparative study has been carried out for the same set of statistical analyses with respect to the similar sets of animal data retrieved separately from IADB and LADB. The results included in Table 3 indicates that the amount of information content loss due to the aforementioned summarization scheme is insignificant.

More comparative studies between IADDB and LADB will be found elsewhere [START_REF] Hsu | Laboratory Animal Data Bank[END_REF] .

CONCLUSION LADB data has periodic measurements of the source data elements. The data is collected by colony under a strict protocol and includes environmental and husbandry factors. In addition to the immediate usefulness of this data, in the future it may be possible to measure the "strain drift" which is the slow change in animal characteristics arising from genetic noise and biased breeding selection.

By collecting LADB-type data on colony foundation stock and comparing it to the LADB -217 - statistical norms for control animal populations drawn from the same colony, it should be possible to select foundation stock which will reinforce the probability of central tendency over time and to thereby limit genetic drift. This interactive process should also make it possible to statistically engineer the LADB data and ultimately to produce laboratory animals with certifiably stablized and predictable base lines suitable for particular lines of research in animal related research fields.

This paper has attempted to show that LADB involves considerable text processing and data manipulation.

LADB illustrates how the generalized data management system called BASIS can be utilized to handle the textual and numeric information tasks. The easy to use LADB system could make a dramatic impact in the research fields of animal science. LADB will be even better if all the scientists and research organizations across the country will submit their own data to LADB and let it be shared by other scientists in the same research fields. 9. Claydon, C. R. and Klette, I. J., "New Techniques for Weapons Systems Cost Analysis", Proceeding, Military Operations Research Society, June, 1974, pp. 1-5.

io. -j ' M i -4 ^ 'J-

, * rf ''ft, --P f £ ~ ?.&, # M j f & f , ; -y -j % , fit P i * * 4 ^, |f i ^ 1174. v • j -x. 4? A -, £ $ * f A ^ ^ % ' til ^74.
12. Krohn, R. E . , Fish, A. R. , Hsu, K . , "Ohio College Library Center Subject Search", in progress.

13. "BASIS Data Base Construction and Maintenance", Information System Section, Battelle Columbus Laboratories, Columbus, Ohio, 1976.

1. The menu-selection activities* included in the first page of this example illustrates the search steps which make the data available to LADB.

2. The menu-selection activities* included in the second page of this example illustrate the search steps which select only the 10 month old female beagle dogs out of the 8 colony records.

3. The menu-selection activities* included in the third page of this example illustrate the search steps which select the "STATISTICS 4-HISTOGRAM" option of the "DISTRIBUTIONS" procedure to analyze the retrieved platelets data of 10 month old female beagle dogs.

4. The latter part of the third page, the fourth page and the upper part of the fifth page contain the statistical data and the frequency distribution of the selected data set. It is the standard output provided by the FREQUENCIES procedure of SPSS. -227 -TOTAL data base management system. The general data base management system TOTAL is implemented on the CDC 6600 computer at the ECN research centre at Petten (N.H.). It is a network structure data base which provides a direct linkage between files. There are two types of files: master and variable. A master file can be independent and its records can be accessed directly by respective control keys. A variable file is dependent and must be attached to a master file. Its records are chained in groups. Each of these records is, in turn, chained to a unique master record in a related master file. This chaining provides the access paths to the variable records. A master file can be linked to more than one variable file and a variable file to more than one master file. Thus multiple access paths can exist b e tween multiple master files and a single variable file. This interlinkage of files per mits the construction of a network structure data base. TOTAL lends itself well for the handling of problems involving data sets which can be differently interrelated. The first step is to define the contents of the records of the required master and variable files. Secondly, the links between these files should be established. These steps define the data base which can be accessed by means of special application programs. In Petten, all application programs are written in FORTRAN and the interface with the data base consists of a call to the subroutine DATBAS, with the proper parameters defining the required functions to be executed. It should be stated here that the use of this sub routine in FORTRAN programs is rather cumbersome. This is mainly due to the fact that FORTRAN does not have the character type variable, as does COBOL. This means that for each CALL DATBAS the required character string has to be newly constructed. Until now, in Petten, TOTAL has been used in two widely different applications of which a short description will be given.

Library automation.

The first is the use of TOTAL for library automation. An obvious reason to do this is to reduce the labour involved in the mainly routine type transactions common in a library, thereby enabling the staff to handle a larger volume of work. In view of the fact that the library budget is, as usually, limited, this exercise should not cost too much. The availability of a GDBMS helps to ease significantly the required programming effort. In effect, without it, the automation of a small library does not pay. The schematic of this integrated acquisition, cataloging and circulation control system is shown in fig.

1. The squares indicate master files with their appropriate names and control keys.

Circles constitute variable files. The files can be described generally as follows: PERS -master file containing records with names and other data of persons allowed to use the library. The control key consists of the p e r s o n ' s registration number, BOOK -master file containing short descriptions of books (or other items) on order.

The book number is the control key, SUPP -master file containing the names, addresses and other data on publishers and booksellers with their code number as control key, BUDG -master file containing the budget amounts and spendings of the different depart ments in the institute. The budget number is also the control key, CATL -master file with records containing a full bibliographic description of books present at the library. The book number is the control key, LOAN -variable file with lending transactions, RESN -variable file with reservations for books on loan, ORDR -orders for books placed with the booksellers. The application programs operating on this data base have already partly been written and enable one to control all the common operations in the library, thereby ensuring a better management and a more efficient use of the library. Almost all programs are writ ten for interactive terminal use.

Fuel burn-up computation.

The initial fuel load of a nuclear reactor consists of a mixture of nuclides. When the reactor is operating this fuel is subjected to a neutron flux. As a consequence neutrons are absorbed by the nuclides leading to either fission or capture. In addition radioac tive isotopes formed by these processes can decay to other nuclides. In nuldimensional calculations the spatially variable neutron flux is averaged over the reactor core.

-228 -This flux is then split up in a number of energy groups. For each energy group a set of appropriate cross-sections is supplied. The whole process of mutations in the nuclear fuel can be described in terms of depletion chains. These specify (1) how each nuclide is formed (radioactive decay or capture) from previous nuclides in the chain, (2) wether or not the nuclide is a direct product of the fission process, and (3) how the nuclide is destroyed (radioactive decay and/or absorption). The differential equations describ ing the burn-up processes in a given chain are of the following two types:

I a ^-V -A V i -< V V i II dt l Y^=Z y^^S^=total

i l l

C^=total capture cross-section of nuclide i Analytical solutions to these differential equations can be found and are used in this program. The schematic of the data base is shown in fig. 2. The contents of the files are as follows: ISOS -master file containing 1200 records. Each record consists of a control key equal to the isotope number plus a yield index number k and the energy in Joules re leased on fission. The isotope number is calculated according to ZxlOOO+A, where Z is the atomic number and A the mass number. When no fission is possible, k=f0. KETS -master file of 180 chains. Each chain comprises a control key (=chain number), the number of isotopes in the chain and the type of burn-up process in the chain. SETS -master file of 60 sets of chains. The set number is the control key. Each record further contains the number of chains in the set and the type of isotopes in the chain i.e. fission products only or fissionable nuclides. In each burn-up calcul ation normally one of each type of sets is used. YIND -a stand alone master file containing 36 records with control key=yield index number k. The record contains also the corresponding isotope number. Only fission nuclides, i.e. isotopes with k=0 in file ISOS, are stored. SKET -variable file consisting of 255 records, each with two control keys: a set number and a corresponding chain number. DATA variable file consisting of 3000 records, each with two control keys: a chain number and a corresponding isotope number and further containing the following data for this isotope: -229 -Two application programs in FORTRAN have been written for this data base. One calculates the atomic densities N. for a certain neutron flux and after a certain time interval, in addition to other related quantities. The other is used to update an existing data base or create a new base.

Conclusion.

The use of the TOTAL data base management system has some definite advantages such as the ease of programming complicated interconnected file structures. It also proves to be efficient in core occupation, less than 2000g words, as well as execution time.

Disadvantages are the cumbersome implementation of the subroutine DATBAS in FORTRAN application programs and the absence in the CDC implementation of such possibilities as a report writer, a data dictionary and sorting and merging routines. However, it can be said that, overall, TOTAL is a handsome system to implement a data base, especially with regard to its cost.

Introduction

Brookhaven National Laboratory, Upton, New York operates on behalf of the Energy Research and Development Administration, a nuclear data center known as the National Nuclear Data Center. This center is charged with the responsibility for providing information on nuclear reactions and nuclear structure and decay in the area of low and intermediate energy physics.

In order to fulfill this charter, the center is active in the compilation, storage, retrieval and dissemination of a wide va riety of data types in all forms available through current technology.

Until 1976, the center was known as the National Neutron Cross Section Center with responsibilities limited to the area of low energy neutron physics. As such, the center maintained three separate data bases, one for bibliography, one for experimental data and one for evalu ated data. Although small in number the individual data bases were large, ranging from 5 million words to 20 million words. Since 1969 the center has had a dedicated computer system to support its responsibilities. This computer is a DECsystem-10 with 30 million words of disk storage, 144K memory and auxiliary devices such as a paper plotter, card reader, and magnetic tape drives. A PDP-15 computer and interactive graphics facili ty, is joined with this system. The computer is operated in time-sharing mode and is heavily used by the center's 20 professionals and 8 technical and clerical staff.

In the past the center staff has developed its own data storage and retrieval systems by essentially developing a data base management system for each application. These ranged from a fairly sophisticated system for the large, loosely formatted experimental data file to a very simple system for the rigidly structured evaluated data file. This ability to design and construct each data base was possible because eagh computerized data system was developed as the need arose and as the programming man power was made available. But in 1976, the center's responsibility was increased when new areas of nuclear physics were added. With the ad ditional responsibility came an additional four data bases, which in creased our data base contents by about 300 percent.

It was quickly realized that we could not implement four new data bases and all the necessary processing programs with the modest staff increase allocated to the data base management function. Therefore a commercially available DBMS software package was purchased. After com paring the DBMS systems available for the DECsystem-10, DBMS-10 was purchased.

It is a system which closely follows the CODASYL specifi cations. We have implemented DBMS-10, version 3, on our computer using FORTRAN as the host language. Our goal was to minimize the programming effort involved in developing storage and retrieval systems for our new data bases and to reduce the time required to make the new data bases operational.

I I . Description of the Application

In order to explore the capabilities and limitations of DBMS with respect to our large scientific data bases several smaller applications have been developed.

I will describe in this paper some of our experi ences with DBMS-10. Our system for handling evaluated neutron data will be described in some detail. Interesting results from other applications will also be described.

The evaluated nuclear data file consists of small amounts of text and organizational data and large amounts of sequentially accessed data tables.

The information is rigidly organized and structured since the format of the data contained in the file was designed about 11 years ago to inter face directly into large processing codes used in nuclear power reactor physics design programs. In Fig. 1, the original sequential organization of the data is illustrated. The core of its design is the section which contains a data table describing a particular reaction and function for a single material. In the simplest case this table consists of a m aximum of 5000 numerical pairs (energy and cross section) ordered by increasing energy.

Our old file management system used a random access technique to access a material. No processing programs were directly linked to the random access file. An intermediate retrieval step to produce a se quential file was required. At the present time the evaluated data file is undergoing major revisions. Therefore it was decided to build a DBMS which could automatically handle much of the bookkeeping operations, provide access to the fundamental unit of information and be interfaced with most of the processing programs easily.

III. System Design

One of the crucial problems to be resolved before implementing a DBMS to handle the evaluated data base was developing a strategy to provide for efficient storage and retrieval of the large data tables. We believe that the present implementation of DBMS is prohibitively expensive if used for storage and retrieval of a large number of records retrieved in a se quential manner. Therefore, at the expense of some additional programming effort, it was decided to use DBMS for the indexing and associated bookkeeping while the data itself is stored using random access data files.

The data base management programs were designed, programmed, and d e bugged with about a 3 man-week effort. The data base is currently accessed by three programs: a file update program, a retrieval program, and an index program. All are designed to operate in an interactive mode using one of the terminals with access to our D E C s y s t e m -1 0 . Processing programs are now being interfaced to the new system.

The schema used is illustrated in Fig. 2. You will note that we have made frequent use of SORTED sets. This is done in order to quickly produce output in a useful order. Such a decision is not without cost but we have found that the penalty is acceptable as long as the number of records in a set occurrence is not large (up to 100 records) . Most re trievals can then be simply done by following a set pointer chain. The next version of the DEC FORTRAN system will contain a fast sort routine. We will then investigate the possible advantages of not using SORTED sets. Retrievals would be done by retrieving the keys to records satisfying the retrieval criteria along with any information required by the sorting specifications. These would be sorted by the FORTAN sort routine and then the retrieval done by sequentially processing the sorted key file. Some records have duplicate information stored in them. Three records, the MAT record, the Z-A record, and the MAT-SECTION record co n tain the variable N L I B , the library number and MAT, the material number. This kind of duplication eliminates the need to do multiple lookups following linking relationships to construct a single output record. We have found that a schema employing many record types of short length is very inefficient for our retrieval purposes.

Sets and their relationship were created to handle the majority of the envisioned retrievals. The schema is designed to provide access to the file on three of the four levels illustrated in Fig. 1. Only access at the "file" level has been elimated. By entering at the MAT record level we can retrieve the data for an entire material, while entrance at the TAPE record level enables us to retrieve an entire tape. Since dual access keys are not permitted we have added Z-A records to the file. These records permit accessing a meterial by its alternate identification, namely its nuclear charge number (Z) and its mass number (A) . Normally a material is identified by its material number (MAT).

Since external random access files are used to store the data we have included records to describe these external files. This record gives the file name, the number of records used, and a pointer to the next available record. MAT records are linked to occurrences of DA-FILE records in order to permit the system to open the proper random access file for retrieval.

IV. Special Program Features

ENDLIB is the library generation and maintenance program whose main function is to take an input sequential file and replace or add material sections one at a time in the data base. The DBMS index is updated and the data tables stored in a random access file. All sections for a material are stored in the same random access file. Several small materials may be clustered in the same random access file while large materials are stored in their own file. The link between the DBMS index and a material section is the random access record number of the first record in the section's data table.

When a section is replaced, the new version of the section is stored at the end of the appropriate random access file and the record pointer updated in the DBMS index. With sufficient updating activity, the record utilization efficiency in the random access file is greatly diminished. When this efficiency falls below 70 percent, the file is copied over thus automatically eliminating unused records.

ENDRET is the library retrieval program. Retrievals can be done by specifying a TAPE thereby retrieving all materials assigned to that TAPE. Retrievals can also be done by material (giving either its material number or its nuclear identification (Z,A)) or by material section. The program automatically expands the compacted storage format into the standard file f o r m a t .

INDED is a program designed to permit various miscellaneous oper ations on the DBMS index. Two elementary, but vital functions are modules to dump the contents of the DBMS file in a fixed format sequential file and another module to recreate the DBMS file from this sequential file. In this way backup and cleanup functions are easily accomplished.

A module exists which permits the user to modify the DBMS file contents. Current implementations include creation and modification of TAPES, reassignment of material numbers, and revision of section or material status codes. A last module allows one to print on the terminal the contents of any tape or material.

V. Other Operating Experiences

In operating other DBMS applications we have noticed that data base loading times would fluctuate widely while the actual CPU time required remained relatively constant. One significant factor was the configu-ration of our disk storage and the job mix in the machine. All six 5 million word disk drives are on one channel. Heavy 10 activity from other jobs often dramatically increased loading times. Another factor was competition for positioning the disk head. Load times were decreased when the DBMS file was on a private disk structure with little or no head position competition as opposed to a public disk structure where program swapping as well as other user input/output were causing competition for head positioning.

Load times are also heavily affected by whether the data are to be loaded into a file in some specific sort order. However, we did find that presorting the input file did minimize both the number of page retrievals and the elapsed time. We would assume that the sorting algorithm used in DBMS-10 can take advantage of the fact that an input file is presorted. Presorting seems to be a good procedure whenever a record is sorted in only one order with the DBMS file. Savings should also result if more than one sort order is required, through a judicious selection of one of the sort orders for presorting.

The DEC FORTRAN-10 system has extremely good file manipulation capa bilities which may not be available on other FORTRAN systems. Such capa bilities are essential for selecting and accessing the different random access files required in the above application in an interactive mode. In another application it was desirable to have many small DBMS data bases which could be processed by a single computer program, where the proper file for processing is to be selected interactively. The current version of DBMS-10 requires that the DBMS file have a name predetermined by the schema. It is very inconvenient to have to regenerate the schema for each different file to be accessed. This obstacle was overcome by using the RENAME feature of the file closing statement (CLOSE). The selected file is renamed to n a m e .DBS before being opened by the DBMS system and restored to its original name after the DBMS CLOSE.

VI. Summary

We have investigated the use of a commercially available DBMS, DBMS-10 for use in constructing and maintaining scientific data bases. Two applications have been implemented with relative ease and are now in full production use. The additional storage and operation overhead has been within acceptable bounds in relation to the savings in the cost of development and maintenance for the data management system. In the next phase of development we intend to implement two large scientific data bases based on the results of the experiments described in this paper.

Section

Nuclear data for a particular reaction The OECD/NEA Neutron Data Compilation Centre (CCDN) works with three other regional data centres to provide world coverage for the com pilation and distribution to users of numerical data and other information on neutron-induced nuclear reactions.

The ffour-centre network* and the characteristics of the data files exchanged within it are discussed in detail in the paper by Mrs. Attree of IAEA elsewhere in this report / 1 J 7 . In respect of GDMS use in these centres, it is important that their Tour major information projects are implicitly (if n o t ;explicitly) linked, in that these files refer to successive stages in the elaboration of neutron cross-section data and leading up to the presentation of evaluated files of numerical data in standard format:

?best v a l u e s 1 for use in reactor computations.

The work reported in this paper concerns the transfer of three associated files to an IDMS data base: the CINDA bibliographic index to neutron physics publications (now 140,000 records or some 17 Mbytes), the cumulated EXFOR exchange tapes used for maintaining parallel data collections at all four centres (2 million records, or 35 Mbytes when packed on disc) and the C C D N fs internal data storage and retrieval system NEUDADA (2.65 million records, 54 Mbytes packed).

With associated dictionaries and inter-file conversion tables the corresponding IDMS data base will be about 160 Mbytes.

The main characteristics of the three files are shown in Section III, 1 below.

2.

The Decision to Use a GDMS It is proposed to replace the two NEA data centres, CCDN and the Computer Program Library (CPL) located in Italy, by a single NEA Data Bank in Saclay.

In evaluating the computer requirements of the Data Bank a conflict became apparent between the benefits in speed and convenience of replacing the CCD N Ts IBM 370/125 computer by remote links to an IBM 370/168 (in any case essential for the program testing work of the CPL) and the high overhead cost of disc storage for the neutron physics data.

It was decided to overcome this difficulty by installing a ' heavy mini-computer1 in the Data Bank for use as a remote job entry station to the IBM 370/168 and other large computers on the Saclay site, and as a data base carrier.

The equipment provisionally chosen is a PDP 11/70 with some 350 Mbytes of disc storage: however, there are other heavy minis on the market which might be expected to perform well in the same role.

The transfer of CCDN files to a GDMS had been under discussion for some time.

The Centre had over the years produced its own data handling systems for CINDA and NEUDADA using the Indexed Sequential Access Method (ISAM), but was conscious of their limitations to the extent that the question of using GDMS was being discussed, but for a future time several years ahead.

The decision to change computers precipitated the choice: by transferring control of the contents of the CCDN files from the home-made programs to a GDMS on the 370/125, and later flifting o f f 1 the data base on to replacement hardware but using the same GDMS, only the fphysics-dependent1 programs need be rewritten for the new computer thus shortening the changeover.

Besides its reputedly good performance in disc input/output, the PDP 11/70 offered a choice of IDMS and TOTAL data management systems, both compatible with the 370/125. IDMS was preferred because it was adopted by DEC for the PDP 11, and because it can represent directly hierarchical as well as network data structures.

Structuring the CCDN Data Base

1. Inherent and system-dependent structure of the data at CCDN It now seems most convenient in handling numerical neutron data to consider as the basic unit of information the measurement of a cross-section for one element or isotope, in a particular laboratory. One measurement will generate a number of data points (as incident neutron energy is varied, for example) which will be grouped in a data table for storage purposes.

Several authors will work in a group to do a number of similar measurements, usually reported in several progress reports and a journal or conference paper. The unit of data compilation is on the other hand the paper or report through which the compiler learns about this work, and which usually gives results for several measurements.

Each one of these measurements may have a different history of measurement and extended remeasurement over the several y e a r s 1 lifetime of that particular experimental set-up.

These issues have been clarified only slowly, and largely in connection with successive develop ments of CINDA / 2 j , the CINDA-based IAEA data index DASTAR and the design of EXFOR.

An unfortunate corollary is that some criteria essential in uniquely defining a given measurement are coded differently in each file, to the extent that conversion between files may require more information than is explicitly available in either, and which must be generated indirectly from other ' clues1 in the file, or added manually, usually as tables to be consulted by conversion programs.

It is this apparent incompatibility between historically different ' v i e w s ' of the same information which has caused much difficulty in separate but co ordinated operation of the three files, and is responsible for much of the complexity of the schema and the data base loading programs now being written.

Examples of incompatibility are:

-Different nomenclature in each file for nuclear reaction crosssections.

More or less aggregation of similar cross-sections into one ' Quantity' has created a many-to-many correspondence between Q u a n t i t i e s 1 in CINDA and NEUDADA files.

-Bibliographic references are coded differently in each file.

-Manual intervention may be needed to steer conversion of EXFOR data tables (a ' compiler v i e w ' of the data) to produce the ' FORTRAN v i e w ' required for input to customer programs and represented by NEUDADA ' Calculation' output. This steerage information will be generated once-for-all and stored in the data base as conversion tables or set linkages.

Data is identified within each of the three files by a mixture of externally significant criteria (target nuclide, laboratory of measurement) and arbitrary, system-dependent data items such as ' work n o . ' (EXFOR) or ' Experiment block n o . ' (CINDA).

Different subsets of these quantities may be sufficient uniquely to define a measurement, and it is in fact defined differently in each one of the present files, which then in turn reflect this definition in the design of their storage programs at CCDN: The data items underlined in the table above are externally significant criteria frequently specified in searching the present files, and design of the schema must allow good access both to these and to such system-dependent criteria as it is necessary to keep because they are frozen into externally agreed formats (EXFOR work no.) and/or the existing data files to be transferred to the data base.

CINDA

Construction of the initial "SCHEMA1 1

One of the authors (A.S.) spent some two months analysing the files and data handling programs which make up C C D N ' s current investment in the three interrelated projects described in the introduction, and a further two weeks working together with a consultant from SEMA Informatique (the French agents for IDMS) to draw up the data base schema (the current version is shown in Fig. 1).

The notation is explained in ref. / 3 7 9 while the operational context of the data base can be seen in Fig. 2, which will be easier to follow after reading the explanation of international neutron data activities in ref. / 1 _ 7 • The dotted line shows the limit of data base working: most operations outside it will be run on the IBM 370/168 computer for which the PDP 11/70 will serve as a remote batch entry station.

D a t a b a s e l o a d i n g stra t e g y

In one calendar year since IDMS was installed on the IBM 370/125, some two man-years of effort have been put into preparing the data, defining the data base, and writing loading programs.

Of this time, about half has been devoted to fupgrading* (eliminating inconsistencies and completing) the data files.

The loading strategy shown in Fig. 3 is that which would leave fewest set pointers unresolved during loading due to the absence of set owners to whom members must be linked.

It can in fact be broken down into sections which can be loaded in any order and linked by the appropriate sets afterwards at relatively small extra cost.

A fast load utility will soon be released for IDMS, at least on the 370/125; it is not yet announced for the PDP 11/70. This utility promises important gains in loading performance, but cannot absolve the user of the need to prepare his data for loading, not only by cleaning it but also by supplying preformatted input data containing all the information needed to resolve set linkages.

As far as possible, C C D N fs homemade loading programs have been written so that they can be trans formed into updating programs for future use.

As the fast load utility is at present, the whole data base must be loaded at once.

The size of some of the intermediate data base workfiles to be sorted during this operation, and the difficulty with a small team in getting all the information together on time for loading, may in any case make the more gradual approach of Fig. 3 preferable for the initial loading process.

Data Base Performance at the CCDN

The decision to fgo data b a s e 1 at CCDN was based in general on the high-level advantages of GDMS and brought forward by the choice of a PDP 11/70 as data base carrier for the NEA Data Bank.

The question of physical performance had been considered only in very general terms: after all, the programs in use on the 370/125 were basically those transferred from an earlier 360/30 computer used on a one-shift rental agreement.

Surely the 11/70, designed to optimise disc input/output, and well spoken of by the users we contacted, would perform at least as well as a 360/30?

In view of the low level of effort available for preliminary work on the data base, pending approval of the Data Bank pro posal, CCDN preferred to start work directly on preparing real neutron data to load into the schema of Fig. 1.

Then the troubles began.

Measurement on a small number of CINDA records (corresponding data items are dispersed over the left-hand part of the schema) yielded a retrieval time of about 6 secs/record from the first version of the schema, or 200 hours to reconstitute the CINDA file from the data base.

The whole file must be read at least twice a year when the CINDA bibliography is issued in book form.

Loading times for numerical data into the TABDAT record type (three-quarters of the way across the schema, to the right) were 2.5 seconds per data point, or of the order of 1000 hours to load the EXFOR data tables point by point.

Solutions could be found to both these problems with some help from SEMA: in the original schema all data redundancy had been eliminated from the CINDA subschema, but in order to reconstitute the CINDA record it was necessary to follow three successive sets from, say, the ZAQCIN entry point, then to complete the skeleton record CINDA thus recovered by adding the key information first from ZAQCIN and then by following an 'owner1 pointer back to the corresponding DICLAB entry.

This section of the schema has been modified and in particular all information needed to produce the tape used in printing the CINDA book is now available at the lowest hierarchical level in the C I N D A record. Data points were re aggregated into variable length records representing either a data table or a 2Kbyte block of data points, whichever is shorter.

These data blocks require about the same loading time as a single data point.

Having learned the hard way that complex structure is expensive in data base performance, we tried and failed to get ' t y p i c a l f perfor mance figures for the IDMS operations, sufficient to allow us to calculate the order of magnitude of running times for different CCDN applications, in particular on the PDP 11/70 as DBMS-11.

The manufacturers could give us only global performance targets.

We spoke to some IDMS users who found performance ' adequate1 but had not made measurements.

SEMA was therefore commissioned to load a reasonable amount of data into their standard "Hoes, rakes and shovels/customer, salesman, order" IDMS test data base (Fig. 4), and to help run benchmark performance tests on an 11/70 and on C C D N ' s 370/125.

In parallel, work continues in preparing data and loading programs for the CCDN data base, in order to test and adjust our own schema, and to show before a final decision is taken on the hardware and software for the Data Bank that CCDN operations can be adequately carried on a GDMS.

Table I shows some of the results of the benchmark measurements. Table II shows some comparative execution times for current CCDN programs, compared with results extrapolated from measurements on a partially loaded data base.

These figures should be seen only for what they are: an attempt to demonstrate that GDMS performance will be at least accep table for CCDN operations, both now on the 370/125 and later in the Data Bank using an 11/70 as data base carrier.

The 11/70 performs all data base operations tested faster than the 370/125, with the exception of ' sequential read within area' for which the two computers perform equally well.

We deduce from this that if a CCDN data base can be made to run acceptably on the 370/125, performance will also be acceptable on the 11/70.

Data base loading on the 370/125 can be speeded up by running the computer in mono-user mode, without spooling.

Conclusions

The lessons we have learned, and our tentative conclusions after a y e a r ' s work in preparation for loading a 160 Mbyte complex data base on a small computer are:

-There is an inevitable conflict between the desire to simplify the structure of an integrated data base by redesigning working methods around it, and the need to preserve compatibility with data suppliers and users outside the CCDN. The three different views (CINDA, EXFOR and NEUDADA) of what is eventually the same physics data are frozen into such links and cannot be changed in the short term.

We can identify a paradox here.

Data centres with a large stock of data (and experience in handling it) are very likely to be faced with historical problems of this kind when installing a data base.

New data compilations will in time surely acquire similar incoherences of structure as they expand to include data not fore seen in the original system design, whether as a result of errors due to lack of knowledge of the data, or as a result of changed circumstances.

Either way, data base structures in real data centres will tend to be more complicated than the theoretical optimum.

-Performance tests at CCDN have shown a very strong dependence of running times on the detailed design of the IDMS schema: estimates of performance have changed by two orders of magnitude in a y e a r ' s development work.

Our second paradox is this: almost no detailed information on data base performance is publicly available on which to base a preliminary data base design, although errors in design can degrade performance sufficiently to make use of the data base infeasible.

-It is too early to talk of ' tuning1 the CCDN data base.

However, we have already found it necessary to reduce the number of sets scanned in CINDA retrieval, and to provide for sequential scanning of the whole or large parts of this ' f i l e ' by reintroducing (controlled) redundancy into the bibliographic part of the schema.

As an extension of this, the use of ' sorted s e t s ' will be replaced by external utility sorting of data retrievals.

-The ' typical' data base does not exist (perhaps one reason why manufacturers are reluctant to state performance figures), but these CCDN applications may given an idea of the size and type of data base which can be mounted on a small computer and still give acceptable performance. Data base loading times are now thought likely to give the most difficulty, as much because all linked files are to be loaded in a single series of operations as because of longer running times compared to current data files. Retrieval performance is expected overall to be comparable with current programs.

-As much effort may be absorbed by upgrading existing data files in preparation for loading as in definition and programming work on the data base. 1 During these tests, both computers ran with a Tsingle-user1 but with the spooling system in.

: CINDA 1 1 1 PROCESSING 1 1 FEEDBACK EXFOR-NDD(NEUDADA) EXFOR CONVERSION-INDEX GENERATION J.._ • • • • • 0 • • • • ~o 0 • • • • • • • • • •
: CINDA UPDATE : • 0 • • MAINTENANCE o . • TION & COMMENTS STORAGE : ~f ~------~~ . • • • • 0 • CINDA EXCHANGE \ • TAPE GENERATION • • • • • • ~I CINDA RETRIEVES 1 1 • 1 » ' 0 0 0 0 0 • • 0 0 , ' • • :) 0 4;> 0 lit 0 0 • CI 00" 0 • • ..-----..1----.------0' • • • • • NDD INDEX MAINTENANCE 1 EXFOR NDD CONVERSION NDD RETRIEVES 1 Il • • • CINDA EXFOR • ... INDEX LINES • l • • T • • • • 1 • EXFOR INDEX EXFOR DATA • • MAINTENANCE RETRIEVES • • • • • 0 • "",.. • . EXFOR RETRIEVES 1 . 1 • • • • L-------:oo:----I..---J~ • • Q • • Q • • • • a • " • • • • • • it • • • • • • • • 110 • • • • CI 0 • • • ~ • • • lit 1;) • • --:1 CI • • • • • • • • • ' 0 ' '0 1 • • • • 0 INTERMEDIATE FILES~ 1 EXFOR TAPE ~~ . _ _ _ _ w~r~ _ _ _ ~ ~ UTILITY SORTS !I.f.~------I NDD DISPATCHING (data in custo~er
The very large disparity in loading performance between the 370/125 and the 11/70 may be reduced if the spooling system is not leaded on the 370/125.

+ mins

This databank is a large set of files controlled by a management suite of COBOL data handling programs. The data, data dictionary and data directory are stored on exchange able disc packs in the Random Access Index Sequential mode on an ICL V 7 2 computer at the UKAEA headquarters at Risley.

It is a databank for the UKAEA Prototype Fast Reactor which stores data pertaining to the entire composition of the in-core components, concentrating particularly upon the fissile fuelled driver assemblies and the many experimental assemblies of both fuel pin and cladding/structural materials.

At this time, the reactor is not yet operating at full power. This should be achieved in 1977 and the databank will then contain reactor operating history and reactor physics data, and also post-irradiation examination data for the discharged units.

The databank will then represent a complete data compilation of in-reactor performance of fully documented materials. The current size of the databank is of the order of 100 megabytes and is expected to increase to approximately 200 megabytes over the next 2 years.

The ICL 4/72 computer will be phased out during 1977 and replaced by an ICL 2980

computer. The Databank Management System adopted by ICL is IDMS (integrated Database Management System), and it will be available on the 2980 computer. Initially, the databank will be moved on to the 2980 in its current form, but IDMS potential will be probed by moving selected sub-sets of the databank into this management system. We hope that eventually IDMS will enhance the databank from batch mode to transaction mode processing. The expected growth of the databank will increase data retrieval and file reorganisation times, and it is hoped that IDMS may ease this problem.

The Filing System

There are 150 separate files. Each file contains fixed length records of data items for a common entity. For example, the Steel Ingot file contains chemical analysis records for each of the 1 0 0 0 ' steel ingots used by the project.

The records consist of an entity key (eg steel ingot number) and a set of individual data items (eg analysis data) common to the entity keys. The records may also contain lists of data items that are entity keys for related records in other files (eg lists of steel turbine batches manufactured from the steel ingot of that record). These are regarded as forward pointers. Sub-key items in the records are also present as back ward pointers (see section ' ' F i l e Navigation").

The entity key occupies the first 12 bytes of every record, and the records are arranged in ascending order of entity key value within each file.

The 150 files are sub-divided into 9 groups of files. Each group of files have similar but not equal, record lengths:--Data Types

The following data forms are stored in this databank:-

A Al phanumeric, 1 character = 1 byte N Numeric, 1 number = 1 byte H Half-word Integer (< 2^5) = 2 bytes I Full-word Integer (> 215 < 2^1) = k bytes F Floating Point (E ± &k) = k bytes
Decimal points and units are inserted at output time. Sub-routines are provided for the conversion of numeric characters to binary integers for calculational work in applications programs.

Data Input

The data originator completes pre-formatted data collection forms. This is punched on to 80 column cards to provide the data set for the INPUT program. The program inspects the identifier characters on the data cards which reference the Card Layout File records stored in the bank. This in turn directs the data to the appropriate files and records for updating. If a part record already exists for the quoted entity key, that record is updated; if the entity key does not yet exist, a new record is created. The entity key value is checked for correct format before record creation or update by reference to a Keys-Format file. The data values are tested for validity and specification limits and suitable Error Messages are returned on hard copy to the data originator. The system software indexes the new records sequentially into the files or the file over flow areas.

Data Retrieval

Data retrieval is controlled by the databank access module. The module is written in COBOL occupying 8. The selection mode is specified by a digit for random or sequential (I0P), the required file by the file number (IFILE), and the routine will return a status report such as good or bad read (ISTAT) to the program. The routine is used by application programmers for manipulating selected data from the databank.

Selected records may be obtained from the bank by a standard program DBREAD for the inspection of file records by non-specialist programmers. The program will only recover data from specified files and not from associated linked records. However, a standard program SEARCH is available that will provide an automatic file walk and data recovery for all linked records across the file hierarchy for a given starting entity key. The program uses the file directory and requires no knowledge of filing structures by the user.

A data manipulation language is provided as an instruction set in the program DBLOOK. This permits the selective retrieval of data items from linked records across the file structure. It does not require expertise in program procedures but does demand an intimate knowledge of file linkages and data item locations.

File Maintenance

A complete suite of housekeeping programs is available to the databank administrator for maintaining directories, dictionaries and the ordering of the database records. These include the normal DUMP, REORGANISE, DELETE, AMEND, JOURNALISE AND ARCHIVE features.

-253 -

The Scope of the Current Databank

The following remarks can only give a very brief indication of the scope of the databank in its current form. For any one of the 250 sub-assemblies at present in the reactor core or intended for replacement purposes, the databank will provide informa tion on its significant components. Several thousand data values provide information on its significant components. Several thousand data values can be returned for each unit, covering manufacturing and inspection data (including metrology and material analysis). Some 50,000 fuel pins are recorded for which 400 fuel batches, 1500 breeder batches, 1500 component batches and 1500 pin tubing batches are associated. The steel derivatives (pin tubing and components) are associated with 500 ingots from 4-00 casts.

Data for the 250 carriers (hexagon tubes) linked to some 2000 internal component batches and 4-000 fuel pin support grids are readily available. The simplest search question for the bank of 'report all1 for 6 sub-units in one hexagon carrier returned 120,000 lines of printed data output. Permutations of possible questions based upon the several thousand individual data types in the bank for the large units (subassemblies) and the sub-units (clusters) are almost infinite and are answerable within minutes on the computer; questions such as "report the vanadium content of the fuel pin tube from any one of 50,000 pins, give the in-core disposition of a particular (say suspect) fuel batch, give tabulated detailed pin dimension data, give metrology data for a set of fuel pin spacer grids found in a specified cluster sub-unit, give fuel enrichment and 0/M ratio for fuel in a pin without quoting the fuel batch number, give the pre-irradiation weight of a fuel pin", and so on. The monumental task of recovering such answers from dispersed paper records is obvious.

The PFR fuels databank is a well organised high activity filing system and contains at present detailed information upon the individual elements of PFR fissile and nonfissile components. In its present form it is an ordered collection of data that is being used as a data source for the solution of thermal and nuclide/neutron interaction calculations. The bank will eventually contain data upon fissile and non-fissile component performance under PFR irradiation conditions upon which detailed performance analysis will be assessed and from which the optimisation of CFR will be more readily achieved.

The ICL 2980 computer complete with the database management system package IDMS is now installed at the UKAEA Headquarters (Risley) and is currently undergoing pre acceptance trials. The computer should be available to users in July 1977*

With the databank at its current size of 100 M bytes, there are several operational criticisms :- -254 -(ii) Data retrieval times can also be large, not only because files to be retrieved may lie deep in the hierarchy but also because of excessive radial head movements on the disc packs. This arises from the storage of logically unrelated files (having only similar record lengths in common) in vertical cylinders of tracks.

(iii) It follows from (ii) that interactive transaction processing is not a viable proposition with the current databank structure constraining users to batch mode processing.

(iv) The current amendment/deletion system does not provide total automatic removal of redundant records. A proportion of disconnected records result.

(v) Application programmers often require detailed knowledge of the structure of large areas of the databank and the navigational paths between the records.

Although it is unlikely that the whole databank will be restructured into IDMS, selected sub-sets of related files will be re-ordered into this database management system. In this manner, we will probe the potential of IDMS. The page dump method is expected shortly on IDMS (area/realm dump only is currently available) and this will reduce copying and reorganisation times, (i). Enhanced retrieval ability must follow from the clustering structure of related records by the IDMS command *VIAf, and transaction processing facility should follow from faster retrieval times, (ii) and (iii). The automatic fade-out of disconnected records provided by IDMS will reduce redundancy, (iv). The provision of sub-schemes to application programmers will remove the burden of file structure and navigational path knowledge from the user, (v). It is hoped that the result of a 3 month exercise in this field will be available by October 1977.

-255

- FIL E KE Y N A M E SUBKEY (1) (1)
GO TO As p a r t of t h a t p r o g r a m the I n s t i t u t e for C o m p u t e r S c i e n c e s and T e c h n o l o g y (ICST) of the N a t i o n a l B u r e a u o f S t a n d a r d s (N B S) w a s c h a r g e d w i t h d e v e l o p m e n t of an o p e r a t i o n a l D a t a C e n t e r for receipt, m a i n t e n a n c e and d i s t r i b u t i o n of t e c h n i c a l and n o n -t e c h n i c a l d a t a p e r t a i n i n g to the p r o g r a m .

F I L E S U B K E Y (2) (2)
T h e r e q u i r e m e n t s a n a l y s i s and d e s i g n a c t i v i t i e s c a r r i e A

C O N T R I B U T I O N O F T H E U N I T E D S T A T E S G O V E R N M E N T , T H I S N A T I O N A L B U R E A U O F S T A N D A R D S P R O D U C T IS N O T S U B J E C T T O C O P Y R I G H T . T he N BS S o l a r H e a t i n g and C o o l i n g D a t a C e n t e r r e c e i v e s i n p u t s f r o m s e v e r a l s o u r c e s and p r o v i d e s i n f o r m a t i o n and p r o c e s s i n g s e r v i c e s to a n u m b e r of i n s t i t u t i o n a l users.

The C e n t e r m a i n t a i n s n u m e r i c , a l p h a n u m e r i c and g r a p h i c a l d a t a t h a t is a c c e s s i b l e v i a o n -l i n e as w e l l as b a t c h p r o c e s s e s .

The s o u r c e d a t a b a s e wil l g r o w f r o m the m o d e s t four m i l l i o n c h a r a c t e r s a v a i l a b l e in the las t h a l f of 1 9 7 7 to an e s t i m a t e d f i f t y to o n e -h u n d r e d m i l l i o n c h a r a c t e r s in 1980.

F U N C T I O

N A L R E Q U I R E M E N T S
T h e f u n c t i o n a l r e q u i r e m e n t s for the Sol a r H e a t i n g and C o o l i n g D a t a C e n t e r are p e r c e i v e d as f a l l i n g into thr e e b r o a d a r e a s . F i r s t is t h e r e c e i p t and m a i n t e n a n c e of m a c h i n e -r e a d a b l e s o u r c e d a t a in a f o r m s u i t a b l e for s a t i s f y i n g all o u t p u t r e q u i r e m e n t s , e i t h e r d i r e c t l y or t h r o u g h a d d i t i o n a l p r o c e s s i n g steps.

A sec o n d are a is the p r o d u c t i o n of p r i n t e d r e p o r t s and c o m p e n d i a b o t h for p r o j e c t p a r t i c i p a n t s an d for a v a r i e t y of o t h e r users.

F i n a l l y , t h e r e are le s s p r e d i c t a b l e ad h oc and p r e s e n t l y u n d e f i n e d r e q u i r e m e n t s t h a t w i l l be s p e c i f i e d t h r o u g h o u t the f i v e -y e a r l i f e of the p r o j e c t .

F i g u r e 1 i l l u s t r a t e s this t h r e e -p a r t c o n c e p t u a l vi e w . T h i s a p p r o a c h h e l p s a s s u r e the s e c u r i t y , i n t e g r i t y and w i d e d i s t r i b u t i o n of the d a t a t h r o u g h o u t the life of the p r o j e c t .

P r o d u c t i o n of P r i n t e d R e p o r t s

A m a j o r c o n t i n u i n g f u n c t i o n of the D a t a C e n t e r is the p r i n t i n g of s u m m a r i e s of the d a t a u sing v a r i o u s s e l e c t i o n c r i t e r i a and l e v e l s of a g g r e g a t i o n . T h e i r t i m e l y p r o d u c t i o n is f a c i l i t a t e d t h r o u g h the a v a i l a b i l i t y of g e n e r a l i z e d s o f t w a r e c a p a b i l i t i e s s u c h as r e p o r t g e n e r a tors, s o r t p a c k a g e s , s t a t i s t i c a l p r o g r a m s , f i l e m a n a n g e m e n t s y s t e m s , an d d a t a m a n a g e m e n t tools.

Ad Hoc a n d / o r C u r e n t l y U n d e f i n e d P r o c e s s i n g

In a d d i t i o n to the m o r e w e l l -d e f i n e d and p r e d i c t a b l e r e q u i r e m e n t s for d a t a r e c e i p t and m a i n t e n a n c e and p r o d u c t i o n of p r i n t e d r e p o r t s , t h e D a t a C e n t e r s a t i s f i e s v a r i o u s o t h e r f u n c t i o n a l r e q u i r e m e n t s as t h e y b e c o m e known.

The g e n e r a l a p p r o a c h f o l l o w e d is to f o r e c a s t as a c c u r a t e l y as p o s s i b l e a d d i t i o n a l r e q u i r e m e n t s that w i l l be p l a c e d o n the D a t a C e n t e r . T h e s e r e q u i r e m e n t s are t h e n m a t c h e d a g a i n s t the a r r a y of b a s i c p r o c e s s i n g and d a t a m a n a g e m e n t t o o l s a v a i l a b l e on or o b t a i n a b l e for the N B S c o m p u t e r -258 -

f a c i l i t y .

In the e v e n t t h a t the N B S f a c i l i t y d o e s n o t a p p e a r to be a b l e to s a t i s f y s o m e c l a s s of r e q u i r e m e n t s , a l t e r n a t i v e s a r e i d e n t i f i e d . L a g g i n g R e q u i r e m e n t s D e f i n i t i o n -I n i t i a l l y , d a t a c o l l e c t i o n a c t i v i t i e s p r o g r e s s e d fa s t e r and f u r t h e r t h a n the d e f i n i t i o n of u s e r r e q u i r e m e n t s . C o n s e q u e n t l y , d a t a w e r e b e i n g c o l l e c t e d b e f o r e m a n y u s e r s w e r e i d e n t i f i e d and t h ei r r e q u i r e m e n t s d e f i n e d .

So far all u n a n t i c i p a t e d i n f o r m a t i o n n e e d s h a v e b e e n h a n d l e d i n -h o u s e w i t h to o l s t h a t w e

D i v e r s e User A c c e s s R e q u i r e m e n t s -The d i v e r s e n a t u r e of t he u s e r c o m m u n i ty r e q u i r e s t h a t a c c e s s to the d a t a b a s e be p r o v i d e d v i a s e v e r a l h i g hlevel l a n g u a g e s .

Pos t P r o c e s s i n g -P o s t p r o c e s s i n g of d a t a e x t r a c t e d f r o m the d a t a b a s e u s ing v a r i o u s s t a t i s t i c a l and o t her to o l s is n e c e s s a r y .

P r i v a c y C o n s t r a i n t s -T h e P r i v a c y act of 1974 i m p o s e s

s t r i n g e n t r e q u i r e m e n t s for l i m i t i n g a c c e s s to i n f o r m a t i o n t h a t c o u l d t h r e a t e n i n d i v i d u a l p r i v a c y . C o n s e q u e n t l y , s e c u r i t y and i n t e g r i t y c o n s t r a i n t s w e r e a m a j o r c o n s i d e r a t i o n in the d e s i g n and a c q u i s i t i o n of s o f t w a r e for the D a t a C e n t e r .

Use of E x i s t i n g C o m p u t e r F a c i l i t y -T h e r e w as a s t r o n g p r e d i s p o s i t i o n on the p a r t of f u n d i n g a g e n c i e s and D a t a C e n t e r u s e r s to u t i l i z e t he N B S c o m p u t e r f a c i l i t y . T h i s r e s o u r c e c u r r e n t l y i n c l u d e s a U n i v a c 1 1 0 8 p r o c e s sor and r e l a t e d p e r i p h e r a l s .

EVALUATION OF DE S I G N CO N S T R A I N T S T h e c o n t r a d i c t o r y n a t u r e of d e s i g n c o n s t r a i n t s m a d e the d e c i s i o n of w h e t h e r

to "go d a t a b a s e " a d i f f i c u l t one.

T h e f a c t o r s l i s t e d a b ove b o t h s u g g e s t a nd d i s c o u r a g e the a p p l i c a t i o n of g e n e r a l i z e d d a t a b a s e m a n a g e m e n t s o f t w a r e .

O n t h e p o s i t i v e side, the a v a i l a b i l i t y of d a t a p r i o r to d e t e r m i n a t i o n of u s e r r e q u i r e m e n t s i n d i c a t e s a n e e d for the f l e x i b i l i t y p r o m ised by G D M S p a c k a g e s . The c o m p l e x s t r u c t u r a l r e l a t i o n s h i p s and p r i v a c y r e q u i r e m e n t s a l s o p o i n t to the use of d a t a b a s e t e c h n o l o g y . A l s o on the n e g a t i v e s i d e is t he q u e s t i o n of w h e t h e r G D M S a v a i l a b l e in the m a r k e t p l a c e ca n c o m p l e t e l y s a t i s f y t h e r e q u i r e m e n t s for p o s t -p r o c e s s i n g and a c c e s s via m u l t i p l e h i g h -l e v e l l a n g u a g e s . F i nal ly, the l i s t of a v a i l a b l e G D M S for the N B S C o m p u t e r c o n f i g u r a t i o n is limited .

T w o d e s i g n c o n s t r a i n t s w e r e not n o t s e e n as c l e a r l y p o s i t i v e or n e g a t i v e w i t h r e g a r d to the use of G D M S s o f t w a r e .

T h e r e q u i r e m e n t for a n s w e r ing o n -l i n e q u e r i e s c o u l d be s a t i s B e c a u s e of t he r a n g e and u n c e r t a i n t y of r e q u i r e m e n t s -rich s t r u c t ure, o n -l i n e q u e r y , g e n e r a t i o n of h a r d -c o p y r e p o r t s , r e s p o n s e to ad hoc r e q u e s t s -a h i e r a r c h y of s o f t w a r e t o o l s i n c l u d i n g m u l t i p l e g e n e r a l i z e d d a t a b a s e m a n a g e m e n t p a c k a g e s are a v a i l a b l e for i m p l e m e n t i n g Dat a Ce n t e r a p p l i c a t i o n s .

In a d d i t i o n to c o n v e n t i o n a l s o f t w a r e t o o l s s u c h as l a n g u a g e translators, report g e n e r a t o r s and statistical packages, two types of g e n eralized da t a b a s e m a n a g e m e n t systems are used by the Data Center. While the bulk of report g e n e r a t i o n requirements are satis f i e d using a g e n e r a l ized report generator, the production of complex reports and the reten t i o n and analysis of data that is richly structured (as in the case of the c o m ponent tree and failure data) is accomplished using a C O D A S Y L type G D M S . This type of data m a n a g e m e n t tool uses a high -l e v e l p r o g r a m m i n g lang u a g e as a host? that is, it is invoked by imbedding refe r e n c e s to the da t a b a s e in a p p l i c a t i o n progr a m s w r i t t e n in COBOL or other h i g h -l e v e l languages.

A second class of d a t abase m a n agement s y s t e m is used whe n selec ted subsets of the data m a i n t a i n e d by the center are identified as o b j e c t s for on-line retrieval.

Two on-line query systems have been acquired. One, developed by a U.S. Federal Agency, provides a c a p a b i l i t y for e s t a b l i s h i n g a database in a short period of time that can respond to o n -l i n e requests. It is not suited for m a intaining large volumes of data nor does it handle complex structures efficiently, however. The second system is a comm e r c i a l package that pr o v i d e s a q u ery language interface for the C O D A S Y L da t a b a s e m a n a g e m e n t system.

While not as flexible as a s e l f -c o n t a i n e d que r yresponse system, this alternativ e is a t t r a c t i v e b e cause it allo w s r e trieval from d a t a b a s e s established for other (e.g., complex report g e n e r a tion) purposes. Entry of data item d e f i n i t i o n s using software dev e l o p e d by NBS has been underway for several m o n t h s but is not complete; it is viewed as a continuing task. The d a t a d i c t i o n a r y grows and changes as the amount of data received increases, d a t a b a s e s are e s t a blished and a p plications are developed.

SUMMARY

The Solar Heating and Cooling Data Center m a i n t a i n s a large da t a b a s e serving a diverse com m u n i t y of users.

B e c a u s e the a p p l i c a t i o n of GDMS technology is not c l e arly preferable to other less complex and less cos tly alternatives for all aspects of Data Center operation, a m o d i f i e d da t a b a s e approach is being used. Whi l e generalized d a t a b a s e m a n a g e m e n t s o f tware is applied wherever r e q u i rements demand, other software tools are also used. To date, this a p proach has provided the desired f l e x i b i l i t y with a m i n i m u m of d e sign and d e v e l o p m e n t costs. Scientific data handling activities in Austria are in general restricted to using existing databases and participating in international information systems. As in other smaller countries, the requirements in manpower and computer equipment would be too large to allow for producing databases of our own. Furthermore, rather modest computer installations impose the use of "simple tape storage systems", very similar to the Geneva INFOL system, discussed earlier in this report (1).

In planning a national automatic information retrieval system using the tape services of international documentation organizations as a database the question arises "What program philosophy and file organi zations are practicable and advantageous for the computer equipment available?". There exist some information retrieval programs developed b y the computer manufacturers, but the layout of most of these programs is for very large computer installations, since the file organizations used are very expensive. For smaller computers it is more practicable to use the magnetic tape received from an international organization directly as a database for information retrieval. That means that the file of documents stored on tape is scanned sequentially in the search run, while random access storage on disk is used only for temporary work files. In this way the programs can manage with a minimum of one disk drive with about 7 million byte storage capacity.

On the other hand the response time in such file searches is relatively slow, since a complete file scan is needed before any informa tion can be retrieved. So the main problem in using such a program philo sophy is to accelerate the working process of the computer. A high speed performance can be reached, if a machine readable thesaurus is used and if besides the descriptors the descriptor numbers are also included in the records on tape. This implies the restriction that only descriptors recog nized b y the thesaurus can be used as keywords in the search profiles cur rently maintained b y the Austrian information service. This program philosophy is described in a report of the Austrian Research Centre Seibersdorf (2) and was also discussed in a paper presen ted at the International Symposium on Information Systems in Varna 197^9

Bulgaria (3). The so-called direct file organization in batch processing procedures implies that there should be a large amount of profiles pro cessed together using a rather small database. So SDI is a form of infor mation service well suited to these programs. The monthly INIS output tapes (about 6000 items/month) are used as a database for the SDI.

For the query formulation we have a standardized internal format, which enables the user to submit one or more profiles for one or more prob lems. The profiles are formed as Boolean expressions of keywords. These profiles are exclusively decisive for the search run. But the user has the possibility to include also the free text formulation and other re marks for his problems in the submitted deck of cards. This information is then printed out on the first page of the user*s listing of results and gives an additional identification of the listings.

At present the programs are used to provide a monthly SDI-service for about 500 profiles, to about 130 users, using the monthly INIS outputtape as a database.

Our information centre in Seibersdorf services all universities of Austria and some industries with the INIS data. So about 50% of the users are from universities, 5% from industry and 45% in-house users.

In future it is planned to extend the information available to include some international data services (e.g. RECON) b y terminal, so as to allow for retrospective searches and for extension of the subject scope covered.

With regard to a GIMS containing numerical data, no development in the longer term is envisaged in the Austrian Nuclear Research Center, since the manpower needed for an effort of this kind could not be justi fied.

However, great interest exists in implementing a suitable sys tem developed elsewhere, or if it is more appropriate from the tech nical and economical standpoint a link to an established computer centre should be envisaged.

International work to find the best solution for the customer is strongly recommended by the Austrian delegate to the NEA-NINF working group. NDS is located in an annex, so that its work must pass through an RJE station for inclusion in the batch stream of the 370/158. Currently, NDS uses about 4 % of the capacity of the 370/158, but the load is expected to increase with the widening scope of the Section*s activities. The systems in operation at the moment were developed and programmed at NDS, using PL/l and, to a lesser extent, FORTRAN. For experimental neutron data the world is divided into four areas: each centre compiles data produced in its area and transmits the information to the other three centres* Thus the data files should be identical at each of the four centres. Each centre services requests for information from its own area. This data is exchanged in the EXFOR format, developed in common by these four centres. Besides simplifying this four-way exchange of data, an additional aim of EXFOR is to standardize the content of compilations by means of a combination of controlled keywords with associated codes, which can be used for retrieval purposes, and free text explanation.

S C I E N T I F I C D A T A H

A N D L I N G , N E E D S A N D P R O B L E M S A T T H E Z E N T R A L S T E L L E F Ü R A T O M K E R N E N E R G I E -D O K U M E N
It is important to realize that although each centre may maintain different systems internallyf it is essential that the structure of EXFOR is not violated for exchange purposes* This is clearly a major constraint when considering revisions to internal systems. A short guide to EXPOR is given in Appendix I.

In order to maintain the consistency of the information in EXFOR, a series of dictionaries are maintained. These are used to control the codes which are permitted with each keyword. It is the duty of NDS to maintain these dictionaries, and regularly to send up-dates to the other centres.

The structure of EXPOR was designed in such a way that the scope of information compiled could fairly readily be extended. This has recently been done to include charged particle data« and the network has been enlarged by three other centres. However, in this case, the Karlsruhe Charged Particle Group is responsible for collating the compilations and transmitting the complete master file (at the moment rather small) to the remaining centres at regular intervals. It must be foreseen that in the future both the scope of information compiled and the number of centres involved will expand.

Each of the four nuclear data centres is responsible for servicing requests from its area for evaluated data. The content and format of the evaluated data files are controlled Toy the originators of these files. There are three or four major files, all having different formats which are updated intermittently by the originators and used for selective retrievals for users. There are also specialized evaluations, which are usually received from evaluators and transmitted to users and other centres in toto.

Another area of inter-centre co-operation is CINDA. The master file is main tained by CCDN, Saclay, but the other centres provide input to the system. NDS is responsible for the production of the CINDA book. NDS also receives the complete master file about four times per year which is used for in-house operations. Although it is possible to generate computer links between CINDA and the EXPOR data, these are not maintained at NDS except in the form of a number of common dictionaries.

The final area of co-operation between the four nuclear data centres is WRENDA -World request list for nuclear data« a list of measurements or evaluations which are requested to "be made, and not to be confused with requests for data from existing files. This is a low level activity at NDS which peaks around the publication date of the list. The master file is maintained by NDS and input is received from the other centres. There is no direct overlap between WRENDA and the other systems, the WRENDA tables and files being almost completely independent, with the exception of some of the EXPOR dictionaries.

4« Current operations at NDS

Dictionary maintenance for EXPOR

The master file, which is kept on tape, contains about 6000 logical records of 88 characters each. The file is updated as needed, usually once or twice per month. Immediately following each update three ISAM files are created, from the tape, on disc. These are used extensively for checking purposes and also to provide code-expansions for edited listings. The dictionary master file is transmitted to the other centres every three months, at which time listings are also produced for data-centre physicists.

4«2 Libraries in EXPOR format

All master files are kept on tape. The regular neutron reaction experimental data library resides on 4 high density tapes, split according to the code of the centre from which the data originated. In addition there are tx*o sub-master files, containing data from the period before the 4-centre network existed, with a total of about 700,000 records# The additions to the regular master files are roughly constant each year# In 197^ this amounted to an increase in file size of about 25$# There are two additional master files in the same format} one containing evaluated data not yet included in any other library (about 6,000 records) and the other containing the charged particle data (about 12,000 records)#

The master files are each updated about once every three months upon receipt of a transmission tape containing new and revised entries# Data compiled at NDS is kept on tape as a separate file (LIMBO) until it has been thoroughly checked# It is then transmitted to the other centres and added to the master file# When data are added to the master files the index is updated# The index is a very important part of the system. Data-elements which may be required for retrieval purposes are extracted from the EXFOR entries and stored in the index master file in a standardized form# At retrieval time, the index is matched against the request; when an equivalence is found, the index record points to the required sub-entry on the master file by its accession number# Listings of the index are also used extensively by the compilers at NDS. The current index-master file resides on tape; it contains about 40,000 logical records each of 200 characters.

The flow of data in the EXFOR system, as it currently exists at NDS, is shown schematically in Appendix II. The EXFOR libraries are accessed about three times per month for requests from users in the NDS service area; the index is accessed far more frequently. Output from the files is in the form of either edited listings (see examples in Appendix i) or in standard format, usually on magnetic tape# Both are accompanied by an index-listing of the data retrieved#

4*3 Evaluated data libraries

The number of data libraries originating outside NDS, but held for distribu tion to requesters in the NDS service area, has grown over the years from 4 in 1970 to 14 in 1974 to 32 in 1976# It should be noted that in addition to evaluated data libr aries, this figure includes specialized compilations of experimental data# Many of them are simply copied in toto and sent to users on request# Several, however, are large libraries in one or the other standard evaluated data format# From these libraries selective retrievals are made on the basis of reaction plus isotope or data-set number# No computerized index is kept of these libraries, but the contents of each is published in CINDU-11, which is updated regularly# The standard evaluated data libraries are accessed several times per month to satisfy requests from users in the NDS area# All libraries are stored on tape# The output is either in the original format (usually on tape) or as edited listings# -270 -

Future plans of the NDS data centre

As is probably the case in most data-centres, the various systems in operation at NDS have grown to meet immediate needs and to satisfy the commitments within the four-centre network. This has often meant ad hoc patching as the environments have changed and in particular as extensions to EXFOR have been introduced. This type of growth has been useful in so far as it has given us considerable experience in operating a data centre without massive expenditure on systems which may then have been difficult to modify as requirements changed. The NDS EXFOR system, for example, uses some 20 independently compiled programs, and can easily be reconfigured as changes are required.

However, the time has now come to integrate and improve the NDS systems, with out discarding all that exists at the moment. In particular we need to improve in-house operation by:

-co-ordinating the dictionaries and various tables which are used by the different systems, keeping in mind that these will grow as the scope of EXFOR is extended to other types of data;

-extending the EXFOR index to include other retrieval-fields;

-including the contents of the standard evaluated data files in this index;

-automating all book-keeping associated with user requests. We need to improve the services to our user community by: -providing data in a variety of computation formats better suited for input to calculation programs; -providing graphical plots of the data, if requested.

Keeping in mind limited man-power and limited budget and noting that ADABAS will be available at IAEA, we must decide whether to ®go data-base* and if so, to what extent.

The data index is the nucleus of the data-centre operation. It is also the area where modifications and extensions are most needed. We have therefore recently decided to experiment with ADABAS to see if it satisfies our requirements. In parti cular we need to investigate the query language and output capabilities, to ensure that these are adequate without having to write a great deal of host language software. Our first tentative attempt at data definition indicates that out of 43 data-fields, 21 need to be defined as ♦descriptors1 (that is fields which can be used as search criteria). The highly complex structure of the nuclear reaction coding apparently requires 14 descriptor fields in order to enable querying to a sufficient depth of detail. Many requests for data specify not only the nuclear reaction of interest but also an energy range of the incident particle. We must therefore investigate carefully how to handle the problem in ADABAS of searching on floating-point data.

If this experiment proves satisfactory we will load the EXFOR index into the data-base, adding at a later date the index to the major evaluated data files and the book-keeping files. We do not anticipate loading our actual data files into the data base because of the large volume and the comparitively infrequent access. Queries to the index will give the accession numbers of the data-sets required, which will then be retrieved from the master file tapes. Initially all our operations will be in batch mode. This will be true in the long term for updating the index because it involves bulk changes and additions at rather infrequent intervals. On the other hand, querying the index in the interactive mode is foreseen in order to facilitate the work of the physicists at the data centre.

A new project has recently been discussed in NDS, namely a compilation of isotope decay properties. This is a potential GDMS application, however its implementa tion will depend upon the suitability of ADABAS for handling scientific data. EXFOR -a computerized Exchange FORmat -presents in a convenient compact form experimental numerical data as well as physical information necessary to understand the experiment and interpret the data» Keywords and codes make the information computer intelligible. The structure of EXFOR is briefly described in the following.

Each EXFOR "entry" consists of two or more "subentries". The first subentry of an entry contains information which is common to all the following subentries of that entry. Each subentry may include two types of information: descriptive text information and numerical data. Each item of descriptive text information is identified by keywords such as TITLE, STANDARD, ISO^QUANT, which may exhibit a code within parent hesis, such as (GELl), (SCIN) for the keyword DETECTOR or (TOF), (COINC) for the keyword METHOD. The meaning of most keywords is self-explanatory. The meaning of most codes is given in the free text following the code. Of particular importance is the keyword "ISO-QUANT". Under this keyword are coded the "isotope and quantity" or, in other words, the reaction and parameter measured.

EXFOR information is available in two formats:

-the "standard format" primarily designed for the international exchange of data in computer processable form, and -the "edited format" in which coded information and data tables are edited in an easily legible form.

The EXFOR structure, the standard and edited formats are illustrated in example 1.

There are several categories of numerical data:

-In the DATA TABLE the numerical data of the quantity defined above under ISO-QUANT are given under DATA (or RATIO) together with the columns of independent variables, errors, etc.

-Constant numerical values which are common to the entire data table of a given subentry, are given in the CON ST AM* PARAMETERS (also called COMMON in the standard format) section«, -Constant numerical values which are common to all subentries of a given entryf are given in the CONSTANT PARAMETERS (resp. COMMON) section of the first subentry of that entry.

All numerical data are defined by Data-heading keywords (e.g. DATA, EN = inci dent neutron energy, STAND = standard) and by Data-unit keywords (e.g. EV, LIB). Some data tables may have a more complex structure, for example there may be several ISO-QUANT per subentry; in this case each ISO-QUANT is connected to its perti nent column in the DATA TABLE by means of a "pointer", as illustrated in example 2. More generally a pointer can be used to connect related pieces of information (see Here numbers and destinations of all tapes used for dispatches are stored.

It serves to recover CPL proprietary tapes sent out.

The file is updated every month.

Size of CPL Operations

I would now like to give some figures which reflect the size of the CPL services.

These figures will then serve to estimate access frequencies to various data items of the data base which I will then propose.

-The latest published catalogue lists about 1100 program packages which are currently available.

-To this figure, about 100 to 150 new programs have to be added each year.

-About 100 programs are also tested each year.

-In 1976, about 750 complete packages were mailed and in addition about 250 program reports.

-The user community of CPL now comprises about 350 registered establishments.

Integrated Data Base Management System

In order to avoid the disadvantages of the file system described, the schema of Fig. 1 for a data base is proposed.

Its logical structure is such as is supported by the system IDMS of Cullinane Corporation, and the nomenclature used is that of this system.

The data base itself can to a large extent be generated from the data now available on tape files.

The following conventions have been used when drawing up the schema:

-A square box represents a record type.

-Within a record type, the first line gives the record-name the second line contains the record-id and the location-mode: CALC -the record location is calculated from the data-item within the record as given on the third line by a hash algorithm VIA -all record occurrences are stored near the owner record occurrence within the set given on the third l i n e .

-A pair of record types connected by an arrow represents a "set". The arrow points from the owner to the member of the set.

Table II lists and describes all record types and estimates their occurrences within the data base, their total lengths and the number of accesses to them per month.

For each record type, data items are described.

Records which contain free-format data have variable (c) To find the name of the package requested, locate likewise for each REQUEST the member occurrence of PACKAGE.

(d) Find for each REQUEST possible occurrences of DOC, MATERIAL and REQ-COM.

Conclusion

The introduction of an integrated data base management system offers a number of obvious advantages over the present file-based system:

-The maintenance and editing of the Program Abstracts file in the present form is a time-consuming task requiring one to two manmonths per year of senior staff. The updating of this file has therefore been mainly restricted to the insertion of new abstracts for new programs.

If abstracts data are integrated into a data base they will automatically be brought up to date whenever changes to package descriptions have to be made.

The preparation of the publication itself could be reduced to a simple report generation from the data base.

In this way, the value of the publication as a general reference manual could be considerably enhanced. At the same time a saving in manpower may be possible.

-In general, the reduction or even complete elimination of data redundancy would render system maintenance easier, more efficient and less error-prone. At this point it should be noted that due to the staff structure and resources of CPL, most of the staff have to devote part of their time to some kind of file maintenance. This constitutes a burdensome overhead to other assignments and could no doubt be considerably reduced with the introduction of an easily manageable integrated system.

On the other hand, it is clear that the rather moderate demands on such a system, in particular as far as disk storage and access times are concerned, would probably not be enough to justify the introduction of highly sophisticated software only for the tasks which I have outlined above«

The whole proposal should therefore be seen in a context where a data management system is likely to be already available for other more demanding projects.

The most important data missing from the schema presented are the CPL 'master files' of program packages tested and available for distribution.

The volume of source code stored on tape is large and, once tested, a program may be considered simply as a block of text to be copied for the benefit of requesters.

In view of their large volume and apparent lack of informal structure, the CPL master files would at least initially continue to be stored on tape, outside the data base. The aim of the project is to establish a data bank containing the information required fo r decision making in environmental management. In addition to establishing which data elements are necessary for environmental impact assessment and control, consideration has been given to the chemical compounds to be included. In our view, effective control of environmental chemicals depends not only on the monitoring at known environmental stresses, but also on the systematic collection and organization of -a) all chemicals manufactured in large quantities, -b) all toxic chemicals which are manufactured, -c) all metabolites and degradation products of compounds in a) and b) and by products resulting from their manufacture.

Redundant information

Liz

It is estimated that in an operational system these criteria could lead to a file of about 30,000 compounds. However, in the pilot phase we have limited the file to 5000 compounds.

SIMAS information retrieval system

From the start of the project it was decided to set up a computerized system using the SIMAS information retrieval system which was developed at JRC-lspra. Although it was already clear in 1972 that SIMAS was not an ideal system for ECDIN, it had the advantage that, as it was a local system, limited improvements to the system fo r the ECDIN application were possible.

SIMAS was originally designed for the library of computer programs of EUROCOPI (European Computer Programs Institute). SIMAS allows the system designer to set up a number of classes each containing objects which may be catalogued. In addition, keywords and searchable identifiers may be assigned to the 'objects'.

* To whom all queries should be addressed

In the ECDIN implementation we chose to use one 'class' in which the 'objects' were chemical compounds as it was not possible to search across classes. One implication of this decision was that the logical record of the ECDIN file would have a hierarchical structure with the chemical compound as the root of the tree. The pro blems arising from this record structure w ill be considered later in greater detail.

To enable the data stored in SIMAS to become retrievable, it was necessary to develop a thesaurus for ECDIN.

The SIMAS system contains procedures for thesaurus construction and maintenance. The thesaurus is orga nized in a number of broad keyword groups each of which may contain a number of narrow keyword groups. Each 'narrow keyword group' may in turn contain a hierarchy of keywords. One improvement of the SIMAS system introduced fo r the ECDIN implementation was the ability to associate numerical values with keywords and to search them w ith operators such as: equals, less than, greater than, less than or equal to, greater than or equal to, between (for ranges), error (to allow for uncertainty in data). Further the units in which the original measurement was made, could be input and automatically translated into a standard unit. This facility was also made available to the searcher.

ECDIN input form at

In addition to imposing a hierarchical data structure on ECDIN, the SIMAS system imposes other severe constraints. Firstly, in SIMAS we could not easily represent in fine enough detail the data structure which we felt to be appropriate to ECDIN. Secondly, the facilities for data management in SIMAS (like most other in formation retrieval systems) were minimal. In order to change one digit in the data record for a compound, it was necessary to reload the whole display file for the compound. Similarly in order to change or add one keyword, it was necessary to reload all keywords for a compound.

As a result it was decided from the outset to develop an ECDIN input format which would have the following advantages:

-a) the ECDIN data bank was not too dependent on SIMAS and the change to a new system would be facilitated, -b) there would be more fle x ib ility to represent the data as it should be stored, -c) the design of the form at could be improved as a greater understanding of the inherent data structure was obtained.

However, the ECDIN input form at was of necessity still conditioned by the constraints of the SIMAS system and we were forced to adapt a hierarchical data structure for the ECDIN input format record.

Data structure o f the ECDIN record

The data elements considered appropriate to the aims of ECDIN were organized into ten categories, each of which was divided into fields and, where necessary, subfields. The ten data categories are listed in Fig. 1 and the field structures of tw o of these categories are shown in Figs. 2 and3. In some cases a field may occur once only (e.g. preferred systematic name in category 1) while in other cases the field may be repeated (e.g. trade names in category 1). For some fields it has been necessary to introduce a repeating group of subfields. For example, a chemical compound may have many producers and for each producer we may wish to record the following data elements:

-company name -plant location -plant capacity -process used -merchant capacity -material source Each of these data elements becomes a subfield in a group of subfields which describes a producer and the group may be repeated as many times as there are producers for the compound (see Fig. 4). Often the hierar chical structure inadequately represents the true data structure. There may be a need to refer from one field to another, as is the case w ith chemical processes in the example above or it may be necessary to refer to other compound records.

In certain fields (mostly in categories 8 and 9) a free text condensate is used to present an abstract of the state-of-the-art fo r the compound in the field. Several bibliographic references may be used in preparing the condensate and these are listed after the condensate (see Fig. 5). Each element of the bibliographic reference is tagged as a subfield. The concept of the 'condensate' was introduced partly to overcome the space limitations Only the data for the field "manufacturing processes" are expanded. Data fo r other fields are similarly divided.

of the SIMAS field. In the future, a structured data representation w ill be introduced in some of these fields and the 'condensate' w ill be reserved fo r comment on or evaluation of the data.

Present data management system

As a consequence of adapting the ECDIN input format, it was necessary to develop a conversion program which would reformat ECDIN data into SIMAS input format. During the conversion process much of the fine structure of the record is lost. Since data management in SIMAS is d iffic u lt and since, in any case, we would have lost the fine structure of the record in SIMAS, it was also necessary to develop file maintenance routines for the ECDIN input format.

It is not necessary here to describe in detail the file maintenance system but the following list of system ele ments w ill show that it is non-trivial:

-sorting and merging of files in ECDIN input format -error detection routines -editing routines -file statistics -selection of data by compound -selection of data by data field -creation of file subsets according to characteristics of data records -maintenance routines of ECDIN compound registry file (an authority file)

The maintenance of two sets of files is wasteful of time and effort. Furthermore, the file conversion and re trieval file updating are expensive and complex procedures and as a result the retrieval file is updated at in frequent intervals.

Summary of reasons for changing to DBMS

The advantages to be gained from a change to DBMS are of two types:

-elimination of the disadvantages of SIMAS, -improvements in retrieval and data management offered by DBMS.

One of the chief disadvantages of SIMAS is the imposition of a hierarchical data structure. This results in re dundancy of information (e.g. producers, processes, bibliographic references) and as a result of this redundancy it is d ifficu lt to ensure that exactly the same form of, for example, a producer's name is stored everywhere in the data base. Redundant storage of information can also lead to increased updating since, fo r example, when a company name changes, all records in the data file containing the name must also be changed. Furthermore, the hierarchical structure distorts the true data structure causing problems of cross referencing as already mentioned.

Even though the association of values w ith keywords was an improvement in SIMAS, this feature is still in adequate to deal w ith all relationships which should become searchable. Consider, fo r example, the concept of 'production in a region'. H£re there are three values or attributes related to this concept, namely:

-region or country -year of production -quantity of production

As SIMAS allows the association of only one value w ith a concept, we are forced to m ultiply the number of keywords used to represent this relationship in SIMAS. For example, we could do this w ith keywords of the following type:

-production in Italy in 1977 -production in Italy in 1976, etc.

-production in France in 1977, etc. This is clearly inadequate fo r a data bank such as ECDIN. The positive gains to be expected of a DBMS are:

-better representation of the ECDIN data relationships in a network structure -more efficient data management -greater fle xib ility to change data structures -dynamic hierarchy definition.

An idea of the complexity of these data relationships is shown in Fig. 6. With such a model of ECDIN we would be able to answer more easily questions directed to the manufacturers, to chemical processes, to administrative regions or eventually even to hydrographic basins. Clearly, as before, questions directed to the chemical compound w ill be of importance. Obviously, relationships between com pounds also exist and the above diagram should not be regarded as exhaustive.

Study of software needs fo r JRC-lspra data banks

In view of the obvious inadequacies of SIMAS for ECDIN and the need to replace SIMAS with a new system, a study contract was awarded to an external consultant who was given the task of examining the six data banks which are proposed or operating in the JRC-lspra and, in the light of the available commercial software, of making recommendations fo r an eventual replacement for SIMAS. As a result of the first part of the study, a class of DBMS software (inverted file systems) was recommended as a replacement of SIMAS. In the second part of the study, three of the JRC-lspra data banks (including ECDIN) were examined in turn with each of three DBMS packages (ADABAS, INQUIRE, SYSTEM 2000) to determine the problems likely to arise. The choice between ADABAS and INQUIRE was d ifficult but on the grounds of easier extendability, the former system was chosen. Trials w ith ADABAS at JRC-lspra should begin in the last quarter of 1977.

Conversion o f ECDIN to ADABAS

The existence of the ECDIN input format should facilitate the conversion of ECDIN to ADABAS. A study of the problems involved fo r certain parts of the data base has already begun and a number of computer pro grams has been w ritten to facilitate the conversion process. To ensure a realistic test of ADABAS, it was de cided to select data according to the following criteria:

-data required to be searchable but which are not searchable at present, -data which are not adequately searchable at present, -data which would test the features of ADACOM (a new command language available w ith ADABAS), -data having a close association which would enable realistic questions to be asked. The interchange of information between n dissimilar information systems can be accomplished by the construction of n(n-l) ad hoc interfaces between pairs of systems or by the construction of 2n interfaces between the systems and a suitable common interchange system commonly called an interchange format. The latter approach was adopted in 1976 after considerable debate by the ERDA Inter-Laboratory Working Group for Data Exchange. An interchange format was devised and reported1 in that year and implemented in part during 1977. During the latter part of 1976 the American National Standards Institute Subcommittee on Labels and File Structure (X3L5) assumed further work in its project on Interchangeable ASCII Data Files and is currently working on a proposed draft standard.2 This paper discusses the properties of such an interchange file.

It is assumed that the dissimilar systems have equivalent processing algorithms and sufficient capability for the expression of the inherent logical structure and form of the information; otherwise the act of interchange would be an exercise in futility. We set forth some necessary characteristics of the interchange format:

1.

It must be capable of accepting from any system the atomic data elements to be interchanged in a form accessible to all systems.

*Prime contractor for the Energy Research and Development Administration -297 -

2.

It must be capable of expressing the logical structure inherent in the information and convenient to the pragmatic organization of the information.

3.

It must admit the construction of automated interfaces to all of the n-dissimilar systems, particularly to data base and file management systems.

4.

It must offer processing efficiency as a desirable rather than an essential feature since the act of interchange is an occasional occurrence by comparison to internal processing.

5.

It must be acceptable to a wide variety of users and must be extendable as new needs and data forms arise.

An examination of the wide spectrum of information to be interchanged reveals the following:

1.

The atomic data elements are usually logically expressible as alphanumeric characters.

2.

The most sophisticated inherent logical structures found are graphs, directed graphs and networks (in the mathematical sense); but these structures are represented by simpler structures and associated algorithms or by highly systemdependent pointers or access methods.

3.

The vast majority of the data can be represented in structures no more complicated than rooted trees and often in simple vectors and/or regular arrays.

4.

There exist several standard content-oriented interchange systems3 for textual information all conceptually based on ISO 27091 * and that the concepts therein can be generalized to media-and content-independent standard.

5.

The most significant interchange media today is magnetic tape but is rapidly changing to other surfaces and to transmission.

6.

Complex logical structures may be defined in terms of simple structures and are expressible in them (for example, a digraph is a set of elements and a relation on the set). In these simpler structures logical linkages are expressed as information values to be used in the formation of logical associations.

A consideration of the above objectives and observations led to the following conclusions:

1.

The standard should be media-independent; i.e., it should specify the format of logical records which, when written on a specific media, can conform to the standards for that media.

2.

The atomic data elements should be alphanumeric strings expressing text or numeric strings expressing numbers.

3.

The atomic data elements should optionally be aggregated into vectors or arrays placed into fields which can further optionally be aggregated into a hierarchical (i.e. rooted tree) structure to comprise a logical record.

4.

The logical records would be repetitive occurrences of the above structure whose description should accompany the interchange on the same media. The information records and the descriptive record should each constitute a separate file.

5.

The format should attempt to include, insofar as reasonable, the existing standard systems of the ISO 2709 family as special cases.

6.

ANSI X3.4-19685 should be used for control fields between systems which do not support the same character code set. The code extension techniques of X3.41-19746 should be adopted for data fields but not control fields.

The interchange standard can be described briefly by the following.

1.

The standard draws upon the concepts of ISO 2709 for the logical record format composed of: a) A leader containing controls.

b)

A directory of field tags, printers and field lengths.

c)

Variable length data fields containing data elements.

2.

An interchange is comprised of a pair of files: a) A data descriptive file which describes the data file giving i) a data base name and optional generic hierarchical structure information and ii) a field-wise description of each data field including field names, optional subfield names, data type, structure and format information as well as character code set.

b)

A data file composed of repetitive logical records comprised of data fields which are an instance of their description in the descriptive file. c) Multiple file pairs are permitted.

3.

The data types permitted are text and the three numeric representations of X3.42-19757; i.e., implicit point, explicit point and explicit point scaled.

4.

The structures permitted as data elements are a) atomic, b) vector, and c) multiplydimensional arrays of the allowed data types or mixtures thereof.

5.

The data subfields are defined by formats or delimiters.

6.

Any rooted tree structure of the fields within the logical record is optionally described by a preorder traversal sequence of the data tags in the directory.

7.

A G1 extended character code set may be declared for the entire file or for each data field and further escape sequences are permitted.

8. An externally defined subsystem which conforms to the leader, directory and variable data field requirements of ISO 2709 can be declared in lieu of complete data field descriptions in the data descriptive file.

9.

Three implementation levels are defined plus an extended character code set implementation.

10. The standard is designed for extension to new sets of data field descriptions and data elements.

Complex structures such as cyclic graphs may be fragmented into trees and interchanged by replacing "address pointers" with logical pointers. Acyclic digraphs such as rooted tree structures and simpler structures such as vectors, arrays, or relations can be transmitted directly. Relations can be transmitted as a set of vectors. Where very short, regular structures such as vectors, arrays, or relations are involved, a packing into pseudo-logical records may be desirable to reduce overhead.

The discussion by Date8 of the equivalence of forms between the most prominent data base models suggests ways they can be converted into suitable interchange struc tures. These techniques presume the capability of the receiving system to house and reconstruct the structure. In short, the exchange format is a tool which like most sophisticated tools will require some reflection before use.

A Level 1 implementation for tape has been programmed for both IBM and CDC equipment at eight ERDA installations. The implementation is for a magnetic-tape environment and draws an ANSI X3.27-19779 as the tape label and file structure standard. The implementations provide interfaces for text streams from local DBMS (S2000 and ORCHIS) and "card image" input. File pairs of arbitrary level can be prepared by forming appropriate text strings. Documentation is being issued and implementation of "FORTRAN environment" input stream software for vectors and arrays is scheduled for next year. Automation of more complex forms is planned but presumes a DBMS equivalent and will be installation-dependent.

Copies of the current working draft of the proposed standard in microfiche form (48x) are available to interested parties from the author.

Merril, Dean (ed.), A n n u a l Repo r t o{ t h e I n t e r -L a b o r a t o r y Wor k i n g Gr o u p {osi Vata

Exchange., Lawrence Berkeley Laboratory. (IWGDE has representation for Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos Scientific Laboratory, Lawrence Berkeley Laboratory, Lawrence Livermore Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratory and Savannah River Laboratory).

A E C / T 1 C M a g n e t i c T a p e Format {or Biblio g r a p h i c Citation* a n d I n d e x i n g , TID-4581-R2;

Technical Information Center, Oak Ridge, Tennessee, 1974.

V o c u m e n t a t i o n F o r m a t {or Bibliographic I n { o r m a t i o n Interchange, on Magne t i c T a p e ,

A m e r i c a n N a t i o n a l S t a n d a r d Code Extension* T e c hniques {or Uòe uiith a 7 -Bit Co d e d C h a r a c t e r S e t o{ Am e r i c a n National S t a n d a r d Co d e {or In{orm a t i o n E x c h a n g e ,

X3.41-1974; ANSI, New York City, 1974.

A m e r i c a n N a t i o n a l Standard* R e p r esenta tion o{ Nu m e r i c Values i n Chara c t e r S t r i n g 6 {or I n { o r m a t l o n I n t e r c h a n g e

A m e r i c a n N a t i o n a l S t a n d a r d {or Magnetic T a p e Labels a n d File S t r u c t u r e {or I n { o r m a t i o n I n t e r c h a n g e , X3

. ; ANSI, New York City, 1977.

FUTURE DIRECTIONS IN GDMS DEVELOPMENT AND DATABASE CONVERSION

A. Shoshani Lawrence Berkeley Laboratory Berkeley, California

The development of Data Management techniques has progressed significantly over the last 10 -15 years. The main reason to the advances in this area is the tremendous im provement in hardware cost and performance. It became possible to store large amounts of data on random access devices (such as discs), and to afford the overhead of using generalized techniques in order to save special purpose software development costs. In turn, the easier and more efficient was the process of accessing and maintaining data, the more data was collected and relied on for daily operations. The current stage of this process is that more and more users who are not computer specialists need to use computers for their data management needs, and the amounts of data needed to be managed is getting larger and larger. It is with this picture in mind that future development is presented here. We will discuss Hardware Development trends for making data management a more efficient process, Software Development trends for making GDMSs more useful and easy to use by different types of users, Distributed Databases to allow the distribution of data over a computer network, and Database Conversion to provide software tools for moving data from one computer environment to another.

HARDWARE DEVELOPMENT TRENDS

The most significant impact expected to take place is as a result of storage hard ware development.

In addition, improvements in cost effectiveness of hardware logic will influence the Data Management areas. We will concentrate here on specialized machines for data management, on hardware for large databases, and on ''Back-End Machines" which will perform data management functions exclusively.

Specialized Machines for Data Management

Data Management can be thought of to a large degree as the process of associating data. For example, a search for all records that satisfy a certain criteria (e.g. SEX = MALE and SALARY < 20000) requires the association of the values in records with the values in the criteria. Using a general purpose serial machine is quite inefficient for this type of operation. Therefore indexing techniques, '' hashing" techniques and the like have to be used. However, these techniques introduce more storage inefficiency and data management overhead.

It has been realized in the past that an '' associative processor" would be more efficient for data management functions. In the example above the entire search could be done in one hardware (super) operation if we have all the data in an '' associative mem ory." However, the cost of such an associative memory and processor are too high to be practical.

The introduction of conceptual models (discussed in more detail in Section 2 below), and especially the '' relational" model served to emphasize the usefulness of a large scale -302 -associative processor for data management. With the reduction in hardware costs there are several attempts of constructing such machines (e.g. [1,2,3]), by having specialized logic circuits associated directly with a large scale storage device (for example, add ing this logic as part of read/write heads of disc units) . One can expect this kind of work to become cost effective in the future, thus having essentially very efficient special purpose machines for accessing and manipulating databases.

1.2

Hardware for Large Databases 9 10 Large databases in the order of 10 -10 characters are now a reality. Data can be generated very fast, for example, in a scientific experiment or a large scale survey (e.g. census).

The major problems are in storing them in a useful way. Devices such as tapes are not adequate for these situations, since one needs hundreds of tapes to hold this amount of data.

In addition, the search of the data is very slow and expensive.

There are a few so-called '' mass storage devices" in existence today that can store and access large amounts of data. However, they did not proliferate mainly because of high cost.

These devices rely on some mechanical mechanism to get the data. Some ex amples are: the IBM 1360 photo-digital storage system, the IBM 3850 cartridge tape de vice or the CALCOMP automatic tape library. Some of the devices require long mainten ance procedures and some are too slow for many applications.

It is still the case that large databases are managed inefficiently using large discs or tapes.

The management overhead is large, because the system needs to decide what parts of the database should be kept at what level of storage devices, and manage swapping large amounts of data between primary and secondary storage devices. However, there is some hope that in the future reliable cost-effective mass storage devices would become a reality.

Devices such as the video disk, bubble memories, and electron-beam access method (EBAM), show much promise of success.

It is conceivable that dedicated mini-computers will be connected to these devices for the purpose of data man agement and data transfer.

Back-End Machines

Large scale scientific computers (e.g. CDC 7600) are not designed to perform ef ficiently data management functions (their capabilities are wasted while waiting for I/O operations.

Therefore the idea of using a dedicated Mback-endM machine to perform data management functions has been pursued, while complex analysis of the data (e.g. statistical analysis) after the data are retrieved is done at the main machine.

In addition, as the number of data management applications grow, it seems more justified to have such a dedicated back-end machine to perform data management functions.

With the current technology and the size of databases growing, it seems more and more attractive to have an I/O-oriented mini-computer configuration as the back-end machine.

Of course, when Data Management machines (discussed in 1.1) become a reality they could serve as the back-end machine.

Back-end machines require the design of software for operating system, data management and communication functions that will operate efficiently in this special ized environment.

Computer networking, process-to-process communication and data management techniques have advanced over the last several years to such a degree, that there is little doubt that efficient cost effective back-end machines can be designed.

SOFTWARE DEVELOPMENT TRENDS

Much of the work over the last few years in the data management field has concen trated on developing techniques that will make GDMSs more user oriented.

The concept of "data independence" was introduced to emphasize that users do not need to be exposed to the details of physical organization of a database, but only to the logical relationships between data elements.

Similarly, the ability to provide the user with a "non-procediral" -503 -query language is considered advantageous to a user.

Roughly speaking a non-procedural language gives the user the capabilities to describe what he wants to retrieve (search) or modify without the need to specify how the system is to get the data.

Attention to proper user interfaces is coming about because more and more people who are not computer specialists need to use data, and they need a functional view of data management that is simple and easy to learn. This can be compared to driving an automatic car, where the burden of shifting gears is left to some automatic device that is part of the machine. The following discussion of data management software development is motivated by the need for user oriented software.

Conceptual Views and User Views

The conceptual view of a database is a model that describes the logical relation ships of data elements in the database. A conceptual view usually starts with the en tities which describe the data, then the attributes of these entities and then the re lationships (associations) between these entities. Entities are characterized by an independent existence while attributes and relationships do not.

Quite often, it is hard to draw the distinction between entities and attributes, because they reflect the way in which the database is intended to be used. Usually, this is done in order to provide more control to the user, so that he can write programs that process the data efficiently.

Different conceptual models that have been

At the same time it places the burden on him to write complex and de tailed commands for effecting the retrieval or manipulation of the data.

The trend today is clearly oriented in the diretion of alleviating the user from knowing and controlling the details of "navigating" through the database.

Instead, soft ware development is progressing with the goal of performing optimal searches automati cally, based on the analysis of the query and knowledge of the physical structures.

To perform this process properly the system must also maintain statistical information about the data. All this adds to overhead costs that introduce some inefficiency.

However, this cost may be worthwhile when considering the much simplified task of the user.

In addition to freeing the user from the need to know about details of the physical organization of the data, there is a possibility of providing him with tools to define his own view of the database.

The user view may not coincide with the conceptual model, or include only a subset of it. Such techniques are only in their infancy, the diffi culty being the need to map from user views to conceptual views dynamically.

We can expect the ability to define user views to be a standard part of future GDMSs. For example a relation called "employee" could have columns called "name", "salary", "age", and "department." A row representing a certain employee could contain for example "Jack Jones, 15000, 37, Research" corresponding to his name, salary, age and department. This example represents no more than a "flat file." However, in the relational model the user can use a language to relate any two relations for the purpose of query or modification of the data.

One of the data models that was most influential in

For example if there was another relation on departments having columns containing "name" and "manager," then one would ask about all employees that earn more than 15000 and work for a certain manager, by writing an appropriate command linking the two relations.

In this model, the user does not need to be aware of the physical structure implementing the relations and can access the data involving any number of relations. This model is attractive because of its simplicity and the ability to perform complex associations using a powerful query and modification language.

Other models are also based on the "independence" from physical implementa tion, but emphasize different aspects of the semantics (meaning) of the database.

Multiple User Interfaces

Experience with data models indicates that different users prefer to use different conceptual models for the same database depending on the application needs they have. Some databases can be modeled, for example, quite naturally as hierarchies while others require richer models, such as the relational model. However, trying to represent a hierarchical database as a set of relations can introduce redundancy of data. At the same time trying to represent a relational database as a hierarchy may prohibit some relationships and introduce other unnatural relationships.

To accomodate multiple models for users one needs an underlying conceptual model that is rich enough to accomodate the different models. This in itself is not a dif ficult task.

The difficulty is in transforming dynamically queries based on one model structure to queries in the conceptual model without introducing inefficiencies and inconsistencies.

Research is still in progress in this area, and we can expect to have an efficient solution in the future.

Interfaces to Other Software Packages

With current GDMSs, after a user retrieves the data, he often needs to go through extensive reformatting process in order to input it to another program, such as a graphics package or a statistical package. This process is often difficult and cumbersome.

We should expect that in the future GDMSs will be able to interface directly to other software packages, thus alleviating the user from the task of reformatting and initiating these packages. Some activities defining and adopting standard forms for data streams are already taking place (for example [8]).

Flexibility of Physical Organization

Another area that should improve with future systems, is the flexibility to have a large spectrum of physical organizations available in a GDMS. Furthermore, it should be possible to change the physical organization without affecting the application programs.

In current systems the number of possible choices of physical structures is rather limited and non-flexible.

In future systems physical organization of data will clearly be affected by hardware advances, but no matter how much the cost-effectiveness improves, there will always be a need for organizing and managing database as they grow in size. The ultimate solution will be the development of techniques for reorganizing the physical structure of a database automatically as the use of the database changes in time.

DISTRIBUTED DATABASE SYSTEMS

Recent advancements in computer networking technology bring about the potential of using computer systems in new cooperative ways.

One of the most exciting and promising areas is that of distributed data bases. There are many reasons for the need to have data distributed, but the most prevalent is the organization of data according to their functionality, thus allowing for local applications to be performed efficiently, while still permitting global operationg to take place.

For example, consider several hos -3 0 5 -pitals being put on a computer network. Most of the processing needed will be done locally for every hospital, but some global operations, such as statistics, summaries, or search for an appropriate donor, could be performed over the network involving several or all of the hospitals. Similar situations and applications can be imagined in enterprises such as banking, inventory management, libraries, and research facilities.

Another need for distributed data might arise when very large databases exist.

In that case, data can be distributed over several facilities for the purpose of parallel access to the data. Distributed databases impose several problems that are beyond the technology of computer network communication.

In order to achieve distributed database systems, it is necessary to smooth out the differences between the (possibly) disparate data management systems (DMSs) that manipulate data on the network.

It is also necessary to interface these systems in such a way that a user will be unaware of the fact that he is dealing with different systems across a network.

Finally, when a user deals with data that is physically distributed over several systems, he should be able to think and refer to it as a single database. There are several problems that need to be solved before distributed databases can be used effectively.

Some of the properties that

The most important ones are concurrency, integrity and distributed control.

Concurrency is the problem of permitting multiple users to access and modify a distributed database, without interfering with the consistency of each other's results. Integrity is the problem of maintaining a valid content of the distributed database in view of the non-synchronous nature of computer network communication. Distributed control is the problem of devising algorithms that do not require control and director ies for the access of distributed databases to be located in one central location. Centralization of control is not desirable because of traffic jams and reliability in the case that the central node fails. Extensive research is already taking place in these areas, and we should expect solutions to these problems to prevail in the future.

DATABASE CONVERSION

Although it has been recognized that generalized database conversion tools are quite useful, the development and proliferation of such tools have not taken place at a large scale. There are only a handful of limited attempts in the industry, and a few more ambitious projects at universities and research institutions (for example [9,10]).

I -306 -Conversion tools are necessary for any enterprise dealing with data.

The ability to reorganize a database easily after its creation and to introduce dynamic improvements are as critical as the initial decisions in the database structure.

It is unrealistic to expect in most cases, that the initial specification of a database would always be cor rect, or that the use of the database would not change in time.

It is also naive to assume that once a data management system is selected (hardware and software) there will not be a need to move databases to other systems because of technological advances or new application needs.

The lack of conversion tools is stifling to an enterprise because its databases stay fixed and stagnant.

Distributed databases also require con version tools.

In order to facilitate distributed databases, it might be necessary to transfer databases from one application environment to another across computer network nodes.

In addition, if a dynamic distributed data management is to exist, it is neces sary that data organized by existing application systems can be converted and transferred into new more advanced systems. These are some of the reasons for the search of general ized tools for database conversion and transfer.

A database conversion process can be thought of as taking place in stages.

First, the source data needs to be read from its physical environment into a data stream (called the "unload" process), then the data stream is reformatted into a standard form, then a restructuring process (where a logical reorganization of the database) takes place because of changes required in the logical view of the data or a change in conceptual models from the source to the target system.

The result of the restructuring process is a standard form and then the process reverses itself.

Reformatting takes place into a data stream acceptable by the target "load" process, followed by the load process itself to generate the target physical structure.

The strategy for future development should include a consideration for ease of use of conversion tools, and the modularity of these tools. The best hope in having usable conversion tools is by simplifying the conversion process to the point that a non-data base expert can use it.

For this reason there is a need for unload and load tools that eliminate the need to have knowledge of physical organization of databases.

This can be achieved by designing future GDMSs to include them as standard facilities.

Similarly, the reformatting process should be made transparent as a result of using a standard form. The entire conversion process should be stated only in logical data structure terms. The methodology for the restructurer should allow for logical database descriptions in dis similar models for the source and the target.

In this way each description will be as close as necessary to the DMS it is associated with, and efficient restructuring could be performed minimizing the overhead. Also, error detection facility and automatic conver sion checks should be provided by the system.

Over the last several years, the state-of-the-art have advanced enough to give hope for generalized tools.

Within the next five years we can expect more conversion systems to become operational, but they would not be completely generalized.

We can expect to have a standard form developed and agreed upon.

It will probably take longer before manufacturers will see the benefit of adopting a standard form and provide load and unload facilities using it. However, we can expect them to provide some conversion tools to convert databases from other systems to their own. It will probably take as much as ten years before a generalized converter would be available commercially, and manufactuers adhering to a standard form. Another area of concern is the application program conversion that is required as a result of database conversion. This is a difficult technical problem even within one data model, and still requires much research.

It is hard to expect that a generalized solution for this problem will be achieved within the next five years.

EPILOGUE : THE COMPOSITION OF THE STUDY, AND ITS CONCLUSIONS THE COMPOSITION OP THE STUDY

This study on the use of Generalized Data Management Systems has brought together thirty-seven participants from twenty-two organisa tions, in its two meetings held in Europe and in the United States. The organizers put their best efforts towards recruiting a well-mixed group of scientific information specialists, scientists constrained by their work to maintain large data collections, data base systems specialists, and managers in the field of scientific information.

The relatively high proportion of computer-oriented participants reflects the novelty of the data base approach in scientific information work and in science itself : very few of the GDMS applications discussed were more than two years old, and many of the case studies discussed in Section III of the report refer to pilot developments and feasibility studies. Most scientific applications which are up and running are still too modest to test the real capacity of the data management systems which carry them. Within these limitations, contributions cover a very wide range of topics in the general field of scientific information handling : numerical data compilations (whether carried out by data centres or 'datahandling scientists1), bibliographic indices and library administration. The computer systems contributors are engaged both in GDMS systems develop ment and as data base administrators. Two 'systems' papers cover a highly integrated approach to scientific calculations, so far limited to nuclear technology : the modular codes used for a very wide range of reactor cal culations, each module accessing a common data store maintained by a purpose-built data base management system.

CONCLUSIONS

During the second meeting in Berkeley, the study group attempted to draw conclusions as to the value of the data management approach to scientific information. Generalized Data Management Systems were agreed to be useful for a wide range of scientific applications, and we could identify some criteria which would help users in deciding whether or not to take a data management approach to their own information handling problems.

Criteria for GDMS use

An integrated approach to data base construction, using GDMS software, is likely to be very worthwhile under one or more of these conditions :

-Where a data base needs to be shared between, and perhaps modified by, several users.

-Where reasonably complex logical interrelations between data exist and are to be made explicit, perhaps by linking several separate collections of data files.

For data bases in the size range from a few million characters to a few hundred million.

If user queries cannot be predicted when the data base is established, or may change with time.

-Where the organization does not have the manpower, time or expertise to develop a special-purpose system and to maintain it, or where a GDMS is already available within the organiza tion.

-Where data users are not computer programmers and do not want to be drawn into programming.

The effect of data base size

For data bases somewhere below one million characters in size, and depending on the use made of the data, the demands made on a GDMS may be relatively trivial, so that home-made storage and retrieval pro grams could give good results more cheaply. Where a GDMS is already available, and users are familiar with it, some of them prefer to use it for even the simplest application, since in this way they can use the full range of GDMS facilities without the trouble and expense of writing the underlying data handling programs.

The advantages of current GDMS are most apparent for data bases between a few million characters and a few hundred million. In the 'grey area1 beginning around 3 x 10^ and extending up beyond 109 characters, storage costs on disc or other high-speed memory devices become appreci able, and the performance of systems in which external memory is reached through the operating system's file manager may no longer be adequate.

For very large data bases, a few billion characters or more, a dedicated computer and corresponding investment in special-purpose software is likely to be necessary, and justifiable by the cost of acqui ring the data. A data base of this size probably contains 'raw' data from interrelated experimental measurements, and the flexible, high-level user view which GDMS are aiming for is surely essential if such masses of data are to be adequately assimilated. While very large semi-fast storage devices have been developed, correspondingly efficient access software is not yet available, and data management systems must be able to work effi ciently under the constraint that most of the data will at any given time be 'backed off1 from fast memory on to slower devices (currently tapes).

Choosing data management software

The meeting agreed that it was fruitless to propose any water tight definition of a GDMS, although the management of logical structure within the data base, providing user access through a high-level access language, seemed promising as a test differentiating GDMS from file managers and information retrieval systems. Many potential users are not interested to know whether or not a given system is a GDMS : what they want is software which works for them. However, in discussing systems requirements, the point was rerepeatedly made that the data base and its management software must be open-ended to permit developments not foreseen when the project was first planned.

It is not certain that money will be saved by using a GDMS rather than writing special-purpose programs, but users will gain flexi bility and so be able to use data in the long term better than they other wise could. Project managers would be wise to choose data management software offering more flexibility than they think they are likely to need.

It is in this light that readers may find it useful to study the papers in Section II about scientific GDMS, and requirements for scientific data handling : there is a surprising degree of overlap between these independent analyses, and readers may discover that they want some of these features too. Chapter 2 gives a list of data handling software, which is necessarily incomplete, but covers a range of packages from full GDMS to proprietary file management systems, information retrieval systems designed primarily for text searching, and report generators. It offers a possible starting point in deciding which packages to review for a spe cific scientific data or information project.

Very large or very small data bases may be better served with special-purpose programs. For smaller data bases, Chapter 4-presents an approach using one particular very high level programming language, APL. The author makes the point that an apparently complex collection of data may often in practice be resolved into a number of smaller, simpler and nearly independent data bases which may be administered more cheaply using special-purpose programs. Well-written structured programs in a high-level language should then be easy to extend as the need arises. In his view, the need for data protection (security and integrity in shared data bases, for example) as provided by many GDMS is as important as logi cal complexity in deciding whether or not to use a GDMS package.

Limitations of currently available GDMS

Although a fair proportion of the requirements for scientific GDMS presented in Section II are not filled by the systems presently available to the public, it seems clear that for a given scientific data project one or more systems can b e bfound which will do most of what its programmers want, and so help towards their goal of a satisfactory overall system.

Three very prominent limitations are :

The cost of using GDMS

Chapter III develops a methodology for identifying the costs of mounting a GDMS application, and compares these with the cost of specialpurpose software in one particular project. One can conclude in general that where GDMS installation is charged to the project, costs are brought forward in the project life-span as compared to special-purpose programs, but initial costs will be of the same order. However :

The second and subsequent applications using the GDMS will be cheaper (the GDMS costs are already written off).

Applications using GDMS will be more flexible, and so have a longer useful life.

The continuing maintenance costs will be lower using GDMS.

Besides initial purchase of the GDMS package, allowance must be made for training, maintenance charges for the GDMS, the cost of likely increases in disc storage required and on-line use of the computer, and the computer time used. The main benefits of GDMS lie in the better use that can be made of the data base and of computer personnel rather than in their longer-term financial advantage. Further study of GDM& costs and benefits relative to straightforward programming is needed, but is limited precisely because these applications are rarely comparable : GDMS programmers will be tempted to use the system at full stretch, and do more with the data.

GDMS performance

This study turned up only very limited information about data base performance. Prospective users would surely like to compare running times of a particular application using GDMS or special-purpose programs, particularly for large data bases on small computers where poor perfor mance could make GDMS impracticable. When users have eliminated data base design errors (later seen as 'obvious'), are there non-linear effects which will degrade performance as the data base is fully populated ? Most GDMS applications are new, with small data bases, rather than conversions of existing data files, so that comparisons are again difficult.

 a. Give a clear introduction to what GDMS are, why they may be useful, and what computing hardware is needed. b. Include a list of the capabilities required in a Generalized Database Manage ment System for handling scientific data. Presented at a time when consider able effort is being invested in GDMS software development, such an inventory may be in time to influence the specifications of this third generation of Data Management Systems. c. Compare possible alternatives: do-it-yourself software, APL, file management systems. d. Show by case studies of a variety of existing and potential GDMS applications to scientific data (in different fields, with more or less numerical content) what is involved in GDMS use, and what advantages may result. e. Survey the direction of development work in GDMS: hardware development trends, software development trends, distributed Database systems, and database conversion.

 REFERENCE______ fl]James P. Fry and Edgar H . Sibley, '' Evolution of Data-Base Management Systems," Computing Surveys, Vol. 8, No. 1, March 1976, (this entire issue is devoted to Data Base Management) , CERN, Geneva N. Tubbs, OECD/NEA, Paris I. WHAT IS A DATA MANAGEMENT SYSTEM ?

Fig. 1 :

 1 Fig.1: An intra-record hierarchy of 3 levels: one record per element.The example shows part of a record for manganese, Z = 25. The arrows show the logical structure.

Fig. 2 :Fig« 3 :

 23 Fig. 2: A full hierarchial structure showing more nuclear structure details. Each box on the left defines a repeating group, and the example on the right shows how one Z branch of the hierarchy might be populated.

 Output Capabilities (e.g. terminals supported) Systems s oftware. GDMS packages must be closely linked to systems software;

3 . 3 . 5

 335 User aids. User aids include features designed to assist in search formulation and other aspects of GDMS usage.Types of user aids and their characteristics are listed below: * Search formulation aids including:

 _3._5._4 Teleprocessing m o d e . Data communications software provides the link between the remote terminal user and the system.

Figure 1

 1 Figure 1 graphically depicts the proposed GDMS application cost evaluation methodology.Also included on the figure are references to the subsequent sections of this report.The dotted line separates the topics addressed by this paper from those left for future work; no attempt is made to determine quantifiers, parameters or functional relationships, nor to present a comprehensive example of the cost evaluation methodology. The following three sections consider the nature of the GDMS application life cycle, a preliminary list of functions performed within each of the life cycle phases, and approaches to the GDMS application costing problem respectively.

Figure 2 -

 2 Figure 2

3

 3 Database Maintenance. A database requires substantial effort to as sure that its contents are current and correct. Database maintenance in cludes the updating of stored data instances to reflect changes.

l e v e l r e c o g n i t i o n o f p r o b l e m G D M S f e a s i b i l i t y s t u d y 1 A c q u i s i t i o n D o c u m e n t a t i o n a n d t r a i n i n g I n s t a l l a t i o n a n d t e s t i nD e v e l o p d a t a d i c t i o n a r y / d i r e c t o r y D a t a b a s e d e s i g n D a t a d e f i n i t i o n D a t a b a s e p o p u l a t i o n A p p l i c a t i o n c o n s t r u c t i oD a t a e n t r y R e t r i e v a l D a t a b a s e m a i n t e n a n c e A p p l i c a t i o n m a i n t e n a n c

 1 Figure 3

Figure 4 - 63 -

 463 Figure 4

M 4 -

 4 c h e f \sLet us define the values of the above characteristics for five individuals by APL expressions directly executable at an APL terminal without previous declarations (the symbol^«is read as ARE or IS): and SALARIES are vectors (lists) of numbers (integers). NAMES is an array (matrix) of characters, each row represen ting a name (MAT is an APL function, copied from a public system library, and which transposes a string onto a rectangular array).The Data (Base) being loaded, one may directly proceed to enquiries and being recognised as usual, one may define a function MEAN with the same syntax as primitive functions, i.e. we extend directly and simply the semantics of APL by adding new user oriented primitives V R <*construct our sentence in plain English:M < -MEAN OF SALARIESChanging the names of functions and variables, without changing the semantics, allows us to express this expression in plain French: MOYENNE DES SALAIRESIf now we are interested by people more than 30 years old, the expression AGES > 30 will return the value 1 if the individual answers to this description and 0 otherwise. In an example we get the vector 0 1 1 0 1. This vector is said to be logical or binary. The salaries of these individuals will be the result of the reduction by the binary vector (mask) of the file SALARIES: ------------------------v --------------------------.---------------------y -----------------------

1. we first compute the mask 2

 2

r

 T<zrmi -ive. M s r o r k s p o . M . C ^') I es L ' > ^ rcwrve-S + SWft.p 1970 by commercial firms (I.P. Sharp and STSC), In 1973 an important extension of APL was made available: the Shared Variables, a general mechanism to exchange information between two processors, APL users or internal processors. An APL (SV) system may be viewed as consisting of the previous basic components extended by a Shared Variable Processor (SVP;, controlling communications between the concurrent processors and a set of internal processors called Auxilliary Processors (AP). One such auxilliary processor, called TSID, is provided with APL-SV to assess external files (tapes, disks, printers) or O.S. resources (batch submission). b o -s i c A ^L .

 this programme is left as an exercise to the reader (e.g. don't update level 2 if the keymin is not changed .

 /. Let us consider an analytic model for a condenser, equivalent to the t w o pages of data shown in Fig 1 (Annex). To compute a given factor A you have to know 8 parameters and to do the proper computations. If PAR designates a vector with 9 components, the first value giving the condenser type and the 8 others being the computation parameters, the required value may be obtained by LAMBDA < -i TYPE, "¥ PAR where TYPE contains the literal 'COND* and ^ transforms a numeric vector onto a character string. The result is got by executing (j£) the constructed executable expression. If now the variable TYPE is used as a key for accessing the proper APL function, one may get the result by LAMBDA < -

 Figure 3

2. 1 . 5

 15 Figure 6

 are drawn through the data base.

 (d)It is very important that the GDBMS be capable of handling very large quantities of data. The GDBMS must provide fast and efficient access -

 ib lio g ra p h ic c it a t io n s , * Manipulation of large, s p e c ia lize d numeric f il e s , * Manipulation of small, d iv e r s if ie d numeric f ile s . procurement-, and personneI-re I a ted f i l e s have been managed p r im a r ily by commercial software since the early days of e le c tr o n ic data processing. The software packages are ta ilo re d to the day-to-day business tra nsactio n s and may be linked to a p a r tic u la r machine.

 P a r tic ip a tio n of Users * Creation of a Back-end Data Management Machine * Software, like Data, should be in the P u b lic Domain. * S D M S Design and Development -A C o lla b o ra tiv e P ro ject.

 management of input and output to c a lc u la t io n s with automated and simpler tools than today.As the volume of c a lc u la tio n s increases with more powerful machines, our a b i l i t y to cope with the masses of data must increase also. We recognize a solu tion to this dilemma and to that of the S D M S issue in the trend to employ mini-computers as back-end machines.

 r d I n d e x G e n e r a t o r f o r A r b i t r a r y Text S t r i n g s , UCID-30126, 1975. P. R. K e lle r , R. A. K eir, T. W. Stul I ich, N D , A P r o g r a m to A n a l y z e D a t a o n A i r P o I lut ion in the S a n F r a n c i s c o B a y A r ea, UCID-30120, 1975. M. Wi I I i ams , S. Rose,C o m p u t e 7 -R e a d a b l e B i b I i o g r a p h i c D a t a B a s e s-A d ire cto ry and Data Source Book, ASIS, 1976, Revised 1977. The Technical Information Department at LLL has ongoing contracts with the following b ib lio g ra p h ic information centers:

 Information Research Group, M A S T E R C O N T R O L U s e r ' s M a n u a l , M-066, 1975.

 List, LP-81. 1976, National Bureau of Standards, Washington, D.C. D. Merri I I , D. Austin, E R D A I n t e r l a b o r a t o r y W o r k i n g G r o u p for D a t a E x c h a n g e (IWGDE), P r o g r e s s R e p o r t , LBL-5329, 1976.

 The ADBMS schema is a very simple structure that models a relation: data base consists of a set of relations which in turn consists of a set of tuples.

*

 The information contained in this article was developed during the course of work under Contract No. AT(07-2)-l with the United States Energy Research and Development Administration.

Figure 2 .

 2 Figure 2. Informational Retrieval Types

Figure 3 .

 3 Figure 3. Geographical Coding Structures

Figure 4 .

 4 Figure 4. GDMS Components and Interfaces

 name hierarchy to establish a new search sequence, sharing the same data elements between different collections, and m a i n taining inverted lists.

11 .

 11 In several reactor physics codes the composition of the reactor is input in terms of the densities of various nuclides in various regions. A table of COMPOSITION showing the densities of 8 nuclides in 3 regions might be as follows:-

 Although* other groups have also compiled reaction data, *Supported by U. S. Energy Research and Development Administration under Contract EY76-C-03-0068. **The Berkeley Particle Data Center is jointly supported by the U. S. Energy Research and Development Administration, the Office of Standard Reference Data of the National Bureau of Standards, and the National Science Foundation.

 containing expanded (but still coded) descriptions of about 1500 published papers referred to b y the four character reference code in the mai n file. An example of a coded description of a publication is : GRARD, P L 5 9 B , ^-09-75 which means a paper b y Grard et al., starting at page 409 of Phys. Letters, Volume 59B (1975)«

2

 2 FIG. 1: FRAGMENT OF A COMPILATION RETORT

5 « 3 5 [2]

 552 c h lines. S e l e c t i o n l i nes g i v i n g an explicit result, i n d i c a t e d b y the m e s s a g e ... VALEtJR are i n f a c t n o t n o r m a l l y r e t a i n e d as p a r t of the selection, b u t m a y b e k e p t f o l l o w i n g a s y s t e m command. I t w i l l p r o v e c h e a p e r to u s e c o m p l e x s e l e c t i o n e x p r e s s i o n s , as showii i n this s e a r c h dialogue, t h a n a s e r i e s of s i m p l e c o n d i t i o n s (5 f r a n c s f or 3 c o n d i t i o n s combined, r a t h e r t h a n 7 f r a n c s as i n the f i rst example). T y p i c a l c o m p a r i s o n o p e r a t o r s are /£, £• (b e l o n g s to a list), c G -i e s b e t w e e n g i v e n limits) , , a n d this s e t m a y e a s i l y b e e xtended. SELECTION examples of c o m p l e x e x p r e s s i o n s [1](PAIS=US)ET(FILIERE=PWR)ET (CONSTRUCTEUR=WEST.) . " " TROUVES : 9 0 COUT : I (PAIS=US)ET(FILIEREePWR, PHWR)SAUF(CONSTRUCTEURS WEST.,ORNL) n c t i o n s are u s i n g the last a c t i v e mas k , i.e. li n e / 5 /

 u s e r to choose the sort o r d e r and the b r e a k i n g c o n d i t i o n s . It is p o s s i b l e to u s e d i r e c t k e y w o r d s (as above) or c o m p u t e d k e y w o r d s b y e n t e r i n g a r i t h m e t i c e x p r e s s i o n s (e.g. C O U P L A G E -T R A V A U X) w i t h a n a p p r o p r i a t e title.

 tn $ V B ^O c W V i O O e O u u A Ç u v ^c Và c m a Î t ô w a . •Avo.

 a y b e su r p r i s e d b y the d i s t r i b u t i o n of the del a y s b e t w e e n the s t art of c o n s t r u c t i o n and the p r o d u c t i o n of e l e c t r i c i t y . One m o n t h of d e l a y seems to i ndicate an error i n our data. C a l l i n g SELECTION, we s u b m i t the p r o p e r query and E D I T I O N w i l l give u s m o r e details. It is n o w e a s y f or the D a t a Base A d m i n i s t r a t o r to f i n d w h a t m a y b e w r o n g (see the listing, b e l o w) .

 n a m e is w r o n g (0 v a l u e s are found.) One n e e d s to r e m o v e the period. L e t u s call the u p d a t e f u n c t i o n (MAJ) j COUT DE LA SELECTION A l l the n a m e s h a v e b e e n r e p l a c e d i n a single operation. The u p d a t i n g c o u l d be done e l e m e n t b y e l e m e n t as well.

-

 -->■ L e t u s l o a d the w o r k space f r o m the DB A d m i n i s t r a t o r L i b r a r y . The files are a u t o m a t i c a l l y o p e n * J W e f o u n d p r e v i o u s l y 282 _ n u c l e a r p o w e r p l a n t s i n the U.S. There are i n f a c t 6 m i l i t a r y plants, T Y P E 4 (military; is n ot a v a i l a b l e f o r this user. [The k e y w o r d s are also l i m i t e d to the au t h o r i z e d l i s t as l o a d e d d u r i n g the fi l e o p e n i n g operation. I This u s e r w i l l n e v e r k n o w I w h i c h p o s s i b l e k e y w o r d s I are f o r b i d d e n to him. off (s i g n off))r u n n i n g s t a t istics) p r o v i d e d b y the system. 4-. CONCLUDING REMARKS The i n i t i a l GDM S i m p l e m e n t a t i o n fo r th i s n u c l e a r p o w e r p l a n t d ata w a s a b a n d o n e d i n 1974-. The p r e s e n t p r o j e c t w a s s t a r t e d i n O c t o b e r 1976, and d e v e l o p m e n t costs so far are 1 m a n -y e a r f o r s y s t e m d e s i g n and 5 m a n -m o n t h s for A P L coding. The m a i n p r o b l e m p r o v e d to be data l o a d i n g and v a l i d a t i o n , for w h i c h some i n t e r e s t i n g featur e s we r e deve l o p e d . D e v e l o p m e n t is c o n t i n u ing o n g r a p h i c s c a p a b i l i t i e s and cross-and c o n t i n g e n c y t a b l e s for d a t a analysis and e c o n o m i c studies. The s y s t e m is e x p e c t e d to b e f u l l y o p e r a t i o n a l at the end of 1977* F u r t h e r ext e n s i o n s w h i c h m a y be e n v i s a g e d are : -S a f e t y i n f o r m a t i o n -I n c l u s i o n of r e s e a r c h reacto r s -N u c l e a r w a s t e d a t a for o p t i m i s a t i o n of the m a n a g e m e n t of w a s t e sto r a g e areas -L i n k a g e w i t h other n u c l e a r plant d ata b a s e s -L i n k a g e w i t h e c o nomic d a t a bases, to com p a r e p r e d i c t i o n s and r e a l i t y i n the e n e r g y field. Some l essons w h i c h m a y be d r a w n f r o m our e x p e r i e n c e are : -The q u a l i t y of d a t a is critical to the u s e f u l n e s s of the d a t a b a s e . A f ew g o o d d a t a are b e t t e r t h a n m a n y p o o r l y c h e c k e d v a l u e s . -The s y s t e m s h o u l d be extensible, and s h o u l d b e w r i t t e n i n a h i g hlevel p r o g r a m m i n g language. It s hould be p o s s i b l e to m a k e e x t e n s i o n s rapidly, w i t h o u t u p s e t t i n g the e x i s t i n g d a t a b a s e . A P L off e r s a h i g h l y c o s t -e f f e c t i v e solution. -It shou l d b e p o s s i b l e to p e r s o n a l i z e d a t a i n p u t and output. G r a p h i c s are c e r t a i n l y the m o s t v alu a b l e tool for d a t a r e p r e s e n t a t i o n . 5. R E F E R E N C E S ¿ " 1 . 7 G. H E R V T and G. M A R T I N : "Manuel d ^t i l i s a t * ">n d u S y s t è m e de B a s e s de D o n n é e s L G I n R a p p o r t t e c h nique CISI -P A R I S (France) f 2 j A P L -M a n u e l de R é f e r e n c e -IB M m a n u a l G H F 2 -0 0 5 6 -0 A P L -S Y -M a n u e l de R é f é r e n c e -I B M m a n u a l S H F 2 -0 0 8 0 -0 (These m a n u a l s are available in Engli s h) Z~3_7 G. MARTIN : "An APL Approach to Databases" in this issue -G. HERVY : "Manuel ¿'Utilisation de la Base de Données des Centrales Nucléaires dans le Monde" En préparation -Manuel CEA -PARIS (Prance) APL Statistical Library -Program Description and Operations Manual -IBM manual SH20-1841-0 -198 -in: il c u i p ? I o n e n f r a n c a i n SfcSUcViev))L(JAD Ut: F I N I T I O N m S A V E D 1 1 . 3 8 . Ì ? 0 H / 0 1 / 7 7

 them are: o To provide comparison data with animals being tested. o To assist researchers in making relational selections of the best species and strain of laboratory animal for a specific biomedical experiments. o To provide comparisons of laboratory data with consideration given to origin, strain, environment and husbandry conditions, and test methods used. o To establish more accurate baseline values considering similarities of colonies with regard to the factors outlined above. o To determine which factors most significantly affect results for a variety of test parameters. o To establish incidences of spontaneous disease conditions and pathologic lesions in various strain and species of laboratory control animals and determine how these are influenced by the factors outlined above. o To assist in monitoring test results more efficiently by comparing the research data with the information stored in the LADB.o To assist in designing experimental protocols.

(2)

 2 On-line DATA MANIPULATION and STATISTICAL ANALYSIS (3) On-line SORTING (4) On-line REPORT GENERATOR (5) On-line THESAURUS (6) Complete system interaction MONITORING (7) User search and save procedures -PROFILE (8) INVERTED FILE or SEQUENTIAL FILE searching (9) Ability to execute external programs (OWNCODE) from BASIS (10) User-oriented RETRIEVAL AIDS (11) Extremely fast retrieval for SMALL and LARGE files (12) Sophisticated file CREATION and MAINTENANCE packages (including the ability to easily update very large files).

3 .

 3 Perform the necessary calculations to determine range of the values (r), the size of class interval width (w), and all the seventeen class boundaries (b^ i = 1,17) for the sixteen class intervals (h = 16) according to the order of the following relevant formulas: Let AMIN = actual minimum data value (see Step 2) AMAX = actual maximum data value (see Step 2) w = class interval width h = 16 = number of class intervals r = range of the data value CMIN = calculated minimum data value CMAX = calculated maximum data value b-^ = the i-th class boundary then: w = (AMAX-AMIN)/h r = AMAX -AMIN + w w = r/h (w is redefined) CMIN = AMIN -w/2 CMAX = AMAX + w/2 w = (CMAX-CMIN)/h (w is again redefined) CMIN= CMIN -w/2 (CMIN is redefined) CMAX = CMAX + w/2 (CMAX is redefined) b1 = CMIN bi = b]_ + (i -1) * w (where i = 2, 3, ••., 16) -210 -

 ********************** (21) I I 236.317 ************************** (25) I I 266.397 *********************************** (*********************** (..... I........I........I........ I........I

 xi ' .a i? y ik ^k=1,-----* 30^' 0C and c p * oc indicates wether the nuclide has occurred before in another chain: cp indicates the coupling, capture or radioactive decay, to the parent nuclide. The subscript k in y ^ is the yield index number.

fig. 1 .

 1 fig.1. Schematic of an integrated library acquisition, cataloging and circulation control system.

Fig. 1 .Fig. 2 .

 12 Fig. 1. Structure of ENDF (Evaluated Nuclear Data File)

 ~ .I.~T.~~~~~~~ .~I.~~S •. !I-.-. ~-.-.-.-. -. -. -. --' . ..l.

Fig. 2 .Fig. 3 .

 23 Fig. 2. Data flows at CCDN The dotted boundary separates operations using the data base from others.

 Tabl e II IBM 570/125: Estimates by extrapolation of DBMS performance, compared to current programs Data base loading EXFOR data sets, blocked up to 100 data points/DB record. fT A B D A T ! 2 m data points, 50/block, 2.5 secs/block + hrs (spooling o n) Sort and load NEUDADA ISAM file, generate inverted indices (2.65 m records, packed and heavily blocked + hrs) CINDA records, stored and set linked singly to retrieval keys 1C I N D A 1 150,000 records plus retrieval keys + hrs (spooling off) Sort and load CINDA ISAM file + "1.2 hrs Data base interrogation (spooling on) Typical experimental data search yielding 10,000 data points Data base (~1 block/sec via index, 50 secs/block) NEUDADA (50 records/sec, using inverted indices) CINDA retrieval of 500 entries Data base (access from CALC keys VIA 2 sets) CINDA ISAM file: Laboratory/Country specified (60%) Others (sequential s c a n ^4 0 %) Sequential scan of CINDA file to produce book printing tape Data base (scan DB area, write in book format) (spooling o f f) CINDA ISAM file (write in book format)

 5 k bytes of core plus 60 k bytes required by the ISAM routines. The principal entry point in the module is DBREC; this and other entry points are compatible with FORTRAN. A typical FORTRAN call statement with the DBREC arguments is:-CALL DBREC (IFILE, IOP, I S T A T , I R E C , IKEY) Applications programs must provide a 3 k byte area to hold the retrieved record (IREC), and a 12 byte area for the record key (IKEY).

7 T

 7 H E CARBIDE BREEDER FUEL F I L E HIERA R C H Y A N D F I L E W A L K -256 -D E S I G N OF A S O L A R H E A T I N G A N D C O O L I N G D A T A C E N T E R D. D e u t s c h I n s t i t u t e for C o m p u t e r S c i e n c e s and T e c h n o l o g y N a t i o n a l B u r e a u of S t a n d a r d s * W a s h i n g t o n , DC 2 0234 U.S.A. T h e N a t i o n a l B u r e a u of S t a n d a r d s d e s i g n e d and o p e r a t e s a D a t a C e n t e r s e r v i n g the F e d e r a l S o l a r E n e r g y R e s e a r c h , D e v e l o p m e n t and D e m o n s t r a t i o n P r o g r a m . T he d e s i g n e f f o r t i n c l u d e d t h o r o u g h c o n s i d e r a t i o n of the a p p l i c a b i l i t y o f g e n e r a l i z e d d a t a b a s e m a n a g e m e n t s o f t w a r e . The f u n c t i o n a l r e q u i r e m e n t s for the D a t a C e n t e r and the f a c tor s i n f l u e n c i n g the d a t a b a s e d e c i s i o n a r e d e s c r i b e d . A m o d i f i e d d a t a b a s e a p p r o a c h is p r e s e n t e d and r e a s o n s for its a d o p t i o n by the D a t a C e n t e r are d i s c u s s e d . K e y w o r d s : D a t a b a s e m a n a g e m e n t ; d a t a c e n t e r ; G D M S ; s o f t w a r e s e l e c t i o n ; s o l a r ener g y ; s y s t e m d e s i g n . 1. B A C K G R O U N D T h e C o n g r e s s of t he U n i t e d S t a t e s in 1974 e n a c t e d l e g i s l a t i o n e s t a b l i s h i n g an i n t e r a g e n c y tas k for c e for c a r r y i n g o ut a five yea r Fe d e r a l S o l a r E n e r g y R e s e a r c h , D e v e l o p m e n t and D e m o n s t r a t i o n p r o g r a m .

 d o u t d u r i n g the f o u r t e e n m o n t h s e n d i n g O c t o b e r 1977 w e r e c o n c e r n e d w i t h the s e l e c t i o n of h a r d w a r e a nd s o f t w a r e t o o l s , a n d the p r e p a r a t i o n of an i n t e g r a t e d s y s t e m d e s i g n for s e r v i n g the m a n y d i v e r s e d a t a p r o v i d e r s and D a t a C e n t e r users; one m a j o r d e s i g n c o n s i d e r a t i o n w a s the p o t e n t i a l a p p l i c a b i l i t y of g e n e r a l i z e d d a t a b a s e m a n a g e m e n t s o f t w a r e . * N B S / I C S T D a t a C e n t e r d e v e l o p m e n t a c t i v i t i e s w e r e s u p p o r t e d by the N BS C e n t e r for B u i l d i n g T e c h n o l o g y under i n t e r a g e n c y a g r e e m e n t s I A A -H -3 a r t m e n t of E n e r g y (f o r m e r l y E n e r g y R e s e a r c h a n d D e v e l o p m e n t A d m i n i s t r a t i o n) . D e v e l o p m e n t of thi s r e p o r t w a s s u p p o r t e d in p a r t by the U. S. D e p a r t m e n t of E n e r g y under I n t e r a g e n c y A g r e e m e n t No. E A -7 7 -A 01-6010, T a s k No. A 0 5 0 -T I .

2. 1 D

 1 a t a R e c e i p t and M a i n t e n a n c e T h e S olar H e a t i n g and C o o l i n g D a t a C e n t e r p r o v i d e s a c e n t r a l l o c a t i o n for the r e c e i p t , s t o r a g e , p r o c e s s i n g , and r e d u c t i o n of d a t a c o l l e c t e d fro m s olar d e m o n s t r a t i o n p r o j e c t s . M a c h i n e -r e a d a b l e d a t a is r e c e i v e d f rom a a t a -f o r m a t t i n g and e n c o d i n g c o n t r a c t o r s as w e l l as f r o m o t h e r d a t a c o l l e c t i o n and p r o c e s s i n g f a c i l i t i e s . D a t a r e c e i v e d at the N B S i n s t a l l a t i o n is c a t a l o g e d and, if n e c e s sary, e d i t e d for a c c u r a c y pr i o r to i n s e r t i o n into the d a t a b a s e . A l l p e r t i n e n t s o u r c e d a t a are r e t a i n e d , and a c a t a l o g of a v a i l a b l e d a t a is p u b l i s h e d p e r i o d i c a l l y for p o t e n t i a l D a t a C e n t e r u s e r s by t h i s N B S d a t a r e p o sit o ry .

P r i n t e d r e p o r t s and c o m p e n d i a a re p r o d u c e d b o t h p e r i o d i c a l l y and u p o n r e q u e s t .

 r e a l r e a d y in the NBS s o f t w a r e i n v e n t o r y . 3. F A C T O R S I N F L U E N C I N G T HE A P P L I C A B I L I T Y O F G D M S T h e p o t e n t i a l a p p l i c a b i l i t y of G e n e r a l i z e d D a t a b a s e M a n a g e m e n t S y s tems (GDMS) to the So l a r H e a t i n g and C o o l i n g D a t a C e n t e r w a s i n f l u e n c e d by s e v e r a l f a c t o r s i n c l u d i n g t hose l i s t e d belo w . C o m p l e x S t r u c t u r e -M a j o r a p p l i c a t i o n s e x p l o i t s t r u c t u r a l r e l a t i o n s h i p s amo n g c o l l e c t e d d a t a items; s p e c i f i c a l l y , the a n a l y s i s of f a i l u r e d a t a u s ing a c o m p o n e n t tree for o r g a n i z i n g b o t h s y s t e m d e s c r i p t i o n s and m a i n t e n a n c e d a t a is p l a n n e d . G e n e r a t i o n of P r i n t e d R e p o r t s -A p r i m a r y f u n c t i o n of t he D a t a C e n t e r is to p r o d u c e h a r d -c o p y l i s t i n g s and s u m m a r i z a t i o n s of t h e d a t a r e c e i v e d . O n -l i n e Q u e r i e s -P o r t i o n s of the d a t a b a s e m u s t be i m m e d i a t e l y a c c e s s i b l e for r e s p o n d i n g to o n -l i n e q u e r i e s . L i m i t e d T e c h n i c a l S t a f f -N B S / I C S T , p r i m a r i l y a r e s e a r c h o r g a n i z a t i o n , d o e s n o t h a v e the p e r s o n n e l to s t a f f a h e a v y c o d i n g e f f o r t s u c h as t h a t a s s o c i a t e d w i t h the d e v e l o p m e n t of c u s t o m p r o g r a m s . T w o f u l l -t i m e e m p l o y ees of the D a t a C e n t e r , a D a t a b a s e A d m i n i s t r a t o r and a m i d -l e v e l p r o g r a m m e r / a n a l y s t , i n t e r f a c e w i t h d a t a p r o v i d e r s a n d u s e r s , m o n i t o r c o n t r a c t o r s a nd o p e r a t e the D a t a C e n ter . A f t e r the d e v e l o p m e n t e f f o r t is c o m p l e t e d I CS T w i l l s e r v e o n l y in an a d v i s o r y c a p a c i t y ; r e s p o n s i b i l i t y for d a y -t o -d a y o p e r a t i o n s w i l l b e l o n g to the D a t a C e n t e r staf f .

 O n t h e o t h e r h a n d , the g e n e r a t i o n of m a n y of t he d e s i r e d p r i n t e d r e p o r t s c a n be a c c o m p l i s h e d u s i n g s o f t w a r e t o o l s o t h e r t h a n GDMS; r e p o r t g e n e r a t o r s a n d f i l e m a n a g e m e n t s y s t e m s are g e n e r a l l y b o t h e a s i e r to use and l e s s e x p e n s i v e t h a n d a t a b a s e m a n a n g e m e n t s o f t w a r e .

 f i e d by so m e d a t a b a s e m a n a g e m e n t s y s te m s , b u t n o t b y o t h e r s . Ot h e r , le s s c o s t l y and l e s s c o m p l e x , s o f t w a r e p a c k a g e s c o u l d p r o v i d e o n -l i n e r e t r i e v a l c a p a b i l i t y . T h e l i m i t e d a v a i l a b i l i t y o f t e c h n i c a l p e r s o n n e l al s o d i d n o t c l e a r l y i n d i c a t e w h e t h e r a G D M S s h o u l d be used; a s t a f f that is n ot l a r g e e n o u g h to d e v e l o p a c u s t o m s o f t w a r e s y s t e m , m i g h t n ot be of s u f f i c i e n t s i z e for b u i l d i n g and/or s u p p o r t i n g a c o m p l e x d a t a b a s e . W h i l e the d e v e l o p m e n t c o u l d be d o n e by an o u t s i d e c o n t r a c t o r , p r o j e c t m a n a g e m e n t w a n t e d the d a y -t o -d a y o p e r a t i o n and a d m i n i s t r a t i o n of t he d a t a b a s e to be an i n -h o u s e f u n c t i o n . B e c a u s e no c l e a r c o n c l u s i o n s r e g a r d i n g the use of G D M S f o l l o w e d fro m an a n a l y s i s of D a t a C e n t e r f u n c t i o n s and d e s i g n c o n s t r a i n t s , a m o d i f i e d d a t a b a s e a p p r o a c h w a s chos e n ; G D M S s o f t w a r e is b e i n g a p p l i e d w h e r e it is c l e a r l y d e s i r a b l e . In a d d i t i o n , an a r r a y of s o f t w a r e t o o l s is a v a i l a b l e for a u g m e n t i n g the c a p a b i l i t i e s of the G D M S and for s a t i s f y i n g p r o c e s s i n g r e q u i r e m e n t s n o t p a r t i c u l a r l y suite d to d a t a b a s e s o l u t i o n s . The m o d i f i e d d a t a b a s e a p p r o a c h for d e v e l o p i n g the S o l a r H e a t i n g and C o o l i n g D a t a Cent e r is d e s c r i b e d in the f o l l o w i n g section.5. R O L E OF G E N E R A L I Z E D D A T A B A S E M A N A G E M E N T S Y S T E M ST h e t h r e e p a r t c o n c e p t u a l o v e r v i e w of D a t a C e n t e r f u n c t i o n s a p p e a r i n g in f i g u r e 1 a l s o i l l u s t r a t e s the p l a n n e d c r o s s -f u n c t i o n a l u t i l i z a t i o n of g e n e r a l i z e d d a t a b a s e m a n a g e m e n t s y stems. The s h a d e d a r e a in the f i gure i d e n t i f i e s t he f u n c t i o n s p l a n n e d for G D M S b a s e d i m p l e m e n t a t i o n and the u t i l i z a t i o n of t h e s e g e n e r a l i z e d s o f t w a r e p a c k a g e s for b o t h g e n e r a t i o n of p r i n t e d r e p o r t s and ad hoc p r o c e s s i n g . T he use of a c o m p u t e r i z e d d a t a d i c t i o n a r y / d i r e c t o r y for s u p p o r t i n g the r e c e i p t and m a i n t e n a n c e of d a t a as w e l l as d a t a b a s e d e s i g n and a d m i n i s t r a t i o n a c t i v i t i e s is a l s o d e p i c t e d .

 The link between the file oriented receipt and m a i n t e n a n c e function and the database(s) serving Data Center users is p r o v i d e d by a c o m p r e h e n sive data dic t i o n a r y / d i r e c t o r y .This automated c o m p e n d i u m has ent r i e s for every data item and aggregate.

 -262 -SDI-PROGRAHS FOR SMALL COMPUTERS USING THE INIS-LATABASE A, Nevyjel, ôsterreichische Studiengesellschaft fttr Atomenergie Ges.m.b.H.

 T A T I O N (ZAED) W. B a u a n d H. B e h r e n s Z e n t r a l s t e l l e für A t o m k e r n e n e r g i e -D o k u m e n t a t i o n (Z A E D) F e d e r a l R e p u b l i c of G e r m a n y I. I n t r o d u c t i o n In 197^ t h e F e d e r a l G o v e r n m e n t p a s s e d t h e " P r o g r a m m e of the F e d e r a l A u t h o r i t y for the P r o m o t i o n of I n f o r m a t i o n and D o c u m e nt a t i o n 11 (IuD P r o g r a m m e) w h i c h i n t e n d s 16 S p e c i a l i s e d I n f o r m a t i o n S y s t e m s to be established,, the c o r e of e a c h one to be a S p e c i a l i s e d I n f o r m a t i o n Center.The Z e n t r a l s t e l l e f ür A t o m k e r n e n e r g i e -D o k u m e n t a t i o n (ZAED) t o g e t h e r w i t h t he Z e n t r a l s t e l l e für Luf tu n d R a u m f a h r t d o k u m e n t a t i o n und -i n f o r m a t i o n , t he P h y s i k a l i s c h e B e r i c h t e a n d t h e Z e n t r a l b l a t t für D i d a k t i k d e r M a t h e m a t i k w i l l be t h e c e n t e r of the S p e c i a l i s e d I n f o r m a t i o n S y s t e m 4, w h i c h w i l l c o v e r t h e f i e l d s of energy, p h y s i c s a nd m a t h e m a t i c s . It w i l l be l o c a t e d at the K a r l s r u h e N u c l e a r R e s e a r c h Cent e r .As it b e l o n g s to the task s of S p e c i a l i s e d I n f o r m a t i o n C e n t e r s not o n l y to l o o k a f t e r l i t e r a t u r e d o c u m e n t a t i o n a n d i n f o r m a t i o n but a l s o to e x t e n d this serv i c e q u i t e e x p l i c i t e l y to d a t a the Z A E D h as b e e n c o m m i s s i o n e d , in a n t i c i p a t i o n of the e s t a b l i s h m e n t o f t h e S p e c i a l i s e d I n f o r m a t i o n C e n t r e , by the F e d e r a l M i n i s t r y fo r R e s e a r c h a n d T e c h n o l o g y to s u b s t a n t i a l l y i m p r o v e the s i t u a t i o n in the f i e l d of p h y s i c s d a t a by e s t a b l i s h i n g a d a t a i n f o r m a t i o n s y s t e m . F o r this p u r p o s e , d a t a c o m p i l a t i o n s a re r e g u l a r l y to be p u b l i s h e d -and at the same t i m e to be r e c o r d e d on m a g n e t i c t a p e -in a n u m b e r of p h y s i c s s u b f i e l d s , a n d to be kept up to d ate. M o r e o v e r , as c o m p l e t e as p o s s i b l e , a list of e x i s t i n g d a t a c o m p i l a t i o n s in the w o r l d is to be c o m p i l e d in o r d e r to be a b l e to g i v e i n f o r m a t i o n on t h e s e a n d to f a c i l i t a t e the s e a r c h f o r data. A n o t h e r t a s k w i l l be t h e c o l l e c t i o n a nd d i s t r i b u t i o n of e x i s t i n g d a t a c o m p i l a t i o n s f or the F e d e r a l R e p u b l i c of G e r m a n y . T h i s a p p l i e s in p a r t i c u l a r to d a t a c o m p i l a t i o n s on m a g n e t i c t a pe, f o r w h i c h ZAED, at a later d a t e t h e S p e c i a l i s e d I n f o r m a t i o n C e n t e r of c o u r s e , w i l l act as a d i s t r i b u t i o n c enter.In o r d e r to a v o i d d u p l i c a t i o n of w o r k in c o m p i l i n g p h y s i c s d a t a , ZAED w i l l a l s o h a v e t h e t a s k of c o o r d i n a t i n g to a c e r t a i n d e g r e e the -265 -a c t i v i t i e s in t h i s field . At the same ti m e , c l o s e i n t e r n a t i o n a l c o o p e r a t i o n is e n v i s a g e d . I I . R e q u i r e m e n t s for a p h y s i c a l d a t a b a n k a) D e f i n i t i o n of p h y s i c a l d a t aIt h as to be m a d e v e r y clea r , that w h e n e v e r t h e t e r m ,!d a t a t T is use d , we a r e t h i n k i n g of p h y s i c a l d a t a , e.g. d e n s i t y , t e m p e r a t u r e s , m e l t i n g p o i n t s , cross s e c t i o n s , etc. T h i s is i m p o r t a n t , as in c o m p u t e r t e r m i n o l o g i e the t e r m nd a t a has b e e n a p p l i e d to too m a n y t h i n g s w h i c h a r e q u i t e f o r e i g n to t h e m a t t e r w h i c h is u n d e r d i s c u s s i o n he r e . b) It is our a i m not o n l y to p u b l i s h p h y s i c a l d a t a in p r i n t e d form, but at t h e s a m e ti m e a l s o to e s t a b l i s h a d a t a f i l e in m a c h i n e -r e a d a b l e form. T he l a t t e r p o i n t is of i m p o r t a n c e for s m a l l -a n d l a r g e -s c a l e d a t a c o m p i l a t i o n s a l i k e as o n l y w i t h the a i d of a c o m p u t e r a q u i c k a n d u n c o m p l i c a t e d u p d a t e p r o c e d u r e c a n be a c h i e v e d . In a d d i t i o n , in the case of l a r g e -s c a l e d a t a c o m p i l a t i o n s it is i n e s c a p a b l e to have the m a g n e t i c t a p e v e r s i o n in o r d e r to be a b l e to r e t r i e v e a n d s e lect, a n d a l s o in o r d e r to be in a p o s i t i o n to h a n d l e the d a t a in a p r a c t i c a l way. H o w e v e r , as t he u s e r c o n t i n u o u s l y m a k e s b i g g e r d e m a n d s on r e t r i e v a l , d e m a n d s w h i c h cann o t be s a t i s f i e d w i t h a n o r d i n a r y d a t a file, e.g. to e s t a b l i s h l o g i c a l c o n n e c t i o n s b e t w e e n v a r i o u s d a t a , to r e t r i e v e n u m e r i c a l v a l u e s w i t h i n a g i v e n i n t e r val, to r e s o r t t h e d a t a a c c o r d i n g to n e w c r i t e r i a , e t c . , it is c o n s e q u e n t l y n e c e s s a r y to e x t e n d th e f i l e to a d a t a b a n k . c) B u i l d i n g a p h y s i c a l d a t a bank, in our o p i n i o n , s h o u l d e n t a i l th e f o l l o w i n g : -T o s t o r e m a t r i c e s (data t ables) w i t h m c o l u m n s a n d n r o w s (m a nd n to s t a n d for any s p e c i f i c n u m b e r) , w h e r e b y the e l e m e n t s of t h e s e m a t r i c e s can c o n t a i n n u m e r i c a l as w e l l as a l p h a m e r i c a l i n f o r m a t i o n . T h u s , it w i l l be c h a r a c t e r i stic for a d a t a b a n k to have a lot of m a t r i c e s of t h i s type. -It s h o u l d not o n l y be p o s s i b l e to sort r o w s a n d c o l u m n s a c c o r d i n g to n e w c r i t e r i a w i t h i n on e m a t r i x , but a l s o to c o m b i n e c e r t a i n r o w s a n d / o r c o l u m n s f r o m d i f f e r e n t m a t r i c e s i n t o a n e w one. -W i t h r e f e r e n c e s to the u p d a t e p r o c e d u r e it is n e c e s s a r y to be a b l e to r e p l a c e the e l e m e n t s of a m a t r i x by n e w o n e s in a u n i q u e way. F u r t h e r m o r e , it w i l l a l s o be n e c e s s a r y o n t h e one hand to i n c r e a s e t he n u m b e r of r o w s a n d c o l u m n s of t he m a t r i x , and on t he o t h e r t o a d d n e w m a t r i c e s T h e f i r s t p o i n t (r e p l a c i n g e l e m e n t s) is o f p a r t i c u l a r i m p o r t a n c e f or d a t a b a n k s w h i c h c o n t a i n e v a l u a t e d d a t a on l y ; the l a t t e r p o i n t s are p a r t i c u l a r l y r e l e v a n t as far as d a t a b a n k s c o n t a i n i n g e x p e r i m e n t a l d a t a a r e c o n c e r n e d . -A d a t a b ank, b e s i d e s t h e s e m a t r i c e s , w o u l d a l s o i n c l u d e b i b l i o g r a p h i c items , e.g. in the c a s e of a d a t a b a n k w i t h e x p e r i m e n t a l da t a , the b i b l i o g r a p h i c p a r t w o u l d c o n t a i n b i bl i o g r a p h i c d a t a of the l i t e r a t u r e f r o m w h i c h t h e d a t a o r i g i n a t e s . L a s t but not least, it sh o u l d be m e n t i o n e d t h a t t h e ZAED w i l l a p p l y the I n t e r n a t i o n a l N u c l e a r I n f o r m a t i o n S y s t e m (INIS) f o r t h i s b i b l i o g r a p h i c part. -A n o t h e r p a r t w h i c h a d a t a b a n k m u s t h a v e is r e s e r v e d for t h e n e c e s s a r y i n f o r m a t i o n r e l e v a n t to t h e dat a , e.g. name of m a t e r i a l , c h e m i c a l f o r m u l a e , m a t e r i a l c o m p o s i t i o n , d a t a t y p e , m e t h o d of d e t e r m i n a t i o n . As in t h e c a s e of t h e b i b l i o g r a p h i c p a r t , t h e i n f o r m a t i o n p a r t , too, has to be r e l a t e d to the d a t a in q u e s t i o n . S o m e of t h e i n f o r m a t i o n w i l l be s t a n d a r d i z e d by t h e use of k ey w o r d s . I I I . C o n c e p t a) As a l r e a d y m e n t i o n e d in the i n t r o d u c t i o n , Z A E D i n t e n d s to o p e r a t e as a d i s t r i b u t i o n c e n t e r f o r e x i s t i n g d a t a files a n d d a t a b a n k s , w h i c h shoul d r u n on the Z A E D -o w n c o m p u t e r S i e m e n s S y s t e m 7.755-J. E x i s t i n g d a t a f iles a nd ban ks, h o w e v e r , h a v e b e e n b u i l t or h a v e a c c o m p l i s h e d the r e q u i r e m e n t s f o r a d a t a b a n k o u t l i n e d u n d e r c h a p t e r II in c o m p l e t e l y d i f f e r e n t f a s h i o n s . T h i s fact e n t a i l s t h a t the f o r m a t a nd s t r u c t u r e of t h e p a r t s d e s c r i b e d a b o v e , a r e no t c o m p a t i b l e w i t h e a c h o t h e r , a n d t h i s is the r e a s o n w h y Z A E D us e s in eac h c a s e t he p r o g r a m m e s b e l o n g i n g to t h e d a t a fil e or b a n k in q u e s t i o n . It g o e s w i t h o u t saying, t h a t t h e s e p r o g r a m m e s a r e as d i f f e r e n t f r o m e a c h o t h e r as t h e d a t a f i l e s or b a n k s they b e l o n g to. H o w e v e r , c o m p a t i b i l i t y of t h e s e p r o g r a m m e s , in our o p i n i o n , d o e s not s e a m f e a s i b l e in t h e near future. b) A n o t h e r of o u r t a r g e t s , also m e n t i o n e d in t h e i n t r o d u c t i o n , is to d e v e l o p and to e s t a b l i s h d a t a f i l e s a n d d a t a b a n k s in f i e l d s of p h y s i c s not yet c o v e r e d . At t h e m o m e n t we are in t h e p r o c e s s of e s t a b l i s h i n g a d a t a c o m p i l a t i o n o n s u p e r c o n d u c t i v i t y w h i c h is to g r o w g r a d u a l l y i n t o a d a t a b a n k for t h i s f i e l d . We r e a l i z e the r e q u i r e m e n t s for a d a t a bank, as d e s c r i b e d u n d e r c h a p t e r II for this p a r t i c u l a r p r o j e c t as f o l l o w s : I n f o r m a t i o n par t N a m e of m a t e r i a l or t r a d e name C h e m i c a l f o r m u l a e M a t e r i a l c o m p o s i t i o n M a t e r i a l d e s c r i p t i o n e t c . B i b l i o g r a p h i c part Title A u t h o r (s) L i t e r a t u r e r e f e r e n c e e t c . D a t a p a r t T h i s p a r t c o n t a i n s the m a t r i c e s w i t h the d a t a as d e s c r i b e d u n d e r II, c), for exam p l e : D i f f e r e n c e of e n t r o p y in n o r m a l s t a t e s a n d in s u p e r c o n d u c t i n g s t a t e s as a f u n c t i o n of t e m p e r a t ure. I n f o r m a t i o n b e l o n g i n g to t h i s m a t r i c e s , s u c h as d e s c r i p t i o n of t h e q u a n t i t y m e a s u r e d , o t h e r p a r a m e t e r s , v a l i d i t y r a n g e , d a t a type, m e a s u r i n g m e t h o d , etc., are -a c c o r d i n g to o ur s y s t e m -r e c o r d e d u n d e r t h e i n f o r m a t i o n part. -267 -PROBLEMS OF A NUCLEAR DATA CENTRE IN AN INTERNATIONAL NETWORK P.M. Attree, IAEA Nuclear Data Section, Vienna !• Introduction This paper presents the environment within which the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) operates, the systems which currently exist, and examines possible NDS use of the ADABAS system when it becomes available for general use within the IAEA at the end of 1977* 2. Computer environment of the Nuclear Data Section Following a recent upgrade, the IAEA is serviced by an IBM 370/158 with 3 Mbytes central memory, six 3330 and three 3350 disc units, as well as the usual tape and card handling equipment. Further significant upgrades are anticipated in 1978 and 1979* Regarding software, the usual programming languages are available, the change to MVS operating system was made recently and, most significantly, ADABAS was installed during 1977 will be available for general use at the end of the year.

3 #

 3 NDS participation in the international exchange of nuclear data For neutron-induced nuclear reactions NDS is one of the nodes in a 4-centre data exchange network. The data centres are located in: Brookhaven, USA National Nuclear Data Center (NNDC)* Obninsk, USSR Centr po Jadonym Dannym (CJD)* Saclay, France OECD/NEA Neutron Data Compilation Centre (CCDN), Vienna, Austria IAEA Nuclear Data Section (NDS),

 80 characters in length#

1 NUCLEAR

 1 OATA SICTI<K< INTERNATIONAL ATOMIC EMERCY ACENCT• VIENNA. ac c e s sio n number EXFOR ENTRY 30282. TMC A M V I IirO M A T lC N APPLIES TC ALL SUC-ACCESSION NUMBERS STARTING ftlTH 302(2. BIBLIOCRARHV. EVERIRENTAL OCBCRIRTIC*. EXPLANATIONS SUB-ACCESSION NIMBL-»r-. S E C O N D SUB EN TR Y 30282.002---r --TOTen t I T0-RT-190 R AR TL.IN.CAMMA» CS TC METAST ABLE STATE s iB « 7B-R T-IC S .N C ..D SI .IRB (ML I REASUREO BV AUThOR X I |OC> TH* TCTAL INTERNAL CCKVERSICN COEFFICIENT OF THE) M KEV .TRANSITION IS ABOUT 0. 1« (FRCM M.A.aAHLGREN. « • » • H U H , F H fS .M « il> S (l* S < ll« I I P T-19 0 .N G ..M S I (ML I .7 0 -P T -1 9 9 -N) MEASURED BY AUTHOR IOC» THE TOTAL INTERNAL CONVERSION COEFFI(392 KEV TRANSITION IS ABOUT 0 .1 « (FROM M.J « . « .M EINKt. PHY £.R E V .115(1959 >191» u i u M t o o n i H M I O t M O M l OATA-ERR 30202002000 I 302020020001* 0IBL IOGMAFH*. E V E R I RENTAL DESCRIPTION. EXRLAfcAT1CKS sub-accession NUM BER ucos-j u m a m ; THIRD SUB EN TR Y 30282J003 I TO-RT-190 «N.SABRAI CROSS-SECT ION <7« -P T 'lf« .M C > HALF-LIFE I W . I . T M T > I I « I C IVIK BY COMPILER RART-OET (O SI TMC > 1« . 4* J ANO 942 KEV TRANSITIONS .ERE MEASURED RON TNC DETERMINATICI! OP THE TOTAL (N. CAMMA I CROSS-P T -I9 9 I GIVEN BY COMPILER I K I THE 3 1 «. 403 A NO 542 KEV TRANSITIONS MERE FOR THfc DETERMINATION OF THE TOTAL (N.SAMMAI Cl T

 (b) Find within the INSTALLATION-REQUEST set all member occurrences of REQUEST which have the located INSTALLATION as owner occurrence.

Figure 1 PR

 1 Figure 1 PR ELIM IN A R Y ID M S SCHEMA

Fig. 2 :Fig. 3 :

 23 Fig. 2 : Field structure of category 1

Fig. 6 :

 6 Fig. 6 : A model of ECDIN using a network data structure

Fig. 7 :

 7 Fig. 7 : Record structure fo r chemical processes

 Brooks, A. A. (ed.), Draft Proposed: A m e r i c a n N a t i o n a l S t a n d a r d Specl{icatlons {or a V a t a V e s c n l p t i v e Vile. {or In{orm atlon Interchange, ANSI-X3L5/646F, September 26, 1977. Martin, M. D., R e { e r e n c e M a n u a l {or Machine. R e a d a b l e B i b l i o g r a p h i c V e s c n l p t l o n s , UNISIST SC.74/WS/20, UNESCO, Paris, 1974. INIS: M a g n e t i c Tape. Specl{icati ons and Re c o r d Format, IAEA-INIS-9 (Rev. 1); International Atomic Energy Agency, Vienna, 1971. A m e r i c a n N a t i o n a l S t a n d a r d {o k B ibliographic I n { o r m a t l o n Interchange, on Magnetic Tape., Z39.2-1971; ANSI, New York City, 1971. UN I M A R C -U n i v e r s a l MA R C Format; International Federation of Library Associations and Institutes; London, 1977 (draft version).

 ISO 2709-1973(E) ; International Organization for Standardization, Paris, 1973 (available from ANSI). A m e r i c a n N a t i o n a l S t a n d a r d Code {or I n{ormatlon E x c h a n g e , X3.4-1968; American National Standards Institute (ANSI), New York City, 1968.

 developed over the last few years (e.g. relational[4], entity-relationship[5], entity set[6]) emphasize different aspects of logical structures, but they all share the characteristic of being independent of physi cal database organization.Systems based on these models are still experimental, and commercial GDMSs (including COSASYL-based systems[7]) reflect in varying degrees a dependency of the logical model on the physical organization.

 the trend discussed above is the "relational" data model. This model introduced by Codd [4] (many additional refer ences can be found in the March 1976 issue of Computing Surveys, Volume 8, Number 7), is based on representing data into ''relations" which are essentially tables or matrices. The columns of the tables represent data elements of fields and rows represent specific instances for all fields.

 are desired in distributed database systems are dis cussed below. a. Allow different DMSs to exist on the network. Different DMSs exist, because they offer different cost effective features suitable for certain applications. For example, a system designed for fast retrieval requires index mechanisms which tend to slow down updating. b. Allow data existing on different systems to be shared. Mechanisms for cor relating existing databases are necessary if databases need to be physically distributed. c. Allow evolutionary integration of the DMSs. When a new DMS is added to the network or replaces an existing DMS, it should cause a minimum of disruption to the network. d. Fail-soft properties. A distributed database system should allow for a degraded service in case of a local failure. e. The additional cost for achieving distributed database systems in terms of response-time and implementation should be small relative to the cost of database management and insignificant relative to the benefits achieved.

The 2 . 3 . 4 . 5 . 6 . 7 . 9 .1 3 .Fig. 1 :

 234567931 Fig. 1: Une hiérarchie intra-enregistrement à trois niveaux avec tua unregistrement par élément. L'exemple présente une partie d'un enregistrement pour le manganèse, Z=2J?. Les flèches montrent la structure logique.

Fig. 4 :

 4 Fig. 4: Elements de relations représentant des details de la structure nucléaire correspondant à la fig. 2. Dans une base de données réele, les paramètres E. seraient des valeurs effectives.

Table I -

 I GDMS Provided by Hardware Vendors

	2.2	Software Vendors			
		The complexity and level of support required by a modern	GDMS makes
	this	type of software a likely candidate for development as a proprietary
	package.	Software vendors provide support including installation,	train
	ing,	documentation	and sometimes assistance in application design.	Pro
	ponents of	independent	software	organizations	believe	they	are more
	responsive	to user requirements because of competitive pressures than are
	hardware vendors.	Many independently developed GDMS packages	are	avail
	able	for	IBM hardware; fewer are available for other hardware.	Examples
	of GDMS offerings by software vendors	are listed in Table II.
			Table II -GDMS Provided by Software Vendors
								■ 1---------------------1
		1 PACKAGE NAME	SOFTWARE VENDOR		1 MAINFRAME	|
								■ 1 -1	-	1
								i	i
		1 ADABAS		Software Ag			1 IBM 360/370	1
								1 Siemens 4004	|
								1 UNIVAC 70 series	I
								■ i 1	I 1
		1 IDMS		Cullinane Corp		1 IBM 360/370	1
								1 UNIVAC 70 series	|
								■ 1	1
		1 INQUIRE		Infodata System, Inc.	1 IBM 360/370	1
								■ 1	1
		1 MODEL 20 4		Computer Corporation	1 IBM 360/370	1
					of America			1 . i	1 i
		1 System 2000		MRI System Corp.		1 IBM 360/370	1
								I CDC 6000 series	|
								1 UNIVAC 1100 seriesl
								.|-
		1 PACKAGE NAME	HARDWARE VENDOR	| MAINFRAME	|
		1 DMS-II		Burroughs Corp	I B6700/7700	1
		1 DMS-170		Control Data Corp.| CDC 6600	1
		1 DMS-110 0		UNIVAC		1 UNIVAC 1100 Series	|
		1 IDS-II		Honeywell		| Honeywell 60/600/6000	|
		I IMAGE/3000		Hewlett Packard	| HP3000 CX	1
		1 IMS		IBM		1 IBM 360/370	1
						-28 -

Table III -

 III GDMS Provided by Computer Service Organizations

		I GDMS PACKAGE NAME	1 COMP SERVICE	MAINFRAME	|
				-1 1	--
				1	
		1 System	2000	1 INFONET	UNIVAC 1108	|
		I DML		1	
		1 ALADIN		1 I _ 1	_ -
		I System 2000	1 Cybernet _ 1 _________ 1 ---	CDC 6600	|
		1 DMS-2		1 GE MARK III 1 _ __ 1 -	Honeywell 6088	|
		1 System 2000	1 Tymshare	IBM 370/158	|
		I System 1022	1		PDP 10	|
		I INQUIRE		1		IBM 370/158	|
		I RETRIEVE	1		SIGMA 9	|
				1 1	
	2.4	Universities		
		Many of today's commercial GDMS packages began as	research	projects
	in universities and other laboratories.

Table V -

 V GDMS implemented with U. S.

										Table V	in
	cludes	representative	systems developed initially under U. S. government
	c o n t r a c t .							
								Federal Funding
										all
	current	systems	favor	one pattern	of	use over another.
										1
	2.5 Other Sources						
	GDMS are also available from sources other than those	listed	above.
	In the	United	States	a number of GDMS have been developed with Federal
	government funding, and are therefore in the public domain.	Some of these
	systems are available at no charge, but like the university developed sys
	tems they may lack even	rudimentary maintenance	and	updating	support.
	Other,	however,	are	available	through	software	vendors?	these	are

typically priced and supported like proprietary software.

 Passive mechanisms recognize and differentiate users based on unique iden tifiers known to the system software and hardware; frequently used passive identifiers include those maintained by the system accounting/log software and unique identification numbers embedded in remote terminal hardware.

		Authorization mec h a n i s m s. Database management systems use different
	strategies	for	identifying	legitimate	users	and	determining	access
	privileges.	Active and passive mechanisms are employed.	Active	security
	schemes	generally	use passwords to differentiate among classes of users.
	3^_4._3 B a c k u p , restart and recovery. To protect against system failure due
	to physical equipment or software error, most GDMS provide backup facili
	ties and procedures for restart and	recovery	of	lost	transactions	and
	database	entries.	Backup mechanisms also provide the audit trail needed
	for proper accountability and internal control.	Types and characteristics
	of	backup,	restart	and	recovery	facilities	that differentiate	GDMS
	software are listed below.		
		* Log tape (audit trail)	
				-record all transactions against
					database		
				-	record only database changes
		* Session restart		
				-system maintained working data set
				-automatic versus user coded procedures
				-	"check point" recording of database
					and procedural status
		* Database recovery		
				-user coded		
				-GDMS provided procedures
		* Restart				
				-automatic restart and recovery
				-user invoked restart and recovery

 GDMS software is not re-entrant, each active user must have a copy of the database programs resident in main memory.

		* Database maintenance	
		-population	
		-update	
		-restructuring	
		* Data retrieval	
	3_.5 .2 R e -entrant versus self m odifying. When software is	implemented	so
	that	it does not modify itself it is termed re-entrant.	Single copies of
	re-entrant GDMS program modules can simultaneously serve	multiple	users.
	Conversely, if	

 of the relative trade-offs between GDMS and tradition al software development approaches requires analyses of costs and benefits for non-GDMS based systems as well.

	1.2	Scope						(January 1977)
		A	thorough	analysis	of	a potential	GDMS	application	requires
	knowledge more, determination of both	costs and benefits for the proposed system. T. Yamamoto University of Tokyo	Further
		Reference : Joho Shori (Information Processing Society of Japan),
		Vol. 17, No. 10 (Oct. 1976, a special issue on data COST CONSIDERATIONS FOR GENERALIZED DATABASE MANAGEMENT SYSTEMS
									base systems)
						D. Deutsch, E. Fong, and J. Collica
	A. Domestic machines, supplied by a mainframe manufacturer
				Institute for Computer Sciences and Technology
	Company			Name of National Bureau of Standards* Name of DBMS Computer System Washington, DC 20234 U.S.A.	Nature of DBMS (Origin)
	Toshiba (TOSBAC) ing whether One important factor that must be considered when IDS/II ACOS.77 series CODASYL DBTG evaluat generalized database management software should be
	Nippon Elec used is cost. cation life cycle for estimating costs associated with potential ADBS ACOS.77 series A methodology and a framework based on the appli CODASYL DBTG tric (NEC) IDS ACOS.77 series applications of these new software tools is proposed. Important Network (Honeywell) classes of costs are identified and discussed. The problem of
	UNI VAC Japan comparing software systems is also considered. DMS/190 costs for database oriented OUK 9400 Finally, budget guidelines versus traditional CODASYL DBTG OUK 90 series for estimating total life cycle costs for generalized database
		ADM management applications appear in an appendix. H8000 series	Hierarchical (IMS)
	Hitachi						M series
	(HITAC)					
						PDM		H8000 series	Network
									M series
	Fujitsu (FACOM)			INIS		23O series INTRODUCTION	(Hierarchical?)
						AIM		M series	Network
	Mitsubishi (MELCOM) 1.1 Motivation	EDMS		COSMO/7OO-9OO	CODASYL DBTG
		DMS-5 The proliferation of Generalized Database COSMO 5OO	CODASYL DBTG subset Management System (GDMS)
	packages	in	recent	years has been accompanied by an especially dramatic
	increase in use of GDMS for diverse applications in organizations	of	all
	B. Poreign machines, supplied by a mainframe manufacturer types. The large number of available GDMS products and range of their ap
	plications merely add to the Burroughs (DMS-II) CDC whether to use traditional (DMS-170) IBM determination of costs and benefits associated with the compexity of the management or database oriented software tools. decision use of database of The (IMS/VS) UNIVAC mangement software is a necessary step in evaluating whether GDMS technol (DMS1100) ogy should be applied. While some literature does address cost-benefit
	aspects C. Independent packages (known to T.Y.) of GDMS software [1], there is no evaluating potential GDMS applications. This paper accepted methodology for addresses the cost
	AD ABAS component of the GDMS application evaluation problem.
			BASIS				
			IDMS				
			System 2000		
			TOTAL				
									-49 -

4.1 Perception of Need Functions 4.1.1 High-level recognition of problem. Top management must be aware of

	an	information	processing	deficiency	and must be willing to commit the
	resources required for developing	a	solution.	While	this	recognition
	function	may	not	require any

resource expenditures, many organizations establish procedures and managerial committees for monitoring information processing activities. A primary reason for establishing this type of oversight mechanism is to recognize deficiencies before they become criti cal . , 4.1.2 GDMS feasibility study. Often, in addition to recognizing an infor mation processing deficiency, there is a predisposition for employing a particular solution mechanism.

4.1.3 Establish system development mechanism. After recognizing an infor mation processing problem, making a commitment to find a solution, and determining gross feasibility, this life cycle phase is concerned with es

	tablishing	a	problem	solving	mechanism.	This	task	may	require	no
	resources other than the time to schedule and assign	in-house	personnel.
	On	the	other	hand,					

if assistance is required from outside the organiza tion, some costs may be incurred selecting preferred consultation arrange ments . 4.2.1 Determine information requirements. The analysis and specification of application requirements is an important and time consuming task. In formation requirements must be specified and documented to provide a basis for subsequent design decisions. The resulting requirements specifica tions must indicate what information is required, when and how

									frequently
	it must	be	provided,	and	must	include	quantitative	and qualitative
	descriptions of the desired information products.	
	4.2.2 Develop processing specifications. Based	on	the	information	re
	quirements,	a general design for a hardware/software system is	produced.
	That is,							

a processing system capable of satisfying the identified informa tion needs is defined. For database oriented applications, this function includes the specification of necessary GDMS characteristics and features; if a competitive acquisition process is anticipated, GDMS feature descrip tions can take the form of a formal Request for Proposal (RFP). 4.2 Analysis and General Design Functions

	4.3	System Engineering Functions			
	4.3.1	Hardware/software	acquisition.	Selecting	and	acquiring
	hardware/				

software systems from among candidate configurations is the first step in the system engineering phase. The specifications prepared during the analysis and general design phase are matched to potential processing tools. Database management system feature requirements are compared to capabilities of available software packages. The acquisition task can vary from a cursory review of existing resources to a full-fledged competitive hardware and software acquisition. Where hardware resources are fixed, it is important to recognize that GDMS packages frequently require specific hardware features and capacities and operate only under certain versions

	of	operating	systems	and	support
	software.				

4.3.2 Documentation and training. Hardware/software tools must be sup ported by adequate documentation and knowledgeable support personnel. Da tabase management software frequently requires a sizeable investment for training of technical personnel. Instruction and materials may be paid for separately or they may be "bundled," that is included in the cost of the GDMS software. Even when there is no additional charge for training, a substantial commitment of personnel time is required. 4.3.3 Installation and testing. Installation of database management software is a complex task that often requires time, personnel and machine resources similar to those necessary for installing a new operating sys tem. Indeed, installing a database management system frequently requires major modifications in the existing operating system

							and	other	support
	software.	Even	after	an	apparently	successful GDMS installation, the
	capabilities of the newly installed software must	be	thoroughly	tested.
	It	is prudent to			

prepare a benchmark or prototype application to test the range of GDMS capabilities; vendors' claims and promises cannot be substi tuted for demonstrated performance in the new computer environment. 4.4 Application Development Functions 4.4.1 Data dictionary/directory development. The bridge between informa

	tion	requirements	and	a	GDMS	based	solution	is a comprehensive Data
	Dictionary/Directory (DD/D) describing all data elements in the	database.
	Ideally,	a	DD/D				

is prepared at the beginning of the application develop ment phase or even earlier. [5,6,7] Regardless of the life cycle phase in which it occurs, a data dictionary/directory development effort requires substantial amounts of time and of machine and personnel resources. En tries are required for each identifiable data element? the number of ele ments in a database of even moderate size is surprisingly large. 4.4.2 Database design. The database design task is concerned with speci fying the data structures and storage structures that will be used for the application. Data structures are logical relationships among data items that reflect the users1 perception of the database. Storage structures are physical mechanisms used for recording data on secondary storage. The database design process must determine the logical and physical structures that will provide the greatest flexibility and efficiency for current and future applications. Of course, data and storage structures must be chosen from among those supported by the selected GDMS. 4.4.3 Data definition. Data definition is the formal encoding and record ing of the database design using the data definition facility provided by the GDMS. Most GDMS have a Data Definition Language (DDL) that is similar to definition facilities in high-level programming languages such as COBOL? DDL's are considerably more powerful, however. After DDL declara tions are formulated, they are input to the GDMS definition module. Er rors detected by the GDMS are corrected and the processing is repeated in a manner analogous to the compilation of a computer program. Data definition is complete when the GDMS is ready to accept raw data instances as input. (see "Database population" below). It should be not ed that data definitions are not necessarily static. As requirements change and experience is gained, the data definition must be modified to satisfy new requirements and to increase efficiency. 4.4.4 Database population. Database population is concerned with the ac tual loading of raw data. This initial bulk loading is distinguished from data entry and update facilities. The latter are intended for handling relatively smaller amounts of data after the database has been esta blished. Raw data instances must be recorded in machine readable form be fore they can be used for population. Many GDMS require specific input formats and/or ordering of source data. Sometimes it is necessary to write custom programs for validating the data and invoking the GDMS popu lation facilities. Database population can be extremely costly in terms of both elapsed time and machine resources. Indeed, for some commercially available GDMS the initial bulk loading facility provides the greatest single limitation on database size. 4.4.5 Application construction. After the database has been defined and populated, specific output requirements are addressed. Construction in volves the development of procedures required to produce desired outputs. These procedures may take the form of application programs written in high-level languages such as COBOL, FORTRAN or PL/1 or they may be written entirely in GDMS user language. In either case, "programming" activities including coding, debugging, system testing and documenting are

											part	of
	application	construction.	The	magnitude	of	the	construction task is
	dependent on the nature of the application and the	GDMS	employed.	Some
	applications		merely	require	the establishment of a database that can be
	queried	using	a	GDMS	query	language	facility.	Others	have	output

requirements that can be satisfied only by developing complex procedures. Because many applications have a range of requirements they employ both ad-hoc and predefined procedures. 4.4.6 Application integration. After its construction, a database appli cation is integrated into the human activities that it was developed to serve. Supporting manual procedures are designed and documented. Person nel are trained to operate and use the application system. The inevitable "bugs" that become apparent during the initial shakedown period must be purged from both manual and automated procedures. When database management technology is used for the first time, the training of application system users can be a costly and time consuming task. This is especially true when users are expected to interact (possi bly for the first time) directly with the computer system. Of course, as personnel become more familiar with the computer and with the GDMS inter face they will require less training for each subsequent application sys tem. 4.5 Operation Functions 4.5.1 Data entry. New data must be entered into the database as they be come available. For many GDMS based systems, the data entry process is similar to that employed for traditional software systems, involving off line key stroking and verifying followed by a batch updating process. Other GDMS provide facilities for on-line data entry.

The next step in the proposed cost evaluation methodology is to iden tify

	specific	cost	factors	associated	with	the	life cycle functions
	described above.	To accomplish this objective, characteristics that	dif
	ferentiate	and	describe	costs	incurred throughout the GDMS application
	life cycle are first discussed.		Then,	a	framework	and	worksheet	for
	determining	total	life cycle cost

for existing or proposed GDMS applica tions are presented.

5.1.1 One-time versus continuing costs. Some costs are incurred only once while others recur, usually periodically, over time. One-time costs are generally incurred prior to the operation phase; consequently, they are sometimes termed "front end" costs. One-time costs include: costs asso ciated with analysis, design and implementation activities; expenditures

	to	purchase	hardware	and	proprietary	software	products;	outlays for
	training						

and documentation; and, any other non-recurring expenditures such as those for preparation of physical facilities. Continuing costs include: yearly or monthly payments for proprietary software; costs for day-to-day hardware usage and software maintenance; and other repetitive costs such as those for supplies. Continuing costs must be evaluated carefully to determine the actual burden that must be carried by a new application. Hardware and proprietary software costs are often step functions; that is, up to a certain activity level there is no increase in cost. For example, basic hardware charges are frequently on a prime-shift basis with extra costs incurred only when usage exceeds eight hours per day. Similarly, GDMS and other proprietary software packages may be priced such that there is no increase in cost unless they are made available on processors other than those for which they were originally procured. It should be recognized that many costs can not be classified as strictly one-time or continuing, but have both one-time and continuing components. An example of this phenomenon is training. There is both a one-time requirement for training technical personnel in the use of a new GDMS package, and a need for

					continuing	training	to	enhance	personnel
	skills	and	to	absorb	software	changes.	It

is important that the re currence of costs over time be understood and used when determining total life cycle costs. 5.1.2 Personnel versus other costs. An increasing share of total computer related costs is attributed to personnel. As hardware becomes cheaper and more powerful, this trend is likely to continue. Indeed, the use of tools such as generalized database management systems is often motivated by the desire to substitute machine and software resources for the

								labor	inten
	sive	application	development	activities	that	occur	when	traditional
	software tools are employed.	Other non-personnel	costs	include	charges
	for	software and hardware, e.g.				

, computer processor and secondary storage utilization. Costs such as those for supplies and energy, and fees for professional assistance and training also fall in this category. Computer hardware and support software costs are some of the most im portant non-personnel expenditures. While total monetary outlays are usu ally known, allocations of costs to specific users and/or applications are difficult to determine. Most computer system charging algorithms are to a large degree arbitrary and dependent upon installation

					policy	regarding
	overhead	allocation	[8,9].	Computer	costs can be misleading.	For in
	stance,					

organizations owning their own computer hardware may treat the fa cility as being essentially "free" when it in fact represents a large in vestment in capital and personnel.

		On	the	other	hand,	computer	time
	sharing	service charges may				

seem exhorbitant if one overlooks the support functions included in their costs that do not have to be borne by their customers. As with the one-time versus continuing cost dichotomy, some costs have both personnel and other non-personnel components.

							For instance, ap
	plication construction generally requires		substantial	amounts	of	both
	technical	personnel	time	and	machine	resources for computer procedure
	(program) translation, debugging, and system	testing.	Because	in-house

personnel costs often have substantially larger overhead factors associat ed with them than other non-personnel expenditures, it is important that they be recognized when determining total life-cycle costs for GDMS appli cations .

. The first work sheet column enumerates the life cycle phases and functions described in previous sections of this report. The entries are presented as representative of the type of ca tegories that must be considered. While the life-cycle phases and func tions appearing on the illustrative worksheet do describe many GDMS appli cation system development efforts carried out by or known to the authors, they are not the only ones nor are they necessarily the best descriptions for all applications. Indeed, it is expected that life-cycle phase and function categories will be modified as practitioners gain experience with the proposed cost estimation methodology. Organizational and procedural differences should be reflected in the phases and functional descriptions used for estimating total life cycle cost. 5.2.2 Cost factors. Cost factors are enumerated for both personnel and other classifications. The number of man-months is specified for person nel; numbers and descriptions are entered

				for	other	cost	units,	e.g.
	machine	hours,	1000	disk blocks,	

etc. Unit costs are specified for en tries in both the personnel and other categories. Amounts represent ex tensions of man-months or other units by their corresponding unit costs. Note that for recurring items these amounts represent single period costs only. 5.2.3 One-time or continuing. Costs are identified as either one-time or continuing.

Any cost evaluation methodology must be applied carefully. Only relevant costs need be considered; sunk costs, that is past expenditures, are not pertinent. For example, costs incurred in the past to acquire, build and/or maintain a particular GDMS are irrelevant; only future costs for using that product versus some other GDMS are

							relevant.	Similarly,
	costs	that	are	invariant	regardless	of	how the system

is implemented should not be considered. Only discretionary costs, those which can be controlled by the relevant decision makers, need be considered. Finally, it is important to recognize that factors other than cost analyses are instrumental in determining system development approaches. Managerial prejudices, market conditions, and budgetary mechanisms all may impact system development decisions.

Two factors make these questions almost impossible to answer. Most important is the fact that GDMS based systems perform functions that are not provided when traditional software is used; thus, any direct cost comparisons are for different application products. This is still another demonstration of the

					close	relationship
	between	costs	and	benefits.	A second complicating

factor is related to the concept of data independence. The essence of the database approach is the recognition of data as a resource with value that is neither dependent on nor derived from the procedures that reference the data. This concept of separation between data and procedures, termed data independence, is not reflected in traditional software. Consequently, comparisons of GDMS based systems to traditional software applications must be in terms of specific sets of procedures; any results would appear to be strongly biased in favor of traditional software because one of the most significant contributions of GDMS technology is ignored.

6.1.1 HI: GDMS costs are concentrated in early life cycle phases. Costs for GDMS based systems are heavier in the the early life cycle phases and lighter in subsequent phases when compared to applications developed using

	traditional	software.	This	skewed	cost	curve	has	been observed for

several application systems when their underlying GDMS software was being used for the first time. The concentration of costs in the early life cy cle phases decreases rapidly for subsequent applications using an already

	installed	GDMS	(See	H4	below).	Figure 4

graphically illustrated this shift in GDMS based system costs to the earlier life-cycle phases. The relatively higher front-end costs for GDMS applications can be attributed to the complexity of GDMS technology. A GDMS feasibility study is often required. Analysis and design tasks must be pursued in greater depth and often by more highly trained personnel than would be required for tradi tional software based systems. System engineering includes costly activi ties related to acquiring, installing and training technical personnel to work with a new GDMS.

6.1.2 H2: GDMS based systems have lower continuing costs. Operation phase costs are lower for GDMS based systems than for those developed using traditional software. This observation, also illustrated in Figure 4, is based on the belief that maintenance and modification activities are more easily accomplished in a database environment than

							when	custom	programs
	must	be	altered and possibly rewritten. We are emphasizing personnel re
	lated operation phase costs and	implicitly	assuming	that	non-personnel
	costs	do		not differ significantly between the two system development ap
	proaches.		Some claim that computer hardware and	support	software	costs
	are	substantially	greater	for	GDMS	based systems than for alternative
	software designs.	The trend toward cheaper hardware	and	the	increasing
	portion	of	total	cost attributable to

personnel indicate that personnel costs should become increasingly important. 6.1.3 H 3 : GDMS based systems have an extended life cycle. Because GDMS facilitate maintenance and modification, an application developed using a GDMS should serve an organization longer than a similar system developed in a conventional manner. Traditional software will, after several itera tions of modification, fall in disrepair and/or require such major revi sion that a new system must be developed. GDMS based applications are beter able to respond to changing requirements than other systems. Conse quently, use of a GDMS postpones the time when an application has to be rebuilt. Figure 5 graphically illustrates the observation that a single GDMS based application may serve an organization over a time period that would

	requre	several	life	cycles	for	systems	based	on	traditional
	software.								

6.1.4 H4: GDMS costs descrease over time. Even the most avid proponents of database technology would not claim cost advantages relative to tradi tional custom software for a single application requiring the acquisition of a new GDMS. It is the fact that they are generalized that makes GDMS a valuable software development tool.

						The first application of a particular
	GDMS	may	cost	more	than corresponding traditional software.	However,
	subsequent applications do not have to absorb	the	substantial	front-end
	costs	for	specifying,	selecting,	acquiring and installing the database
	software.	Consequently, total system cost decreases for	each	subsequent
	application	of a GDMS.	Figure 6 illustrates

this relationship among GDMS and traditional software costs. This observation points out the deficiencies inherent in evaluating GDMS costs on an application basis. While each traditional software ap plication system can be viewed as a logically separable entity, GDMS based systems typically span several applications. As noted previously, cost comparisons based on specific sets of procedures (i.e., applications) ig nore data independence and the underlying concept of data as an asset? furthermore, cost comparisons on this basis are biased in favor of tradi tional software systems.

The authors wanted to test their GDMS cost hypotheses

						on	an	actual
	application.	A	National	Bureau of Standards (NBS) project for another
	Federal agency presented	a unique opportunity; a system that was initial
	ly	implemented	in	COBOL,	was reproduced without substantive functional
	changes using a self-contained query answering	type	GDMS.	Because	all
	work	for	both	implementations was

done either by our own staff or by an NBS contractor, we were able to gather comparative cost data. The appli cation characteristics and cost comparison data are described below. 6.2.1 Application Characteristics. The application is a grant analysis and reporting system implemented entirely using the COBOL language. Data describing grant recipients and funded projects are validated, loaded, re formatted, updated, extracted, sorted and displayed in the form of hard copy reports. The system went through several iterations of modification and enhancement to produce reports described by project sponsors. The prospect of continuing requests for special report outputs pro vided an incentive for a separate but related effort. The loaded machine readable data was used for populating a database; an interactive query oriented GDMS was employed for this redundant system. Once established, the database facilitated quick response to queries from top level adminis trators and legislators. The interactive capability was so well received that an attempt was made to replicate, using the GDMS, all of the outputs produced by the cus tom COBOL programs. With minor exceptions in the area of printer format, this endeavor was successful. Thus, we had two systems that performed essentially identical functions for which cost data was available. 6.2.2 Comparative Cost Data. Indicators of cost were collected for both systems. Most costs were attributable to either one implementation or the other. In those cases where COBOL facilities served the GDMS system as well, costs were allocated to both implementations. While the resulting figures summarized in Table I are inconclusive, they do show some in teresting relationships.

The size of secondary storage requirements reflects the query answer ing orientation of the GDMS software. In order to answer queries rapidly, complex secondary indices are maintained

							by	the	GDMS?	this	trade-off
	between	response	speed	and	secondary storage utilization is typical of
	modern GDMS products.		
	Finally, computer costs were	also	surprising.	Included	in	GDMS
	costs	are	charges	for	on-line retrieval, a feature invoked by numerous
	users.	COBOL costs,		

on the other hand, cover many compilations and test runs and include charges for repetitive data entry, update and report gen eration cycles. 6.3 Conclusions: GDMS Versus Traditional Software The lack of empirical cost data about comparable GDMS and traditional software systems precludes definitive general conclusions. Even when data are available, the lack of functional comparability between GDMS based systems and the traditional software applications they replace complicates the cost analysis problem. The hypotheses presented above represent the authors' best intuitive feelings about the relative costs, but they are not proven. Unfortunately, the limited expirical study carried out for this study yielded inconclusive results.

. A preliminary list of functions associated with each of the life cycle phases is presented. Descriptions of cost characteristics and a worksheet for evaluating GDMS application costs also appear. Comparisons among costs for GDMS based systems and those for applications developed using traditional software techniques are considered. Some hypothesized relationships between GDMS and traditional software costs are presented. Empirical data collected for this study is described? the results neither confirm nor disprove the hypothesized relationships. Additional work is required both to better define the cost evaluation methodology and to gather conclusive empirical data about actual system costs. 1. Selected Literature on Cost Accounting and Cost Control prepared for Automatic Data Processing -A Bibliography for the GAO Task Group Project on Management Guidelines for Cost Accounting and Cost Control for Automatic Data Processing Ac tivities and Systems, Jan 7, 1976. 2. Goldstein, Robert C., Henry H. Seward, and Richard L. Nolan, A Methodology for Evaluating Alternative Technical and Information Management Approaches to Privacy Requirements Na- tional Bureau of Standards Technical Note 906, June 1976. APPENDIX -BUDGETING GUIDELINES FOR GDMS APPLICATIONS The Institute for Computer Sciences and Technology (ICST) of the Na tional Bureau of Standards is charged with providing other U.S. Federal Agencies with technical assistance and consultation to facilitate the ef ficient use of computer resources. In this role, the authors have gained experience with several GDMS packages and have participated in and ob served many Federal system development projects. Based on this experience, budgeting guidelines have been prepared to assist potential GDMS users in estimating life cycle costs. Of course, no amount of experience can be substituted for knowledge of a particular application. Life cycle costs for GDMS applications are influenced by many vari ables. Some of the most important determinants of cost throughout the life cycle included: 1. Size and complexity of database • number of data item classes • complexity of logical structure • number of data instances 2. Degree of change from existing processing 3. Level of previous experience with GDMS 4. Pervasiveness of applications within organization 5. Volatility of database 6. Processing mix -query response versus report generation Because of these and other variables, GDMS application costs can vary over a wide range. Cost estimators must carefully consider each potential ap plication on an individual basis. Table A-I summarizes cost ranges for each of the life cycle phases based on NBS/ICST experience over the past several years. The reader is cautioned that these data merely reflect NBS experience and are not neces sarily applicable to other GDMS applications. Nevertheless, the table does consolidate cost figures from a number of GDMS implementation pro jects. It can, if used carefully, provide a starting point for developing and evaluating cost estimates.

TABLE A -1 : GDMS BUDGETING GUIDELINES i GDMS APPLICATION | LIFE CYCLE PHASE RANGES FOR MAJOR COST FACTORS | COMMENTS | I Perception of need 1/2 -2 person months | More time required when I GDMS feasibility study | included I I Analysis and general design 1 -6 person months | Extremely dependent on I complexity of system. Major I organization-wide projects I may take many person-years. | 1 System engineering $60,000 -$150,000 for | GDMS software I $0 -$20,000 for installation I training and documentation | Some GDMS packages bundled | with hardware and other | software. Others available I without charge from I universities and US Government I 3-12 person months for j in-house technical personnel I Costs smaller for I subsequent users of already I installed GDMS than for I first application. I I Application development 1 -12 person-months I It is not uncommon for large I projects to require I many person-years. I I Operation 1% -100% of machine resourcesl 1/2 -3 full time staff over I life of system I Major project many require I database administration I staff of up to 10 people. I INTRODUCTION TO THE APL LANGUAGE Let us consider a set of individuals (employees) with four charac teristics: name (up to 20 characters), age. number of children and salary. One may see this set of informations (file) individual by individual (file = sequence of records) or characteristic by characteristic. In a tabular represen tation, each individual would be a row (record) and each characteristic a column (file). The first point of view is classical in business and scientific applications (sequential files), while the second is more suitable for retrieval and computations, allowing a global formulation of problems. The representa tion by characteristics will be called inverted (or dual or transposed) compared to the one by individuals. -y 7L n a m e

 A

	/ / / / /	
	a 3e	child,
		Fiue.

Z57 --> 0 IF*o QA1 /Î7 € 1224 2048 2100 R 4-GET 2 where we give an empty answer if the user, known by his accounting numberQAI /T7\ is not a member of a list of authorised users. The function being locked #) » nobody will know, except the file administrator, what kind of checking is done. It is then easy to have users with different profiles: one is able to update while another is limited to read specific files or records. Extending the capabilities of APL for use with Data Bases Any APL system with shared variables (in particular the IBM systems) is extensible by auxilliary processors. There are several examples of DBMS under APL /OT or in conjunction with APL like the IBM _ bridge between APL and IMS 79/ or the model for Relational Data Bases ¿10J .

ii) Availability of APL. Although APL interpreters are available on many computer's (.notably IBM and Burroughs) GDMS facilities in APL or linked to it are in practice so far generally available only as part of the APL service offered by commercial networks. They are offered in Europe by several other bureaux as well as CISI, and in North America most notably by STSC (Scientific Timesharing Corporation). (iii) Should you use a GDMS at all ? Below a certain threshold of logical complexity, size and requirements for flexibility and simultaneous time-shared access in updating or retrieval, the v benefits offered by a GDMS may not be worth their extra cost. Rather than try to accommodate your problems within a closed package (GDMS or other) it may be better to use: -a good methodology -a good programming language, and why not the most productive, APL? -good system support allowing all necessary extensions -the appropriate program libraries, which may be written, as with the CISI APL system, in a mixture of various languages and adapt the EDP facilities to your problems. In some cases the use of APL may imply choosing a link to a time-sharing service rather than "buying your own smaller computer. (iv) When do you need a GDMS ? The most obvious need is in a context similar to the business environments for which GDMS have been developed : for a data base which is frequently updated, especially where updating is done 'simultaneously', on-line, by several users. It takes a relatively sophisticated GDMS to provide the privacy protection and data base error protection and recovery facilities (['security and integrity1) which this use demands. Their centra lised Data Definition facilities are useful in avoiding data incon sistencies and programming errors in a complex data base, or one where structure is often modified. (v) What are APL's particular advantages, alone or as a host language ? -Host language flexibility. This question becomes critical when we look at the host language environments available for use of CODASYL systems (such as IDMS) in a scientific environment. COBOL in particular is scarcely a good programming language for scien tific applications. Rather than listings, what is required are graphics, data analysis (principal components analysis, corres pondence...), or data comparisons (variance analysis, forecas ting....), all easier to program. in APL than in COBOL. -Speed of implementation. A comparison extremely flattering to APL can be found in • improvements in programmer productivity are claimed by a factor of 3 relative to PL/1 or 4 relative to COBOL. This can be important where non-standard ■ questions are frequently asked of the data base : scientists may be just as impatient as managers, and unless such new questions can be answered quickly the questioner may lose interest in the reply before it is available. -Performance. As part of a recent congress /Tgi7 a competition was held to compare various DBMS on a Financial Administration problem. Only three of the systems invited agreed to compete : Tel §- systdmes with COMPOSIT 77» CSS with NOMAD, and CISI using APL with direct access files. The total time to solve the problem was the same for the three systems. The time to load and check the data was shorter in APL (with programs specially written for that application) than with the two DBMS (with their Data Definition Languages). The CPU time for executing specific search questions was between 5 and 10 times smaller in APL than with the two GDMS : a strong argument in favour of using APL if the application had to be run on a daily basis. m m Z27 iw ZÏ7 ZI7 n i m m L W u n UÜ UÏJ zw zw zw ¿Jl7 J Y. LEBORGNE "APL: A Productive Personal Language" -Proceedings of the SEAS Spring Technical Meeting -AALBORG (Denmark) -April 1975 JÏQJ JIIA -X -PARIS (France) -June 1977 -Report to be published in September 1977 in 01-Informatique J V £ [J. C. LERALLE and G. MARTIN "The World Nuclear Power Plant Data Base of the French Atomic Energy Commission" -in this report (BERKELEY Meeting -Oct. 1977) ¿207 W. HAGAMEN and others "The representation of verbal information as unique numbers in APL 360 -IBM System Journal - n° 4 -1972 J J Ü RECUEIL DE DONNEES DE FIABILITE -Centre de Fiabilité -C.N.E.T. - LANNION (France) 7 D. CARON "Automata in Business Programming" -Proceedings of the SEAS Anniversary Meeting -ZUERICH (Switzerland) -Sept. 1974 /2l7 H. J. MYERS "Compiling Optimized Code from Decision Tables" - IBM J. Res. Develop. Vol. 16 -n° 5 -Sept. 1972 ¿247 IBM I.W.P. 5796 PJB "APL Decision Table Processor" -Program Description & Op. Manual -SH 201924 ¿ £ ¿ 7 L.P.A. ROBICHAUD and others "INTERACTIVE tools for Research and Education in Micro-Programming" -EUROMICRO -NICE (France) -June 1 9 7 5 -and UNIVERSITE LAVAL-QUEBEC.

		a t 3 -				COx:;>:r»:UTKt?i' *	CCTU	i	K<ant
						d i e l e c t r i c ;-: (x y l a r)	Modèle i	lisant
								MIL	«	14157 *
						yiASïLiTE cct t p . o l e e	Mudèle 1 CPV
		-	U S I T E de V A L U ITE	--	
		I						La oourbe oi-oontre est une
		i						limite que l'on ne doit pas
								dépasser.
	2 Ì Z 5 ! i			• ;t*erc lit*«				La tension alternative de tension oontinue nominale orfiti + la tension continue no doit pas dépaeser la	TTfc
	:n							■oit	+ ÏÏC < îl U, Max. ' CN
	£ i *■						
	l i		: x	soo 4 M	SOC 6CC	700 000	V« •loco noo -neo
			Ter.si.on continue noslnale	
								Dimensions du Eoîtier
								Diamètre	Longueur	« 8
								nx	j Pouoe	ma	! Pouoe
	ïiTtâu de fiabilité	Taux d* ¿«fai11ano cerrsapcndant	Tire	7	j 0,275	1?	0,75
		-		Î02CC . 10*Vh		3	7.9 i 0,400	22,2	0.875	j 0,2
	vO	r.		10C00 . l0"9/h		1	10.1 i 0.400	22,2 ! 0.875
								10.1 i 0.400	34,9	-.>75
		s a		1000 . iO"9/h 100 . 10"9/h		0.3 0.1	14.3 ! 0,562	41.3	1,625	h j
								17	| 0.670	41,3	1 625
		s		*0 . 1C'9 'h		0.03	1?	i 0.750	54	2,125
								19,3 j 0.780	60,3	2.375	!■
								Bottiers rectangulaires ou oylindrleiues plus grand*	2.

-rssaTEscs - Circuit ouvert Court circuit 5 J 6 95 * FlGuR; rwmmrw;'; - covfiKK'urinjii k rn.w

					DISLECTRIÛOE (MYLAR)
						Mil	: C f t
				■ Fiabilité contrôlée -	Modèle C P V
	PARAMETRES NECESSAIRES -		
			-Température de fonctionnement
			-Tension appliquée
			-Valeur crête de la tension alternative applljuée
			-Tension nooeinale
			Dimension du boîtier
			-Niveau de fiabilité
			-Environnement
	CALCUL DU TAüX DE DEFAILLANCE
			X -		x [TTf c X 7îpC x 1 f l { r J + ■
						ENVIRONNEMENT	E f -e *
						Laboratoire	0
						Satellite (en orbite)	1.1	0,1
						Au sol (fixe)	0,2
						Au aol (portable)	1
						Au aol (mobile)	1
						Avion (en habitacle)	1
						Avion (hors habitacle)	5
						Satellite (au lancement]	6
			Temp.fonctionnement	Missile	10
	50	75	100	125	150*0
	Xb en fonction de la température de	
	fonctionnement et du facteur de charge p
					FACTEÜR DE CHARGE p
		Tension continue appliquée +	Abaqu« A*
				x> JO 5C	1X	¿30 JÛC 190 *î *>0C 29* SOC« JX» *00

Valeur crôte de la tension alternative appliquée * V T , 1 Valeur nominale -4 _ MODELE MATHEMATIQUE de Xb xb= 1 --i f * y*-)5* 1] e & 20

	T : Temp.de fonctionnement en *K

PART n GDMS FOR SCIENTIFIC DATA: REQUIREMENTS AND SPECIALIZED SYSTEMS PARTIE II SGBD POUR DONNEES SCIENTIFIQUES : BESOINS ET SYSTEMES SPECIALISES THE STRUCTURE OF R&D INFORMATION - SOME OBSERVATIONS A. A. Brooks Computer Sciences Division at Oak Ridge National Laboratory Union Carbide Corporation, Nuclear Division* Oak Ridge, Tennessee, USA ABSTRACT This paper is intended for the potential DBMS user who is not knowledgeable in the area of information and data structures. A simple pictorial but hopefully useful approach is taken which discusses the structure of information from the point of view of the user problem. These structures are then related to some simple considerations of data models. Any reader who wishes to pursue the subject of data models further is referred to Date a s . a straightforward text and to Chen as a more advanced reference. Knuth is a reference for graphs and trees. INTRODUCTION This paper presents a simplified discussion of the structure of R&D information from the view of the information use or user rather than from the view of computer processing. It contains a discussion of *Prime contractor for the Department of Energy. structure which is logically inherent in the information or which is deemed as a pragmatic "natural" organization by the user. An attempt is made to lead the user through a simple exposition on structures and relate them first to examples and then to the nature of a DBMS which might be required to meet his needs. All examples of uses are taken from experience at the Department of Energy installations in Oak Ridge which include the Oak Ridge National Laboratory and the R&D projects of two high-technology production plants. In addition to the inherent logical structures and pragmatic organizational structure, the influence of the query language, access methods and analysis algorithms on the structures is also discussed. Since a specific DBMS may process only one information structure, the paper discusses how the more complex structures may be represented as simpler structures likely to be found in a general data base management system (GDBMS). The effect of the use of structures in user processing modules is discussed. A number of secondary considerations such as the influence of structure on data base size and processing times are mentioned. No effort is made here to deal with the data storage structures except as they may pose problems for the user in retaining and processing his inherent structures. In this we limit ourselves to data base models which are generally available -hierarchical, relational and network. 1. 0 Inherent and Pragmatic Structure 1.1 Inherent structure is the logical associations which exist between actual entities of a problem. It cannot be changed without misstating the problem or at least stating it incompletely. The system chosen to process such a problem must preserve this structure in the sense that all its properties are recoverable as these are essential to the solution of the problem. 1.2 Pragmatic structure is the logical associations created between entities in a problem for the convenience or efficiency of its solution. The pragmatic structure used may be one of several alternatives, but it must enable the system to preserve the inherent structure. Pragmatic structures, due to the nature of computers and other reasons, are often combinations of simpler structures accompanied by rules for reconstruction of the original structure. 1.3 The next section describes structures which may be either inherent or pragmatic. 2.0 Mathematical Structures Greatly simplified, structure is the pairwise logical association between "things". These things are called entities, and they must have a well-defined membership in a disordered

									collection,
	called	an	entity	set.	The	pairwise	logical	association or
	relationship	between	entities	may	be	nondirectional	or
	directional.	Thus,	a		simple	association	may	be pictorially

represented as a line segment connecting two nodes (or points), i.e. Nondirectional Directional Information items known as attribute values may be associated with either entity (node) or with the relationship (segment). Rather than develop formal definitions of information structures, we shall define and illustrate pictorially a variety of structures which may express the logical associations inherent in the user problem or pragmatic to the organization of his data. We shall speak of nodes and segments rather than entities and relationships. The most significant attribute of a node is its identification or label; of a segment, its direction if any. Additional attributes of nodes are also referred to as labels while attributes of segments are known as weights. Segments are identified by the labels of the involved nodes with an implied direction where required. We now define and pictorially illustrate a variety of structures. 2.1 Cyclic Structures 2.1.1 A graph is a set of nodes, S, and a set of pairs of nodes from S, P(S), i.e.

A path is a set of connected segments between two nodes and a circuit is a closed path. A region is an area encompassed within a circuit of a planar graph, i.e. BCDB in Figure 1. For each planar graph, there exists a unique dual graph expressing in its segments the adjacency of the regions of the original graph. A directed graph or digraph is a graph whose segments have a preferred orientation and is defined by a set of nodes (S) and a binary relation on S, R(S). (A binary relation is a set of ordered pairs of elements (nodes).

	2. 1.2

dashed lines separating quadrants have not been specified in the definition for the purpose of simplicity. The figure could well represent a small geopolitical unit with regions M, N, E, S, and

	W	having	populations	P,	P(N),	P(E),	P (S

) and P(W) with latitude, longitude and altitude at each node. Geopolitical boundaries, geographical boundaries, and linear features such as rivers, roads, canals, and transmission lines have produced the most sophisticated and largest, although planar, structures. Examples of nonplanar graphs in data management have been production process flows, food chain kinetics, and stereoisomerization of cyclic compounds. These problems generally are not considered for processing by a GDBMS due to their highly specialized nature; but as they become more commonly used, it may be desirable to incorporate management of such data within a more general system. 2.2 Acyclic Structures Acyclic structures are graphs which have only one path between any two nodes. Their occurence in experimental data is far more common than that of the cyclic structures of which they are a specialized case. We illustrate several below. 2.2.1 A free tree is a nondirected graph having only one path between nodes.

2.2.3 The rooted oriented tree is an oriented tree with only one incoming path per node and a unique root node which has no incoming paths. It can express only "one to many" relationships which is often a serious limitation for some problems. It is also called a hierarchy and is the most common irregular structure found in data base systems. T = S = R(S) = C D <S,R(S)> a) Unique Root Node A ,B ,C ,D ,E b) One Incoming Path/Node A B ,BC,BD,BF,AE Figure 8b Trees must be labeled and weighted in order to carry attribute values for nodes and segments. The subtrees may be ordered, usually counterclockwise, about the node? and the order may be indicated by a top down left branch first (preorder) traversal sequence of nodes. The rooted tree structure is accommodated directly or indirectly by most DBMS. Some systems may permit multiple hierarchical descriptions of the same set of nodes which pragmatically may remove the "many to one" restriction. Regular Structures Many R&D data bases have very regular structures; namely, vectors and multiply-dimensional arrays. These can be viewed as regular trees. Array (as regular rooted tree) Vector (as a simple rooted tree) •-•-•--• Vectors and arrays are so legion in R&D data that no examples are necessary. It should be sufficient to say that most large computational problems deal with these regular structures. Collections of Structures All of the above structures, graphs, trees, arrays and vectors, may occur as collections of separate (i.e. disjoint) structures which have no connections and no specific order between the isolated subgraphs. Some problems, such as contour lines, do impose some secondary association between disjoint structures. Two examples of disjoint graphs are shown. Again, these are usually processed by special software systems, not by a DBMS. 2.4.2 Many experimental or observational data bases can be organized into a collection of rooted trees. This occurs frequently when information is uniquely associated with independent conceptual individuals which form a population. Such a collection is termed a forest. Forest -A Set of Trees Figure 9 The occurrence of this form is rampant in science, perhaps because it coincides with the statistical view of a population of individuals. Some examples are: field observations, experimental animals, sample analyses, bibliographic files, and card catalogs.

Our enumeration of structures is at an end. The user should be able to relate the structure of his problem to one or more of those presented. There is opportunity for great complexity. Fortunately, most complex structures can be expressed in equivalent simpler structures which can be used to produce the same results given the necessary algorithm. In fact, the ultimate structure of most computers is linear with some artifice used to represent more complex structures. 3.0 Atomic Data Elements Atomic data elements are representations of attribute values which have no structure in the sense they cannot be subdivided without loss of meaning. Scientific data management requires several kinds especially if both display and computations are to be carried out. We list without comment several which seem necessary: text strings, numeric strings, machine words (binary integers and floating point), bytes, bits and bit strings. Atomic data elements may be fixed length or variable length and both are desirable if not essential in a scientific data base management system (SDBMS). 4.0 Simple Representation of Complex Structures It is readily apparent from the definitions of complex structures in terms of simple structure, i.e. associated pairs, that complex structures can be represented by simple structures. It is important, however, that the simple structure be chosen so that the inherent features of the complex structure can be maintained or readily reconstructed from the simple structure. 4.1.1 The basic process for reducing the complexity of a structure is to break a segment and place the name of one node as a label in a data field of the other node. In this manner a graph can be reduced to a tree or collection of trees and a tree to a collection of vectors which form one or more relations. This latter process, called normalization, results in recording the identifying labels of the complete path from root to data node along with all data at the node. This process tends to inflate a data base in size but has desirable attributes with respect to data base update. For a very deep hierarchy (rooted tree), this inflation may be a serious problem for large data bases. 4.1.2 Structure within a data base can exist within a single record, between a few records or a single structure for an entire data base. Often this distinction in the data base model is not made clear. Structure within a single record is almost always expressed as a relative address within memory. Structures between records (which are usually simple structures, i.e. vectors) are usually expressed as device address links to the next logical record. Records stored in single large hierarchies usually use nested directories or indices. The network data base model provides for multiple links to express alternate hierarchical representation but constraints exist upon the owner-member relationships. Thus the user must consider how the structure of his problem maps into the structure of the system used and the algorithms available to "reconstitute" the inherent structure of his problem. 4.2 Processing Algorithms and Queries 4.2.1 The processing algorithms of a DBMS include the processing of queries and usually some other simple standard services. The collected demands of the many autonomous scientific users of a system probably must be satisfied through a user-interface which enables attachment of user software modules. This may also be required to process special queries which are not readily expressible in the standard query language. In any case, consideration of the ability of the data base system structure to support these extracurricular needs is important if the system is to be satisfactory. For example, if the structure of the problem is a forest of rooted trees and each query demands that this structure be "recreated" from a relational or network model, then this may be more costly than keeping a rooted tree record structure. Specialized computational needs may require the storage of vectors or large arrays within one record. The user interface and module are a solution only if the data base structures are suitable to the user algorithm. Stated another way, a good SDBMS will probably permit vector, array, and rooted trees within a logical record stored within the data base structure. 4.2.2 The visual display of structure (i.e. maps) will require algorithms which reconstruct the complex structure. When such displays involve many "elements", special storage of data may be necessary for efficiency of processing. Again, in addition to the user module, the data may have to be stored in a user-determined structure which can be described for retrieval and referenced easily in the SDBMS for the user.

									In addition	to
	display,	other	computational	procedures may require referenced
	user files.						
	4.2.3 The complex structures	of	a problem	may	exist	to	facilitate
	structure-oriented	retrieval,	for example the search for a tree
	of special characteristics within a	forest.	One	may	wish	to
	examine	only	certain subtrees, ignoring the rest.	Such a query
	may be simple	to	express	with	a	tree-structured	record	but
	complex	within a relational data base.

Westley Publishing Company, London, 1975. 2. Chen, P. C., "The Entity-Relationship Model - Toward a Unified View of Data," ACM Transactions on Data Base Systems, Volume 1,

	1.	Date, C. J.,	"An	Introduction	to	Data	Base	Systems,"
		Addison-No. 1, March 1976.					
	3.	Knuth, D. E., "The Art of Computer Programming	-	Volume 1,"
		Addison-						

Westley Publishing Company, London, 1968. A. Introduction A complete specification of the capabilities required in a Generalized Data Base Management System (GDMS) for handling of scientific and technical data is very difficult due to the number of ways in which such a system might be used. Different applications require different data handling capabilities. Indeed, the capabilities of a GDBMS found important in one application may be of little or no importance in another application. As a result, a GDBMS cannot hope to satisfy all requirements for data handling in all situations. A GDBMS can, however, greatly ease the task of data management in most situations and provide a framework on which specific applications can be developed. The capabilities of a GDBMS outlined in this paper are not intended to be an all inclusive specification for such a system. The intent was to list what was thought by the specialists to be the most important requirements that should be present in a GDBMS. These requirements have been divided into two sections for purposes of presentation. The first section deals with the capabilities required of a GDBMS for handling scientific and technical data.

								The second part addresses
	general	features	often	found	in a GDBMS which	are	also	required in	data
	applications.						
	B.	Handling Scientific					

and Technical Data Scientific and Technical Data present a number of special requirements that are not usually supported by the current data base management systems. In this section we present a number of requirements that should be present in a GDBMS if it is to handle this type of data effectively. Much of the data in a scientific application may be numeric while other types of data may be descriptive. A GDBMS should be able to support both types of data in an optimal manner. Specific requirements for numeric and non-numeric data are given here. 1. Requirement for Numeric Data (a) Data Element Representation. A GDBMS for scientific data should be able to handle several forms of data. In order to gain a high degree of precision (and compression in storage), it is desirable that the GDBMS support the storage of binary data. Four forms of binary representation should be supported: (1) Fixed Point, (2) Floating Point, (3) Double Precision, and (4) Bit String. In general the system should be flexible enough to allow whatever representation one needs (binary or textual). It should be possible to introduce new data forms (for example, physical constants) and the facilities for handling them as the need arises.

	(b)	Numeric Data	should be	easily	searched	(using data	ranges	and
		relational operators) and easily manipulated.			

It is important that the GDBMS have flexibility so scientists can experiment with many relationships that seem to be present without high overhead in data base restructuring. The interrelationships among the various data elements should be Msoftl f in the data base so that many "views'1 of the data base can be accommodated without restructuring the data base. (g) A high degree of compression of the data is very important. The use of variable occurence and variable length data elements is very common. 2. Requirements for Non-Numeric Technical Data (a) The qualitative descriptions and explanations of scientific methods of investigation

		are	often present with	scientific	data.	These
	descriptions	vary	a great	deal	in length.	Therefore a GDBMS

must support variable length data elements and must allow numeric and non-numeric data elements to be present in the same data base. (b) Textual descriptions present a number of information representation problems that must be taken care of by the GDBMS. The use of textual descriptions must be carefully controlled so that these descriptions can be used in a precise manner when searching the data base. It is desirable that the GDBMS support many of the capabilities used by information scientists to carefully control the problems that occur in human languages. The system should support validation, classification, and the use of a thesaurus. (c) Using human languages to communicate technical ideas leads to unavoidable problems that result from differences in education, experience, background, environmental conditioning, and linguistic facility among originators, indexers, retrievers, and potential users of information. Expressed specifically in terms of a functioning information system, the problem is this -"How can the information presented in a physical document be indexed for retrieval so that the identity of its content will not be distorted or obscured by differences in intellectual qualifications and linguistic facility among originators, indexers, searcher, and users?." This problem must be solved to assure that stored information has an acceptable potential of retrievability. There are imperfections in paths of communication which make it virtually impossible for possessors of knowledge to create written records which will carry to users exactly or even approximately the intended meaning. Imperfections in communication arise from the essential richness and complexity of language, linguistic factors, and human factors.

			The linguistic factors	manifest	themselves	in	the
	problems	of	semanatics,	generics,	and	syntactics,

while the human to this large volume of data, factors pertain to the problem of viewpoint. Effectiveness of retrieval will be directly proportional to the adequacy with which the problems of viewpoint, generics, semantics, and

							syntactics	had been
	solved.				
	A	technical	thesaurus functions as a word-reminder list.	It enables
	indexers:	(1) to describe information being indexed by as many	terms
	as	appropriate	or necessary	to provide for the different points of
	view from which the information in the	document might	be	regarded;
	(2)	to	describe information in synonymous or nearly-synonymous terms
	where appropriate;	and	(3) to	relate narrower	concepts	to more
	inclusive	concepts	on generically high	levels.

) by Viktor E. Hampel and Daniel R. Ries Data Management Group Lawrence Livermore Laboratory Livermore, California, 94550 September 30, 1977

									Authorization	and	funding	for SDMS must clearly
	come from	top	DOE	management;	only	then can we hope to reduce the redundant
	development of special,	home-grown	systems	and	their	costly maintenance, in
	support of	small but active s c ie n tific programs.	A SDMS should, therefore, not
	be proprietary software.		It	should be reasonably portable for use on back-end
	mini-computers and		the more powerful machines; it should be self-guided to help
	the casual user find his way.	From a technical point of view, the system should
	work equally	e ffic ie n t ly	vectors,	matrices, arrays, complex variables, sparse
	data and text.	It should be capable of storing and displaying data with most of
	the customary	s c ie n t ific	notations	and	attributes	in	different	units	of
	measurement.	The user should	be	able	to	use	the	system	as a programmable
	calculator for	simple	mathematical tasks, and he should be able to extract and
	transfer data	to	his	model	or	application	program	for	more	d if f ic u lt
	calculations.	The		system		should	permit	common	access	to	a	library	of
	inter -reI ated data bases and	reference	tables.	In this sense, the SDMS should
	permit expansion	to	an Integrated Information System on computer networks with
	distributed resources.	Most importantly, the user should be given a reasonable,
	E nglish-like command	language		to	start, but he should also have the option to
	create his own dialects	and	extensions	of	the	system	for	his personal and
	programmatic needs.						
								1. INTRODUCTION
											ABSTRACT
		This question		is	not	new.		It	has	persisted	at	most	AEC/ERDA/DOE
	Laboratories and computer centers during the past decade.	As we are considering
	F irst, we a future Generalized discuss Data	probable Management causes System for	the (GDMS), absence that	of might a	portable, serve the
	generalized data base management s c ie n tific community at large,	it	system for scientific data at the DOE National seems pertinent that we examine the reasons
	Laboratories:	The	d if f ic u lt y		in	assessing	the	monetary	value	of accurate
	up-to-date information and data as a corporate or national resource; the gradual
	evolution of	highly	e fficie n t, sole-purpose and insta llatio n dependent systems
	where very large amounts	of	data are involved; the historical	trend of judging
	the power	of	computers	primarily by their caIcuI ationaI speed; the consequent
	delegation of data management The state of the art	to of	a business-oriented secondary, piggy-back data management role on the large is well
	machines; the d if f ic u lt y of providing the scie n tist or engineer with data in his documented in the recent literature. Available features and their
	customary notation; the apprehension implementation techniques are summer i zed of	the by	casual the Comparative Data Management user having to learn the
	p e c u lia ritie s of home-grown systems; and fin a lly , Systems seminars, given throughout the year	the absence of a comprehensive by the U niversity of C a lifo rn ia
	body of computer-readable Extension D ivision at Los Angeles. sc ie n tific At	data that is authenticated, in the public LLL, we have worked with a large number
	domain, and which could act as an incentive for local use. of highly d iv e rsifie d technological and s c ie n t ific data bases, ranging from
	material properties, air-poI Iution	data,	ecological data, atomic and molecular
	Second, we identify administrative and technological requirements that seem necessary and desirable for data, laser parameters, and the Table of Iso topes.[1-4] We have also studied and the design of a general Scientific Data Management developed data management systems and computer
	•	Prepared for the U.S.	Energy	Research	&	Development Administration under
		contract No.	W-74050Eng-48		

-111 -System (SDMS) in support of the newly emerging national programs concerned with energy and the environment:

"Why Another Data Base Management System?" why an adequate system for generalized s c ie n tific data does not exist today. By reviewing the historical evolution of data management in an adm i n i s t r a t i ve and technical sense, we should be better prepared not to repeat the mistakes of the past.

report was prepared as an account o f work sponsored by the United States Government. Neither the United States nor the United States Energy Research & Development Administration, nor any o f their employees, nor any o f their contractors, subcontractors, or their em ployees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness o f any information, apparatus, product or process disclosed, or represents that its use w ould not infringe privately-owned rights."

	The system	should	be	designed,	developed,	and	implemented	as	a
	rapid co lla b o ra tiv e p roject, progress	of	computer under the	hardware technical	and leadership improved	of	communications one o rg a niza tion . have
	stim ulated c o lla b o ra tio n		among	the	National kept	Laboratories. separate. C o n trib u to rs As software could
	developments increase in cost, of u t i l i t y routines and computer programs. we note also a greater reliance upon the sharing This is e s p e c ia lly apparent between s p e c ia liz e in their fie ld of expertise by w ritin g modules in support of their local requirements. This should find the endorsement of local management. It EVOLUTION OF DATA BASE
	LASL and LLL where lib ra ry of supporting the joint use of the LTSS operating system and its extensive u t i l i t y routines has resulted in a considerable savings for the two Labs. suggests a top-down, modular, and well structured approach for use on mini-computers and the major main-frame machines. SYSTEMS	löTPLßeU
	If we agree that	measured	and	evaluated	p ro p e rtie s	of	nature	must be
	With reference unencumbered by legal or monetary co nstrain ts to support the national R&D e f fo r t to the Inter laboratory Working Group for D a t a Exchange
	(I W G D E), now in the sciences, that	a then	viable the generalized S c i e n t i f i c D a t a M a n a g e m e n t S y s t e m as the data exchange format has been established for
	magnetic tapes, primary tool for their e f fe c tiv e use must also be in the p ub lic domain. the concerns about a portable data management system Before for
	s c i e n t i f i c data is coming again into the forefront of atte ntio n. a major commitment is made, the development of a prototype should be funded. Several of the
	IWGDE s ta ff are co n trib u to rs preparing to lay the foundation to This would permit us to test sense, and to engender user support. the of the	OECD/NEA a generalized system for s c i e n t i f i c use. S p e c ia lis t Study Group that is p r a c t i c a l i t y of the proposal in a lim ited Scientific Functional
	This suggests a modularity of S D M S design.	One would hope to devise a procedure
	whereby p a r tic u la r wish-l is t to s a t is f y features for a s p e c ific the necessary and s u ffic ie n t in s t a lla t io n could be selected from a local requiremments. Also, Te c h n o l o g i c a l
	one would	hope that computer s c ie n tis t with p a r tic u la r expertise	in their fie ld
	of s p e c ia lty could be e f fo r t. In a p ra c tic a l engaged sense, to Bibliographic Interactive On-Line Secaeohinq p a rtic ip a te in the design and development features, i.e ., modules, needed at some
	in s t a lla t io n should best be developed by in-house p ro fe ssio n a ls, bearing In mind
	the more	general			requirements	of	the	overall S D M S system.	One organization
	should be assigned	r e s p o n s ib ility	for	the project.	A u tho riza tion and support
	should come	from DOE Headquarters, based upon the foresighted beginning made by
	the O ffic e of EnvironmentaI	Information Systems, DOE/EOIN. NOTICE
	1965	"Reference to a company does not imply approval or recommendation or product name 1970	1975
					of the	product	SUMMARY by the U n iv e rsity	of
					C a lifo r n ia or	the	U.S.	Department	of
	We believe the time Energy to the has come for top DOE management to deal with the issue exclusion of others that
	of generalized,	scientific data management in a concerted and determined manner. may be s u ita b le ."
	By such action,		redundant	and	costly	developments could be channeled to good
	advantage.	Today,	the	design, development, and implementation of a Scientific
	D a t a M anagement S y s t e m (SDMS)	is	less	risky	than in years past.	S ig n ific a n t
	advances have	been	made	In computer science,	the r e l i a b i l i t y of business data
	management on a global	scale	is NOTICE proven,	we	are in a p ositio n to give to the
	s c ie n t is t and reductions due to mIcro-computeriza11 on are continuing. engineer his data in acceptable s c i e n t i f i c In p a r t ic u la r , we recommend for co nsid eratio n the concept of the back-end forms, and the cost mini-computer as a dedicated s c i e n t i f i c D a t a M anagement Machine. It would not only reduce the I/O burden now carried by the powerful computers, but would also provide for the casual and knowledgeable researcher, or technical adm inistrator, a responsive tool for increased p ro d u ctiv ity. "This -128 -

A d m inistrative r e s p o n s ib ilit ie s should be

Figure-1 : The Evolution of Data Base Management Systems

TABLE SAMPLE

 SAMPLE

		SAMP-ID CHAR 10,
		SAMP-TYPE CHAR 6,
		DATE-COL D A T E ,
		COMMENTS T E X T ;
		DEFINE TABLE MEASURE
		SAMP-ID CHAR 10,
		ANAL-TYPE CHAR 10,
		ELEMENT CHAR 3,
		PPB	FLOATING,
		ERR FLOATING,
		DATE-ANAL DATE;
	Input is accepted in free format; the spacing in these examples is for
	c 1ar i ty o n l y .
		Most manipulation is done with the relational assignment statement,
	in which one or more tables (relations) are operated upon yielding a new
	table.	Queries to the database are realized by creating a result table
	containing the answer(s).	We will illustrate a few commands, including
	the three basic table operations.
	1. PROJECT -This operation copies desired columns from a table into a
		new tab1e .
			It may be printed by
			PRINT TEMPI;
	2.	SELECT -Desired rows may be selected from one table creating a new
		table based on the value of an arbitrarily complex boolean function.
			TEMP2 = MEASURE WHERE ELEMENT = "CL" OR
			(ELEMENT = "U" AND PPB > 500);
		TEMP2 is created with all the columns of MEASURE but contains only
		rows for chlorine measurements or uranium measurements with
		concentrations of greater than 500 parts per billion.
	3.	JOIN -Tables may be combined based on equal values in designated
		c o 1umn s .
			TEMP3 = (JOIN MEASURE WITH SAMPLE ON SAMP-ID)
			PROJ SAMP-TYPE ELEMENT;
		This statement combines the rows from SAMPLE with those from MEASURE
		where the SAMP-ID columns in each match.	It then projects only
		SAMP-TYPE and ELEMENT causing TEMP3 to be a table showing all the
		elements found in each sample type.

TEMPI = SAMPLE PROJ SAMP-ID SAMP-TYPE;

The result is a new table named TEMPI with columns SAMP-ID and SAMP-TYPE from the SAMPLE table.

 has evolved, many people have contributed ideas and assisted with programming. They include Tricia Coffeen, Paul Chan, Geoffrey Fox, Marge Hutchinson, Silvia Sorell, Paul Stevens, Gill Ringland, Alan Rittenberg, Deane Merrill, Tom Lasinski, Tom Trippe, Vicky White, and George Yost. Over the course of development, support has been provided by the National Science Foundation and the National Bureau of Standards, in addition to that of the U.S. Department of Energy (in its previous incarnations as the U.S. Atomic Energy Commission and later the U.S. Energy Research and Development Administration).

	EXTENSIONS TO THE JOSHUA GDMS TO SUPPORT ENVIRONMENTAL SCIENCE AND ANALYSIS DATA HANDLING REQUIREMENTS*
	J. E. Suich and H. C. Honeck Savannah River Laboratory E. I. du Pont de Nemours and Company Aiken, South Carolina, U.S.A.
	REFERENCES
	1. Richards, D.R., BDMS U s e r ' s Manual, LBL-4683 (Revision 1); BDMS Pr ogrammer' s Manual, LBL-4684; BDMS Implementation Manual, LBL-
	4685.
	2. Berkeley Particle Data Group, Particle Physics Data System D o c u ment File, PDG-3100*, Particle Physics Data System Reaction-Data File, PDG-3200.
	3. Stevens, P.R., and Rittenberg, A., The Particle Data Group: Using a GDMS to Solve Data Handling Problems in Particle Physics, CALT-68-622, contribution to this study.
	-150 -

 structured by the integer string 3,8 (3 regions, 8 nuclides). Writing the COMPOSITION table in columnar form as follows:

	Nuclide	Region	Density
	1 2	1 1	.076 .133
		2	m2kk
	k	2	.101
	5 6	2 2	.176 .0^0
	7	3	-20*f
	8	3	-Oil

 The numerical representation of all likely conventions have been formalised in COSMOS. The Nest integers always appear in the pattern defined by the convention and include the convention code number. The integers are never mixed with the datablock itself. Nest interpretation routines are bound into every COSMOS program. The names of the connected entitles gives the Nest Display name, eg (REGION(NUCLIDE)) and the input to the program would state that the datablock COMPOSITION is described and structured by the Nest whose display Name is (REGION(NUCLIDE). LABELS 13* The datafiles are held on close packed variable length datablocks and catalogued by their Labels, and each dataset catalogue is a datafile in the COSMOS directory handled by accession routines. The directory consists of an index of Datafile names linked to an accession number, and physical address pointers also linked to accession numbers. The 5 dimensions of the Label are:

	(i) Display Name:
	(ii) Version Number
	(iii) Program Name:
	(iv) Run Number:
	(v) Library Number:

TABLE -

 -

		NAME=T A B L E ;		
	NODE;	N = Z ;	V -z ^z	NODE;
		N=W;	V -w ^w	NODE;
		N = S ; U ;	V=s;u;	
	N O D E ;	N=X1 ;X2 ;X3;	V=xn ;xl2 ;x13 ;x21 ' * * ,X43

*

Y=y1 ;y2 ;y 3 ;y4 ;y5 y 16 '

 animal sex search term can be either SEX:MALE or SEX:FEMALE. Age ranges search terms (or the body weight ranges) are chosen based on the age categories defined by Battelle. There is a unique age category number assigned to each age range (or body weight range).This age category number is the age information stored in a summary record. The age related index term generated in the summary record level is the age category number concatenated with the corresponding age range (or body weight range). The observation date range search term divides the time interval in a yearly base. For example, the observation date range search term O B S :720101/721231 retrieves all the laboratory animal data observed in 1972 out of the IADB. The basic reason to construct the search instructions by using the unique combination of logical file type, animal colony, sex, age range (or body weight range), and observation date range is because the document sets defined by these unique combinations are the appropriate data which can be used to generate the baseline values. In other words, each hematology and clinical chemistry data element in a summary record represents a group of data for the set of individual control animals with the same sex, category, observation year, logical file type, and environmental and husbandry factors. The product of this first stage effort is essentially to generate a series of document sets which will be processed by the summary program to generate the summary records.

	IADB	ADB	
	Raw Data	Data Collection cribe^L Trans F o r m s ^ÎADB
	Head File Trans	< 2 > l IADB Uninver ted Index	First Stage
	actions	File Transac-Lior	
				Editing
				Program
		Data Standard	Correct Mechanical	r
			Errors
			Second
			Stage
		Data Source	Biomedical
	Rej ected	Review	Data Review
	Data		
				Head File Manager
		FIGURE 3. SUMMARIZATION SCHEME
		-	207 -

FIGURE 2. IADB DATA SCREENING AND DATA QUALITY CONTROL FLOW CHART Uninverted Index File Manager -209 -

 7. Repeat Step 1 through Step 6 for the other requested combination of colony of animal, sex, age range, test, and subfile type to generate other sets of summary records as required.

TABLE 2

 2

		. DISK STORAGE STATISTICS	
	File Type	IADB (bytes)	LADB (bytes)
	Head File	5,900,160	1,021,440
	Inverted Index File	2,786,560	898,560
	Range File	924,800	-
	Table File	57,600	57,600
	Uninverted Index File	9,507,840	673,280
	Total	19,176,960	2,650,880

TABLE 3 .

 3 INFORMATION CONTENT COMPARISON DATA

					95% Confidence Interval	
				Standard			
	Data Field	No. of Cases	Mean	Deviation	Start	End	Data Bas
	Red Blood Cell Count	1000	7.100	0.743	7.054	7.145	IADB
			(7.108)	(0.761)	(7.061)	(7.156)	LADB
	White Blood Cell Count	1008	10.115	3.117	9.922	10.308	IADB
			(10.214)	(3.076)	(10.022)	(10.406)	LADB
	Hemoglobin	1006	16.682	1.808	16.570	16.794	IADB
			(16.790)	(1.847)	(16.675)	(16.904)	LADB
	Serum Glutamil Oxaloacetic	868	27.586	9.854	25.930	28.243	IADB
			(27.786)	(10.035)	(27.125)	(28.467)	LADB
	Total Protein	323	6.138	0.582	6.074	6.202	IADB
			(6.198)	(0.618)	(6.129)	(6.268)	LADB
	Creatinine	859	0.819	0.159	0.808	0.830	IADB
			(0.833)	(0.166)	(0.822)	(0.844)	LADB

 5. The menu-selection activities* included in the fifth page of this example illustrate the automatic LOGOUT procedure provided by LADB.

	YOU HAVE SELECTED DATA ELEMENTS OF INTEREST	
	CHOOSE YOUR NEXT STEP BY NUMBER:	
	1. RUN IMMEDIATE SEARCH FOR RESULTS	
	2. SAVE DATA ELEMENTS OF THIS PROFILE FOR FUTURE SEARCH	
	3. RETURN TO "CHOOSE CLASS(ES) OF BASE-LINE DATA"	
	/ J_ C H O O S E B A S I C LADB SERVICE BY NUMBER: 1. SEARCH (BUILD A PROFILE) 2. USE A PREVIOUSLY SAVED PROFILE 3. SIGN OFF (STOP LADB) FOR HELP CALL (202)-785-8414 / _i CHOOSE FILE BY NUMBER: 1. BASE-LINE FILES 2. STRAIN DESCRIPTIONS 3. HUSBANDRY DESCRIPTIONS (NOT AVAILABLE) 4. PROTOCOL DESCRIPTIONS (NOT AVAILABLE) MORE TERMS EXIST FOR ** AGE CATEGORY ** YOUR SEARCH HAS PRODUCED THE FOLLOWING PRELIMINARY RESULT: WOULD YOU LIKE TO SEE THEM? 8 COLONY RECORDS ENTER YES OR NO CHOOSE YOUR NEXT STEP BY NUMBER: / NO 1. MAKE PROFILE MORE GENERAL/SPECIFIC FOR ** AGE CATEGORY ** 2. SAVE PROFILE FOR FUTURE USAGE CHOOSE 1-LOOK, 2-LIST, 3-LEAVE 3. RETURN TO "CHOOSE BASIC LADB SERVICE" (REPORTS, STATISTICS, ETC. / J _ / 3 FOR *" *■ OBSERVATION YEAR ** CHOOSE BASIC LADB SERVICE BY NUMBER: CHOOSE 1-LOOK, 2-LIST, 3-LEAVE 1. SEARCH (BUILD A PROFILE) 2. USE A PREVIOUSLY SAVED PROFILE / JL 5. ANALYTICAL PROCEDURES DESCRIPTIONS (NOT AVAILABLE) 6. RETURN TO "CHOOSE BASIC LADB SERVICE" FOR HELP CALL (202)-785-8414 / _L CHOOSE SPECIES BY NUMBER: 1 . DOG (BEAGLE ONLY) 2. HAMSTER (SYRIAN GOLDEN ONLY) 3. MONKEY (RHESUS ONLY) 4. MOUSE 5. RAT 3. SIGN OFF (STOP LADB) THERE ARE 13 COMBINATIONS OF THESE IDENTIFIERS FOR YOUR SEARCH FOR HELP CALL (202)-785-8414 DO YOU WANT TO SELECT GROUPS BY AGE, SEX, OR TEST YEAR? 4. BUILD A WORK SET (YOUR DATA) ENTER YES OR NO 5. STATISTICS 6. PRINT REPORTS / 10 CHOOSE ONE DATA ELEMENT BY NUMBER / JL 1. PLATELETS (10**3 PER CU MM) DATA AVAILABLE FOR STATISTICAL ANALYSES ARE GROUPED 2. ENTER A DATA ELEMENT ABBREVIATION BY COMBINATIONS OF AGE (OR AGE GROUPINGS), TEST YEAR, AND SEX 3. RETURN TO "SELECT DATA GROUPINGS" FOR EACH DATA ELEMENT (E.G. HCT, BUN, WBC) WITHIN A COLONY. 4. RETURN TO "CHOOSE BASIC LADB SERVICE"
	6. RETURN TO "CHOOSE FILE" THERE ARE 132 / J_ COMBINATIONS OF THESE IDENTIFIERS FOR YOUR SEARCH / J_ DO YOU WANT TO SELECT GROUPS BY AGE, SEX, OR TEST YEAR? CHOOSE CLASS(E S) OF BASE-LINE DATA BY NUMBER: (E.G. 1,4,5) ENTER YES OR NO ** INDIVIDUAL DESCRIPTORS ** / YES 1. ENTER DATA ELEMENT ABBREVIATION(S) FROM LADB SERVICE CARD FOR ** SEX ** ** GROUPED DESCRIPTORS ** CHOOSE 1-LOOK, 2-LIST, 3-LEAVE 2. COLONY ID 3. PROTOCOL/HUSBANDRY FACTORS / _2_ 6. RETURN TO "CHOOSE BASIC LADB SERVICE"
	** DATA DESCRIPTORS ** 4. HEMATOLOGY 5. CLINICAL CHEMISTRY 6. GROWTH AND LIFESPAN 7. PATHOLOGY 8. RETURN TO LAST CHOICE / _L CHOOSE ITEM(S) FOR ** SEX ** / J_ CHOOSE DISTRIBUTIONS OPTION BY NUMBER: 1. CHOOSE ALL 1. STATISTICS 2. FEMALE (66) 2. TABLE(DETAILS)+STATISTICS 3. MALE (66) 3. STATISTICS+HISTOGRAM 4. CHOOSE NONE 4. STATISTICS+TABLE(CONDENSED)+HISTOGRAM END OF TERMS FOR ** SEX ** / JL / J_ SPSS/ONLINE V4.0 FOR ** SEX ** CHOOSE TYPE OF HEMATOLOGY PARAMETER BY NUMBER: (E.G. 1,2,3) 1. NON-SEGMENTED NEUTROPHILS 2. SEGMENTED NEUTROPHILS 3. LYMPHOCYTES 4. MONOCYTES CHOOSE 1-LOOK, 2-LIST, 3-LEAVE ------FREQUENCIES ---/ J_ FOR ** AGE CATEGORY ** END OF FILE ON FILE INDATA CHOOSE 1-LOOK, 2-LIST, 3-LEAVE AFTER READING 123 CASES FROM SUBFILE NONAME
	5. EOSINOPHILS 6. BASOPHILS PLATELETS IN 10**3 PER CU MM CHOOSE ITEM(S) FOR ** AGE CATEGORY ** PLAT 7. HEMATOCRIT 8. HEMAGLOBIN 9. MEAN CORPUSCULAR HEMAGLOBIN 10. MEAN CORPUSCULAR HEMAGLOBIN CONCENTRATION 11. MEAN CORPUSCULAR VOLUME 12. NUCLEATED RED BLOOD CELLS 13-PLATLETS 14. RED BLOOD CELL COUNT 15. RETICULOCYTES 16. WHITE BLOOD CELL COUNT 17. RETURN TO "CHOOSE CLASS OF BASE-LINE DATA" / 1 1 1 . CHOOSE ALL 2 . 03(2.00 -2.99 MO) (1) 3. 04 (3.00 -3-99 MO) (2) 4. 05 (4.00 -4.99 MO) (1) 5. 06 (5.00 -5.99 MO) (1) MEAN MODE KURTOSIS MINIMUM C.V. PCT 283.102 406.744 .613 1 16.000 29.195 STD ERR STD DEV SKEWNESS MAXIMUM .95 C.I. 6.212 82.652 .719 MEDIAN VARIANCE RANGE SUM 567.231 270.842 TO 6. 07 (6.00 -6.99 MO) (3) 7. 08 (7.00 -7.99 MO) (3) / 9 10. CHOOSE NONE 9. 10(9.00 -9.99 MO) (13) 8. 09 (8.00 -8.99 MO) (8) VALID CASES 177 MISSING CASES 0	272.169 6831.297 451.231 50109.130 295.363
	--223 -222 --224 -	

* All user entries are underlined in the search example. -CHOOSE LADB STATISTICAL SERVICE BY NUMBER: 1. DISTRIBUTIONS (PRINTED CURVE AND STATISTICS,E T C .) 2. CROSSTABULATION (DATA ELEMENT VS SEX,AGE,ETC .) 3. BREAKDOWN (COLONY(S) BY SEX,AGE,ETC.) 4. T-TEST (COMPARE DATA ELEMENT BY SEX,AGE,ETC.) (NOT AVAILABLE) 5. RETURN TO "SELECT DATA GROUPINGS"

Table I

 I Performance tests with a 3000 record data base /Fig.47

		IBM 370/125 128 Kb (virtual storage)	PDP 11/70 256 Kb (64 Kb work spaces)
	Storage times				
		Elapsed	CPU	Elapsed	CPU
	Data base loading	53mn 15s 8mn 43s	6mn	Omn 34s
	Store isolated CALC record		36s	0.06s	
	Store CALC record in set (e.g. AGENCY)	Is. 74	0.10s	
	Store VIA record with CALC owner		Is	0.06s	
	Store VIA record with 2 CALC owners		Is	0.10s	
	Retrieval times				
		Elapsed	CPU	Elapsed	CPU
	Sequential scan of CALC				
	records, follow through two sets: 7mn 21s 3mn 11s	5mn	45.34s
	(e.g. INDIVIDU COMMAND QUANTITY) Find CALC record from symbolic key	5 transactions/ sec 25s 6s	7 transactions/sec 15s 0.46s
	(e.g. PRODUCT)	4 trans/sec	6.6 trans/sec
	CALC record by key then VIA	49s	9s	21s	4s
	record (e.g. PRODUCT QUANTITY)	5 trans/sec	11.7 trans/sec
	CALC record by key then follow 2 sets 52s	19s	41s	7s
	(e.g. INDIVIDU COMMAND QUANTITY)	15.6 trans/sec	19 trans/sec
	Extract a given record type by	lmn	38s	lmn 10s 12.20s
	sequential sweep of area	32 trans/sec	28 trans/sec
	(e.g. QUANTITY)				

Table I DATA REDUNDANCY BETWEEN C P L FILES

 I

TABLE II (

 II Contd.) Environmental Chemicals Data and Information Network) is a pilo t project to study the feasibility of setting up an information network for chemical substances and their effects on the environment. The project will constitute a valuable contribution to the European Communities EMIN (Environmental Management In formation Network). ECDIN is a research project of the European Communities; work is being done both by the Joint Research Centre of the EC and by institutions in the EC member states under contract w ithin the framework of the Environmental Research Programme. Data being collected by these institutions are being brought together at the EC Joint Research Centre in Ispra, Italy.

	BEC record-naine loc mode data item description ID REC record-name loc mode data item description ID ___	Length total occ ac (bytes) (kbyte) /mth length total occ ac (bytes) (kbyte) /mth
	(202.COMPUTES} o OJ ^1" COUNTRY	VIA -PAC202 CALC C0ÜNTRY-NALIE	COMPÌ COMP2 COUNTRY-NAI'ilE SPEC	1 10 10 "So Computer for which the program is Computer.on which .program is operable designed other computer on which the program is running Member country Country name 46 Flag for IAEA or special stats. 4 50	3	8000 300 2000 4C -50 1 40 8
	208 AOZ-rHOG 430 COMP-FAC 209" STATUS 117 CATEGORY 230 INDEX Introduction	VIA PAC20Ô VIA INST VIA PAC209 CALC CAT VIA IND TOTAL STORAGE REQUIREMENT FOR DATA BASE: NAME BESCR Related and auxiliary programs Program name Program description Computing Facilities TEXT (Standard-format description)8000 400 14 486_____ 500 250 TAPE BOX TCODE ICODE availability status of code STATDTE STATCODE date of status status code: 0 D A P T S X change Subject category CAT Category code letter 1 CAT-TITLE Category title 200 CAT-DESC Category specification 500 701 21 -offered -requested -arrived -prepared NEWS from CPL Index NEWS-NO Issue no. of NEWS from CPL 6 18 -tested -test suspended -not to be tested 14269 kbytes 50 10Q 20 100 30 20 3000 100 Tape no. place where tape is stored code letter of tester installation code of testing establishment 10 7 5 IÖ4 TABLE II (Contd.)
	210 DOC ECDIN (PAC210 VIA	REP AUTHOR DOCSTAT COPIES DOCDTE	Author name availability status: date of status change no. of copies on stock N -not distributed A -available but not distr. X -distributed if STATCODE ¿T T -distributed if STATCODE =T D -requested Reference no. of document Documentation record	6 BT" 4 1 50 20	124	200
	211 HARDWARE,	VIA PAC211	HARD	(free-format description) Machine requirements		500 750	1500 15
	(212 LANG ^VIA PAC212	LANG1 LANG2	language of original program language of adaptation Programming language used	20 40 10 10	2000 30
	213 SYSTEM	VIA PAC213	SYST	Operating system or monitor under (free-format -description) 500 1000 which program is executed	2000 30
				TABLE II (Contd.)			
				-286 -			

,

 X3.42-1975; ANSI, New York City, 1975.

	Date, C. J., A n I n t r o d u c t i o n to V a t a Base S y s t e m , Addison-Westley Publishing Company, Reading, Massachusetts, 1975.

It is not yet possible to offer a fully general representation of data structures without sacrificing performance. Most commercially available systems offer a more limited data model, which may force the user to adapt his applications to the constraints of the system. In particular, commercially available systems do not support some of the structures inherent to scientific data, such as vectors and arrays. Most such systems do not recognize numerical data types such as floating point : these data are treated as characters and must be interpreted outside the GDMS. It would also seem natural to store data tables and text strings in variable length records at appropriate points in the logical structure of the data base. This approach would for scientific data give rise to extreme variations in record length, over one or two orders of magnitude, and cannot easily be implemented in current systems. Systems presently on the market do not provide full data restruc turing facilities. Fundamental restructuring of a data base whose use has changed may be expensive both in programmer time and computer running time.

The system should be designed in a open-ended fashion to allow new features to be added with little difficulty.

Scientific Data Base Management at LLL

Scientific Data Base Management at LLLWhen this statement is parsed, the following tree is constructed: (The nodes with capital letters are tree nodes, the others are auxilliary informât ion).

5 5 -

5 8 -

FIGURE 6. LOGICAL FLOW OF LADB STRUCTURED SEARCH

-

ACKNOWLEDGEMENTS 21. The author is greatly indebted to D Wardleworth for permission to extract certain parts from his unpublished Committee Paper, and to the publications of Wardleworth & Wheeler and R J Brissenden. ACKNOWLEDGMENTS PDG's system has been built by the ideas and hard work of many people without whose contributions we would have had nothing to report. The design and implementation of BDMS has been almost entirely the work of David Richards. Those who planned, developed, and tested the software and procedures particular to PDG include B. Armstrong, T. Coffeen, R. Crawford, F. Gault, C. Horne, M. Hutchinson, R. Kelly, T. Lasinski, B. Read, R. Roberts, T. Trippe, F. Uchiyama, V. White, and G. Yost. Finally, a great deal of motivation and inspiration, especially in the early stages of the project, was provided by Geoffrey C. Fox and Arthur Rosenfeld. ACKNOWLEDGEMENTS The author gratefully acknowledges the assistance and suggestions from members of Battelle LADB research team including Dr. William J. Clarke, Dr. Charles R. Claydon, Albert R. Fish, Dr. Willard Gersbacher, Dr. Hugh H. Harroff, Victor A. Kean, Jr., Robert T. Niehoff, Lyn Sander, Richard C. Simon (LADB Project Manager), Kenneth F. Szczesny, Dr. Daryl C. Thake, and Dr. Ralph E. Thomas.

Acknowledgements

Role in process:

Multiple fields containing ECDIN numbers

ACKNOWLEDGMENTS

The author wishes to acknowledge the partial support of implementation by the Savannah River Laboratory -Light Water Reactor Program and the personal efforts of C. Benkovitz, BNL; B. McNeely, ORNL; and R. Wiley, LASL, as well as the many contributions of the IWGDE members and X3L5 members to the concepts of the standard.

(NEA) was established on 20th April 1972, replac ing OECD's European Nuclear Energy Agency (ENEA) on the adhesion of Japan as a full Member. NEA now groups all the European Member countries of OECD and Australia, Canada, Japan, and the United States. The Commission of the European Communities takes part in the work of the Agency. assessing the future role of nuclear energy as a contributor to economic progress. research and development programmes and undertakings jointly organised and operated by OECD countries. In these and related tasks, NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has concluded a Co-operation Agreement, as well as with other international organisations in the nuclear field.

AVERTISSEMENT Les

The expansion in the construction of nuclear plant for energy production has brought with it a need for data on the characteristics and performance of nuclear power plant, to be used for forward planning and other studies b y governments, public and private enterprises in the nuclear field, and financial institutions.

The Data Base described in this paper is an implementation of a GDMS written in APL, and carries technical and economic data on nuclear power installations worldwide.

CONTENTS

Abstract

The use of a data base management system (DBMS) for storage of, and retrieval from, the many scientific data bases maintained by the National Nuclear Data Center is currently being investigated.

It would appear that a commercially available DBMS package would save the Center considerable money and manpower when adding new data files to our library and in the long-term maintenance of our current data files.

Current DBMS technology and experience with our internal DBMS system suggests an inherent inefficiency in processing large data networks where significant portions are accessed in a sequential manner. Such a file is the Evaluated Nuclear Data File (ENDF/B) which contains many large data tables, each one normally accessed in a sequential manner.

After gaining some experience and success in small applications of the commercially available DBMS package, DBMS-10, on the Center's DECsystem-10 computer, it was decided to select one of our large data bases as a test case before making a final decision on the implementation of DBMS-10 for all our data bases. The obvious approach is to utilize the DBMS to index a random access file. In this way one is able to increase the storage and retrieval efficiency at the one-time cost of additional programming effort.

Number of Records

60000 250 300 50

The above system preserves the identity of each file within the file group, all keys within a file group are unique (duplicate keys in files are not permitted), and all the records in a file group are maintained in ascending order by the record key values.

In order to recover a specified record from a particular file, the file number and the 12 byte key to the record is specified. A file table in the database is interrogated for the correlations file number to file group and file sub-group. For example, to recover the record with key 177987 from file O65 (Reworked fuel pin file) , O65 is located in file table which returns file group 3 sub-group 03. File group 3 is then searched, randomly or sequentially, for the record with the key 03177987-

The file groups are arranged in vertical sets of tracks (cylinders) on the disc packs in order to minimise radial head movements during the selection of the appropriate sub-group.

File Navigation

There is a hierarchic relationship between the files. A typical descending hierarchy of a small sub-set of files is shown in figure 1.

Navigation down the file hierarchy is shown (fig l) to be provided at the record level.

The data in each record in a file is preceded by the entity key value which are in turn the entity keys to related records in the files lower down the hierarchy. The high data redundancy between the files suggests that a data base approach would be valid and this paper suggests a possible ' schema* for a CODASYL GDMS.

Introduction: The NEA Computer Program Library

Since 1964, the Nuclear Energy Agency of OECD has operated in Ispra, Italy, a Computer Program Library (CPL) which as its principal assignment collects and disseminates computer programs in the area of nuclear reactor design.

To inform users of the programs available from the collection, descriptive catalogues going into different levels of detail are prepared and published periodically and distributed to all users of the service.

In addition, CPL is engaged in a number of supplementary activities, such as the organisation of specialist meetings on selected topics of computer code application and a Service on Experience of Code Utilisation.

The services of CPL are open to all member countries of NEA, including the United States and Canada.

By a special arrangement with the International Atomic Energy Agency in Vienna, non-NEA countries may also participate.

Institutions interested in the service, e.g. research centres or commercial firms may apply for nomin~ ation and be registered as member establishments.

The CPL is supported by government contributions.

No fees are charged to member establishments.

A proposal has been made to transfer the services now carried out by the Library to a new NEA Data Bank in Saclay, France, where a CODASYL GDMS would be implemented (initially IDMS on an IBM 370/125 com puter, and later the very similar DBMS-11 system on a DEC PDP 11/70.

CPL Operations

This presentation will deal only with CPL activity in computer program collection, storage and redistribution.

The physical unit that is managed by CPL is the "program package".

The complete package con sists of the program source deck, mostly in Fortran, input data and corres ponding output of one or more typical problems, plus if necessary such additional data as cross section libraries, and documentation. In general, the package should be complete to such an extent as to render the program operable as much as possible independent of any special computer environment.

The program package undergoes a series of operational phases from acquisition by CPL to redistribution to a requester: In practice, CPL frequently takes own initiatives by requesting programs from their authors the existence of which it had known through other sources than through a direct offer by the author.

(c) The program arrives at CPL.

(d) In general, programs are only redistributed after they have successfully been tested. This testing which is normally per formed by CPL staff, consists in a check for completeness of the package according to the definition given above and a re-run of the typical cases.

(e) The tested program package is stored in a standard form on a master-tape.

(f) The program may be requested by a member establishment. In case that it has not yet been tested, it will be tested upon arrival of a first request for it.

(g) Tested and requested programs are then dispatched, as tape copies from the master-tape. Documentation is also included.

For administrative purposes, each of these phases is recorded on one or more computer files.

For the descriptive catalogues, an abstract consisting of 18 standard abstract items and an 80-byte short description are also prepared for each program and stored on tape.

From these tapes, abstract folders and KWIC index booklets are prepared twice each year and mailed to all m e m b e r s .

They are the main reference catalogues of the program collection.

Bookkeeping and Publication files

Both the customer information services of CPL and its informal administration have progressively been more computerised so that there now exists the typical situation where a total of eleven sequential tape files have to be updated periodically.

The files, moreover, contain a considerable amount of redundant data, i.e. information stored identically several times on different files.

Table I illustrates schematically this redundancy.

The first two columns lists record types which will be used later in the data base schema proposed.

Columns 3 to 13 represent the files used in the present system.

At the intersections marked nx", the same data exist on a CPL file and a data base record.

Where more than one "x" appears on the same line, data are redundant.

Abstracts f i l e .

This file contains abstract descriptions of each program in a standard format under 18 subject items, e.g.

-Nature of Physical Problem Solved This file contains an index to announcements or notes on programs, given in the bulletin "NEWS from CPL" w h i c h is p u b l i s h e d four times each year.

Progr a m f i l e .

Each 80-byte record of this file describes the physical contents and availability status (arrived, tested, etc.) for one program package.

It should be noted that one p r o g r a m abstract may cover more than one pr o g r a m package.

Different pac k a g e s of the same p r o gram normally represent versions written for and/or r u n n i n g on different computers.

The file is updated every week.

Request f i l e . All requests for programs made by m e m b e r e s t a b l i sh ments are recorded on this file for the time that the request remains pending.

The file is upd a t e d every week.

Di sp a t c h f i l e .

W h e n a program requested has b e e n mailed, the corresponding entry is transferred from the request to the d i s patch file. The file is updated every week.

Obsolete programs f i l e .

With the mutual agreement of p r o g r a m authors and users, CPL from time to time decides to delete old progr a m s from the "active" Program file.

In order that these pro g r a m s shall rema i n t r a c e able they are transferred to this file.

The file is up d a t e d at most once every year.

Installations f i l e .

This file contains all mem b e r establishment abbreviation codes, liaison officer names and addresses and in a ddition special mailing instructions such as number of.copies to be sent to a particular member for a particular publication.

The file serves to produce address stickers and to calculate postage fees.

It is n o r mally updated before bulk dispatches to all members are planned, i.e. a p p r o xi mately ten times per year.

Computing Facilities f i l e .

Here details about the computer e quip ment available to each member establishment are stored.

The format is similar to that of the Abstracts file.

At present, no p u b l i c a t i o n is prepared from this file.

It serves only for internal con s u l t a t i o n by the Library. Tape F i l e .

The file contains for all "archive" tapes -tapes con taining original p r o gram material -the shelf n umbers where they can be found.

The file is used to assign cupboard space and to remove tapes no longer used from the archive.

The file is u p d a t e d every month.

length.

For these records, therefore, total lengths are maximum lengths.

Within the schema of Fig. 1 we note a principal logical division between the record type PROGRAM on the left and PACKAGE on the right side. One occurrence of PROGRAM represents one abstract of a program. In fact, abstract items (indicated by bracketed numbers) 3, 4, 5, 6, 7, 14, 15, 18 appear as member records in sets with PROGRAM as owner and are also stored VIA these sets.

PACKAGE on the other side represents one program version as a physical unit in the whole collection.

Consequently it is stored as a member within the set linking it to PROGRAM which allows for more than one PACKAGE occurrence for one PROGRAM (-Abstract) occurrence. Abstract items 8, 9, 10, 11, 13, 16 which may be specific to one par ticular program version are linked to PACKAGE and stored near their PACKAGE occurrence.

The scope of the CPL program collection is formally sub divided into a number of subject categories, which are the occurrences of the record type CATEGORY in the schema.

CATEGORY is linked as set owner with PROGRAM.

This means that a specific category, e.g. "Reactor Safety Analysis", is an owner occurrence of all PROGRAMS falling into the category "Reactor Safety Analysis".

In a similar manner, records ORIG-COMP (original computer), TEST-COMP, ORIG-LANG, and TEST-LANG are linked as set owners with PACKAGE.

To further illustrate the logical structure of the schema F i g . 1 , I will now discuss several practical examples. Accordingly, the initial conversion w ill be made on chemical names, producers and chemical processes.

Consideration of the characteristics of the data in ECDIN category 1 (identification) and the limitations of ADABAS system has led to the proposal of the following record structure fo r chemical names:

I ECDIN No. , NAME TYPEi______________NAME t ___________________________ [

i ________ i i ________ i i ________ i

i.e. one record fo r each name w ith a multiple field for name type. The following requirements are satisfied by this structure:

-1) to be able to search fo r chemical compounds using all chemical names present in the data base, -2) to be able to identify chemical names by name type, -3) to link chemical names w ith other files containing data which relate to chemical compounds (i.e. pro duction, chemical processes, etc.)

The data in ECDIN input form at on chemical producers is stored redundantly in each compound record and, as a result, the company names and plant locations must be standardarized before we can create separate company and plant files. Computer programs have been written to sort the existing data by company name, plant location and ECDIN number and to convert various non-standard forms of company name and plant addresses into a standard representation. These programs can be easily modified to produce files fo r direct input to ADABAS Having the following record structures:

Company file record structure

COMPANY . COMPANY NAME CODE

I ---------------------------------i --i

Plant file record structure

PLANT f PLANT POSTAL f PRODUCTS f PROCESSES CODE T ADDRESS CODE T PRODUCED T EMPLOYED i _________ ! __________ I __________ I ____________ I _

I _________________ L_ i _________________ L_

I ___________ i_

The plant code is a combination of the owning company code and an " id io t" number. The company code portion of the plant code could be used for direct coupling of the Plant and Company Files.

The products produced are the ECDIN numbers of the compounds produced at that plant.

The following search requirements may be satisfied with these two record structures:

-1) to search fo r where a chemical compound is produced, -2) to search fo r what companies produce a chemical compound, -3) to search fo r what chemical processes a plant employs, -4) to search fo r what chemicals are produced in a certain country/region/area, -5) to link chemical producers w ith other files containing data which relate to chemicals and their produc tion (i.e. chemical names, chemical processes).

The existing data in ECDIN input form at on chemical processes also requires standardization but it is in adequately indexed in terms of cross references to other compounds. Rather than to convert this data by pro gram, a new form at has been designed and the data are being manually recoded into this new format. As the volume of this file was small, it was felt that programmed conversion was not justified in this case. However, a selected data printout is being used to facilitate recoding. Once this file entered into ADABAS it should be easier to eliminate redundancy and standardize process descriptions. The record structure developed fo r this file is shown in Fig. 7.

Hence, in many cases direct conversion from the ECDIN input form at has proved feasible and even when this is not the case, the conversion process may still be greatly facilitated.

-294--

The authors would like to thank the many organisations and individuals who have contributed to the ECDIN project.

but this is considered acceptable for a one-off operation tbat can be interrupted at will. A limited benchmark comparison suggests that over all performance of IDMS functions, especially loading, will be faster on the PDP 11/70.

While these tentative conclusions can be extrapolated only with great caution to other data bases and other computers, CCDN experience suggests that the GDMS approach is viable even with very modest hardware.

Future development in GDMS

We hope that software producers will recognize the important place likely to be taken by GDMS in handling scientific information, and take into account in their systems design the requirements discussed in Section II. The spectrum of applications to be covered by the next generation of GDMS is so diverse that it seems unlikely that a single system can handle all of them well. A modular approach to GDMS may prove more satisfactory. The presentation is highly systematic. As it is an enunciation of design principles rather than a treatment of specific software it may be useful in spite of its age. The characteristics of a number of GDMS, and the data structures which may be represented, are reviewed. The explanation of data structures is clear, but clearly the systems have evolved since the article was written. In German.

An important stumbling block in the use of GDMS by non-program

Gesellschaft für

Performance Assessment of Data

III. GDMS Technical Overview Documentation

Many such publications are glossy and uninformative, or less glossy and still hard to understand unless you already know the system. Fuller documentation is of course available from software vendors, and juxtaposed or comparative introductions to some better-known systems can be found in several of the publications listed in Sections I and II. The limited list below references some presenta tions which may help the reader form a clearer view in his own mind of how a given system works.