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Assuming an effective quadratic Hamiltonian, we derive an approximate, linear stochastic equation 
of motion for the density-fluctuations in liquids, composed of overdamped Brownian particles. From 
this approach, time dependent two point correlation functions (such as the intermediate scattering 
function) are derived. We show that this correlation function is exact at short times, for any interaction 
and, in particular, for arbitrary external potentials so that it applies to confined systems. Furthermore, 
we discuss the relation of this approach to previous ones, such as dynamical density functional theory 
as well as the formally exact treatment. This approach, inspired by the well known Landau-Ginzburg 
Hamiltonians, and the corresponding “Model B” equation of motion, may be seen as its microscopic 
version, containing information about the details on the particle level. 

I. INTRODUCTION

The statics and dynamics of simple liquids is of great
importance both in fundamental research,1–4 but also in indus-
try, technology, and biology. The statics have been investigated
for many years and are well understood, for instance, via the
framework of classical density functional theory.2,3,5

Studies of the dynamical properties of fluids, such as
the viscosity, have a long history,6 and the field is still
very active.7,8 Linear response theory9,10 connects transport
coefficients to time dependent correlation functions mea-
sured in thermal equilibrium, and the time dependent cor-
relation functions1,11,12 studied here are thus of particular
importance.

Time dependent correlation functions can be computed
from various fundamental equations, such as the Liouville1

or Fokker–Planck equations.11,12 Dilute systems have been
examined using exact dynamical formulations, for instance,
via the Boltzmann equation13,14 or using the Fokker–Planck
equation.11,12,15 In dense systems, approximate dynamical
formulations have been used: Here, Mode Coupling Theory
(MCT)4 is useful for the computation of time correlation
functions in bulk systems and has recently also been applied
in confinement.16–19 Classical density functional theory finds
static equilibrium quantities,1,3,5 while Dynamical Density
Functional Theory (DDFT)20–22 is powerful for describing out
of equilibrium situations. In addition to the evolution in time
dependent potentials, DDFT has also been used to study driven
suspensions with spherical obstacles23,24 or with constric-
tions,25 driven liquid crystals,26 suspensions under shear,27–31

and for microswimmers.32 Such research directions have also
benefitted from formal improvements within power functional
theory.33,34

Despite these many applications, DDFT provides no
immediate access to the time dependent equilibrium corre-
lation functions; however, the test particle trick has been used

to derive the van Hove function from it,35–37 even for dense
suspensions.38

On the experimental side, the intermediate scattering
function is an important quantity characterizing the dynamics
of liquids, e.g., as regards the glass transition,39 and can also
be measured in confinement.40 More generally, the dynamics
of fluids in confinement have received a lot of recent atten-
tion,41–43 among other reasons due to improved experimental
precision on small scales,44–47 and in microfluidic devices48,49

or blood flow in capillaries.50,51

Previous approaches that discuss the stochastic dynamics
of particle densities, including noise, have been presented in
Refs. 52 and 53, see also Ref. 54. We will discuss their relation
with the approach developed here.

In this manuscript, we propose a description of fluctu-
ations of fluids near equilibrium by use of a Gaussian field
theory, corresponding to an effective quadratic Hamiltonian
for the density fluctuation field in conjunction with a corre-
sponding Langevin equation. The Hamiltonian is constructed
to yield the correct static equilibrium averages. The corre-
sponding Langevin equation is constructed to yield the dynam-
ics of overdamped particles. Within this theory, we derive a
closed, approximate expression for the time dependent equi-
librium correlation function, which agrees with the exact result
(found from the Smoluchowski equation) for short times. It is
thus expected to describe well the dynamics at not too high
densities, and might, in particular, provide insight into dynam-
ics in confined systems. We also demonstrate the connection
between the derived dynamics and the dynamics following
from dynamical density functional theory, as well as the exact
stochastic equation for the density operator.

The manuscript is structured as follows. In Section II, we
lay out the theoretical framework, starting with the system
considered in Section II A. We define the physical observables
of interest in Sec. II B. The quadratic effective Hamiltonian
is introduced in Section II C, and the stochastic equation of
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motion is introduced in Section II E. The time dependent corre-
lation function from this framework is computed in Section III,
and we demonstrate in Section III B that it is exact for short
times. In Section IV, we show that the equation of motion,
proposed and derived herein, is in close correspondence with
DDFT. Sec. V discusses the connection to the exact stochas-
tic equation of motion for the density field of Ref. 52. We
summarize in Section VI.

II. SYSTEM, EFFECTIVE HAMILTONIAN,
AND EQUATION OF MOTION
A. System

We aim to analyze time dependent correlation functions in
liquids. For this, we choose a well studied and also experimen-
tally relevant model system, which is overdamped spherical
(Brownian) particles. (The question as to how well this model
system describes aspects of molecular liquids has also attracted
recent interest.55)

Regarding the ensemble, using Brownian dynamics
directly implies a canonical or grand-canonical description,
where the solvent acts as a bath at the given temperature. We
will generally have in mind systems for which canonical and
grand canonical descriptions are equivalent due to the large
(infinite) particle number (such as in the semi-infinite system
bound by a planar surface). Extra care has thus to be taken for
closed systems, such as particles confined in a box of finite
size (see Ref. 56 for an analysis of canonical systems in DFT).

The Brownian particles with positions at xi are subject
to a potential Φ({xi}), including pairwise interactions (later
denoted by V ) as well as an external potential (later denoted
U). The thermal energy scale is denoted by kBT ≡ β−1, with
Boltzmann constant kB and the (solvent imposed) tempera-
ture T. The bare diffusivity (the diffusivity in the absence of
interactions) of the Brownian particles is denoted by D. Each
particle thus obeys the stochastic differential equation,

dxi

dt
= DβFi +

√
2Dξ i, (1)

where ξ i is white noise in the Ito Stochastic Calculus with
〈ξi,µ(t)ξj,ν(t ′)〉 = δijδµνδ(t − t ′) , and Fi is the force acting on
particle i, due to the potentialΦ. (Throughout, i and j label par-
ticles, while Greek indices label spatial components.) In other
words, in the absence of Φ, each particle performs isotropic
Brownian motion.

B. Observables—mean and fluctuating

We summarize the arising observables in Table I. The
density operator, ρ(x) =

∑
i δ(x − xi),1 is the starting point for

all considerations that follow. If averaged over the equilibrium
distribution, one obtains the mean equilibrium density,

〈ρ(x)〉 =

〈∑
i

δ(x − xi)

〉
. (2)

Here, we have introduced the equilibrium average 〈. . .〉, which,
for the overdamped system, is exactly given by (we introduce
the phase space abbreviation Γ ≡ {xi})

〈. . .〉 =
∫ dΓ . . . e−βΦ(Γ)

∫ dΓe−βΦ(Γ)
. (3)

TABLE I. Observables studied in this manuscript. The lower two rows, i.e.,
the density in nonequilibrium states, are given for comparison to dynamical
density functional theory in Sec. IV.

Symbol Meaning

ρ(x) Density operator: ρ(x) =
∑

i δ(x − xi)
〈ρ(x)〉 Mean density in equilibrium
φ(x, t) Fluctuation of density about its

equilibrium value, φ(x, t) = ρ(x) − 〈ρ(x)〉
〈φ(x, t)φ(x′, t′)〉 Time dependent correlations of density

fluctuations in equilibrium, the quantity of
interest of this work

〈ρ(x, t)〉neq Mean density in nonequilibrium state
δρ(x, t) Average difference from equilibrium

value in a perturbed system,
δρ(x, t) = 〈ρ(x, t)〉neq − 〈ρ(x)〉

As noted above, for systems with infinite particle number, the
grand canonical average agrees with the canonical one given
here. We introduce density fluctuations,

φ(x) = ρ(x) − 〈ρ(x)〉. (4)

This quantity will be important for this manuscript. Such fluc-
tuations are, e.g., characterized by their correlation function,
which relates two points in space and in time t (in the following
we will sometimes suppress the arguments of C),

C(x, x′, t − t ′) =
〈
φ(x, t)φ(x′, t ′)

〉
. (5)

Due to the fact that we restrict to equilibrium fluctuations,
C is a function of t � t ′,12 but depends on both x and x′ in
inhomogeneous systems. Computing C is the main goal of the
manuscript. If transformed to reciprocal Fourier (k-space), C̃
is the intermediate scattering function.11

For completeness, we also define the mean density in an
out of equilibrium situation, i.e., 〈ρ(x, t)〉neq, and its average
deviation from equilibrium

δρ(x, t) = 〈ρ(x, t)〉neq − 〈ρ(x)〉 . (6)

Note the difference with Eq. (4), which is for a stochastic fluc-
tuation in an equilibrium system, while Eq. (6) is an average
deviation from the equilibrium average density for a perturbed
system.

C. Effective Hamiltonian

Aiming at the correlation function C, we start by assuring
that the equal time value of C is found correctly. We thus intro-
duce the following effective Hamiltonian, which is a functional
of the fluctuating field φ,

βH =
1
2

∫
dxdy φ(x)

1
〈φ(x)φ(y)〉

φ(y), (7)

where
1

〈φ(x)φ(y)〉
≡ 〈φ(x)φ(y)〉−1 (8)

is to be understood in the sense of inverse operators. In the
field theory description, the equilibrium average in Eq. (3) is
computed via the following functional integral,57,58

〈. . .〉 =
∫ Dφ . . . e−βH

∫ Dφe−βH
, (9)
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whereDφ denotes the measure of functional integration, which
is most easily implemented by discretizing space or working
with discrete Fourier transforms. As mentioned before, we
point out that the Hamiltonian in Eq. (7) with Eq. (9) by con-
struction correctly finds the static averages of φ, up to quadratic
order. Its average, 〈φ〉 = 0, as required from Eq. (4), and its
variance is indeed, using Eq. (7),

〈φ(x)φ(y)〉 = ∫
Dφφ(x)φ(y)e−βH

∫ Dφe−βH
. (10)

See, e.g., Ref. 59 for useful identities regarding Gaussian
functional integrals.

D. Static correlations—Theory of liquids

The variance of φ in Eq. (10) is a well studied object in the
theory of liquids and can be expressed in terms of the so-called
direct pair correction function c(2)1 (this equation can be seen
as one way of defining c(2)),

1
〈φ(x)φ(y)〉

=
1

〈ρ(x)〉
δ(x − y) − c(2)(x, y). (11)

Using this, we can make the Hamiltonian in Eq. (7) more
explicit,

βH =
1
2

∫
dx

φ(x)2

〈ρ(x)〉
−

1
2

∫
dxdyφ(x)c(2)(x, y)φ(y). (12)

This shows the nature of the Hamiltonian: It has a local term,
corresponding to the local compressibility of an ideal gas, and
a nonlocal term, which is given by the direct correlation func-
tion. It is worth mentioning that the direct correlation function
is a rather featureless function, and typically zero if |x � y|
is larger than the interaction range of the particles.1 In con-
trast, the correlation function 〈φ(x)φ(y)〉 can extend to larger
distances, which, mathematically, is a consequence of taking
the operator inverse. Physically, it is well known that corre-
lations may reach further than interparticle interactions. The
Ornstein-Zernike equation gives a very clear interpretation of
these statements, especially if regarded recursively:1 The total
correlation between two particles is given by their direct cor-
relation and by “indirect” correlations, obtained from direct
correlations between intermediate particles.

We finish this subsection by introducing the short hand
notation for the inverse of the static density correlation,

∆(x, y) ≡ kBT

(
1

〈ρ(x)〉
δ(x − y) − c(2)(x, y)

)
, (13)

where∆(x, y) plays the role of an effective interaction potential
between densities (we multiplied by kBT to obtain units of
energy). In terms of it, the Hamiltonian is finally

H =
1
2

∫
dxdyφ(x)∆(x, y)φ(y). (14)

E. Equation of motion

While static equilibrium averages are determined via the
Hamiltonian (with Eq. (9)), there is some freedom, or saying it
differently, some lack of information, regarding the dynamics.
The Hamiltonian in Eq. (7) describes only a subset of degrees
of freedom of the system. These degrees of freedom might

however not capture all relevant features of the dynamics.57,60

The tools of classical mechanics are thus not applicable to
deduce equations of motion from Eq. (7). One possibility to
overcome this problem is to resort to Langevin equations,57,60

which are based on deterministic (given by the explicit degrees
of freedom) as well as stochastic forces (due to the integrated
degrees of freedom).61 The former may be written in terms of
the driving force δH

δφ , which gives the force due to deviations
of H from its minimum value. For our case,

β
δH
δφ
=

φ(x)
〈ρ(x)〉

−

∫
dy c(2)(x, y)φ(y) (15)

≡ β∆φ. (16)

In the second line, we used the short hand notation of Eq. (13),
and also a short hand notation for operator products, so that
the second line contains an integration over the joint coordi-
nate. Clearly,

〈
δH
δφ

〉
= 0, vanishing in equilibrium. This force

transforms into changes in φ with application of the operator
R = R(x, y), so that R δH

δφ involves an integral over the joint
coordinate. R involves, among other things, the mobility coeffi-
cient. R having no time dependence, we have already restricted
to a time local description for simplicity. Dynamics which is
non-local in time may also be realized in this framework. Via
the operator R, one can incorporate several types of dynamics,
such as dynamics conserving the density, or not conserving
it.57,60,62 We aim at dynamics of overdamped Brownian parti-
cles given by Eq. (1), for which—justified a posteriori—the
proper choice for R is

R =
D

kBT
∇ · 〈ρ(x)〉∇δ(x − y). (17)

Note that, because R is written as a divergence, local conser-
vation of density is given. Indeed, the chosen R in Eq. (17)
is a version of the famous “Model B.”57,60 We thus write the
following equation of motion:

∂φ

∂t
= R

δH
δφ

+ ∇ ·
√

2D〈ρ〉η(x, t) (18)

=
D

kBT
∇ · 〈ρ(x)〉∇

δH
δφ

+ ∇ ·
√

2D〈ρ〉η(x, t). (19)

The included stochastic force is fixed through the choice of
the operator R. The field η(x, t) is a spatio-temporal vectorial
white noise field with 〈η〉 = 0, and whose components have
the correlation function〈

ηµ(x, t)ην(y, t ′)
〉
= δµνδ(t − t ′)δ(x − y). (20)

The form of the last term in Eq. (18) and the variance in Eq. (20)
ensure the validity of the fluctuation dissipation theorem62 and
make sure that Eq. (18) yields the correct variance for φ. The
explicit form of Eq. (18) reads

∂φ

∂t
= D∇ ·

[
∇φ − φ∇ log〈ρ〉 − 〈ρ〉∇

∫
dy c(2)(x, y)φ(y)

]

+∇ ·
√

2D〈ρ〉η(x, t). (21)

Examining this equation for the case of an ideal gas in the
absence of an external potential, for which c(2) = 0 and 〈ρ〉
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spatially constant, we obtain, as expected, a diffusion equation
with a conservative noise term,

∂φ

∂t
= D∇2φ + ∇ ·

√
2D〈ρ〉η. (22)

While the above equation contains the correct diffusion term
for the ideal gas, it yields by construction Gaussian density
fluctuations (because it is implied that the noise correlation in
Eq. (20) is Gaussian, so that higher order correlations of η can
be factorized). As a side note, we remark that, interestingly,
even for an ideal gas, the distribution of φ is nontrivial and
is in fact Poissonian.63 This difference in underlying statistics
only shows up for higher point correlation functions, so that
the present theory is exact for the two point correlations in
the case of ideal gas. This will be demonstrated at the end of
Subsection III A.

Together with Eqs. (15) and (19) gives a closed form for
the dynamics of the system, which is our first main result.
This dynamics is chosen to yield exact equilibrium correlation
functions but also gives the exact time-correlation function for
non-interacting Brownian particles. In Secs. III–V, we will
investigate the properties of the dynamics proposed here in
more detail.

III. TIME DEPENDENT CORRELATION FUNCTION

In this section, we finally compute and analyze the result-
ing approximative form of the time dependent equilibrium
correlation function, as defined in Eq. (5), as following from
Eq. (19).

A. General result

We start by writing the Langevin equation, Eq. (19) in a
shorter form, using Eq. (13),

∂φ

∂t
=

D
kBT
∇ · 〈ρ(x)〉∇

δH
δφ

+ ∇ ·
√

2D〈ρ〉η

= R∆φ + ∇ ·
√

2D〈ρ〉η. (23)

Eq. (23) can then be easily solved for the correlation function,
from its general solution (see, e.g., Ref. 62),

φ(t) = φ(t0) +
∫ t

t0

ds e(t−s)R∆∇ ·
√

2D〈ρ〉η(s). (24)

The average of φ(t)φ(t ′) over the noise contains then several
terms, including terms depending on the initial value at t0.
Aiming at the equilibrium correlation function, we let t and
t ′ formally go to infinity and obtain the steady equilibrium
part, which depends only on t � t ′ (recall that, as before, 〈. . .〉
denotes an average in equilibrium),

C =
〈
φ(x, t)φ(x′, t ′)

〉
=

kBT
∆

e |t−t′ |∆R. (25)

The correlation function is generally not an exponential in
time, because R and ∆ are operators. Eq. (25) is our second
main result.

We can now show that Eq. (25) is exact for non-interacting
particles. To see this it is best to work in Fourier space where
the density operator ρ takes the form, for N particles,

ρ̃(k) =
N∑

i=1

exp(−ik · xi), (26)

where xi obeys Eq. (1) with F = 0. The ensemble average in
this free gas is over the trajectories of the Brownian motions
ξi. The average of ρ̃(k) is given by

〈 ρ̃(k)〉 = (2π)dδ(k) 〈ρ〉 , (27)

with here N/V = 〈ρ〉 the uniform bulk density. A simple com-
putation shows that the two point correlation function of the
fluctuations φ at different times is given for large N by

〈φ̃(k, t)φ̃(k′, 0)〉 = (2π)dδ(k + k′) 〈ρ〉 exp(−Dk2t). (28)

Transforming Eq. (25) (derived from Eq. (22)) to Fourier
space, the agreement with the independently obtained Eq. (28)
can easily be verified.

B. Comparing to exact solution for short times

For small values of time t � t ′, we expand Eq. (25),〈
φ(x, t)φ(x′, t ′)

〉
=

kBT
∆

(
1 + |t − t ′ |∆R + . . .

)
. (29)

The dots represent higher order terms in t � t ′. We shall now
compare this result to the exact one for Eq. (1). (Recall that
we assume that canonical and grand canonical systems are
equivalent.) For this, we use the Smoluchowski equation cor-
responding to the set of stochastic equations, Eq. (1). The
Smoluchowski equation is a partial differential equation for
the distribution Ψ(Γ, t), which is a function of phase space
Γ,12

∂

∂t
Ψ = ΩΨ. (30)

Ω = D
∑

i ∂i · [∂i − βFi] is the Smoluchowski operator. Fi is,
as in Eq. (1), the force acting on particle i. The equilibrium
time correlation function for density is then written as64

〈
φ(x, t)φ(x′, t ′)

〉
=

∫
dΓφ(x)e |t−t′ |Ωφ(x′)Ψe(Γ). (31)

Here, Ψe is the equilibrium distribution. For short times, Eq.
(31) is expanded,〈
φ(x, t)φ(x′, t ′)

〉
=

〈
φ(x)φ(x′)

〉
+ |t − t ′ |

∫
dΓφ(x)Ωφ(x′)Ψe(Γ) + . . . ,

(32)

where Ψe being the Boltzmann distribution, one has ∂iΨe

= βFiΨe.12,64 Using this we can rewrite the second term in
Eq. (32) by use of partial integrations (Einstein summation
convention is implied),∫

dΓφ(x)Ωφ(x′)Ψe(Γ) = −D
∫

dΓ(∂iφ(x))(∂iφ(x′))Ψe.

(33)

We now employ the definition of φ(x) =
∑

i δ(x− xi)− 〈ρ(x)〉,
noticing that the mean density vanishes when plugged into
Eq. (33): It does not depend on phase space and ∂i yields zero.
With ∂iδ(x − xi) = −∂xδ(x − xi), we get

−D〈(∂iφ(x))(∂iφ(x′))〉 = −D
∑

i

∇〈δ(x − xi)δ(x′ − xi)〉
←−
∇′

= −D
∑

i

∇δ(x − x′)〈ρ〉(x′)
←−
∇ ′

= kBTR(x, x′), (34)
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where we have identified the operator R from Eq. (17). We
thus have the exact solution for short times,〈

φ(t)φ(t ′)
〉
=

kBT
∆

(
1 + |t − t ′ |∆R + . . .

)
. (35)

Comparison with Eq. (29) reveals that Eq. (25) agrees with the
exact solution of the Smoluchowski equation for short times,
i.e., including the term linear in time. This linear term has
been discussed in terms of the “initial decay rate,”65 or in
terms of a wavevector dependent diffusivity.15,66,67 The current
formulation agrees with these.

IV. RELAXATION TO EQUILIBRIUM—AGREEMENT
WITH DDFT

While in Sec. III B, we compared the stochastic equation
proposed here (Eq. (19)) to the exact Smoluchowski equation,
in this section, we aim to demonstrate another equivalence:
Near equilibrium, the relaxation dynamics of Eq. (19) agrees
exactly with the corresponding result of DDFT. This will be
seen by studying the relaxation of a system which is initially
out of equilibrium.

A. Mean relaxation to equilibrium from Eq. (19)

Let us assume that the system is in an initial situation
out of equilibrium, so that the mean density deviates from the
equilibrium one, and we define as in Table I,

〈ρ(x)〉neq = 〈ρ(x)〉 + δρ(x). (36)

If δρ(x) is small, we can use Eq. (19) to compute the relaxation
of δρ to zero (δρ(x) must be small because Eq. (19) is linear).
Therefore, we replace φ in Eq. (19) by δρ and remove the noise
term, as it vanishes when taking the mean of the equation. We
obtain the following equation which is linear in δρ:

∂δρ

∂t
= D∇ ·

[
∇δρ − δρ∇ log〈ρ〉

− 〈ρ〉∇

∫
dy c(2)(x, y)δρ(y)

]
. (37)

In Subsection IV B, we will compute the analogous equation
from DDFT and demonstrate the agreement.

B. DDFT expanded near equilibrium

Quoting the equation of motion of dynamical density
functional theory for Brownian particles in an external poten-
tial U,21 one has

∂δρ

∂t
= D∇ ·

[
∇(〈ρ〉 + δρ) + β(〈ρ〉 + δρ)∇U

+ β(〈ρ〉 + δρ)∇
δFex

δρ

]
, (38)

where Fex is the so-called excess free energy functional. This
is a well known and well studied equation, which is an approx-
imate solution of the Smoluchowski equation, Eq. (30). It
has been successfully used in many scenarios to describe the
dynamics of interacting Brownian particles.21 We now expand
this equation for small values of δρ, as in Eq. (37). We first

note that several terms cancel, as the time derivative must van-
ish in equilibrium. Specifically (note that even the term in the
square brackets vanishes),

0 = ∇ ·

∇〈ρ〉 + β〈ρ〉∇U + β〈ρ〉∇

δFex

δρ

�����ρ=〈ρ〉


. (39)

Furthermore, for small δρ, we expand the last term in Eq. (38)
in a functional Taylor series,

δFex

δρ(x)
=

δFex

δρ(x)

�����ρ=〈ρ〉

+
∫

dy
δFex

δρ(x)δρ(y)

�����ρ=〈ρ〉
δρ(y) + O(δρ2). (40)

It is now important to note that the involved Taylor coefficient
equals, by definition, the direct correlation function c(2),1

− β
δFex

δρ(x)δρ(y)

�����ρ=〈ρ〉
= c(2)(x, y). (41)

Another useful relation is the formal exact result for the
equilibrium mean density, which is given by1

〈ρ〉 = z exp

−βU −

βδFex

δρ(x)

�����ρ=〈ρ〉


, (42)

with the (in the following irrelevant) normalization z (the
fugacity). With this equation, one can write

kBT∇ log〈ρ〉 = −∇U − ∇
δFex

δρ(x)

�����ρ=〈ρ〉
. (43)

We finally obtain for the expansion of Eq. (38) linear in δρ,

∂δρ

∂t
= D∇ ·

[
∇δρ − δρ∇ log〈ρ〉

− 〈ρ〉∇

∫
dy c(2)(x, y)δρ(y)

]
(44)

which is identical to Eq. (37). We have thus shown that the
new equation, Eq. (19) is in agreement with DDFT for small
deviations from equilibrium. This demonstrates a connection
to the framework of Ref. 53, without, however, an obvious
direct equivalence.

V. COMPARISON TO THE EXACT
STOCHASTIC EQUATION

Starting from the set of stochastic equations in Eq. (1), the
following exact stochastic equation of motion is found for the
density operator ρ (see Table I),52

∂

∂t
ρ(x) = D∇ · ρ∇

δ βE
δρ(x)

+ ∇ ·
√

2Dρη(x, t). (45)

Here, the noise η is distributed as in Eq. (20), and E is the
energy functional,

E = kBT
∫

dxρ(x) ln(ρ(x))

+
1
2

∫
dxdyρ(x)V (x − y)ρ(y)

+
∫

dxρ(x)U(x). (46)
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We have as before split the potential into an interaction part V
and an external part U. Note the difference of Eq. (46) com-
pared to the free energy functional of DFT.2,52,53 Attempting to
linearize Eq. (45) in the fluctuations φ, the first natural choice is
to replace the density operator appearing in the noise term by
its equilibrium average, i.e.,

√
2Dρη(x, t) ≈

√
2D〈ρ〉η(x, t).

Interestingly, in order to keep detailed balance, this choice
implies that also the density operator on the right hand side
of Eq. (45) must be replaced by its mean, i.e., the resulting
approximate, consistent linear equation reads

∂

∂t
φ(x) = D∇ · 〈ρ〉∇

δ βE′

δφ(x)
+ ∇ ·

√
2D〈ρ〉η(x, t). (47)

Furthermore, we note that Eq. (47) yields the correct result for
the variance of φ in equilibrium, 〈φ(x)φ(y)〉, if the functional
E′ coincides with H of Eq. (7), E′ = H.

It is thus interesting to note that after pre-averaging the
noise, Eq. (19) appears to be the only consistent, linear equa-
tion for φ. It has been recently shown that linearizing the
interaction term in Equation (45) about the mean bulk den-
sity, while using the mean bulk density in the noise term, leads
to an analytically soluble theory in the bulk which recovers
the random phase approximation for the equal time corre-
lation functions,68–72 notably this means that Debye-Hückel
theory is obtained for Brownian electrolytes. The approach
has been applied to a variety of driven and out of equilibrium
systems. In particular, it is capable of reproducing the full
Onsager theory of electrolyte conductivity, both the Ohmic
linear response regime and the first Wien effect regime where
the conductivity is enhanced by the electric field.72 While the
random phase approximation is valid only for weak interac-
tions or high temperatures, the approach here should allow
the study of systems with form instance hard core interac-
tions, relevant for ionic liquids, both in the bulk and under
confinement.

VI. SUMMARY

We have derived an effective field theory for simple liq-
uids, which allows the computation of dynamical correlation
functions of the density. The result for the dynamical cor-
relation function is approximate, but exact for small times.
The described dynamics also agrees exactly at all times with
dynamical density functional theory. Future work will apply
this theory to study the intermediate scattering function in
confinement (where recent experimental findings exist40). It
will also be used to find the local viscosity near surfaces and
compare to previous theoretical approaches for bulk29 and con-
finement.30,31 For this, an expression for the stress tensor in
this theory must be derived. Then this theory may also be
used to investigate out of equilibrium Casimir forces in model
B as in Ref. 73, however including effects of finite particle
size.
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