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Chapter 1

Large Spatial Competition

Mat́ıas Núñez and Marco Scarsini

Abstract We consider spatial competition when consumers are arbitrarily

distributed on a compact metric space. Retailers can choose one of finitely

many locations in this space. We focus on symmetric mixed equilibria which

exist for any number of retailers. We prove that the distribution of retailers

tends to agree with the distribution of the consumers when the number of

competitors is large enough. The results are shown to be robust to the intro-

duction of (i) randomness in the number of retailers and (ii) different ability

of the retailers to attract consumers.

JEL Classification: C72, R30, R39.

Keywords: Hotelling games, large games, Poisson games, valence.

1.1 Introduction

Consider a market with consumers and retailers. Suppose that the former

ones are distributed on the unit interval and each one of them shops at the

closest store whereas the latter ones decide where to locate in order to attract

the largest fraction of consumers. This model is called the Pure Location

Game and was initially considered by Hotelling (1929) for the case of two

retailers. This seminal paper has been extended and applied in different fields
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such as industrial organization or spatial competition (as in Downs (1957)),

giving rise to an immense literature.

Among the different lessons one can draw from this model, the convergence

to the median result is a highly attractive feature. Indeed, with just two

players, a unique equilibrium exists. This equilibrium has two main features:

(i) it is in pure strategies and (ii) both parties locate at the location preferred

by the median consumer. Yet, these attractive features are not robust to the

introduction of some slight modifications of the model (see the review of the

literature for a detailed account). For instance, if one assumes that consumers

are distributed on a multidimensional space rather than on the unit interval, a

pure equilibrium ceases to exist. Similarly, adding more retailers to the game

might imply that a pure strategy equilibrium fails to exist. For instance, a

pure equilibrium need not exist with at least four firms (Osborne and Pitchik

(1986)) when firms can locate over the unit interval. Nuñez and Scarsini (frth)

prove that, surprisingly a pure equilibrium must exist when the number of

retailers is large enough as long as firms are restricted to choose from a finite

set of locations. More specifically, while the consumers are distributed in a

multidimensional space, the retailers can only locate in a finite subset of

this space1. Moreover, in this pure strategy equilibrium, the distribution of

retailers converges towards the distribution of consumers when the number

of retailers increases. Note that Nuñez and Scarsini (frth)’s result allows

the consumers to be distributed in any multidimensional space and holds

independently of the finite set of locations the retailers can choose from.

The current work focuses on a similar framework2 and attempts to char-

acterize the whole set of symmetric equilibria when the number of retailers

1 There are several real-life applications where the strategic behavior of the retailers is

subject to feasibility constraints as, for instance, when zoning regulations are enforced.
Land use regulation has been extensively analyzed in urban economics, mostly from an

applied perspective. It is often argued that zoning can have anti-competitive effects and
at the same time be beneficial since it might solve problems of externalities (see Suzuki,
2013, for a recent work on this area.)
2 Throughout, we assume that competition among retailers is only in terms of location, not

price. We do this for several reasons. First, there exist several markets where price is not
decided by retailers: think, for instance of newsvendors, shops operating under franchising,
pharmacies in many countries, etc.. Second, our model without pricing can be used to study

other topics, e.g., political competition, when candidates have to take position on several,
possibly related, issues. Finally several of the existing models that allow competition on

location and pricing are two-stage models, where competition first happens on location

and subsequently on price. Our game could be seen as a model of the first stage. It is
interesting to notice that the recent paper by Heijnen and Soetevent (2014) deals with

the second stage in a location model on a graph, assuming that the first has already been

solved.
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becomes large enough. To do so, we first consider a simple version of the

model, where all retailers are symmetric. We examine the properties of sym-

metric mixed strategy equilibria (which must exist since the game is finite

and symmetric). We first prove that, as the number of retailers grows large,

every symmetric equilibrium must be completely mixed. In other words, in

these equilibria, every feasible location is occupied with positive probability.

This implies that the expected payoff from choosing each location must be

equal for each retailer. A non-trivial consequence of this is that the distri-

bution of retailers induced by the symmetric mixed equilibrium converges to

the consumers’ distribution.

Once we have considered the simple model with an exogenous number of

symmetric retailers, we then examine two extensions. The first extension deals

with games with a random number of players and the second one introduces

ex-ante asymmetries between the retailers. As far as the first extension is

concerned, it is well-known that games with a large number of players can

easily produce results that are not robust with respect to the number of

players. In order to check this robustness, we consider also a model where

the number of players is random, using Poisson games à la Myerson (1998,

2000). We show that in the unique equilibrium of the Poisson game retailers

match consumers when the parameter of the Poisson distribution is large

enough, so retailers do not even need to know the exact number of their

competitors to play their (mixed) equilibrium strategies.

Finally, we consider a richer model where the retailers are of two different

types, advantaged and disadvantaged. Consumers prefer advantaged retailers,

so they are ready to travel a bit more to shop at one of them rather than at a

disadvantaged one. Here we model the comparative advantage of the first type

of retailers by an additive constant. This is formally equivalent to the idea

of valence in election models (see Aragones and Palfrey, 2002, Aragonès and

Xefteris, 2012, among others). We show that, when the number of advantaged

players increases, they play as if the disadvantaged retailers did not exist, and

these ones get a zero payoff, no matter what they do.

Review of the Literature

We refer the reader to Fournier and Scarsini (2016) for a recent survey

of the literature on Hotelling games. Here we just mention the articles that

are somehow closer to our contribution. Eaton and Lipsey (1975) consider a
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Hotelling-type model with an arbitrary number of players, different possible

structures of the space where retailers can locate, and different distributions

of the customers. Lederer and Hurter (1986) consider a model with two re-

tailers where consumers are non-uniformly distributed on the plane. Aoyagi

and Okabe (1993) look at a bidimensional market and, through simulation,

relate the existence of equilibria and their properties to the shape of the

market. Tabuchi (1994) considers a two-stage Hotelling duopoly model in a

bidimensional market. Hörner and Jamison (2012) look at a Hotelling model

with a finite number of customers. Note that, with just two retailers, the

literature has underlined the existence of a “curse of multidimensionality”

(see Bernheim and Slavov (2009) and Xefteris (2015) for a discussion). This

curse implies that there exists no equilibrium in pure strategies for almost all

distributions of consumers whenever the competition takes place in a setting

with more than one dimension (as first identified by Plott (1967))3. When the

number of retailers becomes large, the location of the retailers at the sym-

metric mixed equilibrium tends to coincide with the distribution of the con-

sumers on the space. This phenomenon where “retailers match consumers”

was first observed by Osborne and Pitchik (1986)4. A similar result is present

in Laster, Bennet, and Geoum (1999) and Ottaviani and Sorensen (2006) in

the context of professional forecasting. The previously mentioned results just

focus on the unidimensional space. As far as multidimensional spaces are

concerned, Dürr and Thang (2007), Mavronicolas, Monien, Papadopoulou,

and Schoppmann (2008), Feldmann, Mavronicolas, and Monien (2009), and

Gur, Saban, and Stier-Moses (2014) consider a Hotelling model on graphs

where retailers can locate only on the vertices of the graph. Pálvölgyi (2011),

Fournier and Scarsini (2016), and Fournier (2016) consider Hotelling games

on graphs with an arbitrary number of players. Heijnen and Soetevent (2014)

extend Hotelling’s model of price competition with quadratic transportation

costs from a line to graphs. Another model of location-price competition on a

graph is studied in Pinto, Almeida, and Parreira (2016). Nuñez and Scarsini

(frth) prove the existence of pure strategy equilibrium when the number of

locations is finite and the number of players is large enough.

3 Two main possibilities have been explored to solve for this lack of equilibrium: either

alternative candidates’ objectives were considered (as in Calvert (1985)) or the use of mixed
strategies (as in Banks, Duggan, and Le Breton (2006)).
4 Formally, Osborne and Pitchik (1986) prove that the symmetric equilibrium strategies
satisfy the claim assuming that the consumers are distributed in the interval [0,1] according

to any twice continuously differentiable distribution function.
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The paper is organized as follows. Section 1.2 introduces the model. Sec-

tion 1.3 analyzes its equilibria. Section 1.4 considers the case of a random

number of retailers. Section 1.5 deals with the case of differentiated retailers.

All proofs are in the Appendix.

1.2 The model

In this section we describe the basic location model, whose different vari-

ations will be studied in the rest of the paper. This model falls in the more

general framework studied by Nuñez and Scarsini (frth).

Consumers.

In this model consumers are distributed according to a measure λ on a

compact Borel metric space (S, d). For instance S could be a compact subset

of R2 or a compact subset of a 2-sphere, but it could also be a (properly

metrized) network.

Retailers.

A finite set Nn := {1, . . . , n} of retailers have to decide where to set shop,

knowing that consumers choose the closest retailers. Each retailer wants to

maximize her market share. The action set of each retailer is a finite subset of

S. This means that, unlike what happens in a typical Hotelling-type model,

retailers cannot locate anywhere they want, but can choose only one of finitely

many possible locations. For instance they can set shop only in one of the

existing shopping malls in town.

Tessellation.

More formally, define K = {1, . . . , k} and let XK := {x1, . . . , xk} ⊂ S be a

finite collection of points in S. These are the points where retailers can open

a store. For every J ⊂ K call XJ := {xj : j ∈ J} and consider the Voronoi

tessellation V (XJ) of S induced by XJ . That is, for each xj ∈ XJ define the

Voronoi cell of xj as follows:
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vJ(xj) := {y ∈ S : d(y, xj) ≤ d(y, x`) for all x` ∈ XJ}.

The cell vJ(xj) contains all points whose distance from xj is not larger than

the distance from the other points in XJ . Call

V (XJ) := (vJ(xj))j∈J

the set of all Voronoi cells vJ(xj). See, for instance, Figure 1.1. It is clear

that for J ⊂ L ⊂ K we have vJ(xj) ⊃ vL(xj) for every j ∈ J .

FIGURE 1.1 ABOUT HERE
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(a) XK ⊂ [0, 1]2, K = {1, . . . , 10}. (b) V (XJ ), J = {1, 2}.

(c) V (XJ ), J = {3, 4, 5}. (d) V (XJ ), J = {3, 4, 5, 6}.

(e) V (XJ ), J = {1, 2, 7, 8, 9, 10}. (f) V (XJ ), J = K.

Fig. 1.1: Various Voronoi tessellations with different subsets of locations
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Given that λ is the distribution of consumers on the space S, we have that

λ(vJ(xj)) is the mass of consumers who are weakly closer to xj than to any

other point in XJ . These consumers will weakly prefer to shop at location xj

rather than at other locations in XJ since we assume that all firms offer the

same good at the same price.

To simplify the notation and the results, we assume that S is a compact

subset of some Euclidean space, that λ is absolutely continuous with respect

to the Lebesgue measure on this space and

λ(vK(xj)) > 0 for all xj ∈ XK . (1.1)

This assumption implies that the set of consumers that belong to r differ-

ent Voronoi cells vJ(xj1), . . . , vJ(xjr ) (i.e. are at the same distance of several

points in XK) is of zero measure. This allows us to simplify the payoff func-

tions. More general situations can be considered but they would require more

care in handling ties.

The game.

We will build a game where Nn := {1, . . . , n} is the set of players. For

i ∈ Nn call ai ∈ XK the action of player i. Then a := (ai)i∈Nn is the profile

of actions and a−i := (ah)h∈Nn\{i} is the profile of actions of all the players

different from i. Hence a = (ai,a−i).

We say that a := (a1, . . . , an) ≈ XJ if for all locations xj ∈ XJ there

exists a player i ∈ Nn such that ai = xj and for all players i ∈ Nn there

exists a location xj ∈ XJ such that ai = xj . For each a, we let K(a) denote

the subset of K such that a ≈ XK(a). Therefore, for i ∈ Nn, the payoff of

player i is ui : Xn
K → R, defined as follows:

ui(a) =
1

card{h : ah = ai}
λ(vK(a)(ai)). (1.2)

The idea behind expression (1.2) is as follows. Player i’s payoff is the

measure of the consumers that are closer to the location that she chooses than

to any other location chosen by any other player, divided by the number of

retailers that choose the same action as i. As Figure 1.1 shows, some locations

may not be chosen by any player, this is why, for every J ⊂ K, we have to
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consider the Voronoi tessellation V (XJ) with a ≈ XJ rather than the finer

tessellation V (XK). We examine a simple example to clarify the idea.

Example 1. Let S = [0, 1], let λ be the Lebesgue measure on [0, 1], and let

XK = {0, 1/2, 1}. As mentioned before, for any given XJ , the Voronoi cell of

location xj represents the set of points in [0, 1] that are closer to xj than any

other point in XJ .

vJ(0) =


[0, 1] if XJ = {0},

[0, 1/2] if XJ = {0, 1},

[0, 1/4] if XJ = XK or XJ = {0, 1/2}.

vJ(1/2) =


[0, 1] if XJ = {1/2},

[1/4, 1] if XJ = {0, 1/2}

[0, 3/4] if XJ = {1/2, 1},

[1/4, 3/4] if XJ = XK .

vJ(1) =


[0, 1] if XJ = {1},

[1/2, 1] if XJ = {0, 1},

[3/4, 1] if XJ = XK or XJ = {1/2, 1}.

See Figure 1.2.

FIGURE 1.2 ABOUT HERE
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0 0.5 1
S = [0, 1], XK = {0, 0.5, 1}

vJ (0), XJ = {0}

vJ (0), XJ = {0, 1}

vJ (0), XJ = {0, 0.5}

vJ (0), XJ = {0, 0.5, 1}

vJ (0.5), XJ = {0.5}

vJ (0.5), XJ = {0, 0.5}

vJ (0.5), XJ = {0.5, 1}

vJ (0.5), XJ = {0, 0.5, 1}

vJ (1), XJ = {1}

vJ (1), XJ = {0, 1}

vJ (1), XJ = {0.5, 1}

vJ (1), XJ = {0, 0.5, 1}

Fig. 1.2: Voronoi cells with different subsets XJ of locations

Hence
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λ(vJ(0)) =


1 if XJ = {0},

1/2 if XJ = {0, 1},

1/4 if XJ = XK or XJ = {0, 1/2}.

λ(vJ(1/2)) =


1 if XJ = {1/2},

3/4 if XJ = {0, 1/2} or XJ = {1/2, 1},

1/2 if XJ = XK .

λ(vJ(1)) =


1 if XJ = {1},

1/2 if XJ = {0, 1},

1/4 if XJ = XK or XJ = {1/2, 1}.

Therefore the payoff for player i, if she chooses location 0 when the rest

of the players’ pure actions are a−i is

ui(0,a−i) =
1

card{h : ah = ai}
φ(a−i),

where

φ(a−i) =


1 if a ≈ {0},
1
2 if a ≈ {0, 1},
1
4 if a ≈ XK or a ≈ {0, 1/2}.

The payoffs when she chooses either 1/2 or 1 can be similarly computed.

Remark 1. As mentioned before, the total demand for a location xj (i.e. share

of consumers that purchase the good from a given location) depends on the

location of all the retailers. The minimum value that this demand can assume

is equal to λ(vK(xj)) > 0, which happens when there is at least one retailer in

each location (i.e. when a ≈ XK). This represents one of the main differences

with respect to the classical model in which retailers can locate everywhere

in the set S. In the classical model the demand for a location could be made

arbitrarily small. To see why, consider the classical Downsian model in the

interval [0, 1] with three players. Assume, for instance that player 1 locates

in x, player 2 locates in x − ε and player 3 locates in x + ε. Then the total

demand for x can be rendered arbitrary small as ε→ 0.

Consider a game where the consumers are distributed on S according to

λ, the set of players is Nn, the set of actions for each player is XK and the

payoff of player i is given by (1.2). Call this game Gn = 〈S, λ,Nn, XK , (ui)〉.
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Since the set of actions coincides with the set of locations, we will use the

two terms interchangeably.

With an abuse of notation, we use the same symbol Gn for the mixed

extension of the game, where, for a mixed strategy profile σ = (σ1, . . . , σn),

the expected payoff of player i is

Ui(σ) =
∑

a1∈XK

· · ·
∑

an∈XK

ui(a)σ1(a1) . . . σn(an).

1.3 Equilibria

In the rest of this section, unless otherwise stated, we consider a sequence

{Gn} of games, all of which have the same parameters S, λ,XK . More pre-

cisely, our focus is on the sequence of games when the number of retailers n

grows.

We prove that when the number of retailers is large enough the distribution

of retailers in equilibrium approaches the distribution of consumers.

1.3.1 Pure equilibria

(Nuñez and Scarsini, frth, Theorem 3.4) prove in a more general setting

that, when the number of players is large, the game Gn admits pure equilibria

and the share of players in the different locations in equilibrium is approxi-

mately proportional to the measure of the corresponding Voronoi cells. They

also show that this is not the case for small n. In our setting their theorem

becomes:

Theorem 1. Consider a sequence of games {Gn}n∈N. There exists n̄ such

that for all n ≥ n̄ the game Gn admits a pure equilibrium a∗. Moreover, for

all n ≥ n̄, any pure equilibrium is such that

nj(a
∗)

n`(a∗) + 1
≤ λ(vK(xj))

λ(vK(x`))
≤ nj(a

∗) + 1

n`(a∗)
. (1.3)
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1.3.2 Mixed Equilibria

We consider now the mixed equilibria of the game Gn.

Theorem 2. For every n ∈ N the game Gn admits a symmetric mixed equi-

librium γ(n) = (γ(n), . . . , γ(n)) such that

lim
n→∞

γ(n) = γ, (1.4)

with

γ(xj) =
λ(vK(xj))

λ(S)
for all j ∈ K. (1.5)

Theorem 2 says that, as the number of players grows, there is a symmetric

equilibrium where players mix according to the market share of each location.

This result holds only asymptotically. For instance, consider a game Gn with

n = 2, S = [0, 1], λ the Lebesgue measure, and XK = {0.45, 0.5, 0.55}. Then

the only symmetric equilibrium is the pure profile where both players choose

the location 0.5.

1.4 Games with a random number of players

In this section we consider games where the number of players is random

and we show how the results of the previous section extend to this case.

In particular we focus on Poisson games (see Myerson, 1998, 2000, among

others). In these games, the number of players follows a Poisson distribution.

We call Pn = 〈S, λ,NΞn , XK , (ui)〉 the game where the cardinality of the

players set NΞn is a random variable Ξn, with

P(Ξn = k) =
e−n nk

k!
,

that is, Ξn has a Poisson distribution with parameter n.

Just like in game Gn, in game Pn all players have the same utility function.

So the utility function of player i depends only on i’ s action and on the

number of players who have chosen xj for all j ∈ K.

Quoting Myerson (1998), “population uncertainty forces us to treat players

symmetrically in our game-theoretic analysis,” so each player choses action xj

with probability σ(xj). As a consequence, all equilibria are symmetric. Prop-
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erties of the Poisson distribution imply that the number of players choosing

action xj is independent of the number of players choosing action x` for j 6= `.

Let Z(XK) stand for the set of vectors y = (y(xi))xi∈XK such that each

component y(xi) is a nonnegative integer that describes the number of players

choosing action xi. For each mixed strategy σ, the probability that that the

actual play equals y for any y ∈ Z(XK) equals:

∏
j∈K

(
e−nσ(xj)(nσ(xj))

y(xj)

y(xj)

)
,

where the product is a consequence of the independence of the different voters

choosing a different action. Therefore, the expected utility of each player,

when she chooses action xj and all the other players act according to the

mixed strategy σ is

U(xj , σ) =
∑

y∈Z(XK)

∏
j∈K

(
e−nσ(xj)(nσ(xj))

y(xj)

y(xj)

)
U(xj , y).

In the rest of this section we consider a sequence {Pn} of games, all of

which have the same parameters S, λ,XK .

Theorem 3. For every n ∈ N the game Pn admits a symmetric mixed equi-

librium γ(n) such that

lim
n→∞

γ(n)(xj) =
λ(vK(xj))

λ(S)
for all j ∈ K. (1.6)

The next example shows that in general the equilibria of Gn and Pn do

not coincide.

Example 2. Let S = [0, 1] with λ the Lebesgue measure on [0, 1] and XK =

{0.1, 0.5, 0.9}. We consider the equilibria of the games G3 (static) and P3

(Poisson).

In the game G3, there exists an equilibrium σ∗ in which each retailer locates

in 0.5. Under σ∗ the payoff for each retailer equals 1/3 since they uniformly

split the consumers in S. A deviation towards 0.1 or 0.9 would give a payoff

of 0.3 < 1/3, so σ∗ is indeed an equilibrium of G3.

We now prove that σ∗ is not an equilibrium in the game P3. We have
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U(σ∗) =
1− e−3

3
≈ 0.316738,

U(0.1, σ∗) = U(0.9, σ∗) = e−3 +(0.3)(1− e−3) ≈ 0.334851.

This shows that a deviation to either 0.1 or 0.9 is profitable, hence σ∗ is not

an equilibrium of the game P3.

1.5 Competition with different classes of retailers

Up to now, we have considered a model where all retailers are equally

able to attract consumers. In other words, a consumer is indifferent between

purchasing the good at two different shops if they are equally distant from

her location.

In many situations some retailers have a comparative advantage due, for

instance, to reputation. Therefore, ceteris paribus, a consumer may prefer

one retailer over another. Similar models have been studied in the political

competition literature with few strategic parties (see Aragones and Palfrey,

2002, among others). In this literature the term “valence” is used to indicate

the competitive advantage of one candidate over another.

In the model that we analyze below, retailers can be of two types: ad-

vantaged (A) and disadvantaged (D). We choose this dichotomic model out

of simplicity. Results are not qualitatively different when a finite number of

types is allowed. More precisely, we have in mind a model with several types

of firms ranked by their comparative advantage. If we assume that the num-

ber of most advantaged firms goes to infinity (as we do now with just two

types), then the most advantaged firms split the consumers among them and

the disadvantaged ones get a zero payoff (asymptotically) whatever they do

and independently of their comparative advantage.

When choosing between two retailers of the same type, a consumer takes

into account only their distance from her and she prefers the closer of the

two. When choosing between a retailer of type A located in xA and a retailer

of type D located in xD, a consumer located in y will prefer the retailer of

type A iff

d(xA, y) < d(xD, y) + β, with β > 0.

She will be indifferent between the two retailers iff
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d(xA, y) = d(xD, y) + β.

Obviously the case β = 0 corresponds to the model examined in Section 1.2.

Different ways to model advantage of one type of players over another have

been considered in the literature (see Gouret, Hollard, and Rossignol, 2011,

for a discussion).

We now formally define a game Dn with differentiated retailers. For j ∈
{A,D}, call N j

n the set of retailers of type j and define nj = card(N j
n).

Therefore

Nn = NA
n ∪ND

n ,

n = nA + nD.

For j ∈ {A,D} and i ∈ N j
n call aji ∈ XK the action of retailer i. Then the

profile of actions is

a := (aA,aD) := {(aAi )i∈NAn , (a
D
i )i∈NDn }.

For any profile a ∈ Xn
K define

nAj (a) := card{i ∈ NA
n : aAi = xj},

nDj (a) := card{i ∈ ND
n : aDi = xj}.

So nAj and nDj are the number of A and D players, respectively, who choose

action xj .

We say that (aA,aD) ≈ XJA,JD if for all locations xj ∈ XJA there exists

a player i ∈ NA
n such that aAi = xj and for all players i ∈ NA

n there exists a

location xj ∈ XJA such that aAi = xj and for all locations xj ∈ XJD there

exists a player i ∈ ND
n such that aDi = xj and for all players i ∈ ND

n there

exists a location xj ∈ XJD such that aDi = xj .

Fix β > 0, and, for JA, JD ⊂ K, define

vAJA,JD (xj) := {y ∈ S : d(y, xj) ≤ d(y, x`) for all x` ∈ XJA and

d(y, xj) ≤ d(y, x`) + β for all x` ∈ XJD}

vDJA,JD (xj) := {y ∈ S : d(y, xj) ≤ d(y, x`)− β for all x` ∈ XJA and

d(y, xj) ≤ d(y, x`) for all x` ∈ XJD}.

For i ∈ Nn, the payoff of player i is ui : Xn
K → R, defined as follows:
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ui(a
A,aD) =

1

card{h : aAh = aAi }
∑

JA,JD⊂K

λ(vAJA,JD (aAi ))1((aA,aD) ≈ XJA,JD ), if i ∈ NA
n ,

1

card{h : aDh = aDi }
∑

JA,JD⊂K

λ(vDJA,JD (aDi ))1((aA,aD) ≈ XJA,JD ), if i ∈ ND
n .

We call Dn := 〈S, λ,NA
n , N

D
n , XK , β, (ui)〉 a Hotelling game with differen-

tiated players.

Note that, in any pure strategy profile of the game Dn, a D-player gets

a strictly positive payoff only if she chooses a location that is not chosen by

any advantaged players.

The next example shows how substantially different the equilibria of a

game Gn and of a game Dn can be.

Example 3. Let S = [0, 1] with λ the Lebesgue measure on [0, 1] and XK =

{0, 1}. The game G2 admits pure equilibria. Actually any pure or mixed profile

is an equilibrium and gives the same payoff 1/2 to both players.

Consider now the game D2 with one advantaged and one disadvantaged

players. In the unique equilibrium of D2 both players randomize with prob-

ability 1/2 over the two possible locations.

Indeed, in D2 there cannot be a pure equilibrium in which both players

choose the same location since the disadvantaged player would get 0 and

hence would strictly increase her payoff by deviating. Similarly, there cannot

be a pure equilibrium in which players choose different locations, since the

advantaged player would have an incentive to deviate to the location chosen

by the disadvantaged player. Therefore, any equilibrium must be mixed. A

simple computation proves that uniform randomization is the unique strategy

profile that constitutes an equilibrium.

We now examine the equilibria in this model with differentiated candi-

dates. Given a game Dn, an equilibrium profile (γA,n,γD,n) is called (A,D)-

symmetric if

γA,n = (γA,n, . . . , γA,n), (1.7)

γD,n = (γD,n, . . . , γD,n). (1.8)

Theorem 4. For every n ∈ N the game Dn admits an (A,D)-symmetric

equilibrium (γA,n,γD,n) such that
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lim
nA→∞

γA,n(xj) =
λ(vAK,JD (xj))

λ(S)
=
λ(vK(xj))

λ(S)
(1.9)

for all xj ∈ S, for all JD ⊂ K. Moreover, in this equilibrium,

lim
nA→∞

∑
i∈ND

UDi (γA,n,γD,n) = 0. (1.10)

Theorem 4 shows that, as the number nA of advantaged players grows,

they behave as if the disadvantaged players did not exist, so they play the

same mixed strategies as in the game GnA . The disadvantaged players in turn

get a zero payoff whatever they do.
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1.6 Proofs

Proofs of Section 1.3

The proof of Theorem 2 requires some preliminary results.

Lemma 1. Consider a sequence of games {Gn}n∈N. There exists n̄ such that

for all n ≥ n̄, if γ(n) is a symmetric equilibrium of Gn, then γ(n) is completely

mixed, i.e.,

γ(n)(xj) > 0 for all xj ∈ XK .

Proof. Assume by contradiction that for every n ∈ N there exists some xj ∈
XK and a symmetric equilibrium γ(n) of Gn such that γ(n)(xj) = 0. Given

that λ(S) <∞, we have that for all i ∈ Nn,

Ui(γ
(n)) =

λ(S)

n
.

If player i deviates and plays the pure action ai = xj , then she obtains a

payoff

Ui(ai,γ
(n)
−i ) ≥ λ(vK(xj)) >

λ(S)

n
,

where the strict inequality holds for n large enough. This contradicts the

assumption that γ(n) is an equilibrium. ut

Lemma 2. Let (Y1, . . . , Yk) be a random vector distributed according to a

multinomial distribution with parameters (n − 1; γ
(n)
1 , . . . , γ

(n)
k ), with δ <

γ
(n)
j < 1− δ, for some 0 < δ < 1 and for all j ∈ K. Then

http://dx.doi.org/10.1016/0166-0462(93)02031-W
http://dx.doi.org/10.1016/0166-0462(93)02031-W
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lim
n→∞

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]

E

[
1

Y` + 1

∑
J⊂K

λ(vJ(x`))1(Yh = 0 for h 6∈ J)

] = 1, for all j, ` ∈ K

(1.11)

iff

lim
n→∞

γ
(n)
j = γ(xj) =

λ(vK(xj))

λ(S)
for all j ∈ K. (1.12)

Proof. Given j ∈ K, consider all J ⊂ K such that j ∈ J and the family Vj

of all corresponding Voronoi tessellations V (XJ). Call Ṽj the finest partition

of S generated by Vj , that is, the set of all possible intersections of cells

vJ(xj) ∈ V (XJ) for V (XJ) ∈ Vj . It is clear that vK(xj) ∈ Ṽj .
For A ∈ Ṽj , call Ṽj(A) the class of all cells in Ṽj whose intersection with

A is nonempty.

Then

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]

= E
[
λ(vK(xj))

Yj + 1

]

+ E

 1

Yj + 1

∑
A∈Ṽj

λ(A)1 (Yh = 0 if vK(xj) ∩A 6= ∅)


≤ E

[
λ(vK(xj))

Yj + 1

]
+
∑
A∈Ṽj

λ(A)P (Yh = 0 if vK(xj) ∩A 6= ∅)

= E
[
λ(vK(xj))

Yj + 1

]
+ o(1/n) for n→∞,

since P(Yi = 0) = (1− γ(n)i )n = o(1/n) for n→∞. Therefore
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lim
n→∞

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]

E

[
1

Y` + 1

∑
J⊂K

λ(vJ(x`))1(Yh = 0 for h 6∈ J)

] = lim
n→∞

E
[
λ(vK(xj))

Yj + 1

]
E
[
λ(vK(x`))

Y` + 1

]

= lim
n→∞

λ(vK(xj))

λ(vK(x`))

γ
(n)
`

γ
(n)
j

(1.13)

=
λ(vK(xj))

λ(vK(x`))

γ(x`)

γ(xj)

Given that
∑k
j=1 γ(xj) = 1, (1.13) holds if and only if (1.12) does. ut

Proof (Proof of Theorem 2). The game Gn is finite and symmetric, so it

admits a symmetric mixed Nash equilibrium γ(n) = (γ(n), . . . , γ(n)). Then,

given Lemma 1, for all j, ` ∈ K,

Ui(xj ,γ
(n)
−i ) = Ui(x`,γ

(n)
−i ). (1.14)

Using (1.2) we obtain

Ui(xj ,γ
(n)
−i ) =

∑
a1∈XK

· · ·
∑

an∈XK

ui(a1, . . . , ai−1, xj , ai+1, . . . , an)

γ(n)(x1)n1(a−i) . . . γ(n)(xj)
nj(a−i)+1 . . . γ(n)(xk)nk(a−i)

= E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]
,

where (Y1, . . . , Yk) has a multinomial distribution with parameters (n −
1; γ(n)(x1), . . . , γ(n)(xk)). Notice that a ≈ XJ is equivalent to Yh = 0 for

all h 6∈ J .

Therefore (1.14) holds if and only if

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]

= E

[
1

Y` + 1

∑
J⊂K

λ(vJ(x`))1(Yh = 0 for h 6∈ J)

]
,

which implies (1.11). Lemma 2 provides the result. ut
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Proofs of Section 1.4

The next two lemmata are similar to Lemmata 1 and 2, respectively.

Lemma 3. Consider a sequence of games {Pn}n∈N. There exists n̄ such

that for all n ≥ n̄, if γ(n) is a symmetric equilibrium of Pn, then γ(n) is

completely mixed, i.e.,

γ(n)(xj) > 0 for all xj ∈ XK .

Proof. Assume by contradiction that for every n ∈ N there exists some xj ∈
XK and a symmetric equilibrium γ(n) of Pn such that γ(n)(xj) = 0. Given

that λ(S) <∞, we have that for each player i

Ui(γ
(n)) = E

[
λ(S)

Ξn

]
,

where Ξn has a Poisson distribution with parameter n. If player i deviates

and plays the pure action ai = xj , then she obtains a payoff

Ui(ai,γ
(n)
−i ) ≥ λ(vK(xj)) > E

[
λ(S)

Ξn

]
,

where the strict inequality holds for n large enough. This contradicts the

assumption that γ(n) is an equilibrium. ut

Lemma 4. Let (Ξ1, . . . , Ξk) be a random vector of independent random

variables where Ξj has a Poisson distribution with parameter nγ
(n)
j , with

δ < γ
(n)
j < 1− δ, for some 0 < δ < 1 and for all j ∈ K. Then

lim
n→∞

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]

E

[
1

Ξ` + 1

∑
J⊂K

λ(vJ(x`))1(Ξh = 0 for h 6∈ J)

] = 1, for all j, ` ∈ K

(1.15)

iff

lim
n→∞

γ
(n)
j = γ(xj) =

λ(vK(xj))

λ(S)
for all j ∈ K. (1.16)

Proof. Given j ∈ K, consider all J ⊂ K such that j ∈ J and the family Vj

of all corresponding Voronoi tessellations V (XJ). Call Ṽj the finest partition
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of S generated by Vj , that is, the set of all possible intersections of cells

vJ(xj) ∈ V (XJ) for V (XJ) ∈ Vj . It is clear that vK(xj) ∈ Ṽj .
For A ∈ Ṽj , call Ṽj(A) the class of all cells in Ṽj whose intersection with

A is nonempty.

Then

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]

= E
[
λ(vK(xj))

Ξj + 1

]

+ E

 1

Ξj + 1

∑
A∈Ṽj

λ(A)1 (Ξh = 0 if vK(xj) ∩A 6= ∅)


≤ E

[
λ(vK(xj))

Ξj + 1

]
+
∑
A∈Ṽj

λ(A)P (Ξh = 0 if vK(xj) ∩A 6= ∅)

= E
[
λ(vK(xj))

Ξj + 1

]
+ o(1/n) for n→∞,

since P(Ξi = 0) = e−n = o(1/n) for n→∞. Therefore

lim
n→∞

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]

E

[
1

Ξ` + 1

∑
J⊂K

λ(vJ(x`))1(Ξh = 0 for h 6∈ J)

] = lim
n→∞

E
[
λ(vK(xj))

Ξj + 1

]
E
[
λ(vK(x`))

Ξ` + 1

]

= lim
n→∞

λ(vK(xj))

λ(vK(x`))

γ
(n)
`

γ
(n)
j

(1.17)

=
λ(vK(xj))

λ(vK(x`))

γ(x`)

γ(xj)

Given that
∑k
j=1 γ(xj) = 1, (1.17) holds if and only if (1.16) does. ut

Proof (Proof of Theorem 3). Since the number of types and actions is finite,

(Myerson, 1998, Theorem 3) implies that the Poisson game Pn admits a

symmetric equilibrium γ(n). Given Lemma 3, for all j, ` ∈ K,
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Ui(xj ,γ
(n)
−i ) = Ui(x`,γ

(n)
−i ). (1.18)

For j ∈ K call nj(a, ξ) the number of players who choose xj under strategy

a when the total number of players in the game is ξ. Using (1.2) we obtain

Ui(xj ,γ
(n)
−i ) =

∞∑
ξ=1

[ ∑
a1∈XK

· · ·
∑

aξ∈XK

ui(a1, . . . , ai−1, xj , ai+1, . . . , aξ)

γ(n)(x1)n1(a−i,ξ) . . . γ(n)(xj)
nj(a−i,ξ)+1 . . . γ(n)(xk)nk(a−i,ξ)

]

· e−n nξ

ξ!

= E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]
,

where (Ξ1, . . . , Ξk) are independent random variables such that Ξj has a

Poisson distribution with parameter nγ(n)(xj). Notice that a ≈ XJ is equiv-

alent to Ξh = 0 for all h 6∈ J .

Therefore (1.18) holds if and only if

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]

= E

[
1

Ξ` + 1

∑
J⊂K

λ(vJ(x`))1(Ξh = 0 for h 6∈ J)

]
,

which implies (1.15). Lemma 4 provides the result. ut

Proofs of Section 1.5

Lemma 5. Consider a sequence of games {Dn}n∈N. There exists n̄A such

that for all nA ≥ n̄A, if (γA,n,γD,n) is an (A,D)-symmetric equilibrium of

Dn, then γA,n is completely mixed, i.e.,

γA,n(xj) > 0 for all xj ∈ XK .

Proof. Assume by contradiction that for every n ∈ N there exists some

xj ∈ XK and an (A,D)-symmetric equilibrium (γA,n,γD,n) of Dn, such
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that γA,n(xj) = 0. Given that λ(S) <∞, we have that for i ∈ NA
n

UAi (γA,n,γD,n) ≤ λ(S)

nA
.

If player i ∈ NA
n deviates and plays the pure action ai = xj , then she obtains

a payoff

UAi (ai,γ
A,n
−i ,γ

D,n) ≥ λ(vK(xj)) ≥
λ(S)

nA
,

for nA large enough. Indeed, note that even if some D-players choose xj in

γD,n, the A player attracts all the consumers from xj . Therefore (γA,n,γD,n)

is not an equilibrium for nA large enough. ut

Lemma 6. Let (Y1, . . . , Yk) be a random vector distributed according to a

multinomial distribution with parameters (n; γ
(n)
1 , . . . , γ

(n)
k ), with δ < γ

(n)
j <

1− δ, for some 0 < δ < 1 and for all j ∈ K. Then

lim
n→∞

P(Yj = 0) = 0 for all j ∈ K.

Proof. The result is obvious, since

P(Yj = 0) = (1− γ(n)j )n ≤ (1− δ)n → 0. ut

Proof (Proof of Theorem 4). Whenever a location xj is occupied by an ad-

vantaged player, any disadvantaged player choosing xj gets a payoff equal

to zero. Therefore (1.10) is an immediate consequence of Lemmata 5 and 6.

Moreover, asymptotically, the actions of disadvantaged players do not affect

the payoff of advantaged players. Therefore an application of Lemma 2 with

nA replacing n provides (1.9). ut
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