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We review recent developments made between three departments at ONERA 
(DTIM, DAFE, DMAE) with regard to 3D imagery used in fluid mechanics 

experiments. We first discuss 3D PIV (Particle Image Velocimetry) and present original 
contributions on the modeling of the imaging process, the reconstruction of the 
3D volume of particles and the estimation of the 3D motion field between two time 
instants. These three contributions emphasize the pointwise character of particles in PIV, 
in contrast with classical Tomo-PIV approaches, and have been shown to outperform 
state-of-the-art methods, yielding more accurate 3D velocity estimations. Then, we 
consider 3DBOS (Background Oriented Schlieren), which is aimed at estimating the 
instantaneous 3D density field of a moving fluid. We have recently proposed an original 
one-step numerical approach for 3DBOS. This method has been successfully used in 
several experiments conducted in various ONERA facilities, in particular in the F2 and 
S1MA wind tunnels. Finally, we draw some important perspectives, especially for the 
study of compressible flows by combining both techniques.

Introduction

Over the last decade, new imaging set-ups and numerical methods aimed 
at 3D field measurement for fluid mechanics have been developed. In its 
most common form, tomographic PIV, introduced in [19], uses 4 cam-
eras (or more) to reconstruct volumes of particles and derive the instanta-
neous 3D velocity field by 3D correlation. 3DBOS [1][32] is an extension 
of Background Oriented Schlieren, which allows the reconstruction of the 
instantaneous 3D density volume of flows, again by combining images 
recorded by several (usually more than ten) synchronized cameras.

Being instantaneous and volumetric, these 3D field measurement 
techniques yield unprecedented information on the flows under study. 
Indeed, before they were proposed, field characterization in fluid 
mechanics was only possible either in an instantaneous sense, but 
limited to 2D (for instance, in plane PIV, see our companion paper in 
this volume [27]), or could be obtained on 3D domains as well, but in a 
time-averaged sense (for instance, by scanning space with a pointwise 
sensor, e.g., by Hot-Wire Anemometry or Laser Doppler Velocimetry). 
Flows of industrial interest, in particular in the aerospace domain, 
are characterized by high Reynolds numbers and often also high 
Mach numbers. As such, they inherently exhibit a three-dimensional 

structure due to turbulence, not mentioning the increased complex-
ity of the systems (three-dimensional model geometries, active flow 
control by mechanical or fluidic actuators, etc.). The characterization 
of complex unsteady three-dimensional flow structures thus appears 
to be essential to investigate problems of industrial relevance. Finally, 
from the theoretical point of view, 3D field measurement techniques 
offer the potential to take a major step towards the complete under-
standing of complex flows. As an example, they allow the measure-
ment of the velocity gradient and, in particular, the vorticity, which pro-
vide information of major importance in wake vortex characterization 
and, more generally, regarding turbulence studies.

Nevertheless, 3D field measurement also brings several tedious 
issues from the experimental and numerical point of view. We focus 
here on the latter point and present original developments made 
between three departments at ONERA (DTIM, DAFE and DMAE) aimed 
at achieving more efficient and accurate data processing methods. 
In both the 3DPIV and 3DBOS contexts, our contributions build on a 
reformulation of the problem, a careful examination of its experimental 
conditions and limitations, and lead to new algorithm proposals.
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The paper is organized as follows: we first consider 3DPIV and pres-
ent several methodological contributions made since 2013. The sec-
ond part of the paper describes the original 3DBOS reconstruction 
developed since 2012 and recently validated in several facilities at 
ONERA. Perspectives of these works and opportunities for joint stud-
ies between 3DPIV and 3DBOS are outlined in the last section.

3D PIV

Introduction

Recalling 2D PIV

PIV (Particle Image Velocimetry) is a measurement process where two 
images of a plane in a flow are recorded at two close time instants and 
correlated, in order to produce an estimated displacement field. This 
recording uses pulsed laser illumination and often high-speed cameras. 
The processing basically consists in seeking corresponding small regions 
(or interrogation windows, IW) in the two images, by optimizing some 
intensity-based criterion. Numerous algorithms have been proposed for 
this operation; see [38] for a review. In 2009, some of the authors of this 
paper proposed a fast parallel algorithm called FOLKI-SPIV [5], whose 
GPU implementation reached unprecedented performance: dense dis-
placement fields on 4K images are computed in less than 0.2 s. FOLKI-
SPIV runtime is faster than the time required for loading the images from 
the camera. Hence, when processing PIV image sequences, computa-
tion becomes actually transparent compared to storage.

Before turning to 3D PIV, some basic facts and constraints on 2D PIV 
should be briefly recalled. First, in most PIV settings related to aerody-
namic studies, unless microscopic viewing conditions are used, the 
seeding particles appear as point sources for the cameras (in optics, 
they are said to be unresolved by the cameras). As a consequence, 
their actual shape in the image stems from the characteristics of 
the imaging process. This process is essentially controlled by the 
experimenter, through the tuning of the parameters of the illumination 
system and of the camera. Ideally, one aims at recording particles 
in the form of Gaussian-shaped images with diameters of 2-3 pix-
els, so as to minimize localization uncertainty and aliasing effects. In 
the end, the actual spatial resolution of PIV estimated displacement 
fields depends on two main parameters: the size of the IW and the 
density of particles. 10 particles per IW is recognized as a good rule-
of-thumb to ensure the correct behavior of the correlation process, 
and, in this case, the spatial resolution is given by the size of the IW 
projected onto the illuminated plane [38].

Tomo-PIV

The main idea behind Tomo-PIV, which was first proposed in [19], is to 
extend the principle of PIV, i.e., the cross-correlation of two 2D images 
of seeded flows, to 3D. Hence, one needs to acquire two "3D images" 
of the flow, in order to cross-correlate them to produce a 3D displace-
ment field. In Tomo-PIV, each of these "3D images" is actually a volume 
representation obtained by tomographic reconstruction from several 
simultaneous 2D images of some illuminated 3D area of the flow. This 
operation is usually formulated as the iterative estimation of a volume, 
discretized over a large number of 3D grid cells (or voxels). It is impor-
tant to recall that this tomographic process was originally designed to 
provide a representation of the actual volume of particles suitable for 
correlation. Hence, the same prescription as that concerning the 2D 

imaging process in PIV has been followed: the voxel size Δ is usually 
aligned with the pixel size (v / p = 1) and particles in the reconstructed 
volume appear ideally as 2-3 voxel-wide Gaussian-shaped blobs. This 
approach leads to the observation model outlined in the left part of 
Figure 1, where images result from the integration of a 3D intensity field 
along rays. The modeling of this integration process and the concatena-
tion of the equations associated with all pixels of all cameras lead to a 
linear system, I = WE. In this equation, image intensities Ik on pixels 
k are related to volume intensities ( )nE E n= ∆  through a weighting 
matrix Wkn, which is non-negative and sparse.

Given that most Tomo-PIV settings use 4 cameras (but systems with 
6 or 8 cameras have also been described), the previous system is 
severely underdetermined – in a 4-cameras system there can be two 
orders of magnitude less of recorded data (Ik ) than there are voxel 
values (En ). Prior information on the reconstructed volume is essen-
tial here. All Tomo-PIV methods are based upon the hypothesis that 
the density of seeding particles is low, so that voxel intensities are 
most often zero and take on positive values only in the vicinity of the 
particles – and there are very few of these visible. In order to enforce 
these properties in the reconstructed volume, multiplicative algo-
rithms, such as MART and SMART, originating from Computerized 
Tomography, are popular choices and their action is often restricted to 
"valid" voxels selected in an initial process such as MLOS [2].

The main and most studied factor affecting the performance of Tomo-
PIV methods is the density of particles, which is usually evaluated in 
terms of a non-dimensional number, which is a projected represen-
tation of the seeding density: the average number of particles per 
pixel (ppp) recorded on the camera CCD sensor. The ppp is linked to 
the spatial resolution: the higher the ppp is, the better the resolution is. 
However, higher densities lead to a dramatic increase of "ghost par-
ticles", i.e., false positives related to matching ambiguities of indis-
cernible particle images. A good trade-off between ghosts and spatial 
resolution is typically found at around 0.05 ppp [39].

However, we have demonstrated in simulation studies [7][8] that sev-
eral other factors – often neglected in performance evaluation stud-
ies – affect the quality of the tomographic reconstruction. The "added 
background particles", i.e., particles that are visible to the cameras 
but not accounted for in the reconstruction, have been identified as a 
source of ghost particles in [19]. The authors attribute these added 
particles to the Gaussian profile of the laser sheet or to uncontrolled 
light reflections, thus implying that a proper experiment could avoid 
them. However, we have demonstrated from simple geometrical con-
siderations that added particles are unavoidable in Tomo-PIV. Indeed, 
while the reconstruction is done in the intersection volume of the cam-
era field of view, all cameras also record particles lying in the union 
of the fields of view and not in the intersection. These added particles 
act as a strong source of noise in the reconstruction because multipli-
cative inversion algorithms such as MART or SMART strive to explain 
their images by ghost particles in the intersection volume.

Another important factor that has only recently been identified is the 
defocusing occurring when trying to image volumes with cameras 
having a limited depth of field [40]. By means of a thorough simu-
lation study [8], we have shown that neglecting the defocus in the 
imaging model leads to a significant increase in the number of missed 
detections. It is a strong motivation for designing new reconstruction 
frameworks, where defocus effects could be modeled and accounted 
for more easily, such as the one presented in the next Section.
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Particle Volume Reconstruction (PVR)

As already mentioned, the observation model behind usual Tomo-PIV 
methods does not correspond to a physical model of the actual imag-
ing process. The latter is illustrated in the right part of Figure 1. A par-
ticle can be considered as a 3D point source located at some 3D posi-
tion, whose image is a "point-spread function" (PSF) centered on a 2D 
point given by the geometrical model of the camera. Most often, PSF 
are modeled as truncated Gaussian functions, parameterized by their 
standard deviation psfσ . As a result, the image appears as the sum of 
P PSF functions, as in Equation (1), where x denotes the 2D position in 
the image plane, Xp is the 3D position of the p-th particle, h is the PSF 
function (which, in the general case, depends on the 3D position of the 
particle because of defocus effects) and F is the projective transfor-
mation from the 3D world to a 2D image, identified by the calibration.

  ( ) ( )( )1 P

P
pp p X XI E h x Fx == Σ −  (1)

While this model underlines some previous works on Tomo-PIV, in 
particular the Iterative Particle Reconstruction (IPR) [44], it is only 
in [4] that it has been used to derive a linear problem suitable for 
standard inversion algorithms such as MART/SMART.

More precisely, we have demonstrated in [4] that the PVR model of 
Figure 1 can be approximated by a linear system I WE=  , where I 
collects image intensities and the rows of the weighting matrix W are 
PSF samples ( )knW h k n= − ∆ . The 3D field E  is a discrete approxi-
mate representation of the original Dirac-like particle field, where each 
particle is represented by a very restricted number of coefficients in 
neighboring voxels. As such, it is inherently a much sparser represen-
tation of the volume than that used in classical Tomo-PIV. Given E , the 
intensity and position of particles can be recovered unambiguously 
with subvoxel accuracy if they do not overlap. Particle overlapping in 
3D space is extremely rare, given the typical values of the number of 
particles per volume. Thus, it is expected that the reconstructions E  
will most often truthfully represent the particle distribution. In prac-
tice, one usually does not try to recover E and cross-correlate the 
discrete field E  to estimate velocity fields.

We have made comparative studies between two similar SMART 
algorithms (with MLOS initialization [2]), one, called Tomo-SMART, is 
based on the conventional Tomo-PIV model of [19] and the other is 
based on the proposed PVR model and is called PVR-SMART [4]. In 
all comparisons, PVR-SMART has been shown to increase the per-
formance with respect to Tomo-SMART. For instance, in the simu-
lation study illustrated in Figure 2, PVR-SMART consistently yields 
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Figure 2 – Comparisons between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm for simulated images 
(see [4] for details). Top: curves for varying Nppp with psfσ  = 0.6, I/U = 0.47. Bottom: curves for varying psfσ  with I/U = 0.47, Nppp = 0.07,. Left: Q criterion 
of [19]. Right: fraction of detected true particles or Recall

Image Image

PSF

XP

Figure 1 – Image formation models for 3DPIV. Traditional Tomo-PIV methods 
such as [19] are based on the "blob" model (left). In the proposed PVR model 
(right), particles are point sources for the camera, their image being the 
Point-Spread Function (PSF)
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better results than Tomo-SMART when varying the ppp (upper row) 
or the width of the PSF psfσ  (lower row). In the sequel, we describe 
other applications of the PVR model, first to estimate 3D displacement 
fields from volume correlation, then to derive a sparse approach.

Fast and dense 3D approach: PVR SMART and FOLKI3D

A 3D extension of FOLKI, FOLKI3D, has been proposed and character-
ized in [6][8]. It shares many characteristics of the 2D method. First, it 
is a dense calculation that provides the displacement field for all voxels. 
Second, with respect to the true displacement field, FOLKI3D exhibits a 
low-pass filter behavior closely related to the shape of the IW. Third, it has 
a highly parallel structure, allowing very high computational performance 
on GPUs. This algorithm has been evaluated on simulated volumes, in 
comparison with the commercial volume correlation software LaVision 
Davis 8.2. For the selected example, FOLKI3D outperforms Davis 8.2, 
both in terms of bias (Figure 3, right) and of rms error (Figure 3, left).

Experimental validations have also been conducted on a free round 
turbulent air jet at a Reynolds number Re = 4500 using a 3D-PIV 
setup made at ONERA together with a 2D-PIV camera providing ref-
erence measurements. The experimental set-up and measurement 
process, with advanced work concerning synchronization, illumina-
tion, seeding, calibration (including PSF calibration) and image pre-
processing, are described at length in Ref. [8]. We present here only 
one comparison of 3D velocity fields, estimated using FOLKI3D from 
volumes reconstructed either by Tomo-SMART or by PVR-SMART.

Figure 4 first presents the mean velocity estimation (averaged over 
300 snapshots). While results appear at first to be quite similar, 

comparisons of the noise level in regions with a low level of velocity 
fluctuation (the white rectangle in the images of the middle row) or 
of the correlation coefficient (last row of Figure 4) reveal that veloc-
ity fields estimated from PVR-SMART volumes are significantly less 
noisy than those estimated from Tomo-SMART. Other evaluations, 
presented in [8], confirm this difference. It could stem from a higher 
proportion of ghost particles and/or a higher peak-locking effect in 
the Tomo-SMART reconstruction method.

We then consider the reconstruction of instantaneous 3D flow struc-
tures of the jet, by visualizing selected iso-contours of axial velocity, 
and of axial and azimuthal vorticity, in Figure 5. Quantities and levels 
have been chosen so as to highlight the most important features of 
the jet near-field dynamics, involved in the first stages of mixing. As 
described for instance in [9][16], fluctuations are mostly dominated 
by axisymmetric structures of azimuthal vorticity (vortex rings, stem-
ming from the Kelvin-Helmholtz instability), associated with axial veloc-
ity fluctuations in the core, and streamwise vortices contained in the 
mixing layer. When comparing the methods, the global view of the first 
row indicates that, again, both results are quite consistent. However, 
looking at the zoomed-in region (lower row of the figure), one can see 
that PVR-SMART estimates rounder and smoother vortex rings and that 
the counter-rotating streamwise vortices, which are the key ingredients 
of jet mixing, appear to be longer, smoother and bigger for PVR-SMART.

To conclude, we have developed an original tomographic PIV pipe-
line, revisiting the two stages of the classical approach, tomographic 
reconstruction and 3D correlation. This method is now routinely used 
at ONERA. Another approach, oriented towards particle localization 
and tracking, is described below. 
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Back to particles: an efficient sparse Tomo-PIV on a discretized volume

As a consequence of experimental (seeding density) and numeri-
cal choices (spatial discretization), the sought volumes in 3DPIV are 
very sparse – typical choices lead to a mean density of 1-4 particle 
per voxel. Classical multiplicative algorithms, such as (S)MART, tend 
to concentrate the energy of the reconstruction on a limited number 
of "blobs", but they still cannot be considered as exploiting sparsity. 
Indeed, sparse algorithms are aimed at solving a linear system with 
a vector (i.e., the discretized volume) having a fixed, limited number 
of non-zero components (the detected particles). Sparse algorithms 
have been the subject of important developments within the Signal 
Processing community, partly motivated by compressed sensing 
results published in the mid-2000s [18][3]. Few attempts were then 
made to apply such techniques to tomographic PIV [37][45], but 
they lead to computationally demanding methods and were applied 
to small, synthetic volumes. In 2013, based on the PVR model, we 
proposed the first computationally efficient sparse processing chain 
for tomographic PIV and demonstrated its performance in terms of 
the particle detection rate, compared to standard algorithms [10][11].

The initial step is a variation over the classical multiplicative line 
of sight (MLOS) of [2], where only the local maxima of the MLOS 
field are retained. Simulation studies have demonstrated that this 
"LocM" (Local Maximum) strategy allows a drastic reduction of the 
problem dimensionality, with a limited loss in terms of missed par-
ticles. Thus, we propose to solve the Tomo-PIV problem on a dis-
cretized 3D grid with a voxel-to-pixel ratio (v/p) equal to 0.5. Using 
the PVR formulation, the sparse problem concerned is written as

 2minE WE I−  subject to 0 SE ≤  (2)

where the L0 norm is the number of non-zero components in 
E, and S, the sparsity number, is the total number of particles 
in the reconstructed volume. The solution of the previous prob-
lem on a discretized 3D grid can be efficiently found with CoSaMP 
(Compressed Sampling Matching Pursuit) [31]. CoSaMP, a popular 

algorithm for sparse inversion, builds on the matching pursuit strategy 
aimed at identifying the support of the solution, i.e., the subset of voxels 
that contains a particle. This is done by iteratively removing or adding 
voxels to the current support and using it to solve the problem, i.e., to 
determine the intensities Ep of the particles that minimize the goodness-
of-fit term of (2). 

The main parameters of this algorithm, the discretization step and 
the sparsity number, have been studied in [11]. A discretization step 
corresponding to a voxel-to-pixel ratio (v/p) equal to 0.5 has been 
shown to provide a good trade-off between localization accuracy and 
computation time. The sparsity number can be chosen according to 
the size of the imaged volume and the seeding density. Compari-
son with the classical MLOS-SMART approach has also been pro-
vided on synthetic and real datasets, showing better performance 
of LocM-CoSaMP over a large range of seeding densities, as shown 
in Figure 6.

Two-time-step Tomo-PTV with sparse tomographic reconstruction

From the sparse reconstruction presented before, it is tempting to 
seek the individual matching of each reconstructed particle from 
one time instant to the next. This process can be related to PTV 
(Particle Tracking Velocimetry) [29]. Matching is very ambiguous, 
because particles are indistinguishable and PTV was traditionally 
restricted to low seeding density. Recent developments combin-
ing an iterative reconstruction algorithm and particle tracking over 
several time steps [41] have shown interesting results in terms of 
seeding density. Still, two-time-step PTV remained unsolved for 
a seeding density higher than 0.005 ppp. In this context, we have 
proposed a novel "tomoPTV" method, combining all previous results 
(i.e., PVR model, FOLKI3D and LocM-CoSaMP) [12][13]. We start 
from the LocM-CoSaMP reconstruction of the particle volume at 
two time instants. The pointwise LocM-CoSaMP reconstructions are 
expanded with Gaussian filtering, and a low-resolution first estimation 
of the 3D displacement field is computed using FOLKI3D. Particle 
matching is then done by nearest-neighbor search within a limited 
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region around the position predicted by FOLKI3D. Finally, subvoxel 
location of particles is identified by the iterative optimization of

 ( ) ( )( )
2

,
min pj p jE X j x p

XI E h x Fx
 

− − 
 

∑ ∑ ∑  (3)

where j refers to the camera index. Changes of location are restricted 
for each particle to a neighborhood around the discrete position given 
by the matching process. Note that, contrarily to [44][41], the optimi-
zation is done jointly for all particle positions, to account for overlap-
ping particles. 

Experimentation on the same low-speed round air jet experiment, as in 
the previous section, has been carried out to compare classical Tomo-
SMART of [19] followed by FOLKI3D to the two-time-step Tomo-PTV 
technique. Figure 7 presents the U,V components of a slice of the 3D 
displacement field in the central plane of the jet. It can be seen that the 
jet structure and the development of its vortical structures (patches of 
alternate colors that identify Kelvin-Helmholtz azimuthal vortices) in the 
shear layer are nicely captured by both methods, which yield similar 
results. This demonstrates the ability of the proposed two-time-step 
Tomo-PTV technique to yield reliable results with experimental datasets.
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A direct method for instantaneous 3DBOS

Introduction

Density field visualization, such as Schlieren techniques, has been used 
extensively to understand fluid mechanics phenomena such as shock 
waves or thermal effects. However, the mostly qualitative information 
resulting from this measurement does not yield enough information 
to refine computational fluid dynamics codes. Background-oriented 
Schlieren (BOS) is one way to obtain a quantitative measurement of 
density gradients [15][30]. It is based on the observation of ray devia-
tions through a medium with inhomogeneous optical index. The BOS 
optical setting, whose principle is recalled in Figure 8, is remarkably 
simple: it only requires that the flow under study be placed between 
a camera and some textured background on which the camera is 
focused. Comparing the images of the background with and without the 
flow using digital image correlation techniques reveals displacements, 
which are the projections of the light ray deviations. Displacement 
fields are computed by digital image correlation algorithms, here using 
FOLKI-SPIV [5]. Conversion from displacement to deviation is usually 
done by approximating the curved ray by two straight lines intersecting 
at a "deviation point" located somewhere in the reconstructed volume. 
In the sequel, the deviation point is chosen on the unperturbed ray and 
equidistant from the entry and exit points.

Camera

Ba
ck

gr
ou

nd

O

P

εx

x+Δ x

Figure 8 – Principle of BOS measurement: the camera is represented on the left 
hand side by its center of projection (O), input lens and image plane. It is focused 
on the background plane on the right. The flow under study, shown in the middle, 
induces a deviation of the light rays. A point P of the background is imaged at 
position x with the flow and at x+Δ x without. Note that the size of the region under 
study and the ray deviation angle are heavily exaggerated for the sake of clarity

The deviation angle is the main observable of BOS. Considering one 
ray to be going through the flow under study, the deviation angle ε is 
equal to the integral of the optical index gradient along the optical path:

  ( )
0

ray flow

G dssn
ε ρ

⊂
= ∇∫  (4)

where n0 is the optical index outside the flow, and G is the Gladstone-
Dale constant which relates the optical index and the density through 
n – 1 = Gρ (for standard conditions G = 0.23 * 10−3 m3/kg). This 
problem is generally nonlinear, since the integration path depends on 
the unknown variable density of the flow. Similar to most other refer-
ences, we assume a paraxial hypothesis and integration is done along 
the (straight) unperturbed ray.

A one-step method for 3DBOS reconstruction

If several synchronized cameras are placed all around the flow under 
study, each one facing a textured background, deviations along sev-
eral rays passing through the medium with various orientations can 

be measured. Stacking these deviations in a single observation vector 
and discretizing Eq. (4), a linear system can be written as: 

  
x x

y y

z z

D
A T D

D

ε
ε ρ ρε

ε

   
   = = =   
      

 (5)

3DBOS amounts to inverting this linear system to estimate the dis-
cretized density ρ. The observation matrix A is often separated into 
spatial finite difference approximations of the gradient in each direc-
tion (e.g., Dx , Dy , Dz ) and a tomographic operator T. For this reason, 
almost all previous references [1][27][36] adopt a two-step inversion 
scheme, where, first, components of the spatial gradients in all spatial 
directions are computed by three independent tomographic recon-
structions, and, second, density is obtained by spatial integration. 
The main benefit is to be able to rely on known methods for each step, 
in particular algorithms originating from Computerized Tomography 
(CT) for the inversion of T. In 2012, we have proposed a direct (or 
one-step) inversion method that considers the end-to-end observa-
tion matrix A [42][32]. In this approach it is easy to use the formal-
ism of regularized inversion by penalization [23], where the density 
volume is sought as the minimizer of a compound criterion:

  ( )2 λρ ε ρ= +−J RA  (6)

Here R  is some regularization term, for instance the L2 norm [32] or 
L2L1 norm [42] of the spatial gradient of the density volume, and λ > 0 
is a regularization parameter chosen according to an L-curve strategy 
[22]. Optimization is made with a classical conjugate gradient algorithm, 
with explicit step computation [42]. It should be mentioned that this prob-
lem is of very high dimensions, with typically 107 deviations and 108 
reconstructed voxel values, even if we use a user-defined mask to reduce 
the support of the optimization. The most computationally demanding 
operations are the application of the observation operator and its adjoint, 
for instance to compute the gradient of the first term of the criterion 

( )2 t ρ ε−A A . The implementation is derived from the projection and 
back-projection studied in computerized tomography [21] and makes 
use of the parallel architecture of the GPU to limit computation time.

This one-step numerical inversion method has been studied on syn-
thetic and real datasets using 12 cameras in Ref. [32]. Non-coplanar 
configurations of the camera setup were considered, using the Geode 
experimental bench dedicated to 3DBOS made at ONERA/DMAE (Tou-
louse) and illustrated in Figure 9 (left image). The experimental results 

  

Figure 9 – Left: the "Geode" 3DBOS bench at DMAE allows simultaneous BOS 
acquisitions from several points of view by up to 12 cameras, each facing 
a background panel. Right: 3D reconstruction of the plume of a candle with 
12 cameras in a 180° planar configuration [32] – Iso-density surfaces at 
densities 0.7 (red), 0.9 (green) and 1.1 (blue)
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have demonstrated the ability of the method to capture complex non-
symmetric volumes, such as a candle convective flow or the helicoi-
dal plume of a rotating gas burner, as shown in Figure 9 (right image).

Experimental demonstration of 3DBOS in a research wind tunnel

The 3DBOS technique presented above was demonstrated in a large 
research wind tunnel in 2014 [34]. The experiment was conducted 
in ONERA’s F2 wind tunnel located in the Fauga-Mauzac center. This 
subsonic facility can reach a speed of 100 m.s-1 and the test sec-
tion is 1.4 m wide, 1.8 m high and 5 m long. Large window panels 
provide very good access for optical diagnostics. A combination of 
screen honeycombs, an acoustics dumper and a contraction ratio of 
12 contribute to a turbulence level below 0.05%.

The tested flow is a co-flowing hot jet (with a total temperature of 
100°C) generated at the wingtip of a simplified half-wing fixed on the 
floor of the test section. The upstream wind tunnel flow has a speed of 
20 m.s-1 with total temperature and pressure equal to ambient condi-
tions. The 3DBOD system consists of 12 cameras distributed on one 
side and the ceiling of the test section, the ground and the other side 
being dedicated to background panels. In parallel, the hot co-flowing 
jet is also investigated with the stereo PIV technique and thermocouple 
measurements. In particular, thermal measurements allow a complete 

comparison with 3DBOS. Figure 10 presents some illustrations of the 
experimental set-up.

Three-dimensional density fields of the unsteady jet flow have been 
successfully obtained by the one-step inversion method previously 
described, as shown in Figure 11 (upper row), and mean density 
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Figure 11 – Instantaneous measurement of a flowing hot jet in ONERA’s F2 research wind tunnel. Top: 3DBOS reconstruction of the density field of the unsteady jet flow 
shown next to the wingtip. Bottom: Density gradient magnitude in gray scale superimposed with the most energetic Q-criterion structures computed on stereo-PIV data. 
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while the background panels are shown as gray regions. The two cameras of 
the stereo PIV system are also visible (in blue)
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fields reconstructed on a 116 Megavoxel volume with a spatial reso-
lution of 0.5 mm are presented in Figure 12 (left column).

In this configuration, the influence of pressure on density can be 
neglected and temperature maps can then be extracted directly from 
the density field. Both measurements are compared on a mean flow 
field in Figure 2, using a normalized temperature to account for the 
changes in the wind tunnel flow external temperature (see details in 
Ref. [34]). This comparison shows a very good agreement between 
both techniques. The small overprediction in temperature noticed 
for the BOS measurement is below the thermocouple measurement 
uncertainty. This shows the potential of 3DBOS for providing the full 
3D temperature field in non-compressible flows with known pressure 
distribution. 

Moreover, Figure 11 (bottom row) presents a superimposition of the 
instantaneous stereo-PIV and 3DBOS results illustrated, respectively, 
by the Q-criterion and the density gradient magnitude maps in the 
same plane. Note that the 3DBOS results have been obtained with 
only 9 cameras, in order to avoid reciprocal illumination effects of 
the two measuring systems. However, the degradation in spatial 
resolution is limited within the visualization plane. This representa-
tion nicely emphasizes that the most energetic Q-criteria are located 
in the mixing layer around the Kelvin-Helmholtz windings revealed 
by BOS.

Achieving 3DBOS reconstruction of compressible flows

Our main concern is now the extension of the proposed 3DBOS 
method to flows with higher density gradients, which are responsible 
for strong and highly inhomogeneous blurring effects in recorded 
images. Nevertheless, we have been able, thanks to a refined model 
of the observation and careful choice of experimental conditions, to 
produce deviation maps with a spatial resolution comparable to that 
of Schlieren visualization, as illustrated in Figure 13. 

BOS

Schlieren

Figure 13 – Experimental images of an under-expanded jet with NPR = 5. 
With a careful choice of the experimental conditions, the BOS deviation image 
(top half-image) exhibits a spatial resolution comparable to that of traditional 
Schlieren (bottom half-image)
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However, contrarily to Schlieren techniques, BOS measurement opens 
the way to quantitative 3D reconstruction of the flow. In a very recent 
demonstration [33], the 3DBOS reconstruction technique presented 
above was applied to deviation data produced by a dedicated 12-cam-
era bench on a underexpanded jet with variable nozzle pressure ratio 
(NPR). Figure 14 shows results for NPR = 2.1 and NPR=5.0, with 
3D mean density field on the top row. In the NPR = 2.1 case, the train 
of shock waves is clearly visible in the potential core region. The two 
first shocks are found in the instantaneous flow (bottom left image), 
while the jet topology is much more complex further downstream as 
it becomes destabilized. For NPR = 5, a Mach disk is clearly vis-
ible. The 3DBOS reconstruction shows a very good agreement with 
a DNS simulation. Both the density levels and the flow topology 
are well recovered, with a consistent location of the Mach disk and 
shock-cells. To the best of our knowledge, these reconstructions of 
under-expanded flows presented here and in Ref. [33] have never 
been obtained before.

Perspectives

Thanks to a joint investment by three scientific departments, 3DPIV and 
3DBOS are now mastered at ONERA. To the best of our knowledge, our 
3DBOS reconstructions of instantaneous flows have no equivalent in 
the published literature of experimental fluid mechanics. With regard to 
3DPIV, our developments have many more competitors, however, the 
very recently released results of the 4th PIV Challenge [24] indicate that 
our results are among the best (for Case C of the Challenge). 

This paper focuses on the underlying numerical developments; let us 
emphasize that several other skills have been acquired along the way, 
particularly in terms of experimental methodology, relating to subjects 
such as camera set-up, seeding techniques and background design, 
illumination tools, camera models, calibration methods, estimation 
error sources, etc. Some of these advances have already been pub-
lished [7][8][14][34][26][32] and others will be the subject of future 
publications.

The perspectives of 3DPIV include algorithmic development for tem-
poral processing, either according to the dense correlation paradigm, 
as a 3D extension of our recent proposal [46], or within the particle 
tracking framework in line with [41]. As regards 3DBOS, we are work-
ing on a new direct model and associated estimation methods for 
high gradients or shock wave situations. In this context, we are also 
currently comparing 3DBOS with other optical measurement meth-
ods, such as digital holography [17][35].

As illustrated in Figure 11, joint 3D BOS and PIV measurements have 
already been conducted: further investigations in this line are planned 
for the experimental study of compressible flows, a domain where 
imaging measurement techniques are challenged by aero-optical 
effects. The information contributed by BOS could be useful for more 
accurate velocimetry, for instance.

Finally, 3D field measurement is also a gateway towards tighter cou-
pling between experiments and numerical simulations, a field which we 
believe will be of major importance in future aerodynamic studies 
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