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Introduction

At the pore scale, i.e. within the periodic cell, the equations that govern solute transport by convection and diffusion in a deforming medium are the following:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ∂c ∂t -∇ • q = 0 within ˝f, (1) 
q • n = 0 over , (2) 
v f = ∂ u s ∂t over , (3) 
where the flux q is given by

q = -D ∇c + c v f . (4) 
Therefore, Eq. ( 2) yields (D ∇c -c v f ) • n = 0 over .

(5)

Consequently, Eq. (11) in the original paper [START_REF] Royer | Homogenisation of advective-diffusive transport in poroelastic media[END_REF] should be replaced by Eq. (5).

Homogenisation of the transport equations

The dimensionless local scale description to be homogenised is therefore the following:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂c ∂t -∇ • D ∇c -c v f = 0 within ˝f, (6) 
(D ∇c -c v f ) • n = 0 over , (7) 
v f = ∂ u s ∂t over . (8) 
Let us now analyse the boundary-value problems that arise at the successive orders of ε, once the asymptotic expansions for c, v f and u s and the expression of the dimensionless gradient operator (Eq.

(2) in the original paper) have been incorporated.

Determination of c (0)

The boundary-value problem for c (0) is unmodified. It remains identical to that obtained for a rigid porous medium, which leads to:

c (0) = c (0) ( x, t). (9) 
2.2. Determination of c (1) Noticing that 1 ∂v (0)

f i ∂y i = 0, (10) 
we get the following boundary-value problem for c (1) :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ ∂y i D ∂c (1) ∂y i + ∂c (0) ∂x i = 0 within ˝f, (11) 
D ∂c (1) ∂y i

+ ∂c (0) ∂x i n i -c (0) ∂u (0) s i ∂t n i = 0 over . ( 12 
)
The solution c (1) depends on two forcing terms: ∇ x c (0) ( x, t) and 2 c (0) (∂u (0)

s i /∂t)( x, t)
. By virtue of linearity, the solution for c (1) is a linear combination of both:

c (1) = j ( y) ∂c (0) ∂x j -j ( y)c (0) ∂u 0 s j ∂t + c(1) ( x, t), (13) 
where c( 1) is an arbitrary function. The definition of which is given by Eqs. (21) in the original paper remains valid, while the vector is defined by the following local problem:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∇ y • (D(∇ y )) = 0 in ˝f, D∇ y • n = 0 on , f = 0, : ˝-periodic. (14) 

Derivation of the first-order macroscopic description

At the third order, the transport equations lead to the following system:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂c (0) ∂t -∇ y • D(∇ y c (2) + ∇ x c (1) ) +∇ y • c (0) v (1) f + c (1) v (0) f -∇ x • D(∇ y c (1) + ∇ x c (0) +∇ x • c (0) v (0) f = 0 within ˝f, (15) 
D ∇ y c (2) + ∇ x c (1) • n -c (0) v (1) f + c (1) v (0) f • n = 0 over . ( 16 
)
The first-order macroscopic description is obtained by integrating the balance equation (Eq. ( 15)) over the periodic cell:

∂c (0) ∂t - 1 | ˝| ˝f ∂ ∂y i D ∂c (2) ∂y i + ∂c (1) ∂x i -c (0) v (1) f i -c (1) v (0) f i d˝- 1 | ˝| ˝f ∂ ∂x i D ∂c (1) ∂y i + ∂c (0) ∂x i -c (0) v 0 f i d˝= 0, (17) 
1 First-order expansion of the fluid continuity equation:

∇ • v f = 0.
2 It has been shown earlier that u

(0) s i = u (0) s i ( x, t).
where

= | ˝f | | ˝| (18) 
denotes the porosity. Using Gauss' theorem and boundarycondition (Eq. ( 16)), while keeping in mind the condition of periodicity, the second term of (Eq. ( 17)) vanishes and it thus reduces to:

∂c (0) ∂t - ∂ ∂x i D ∂c (1) ∂y i + ∂c (0) ∂x i f + ∂ ∂x i c (0) v (0) f i f = 0. ( 19 
)
Using the expression obtained for c (1) (Eq. ( 13)), we deduce that:

D ∂c (1) ∂y i + ∂c (0) ∂x i f = D eff ij ∂c (0) ∂x j -D ∂ j ∂y i f c (0) ∂u 0 s j ∂t , ( 20 
)
where D eff represents the effective tensor of diffusion, and is defined by

D eff = DT, (21) 
with

T = 1 | ˝f | ˝f ∇ y + I d˝, ( 22 
)
where T denotes the tortuosity tensor.

Eq. ( 19) now reads:

∂c (0) ∂t - ∂ ∂x i D eff ij ∂c (0) ∂x j + ∂ ∂x i (c (0) v (0) f i f ) = - ∂ ∂x i D ∂ j ∂y i f c 0 ∂u 0 s j ∂t . ( 23 
)
Noticing that the macroscopic relative fluid velocity 3 is:

v (0) f i f - ∂u (0) s i ∂t ,
Eq. ( 23) can be rewritten as follows:

∂c (0) ∂t accumulation term -∇ x • D eff ∇ x c (0) effective diffusion + v (0) f f - ∂ u (0) s ∂t • ∇ x c (0) advection + A∇ x • c (0) ∂ u (0) s ∂t mechanically induced solute transport = 0, (24) 
where

A = D∇ y + I f . (25) 
Tensor A characterises a coupling between transport and deformation mechanisms, which is induced by the fluid convection.

Properties of the coupling tensor A

By definition, the variational formulation of the boundary-value problem (Eqs. ( 11) and ( 12)) reads: ˝f ˛∂ ∂y i D ∂c (1) 

∂y i + ∂c (0) ∂x i d˝= 0, (26) 
3 See the macroscopic poroelastic model in the original paper.

and can be transformed as follows:

˝f ∂∂ y i D ∂c (1) ∂y i d˝= -

˝f ∂∂ y i D ∂c (0) ∂x i d+ ˝f ∂∂ y i c (0) ∂u (0) s i ∂t d˝. (27) 
By taking

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ c (1) = j , ∂c (0) ∂x i = I ij , (28) 
˛= j , c (0) ∂u (0)

s i ∂t = 0, (29) 
into Eq. ( 27), we get:

˝f ∂ j ∂y i D ∂ j ∂y i d˝= - ˝f D ∂ j ∂y i d˝. (30) 
Now, by considering

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ c (1) = j , c (0) ∂u (0) s i ∂t = -I ij , (31) 
˛= j , ∂c

) ∂x i = 0, (0 
into Eq. ( 27), we obtain:

˝f ∂ j ∂y i D ∂ j ∂y i d˝= - ˝f ∂ j ∂y i d˝. (33) 
From Eqs. ( 30) and (33), we deduce:

˝f D ∂ j ∂y i d˝= ˝f ∂ j ∂y i d˝. (34) 
Consequently, we have:

A = D∇ y + I f = ∇ y + I f = T, (35) 
where T is the tensor of tortuosity, defined by (Eq. ( 22)).

Conclusion

The macroscopic transport equation is written as:

∂c ∂t

+ V f -V s • ∇c + T∇ • c V s = ∇ • D eff ∇c ,
where V f and V s denote the fluid and solid intrinsic macroscopic velocities, respectively. Therefore, the only difference with the original paper is that the coupling term emerging from the scale transition is T∇ • (c V s ) instead of V s • T ∇c. All the other conclusions mentioned in the original paper remain valid.