
HAL Id: hal-01512548
https://hal.science/hal-01512548v1

Submitted on 23 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Method for Modeling Deployment
Architectures Based on Bigraphs

Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel, Khalil Drira

To cite this version:
Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel, Khalil Drira. A Formal Method
for Modeling Deployment Architectures Based on Bigraphs. ACM SIGAPP applied computing re-
view : a publication of the Special Interest Group on Applied Computing, 2015, 15 (2), pp.8-16.
�10.1145/2815169.2815170�. �hal-01512548�

https://hal.science/hal-01512548v1
https://hal.archives-ouvertes.fr

A Formal Method for Modeling
Deployment Architectures Based on

Bigraphs
Amal Gassara

ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
amal.gassara@redcad.org

Ismael Bouassida Rodriguez

ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia

Mohamed Jmaiel

ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia

Khalil Drira

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract

Software deployment is executed according a deployment architecture which describes the allocation of soft-
ware components to its hardware hosts. In this paper, we tackle the issue of constructing correct deployment
architectures for large distributed systems. Actually, such architectures should satisfy various constraints
related to the software components and the target environment such as the hierarchical description of com-
ponents, their connections and the resource constraints. We present a formal method for constructing
deployment architectures using a formal language called BRS (Bigraphical Reactive System). This method
provides a correct by design approach based on multi-scale modeling ensuring the correctness of the obtained
deployment architectures. Following our approach, the designer starts by modeling the first scale architec-
ture which is refined automatically by successively adding smaller scale components until obtaining the last
scale deployment architecture.

I. Introduction

Software deployment represents a se-
quence of related activities for plac-
ing a developed application into its tar-

get environment and making the applica-
tion ready for use. For component-based
applications, OMG Deployment & Config-

uration Specification (OMG D&C Specifica-
tion) [Object Management Group, 2006] out-
lines the following activities: installation which
involves populating a repository with the ap-
plication components; configuring the function-
ality of the installed application in the repos-
itory; planning which generates a deployment
plan (i.e., describes a correct deployment archi-

1

June 2015 • Vol. 15

tecture); preparing the target environment by
moving the application components from the
repository to the specified hosts; and launching
the application.

For large distributed systems, finding a cor-
rect deployment architecture is considered as
a challenging task. Actually, a correct deploy-
ment architecture should respect a set of con-
straints related to both software components
and target environment such as the hierarchy
of components, their connections and their re-
source constraints. Satisfying these constraints
make the modeling of deployment architec-
tures more difficult.

In the literature, there are several research
activities dealing with software deployment.
But most of them are based on informal model
and lack a solid mathematic foundation to en-
sure the correctness of deployment architec-
tures. They have focused on satisfying only
the resource constraints. Whereas, in our
work, we propose a rigourous solution based
on a formal model called BRS (Bigraphical Re-
active System). Moreover, we focus on the
construction of correct deployment architec-
tures (i.e., that respect structural constraints
like the hierarchy of components and their
connections). Then, in our ongoing work, the
efficient architecture is selected according to
resource constraints.

Our method aims to help the designer to
model correct deployment architectures. In-
stead of modeling the whole deployment ar-
chitecture and verifying it with respect to de-
fined constraint, we rather propose a correct
by design approach using multi-scale model-
ing [Gassara et al., 2013].

Actually, in order to generate deployment
architectures, we need to specify the software
architecture model that describes the software
components and their composition and the ex-
ecution environment model that describes the
target environment architecture on which ap-
plication will be deployed. In fact, each model
is represented as a set of scales, and each scale
denotes a set of architectures.

Therefore, following our approach, the de-
signer starts by modeling the first scale archi-

tecture which is refined to give one or many
architectures for the next scale. Then, these
architectures are refined in turn to give the
following scale architectures and so on until
reaching the last scale. The transition between
scales is ensured by applying specific rules
which respect the defined constraints ensur-
ing, in this way, the correctness of the obtained
architectures. After constructing the architec-
tures of both software architecture model and
execution environment model, we apply the
relation between the two models (i.e., integra-
tion model) in order to obtain deployment ar-
chitectures.

The rest of this paper is organized as fol-
lows. In section II, research activities dealing
with software deployment are presented and
in section III, we present an overview of bi-
graphs. In section IV, we explain our bigraph-
ical based approach for the deployment mod-
eling. In section V, we consider communicat-
ing systems as a study field. Then, we intro-
duce in section VI a case study called "Smart
Home" to apply our approach and its simula-
tion with the BPL Tool in section VII. Finally,
section VIII concludes this paper and gives
some directions for future work.

II. Related Work

Various research studies have proposed meth-
ods to address the issues of software deploy-
ment. These methods include the use of OMG
Deployment and Configuration (D&C) spec-
ification [Object Management Group, 2006].
This specification offers three models. The
component model defines descriptors for com-
ponents and configurations, the target model
defines descriptors for the target site on
which applications can be deployed and the
execution model defines the Deployment Plan,
which describes deployment decisions. It
defines an Execution Manager which executes
application according to this plan.

We have identified some frameworks
which have been developed on top on this
specification like DAnCE [Deng et al., 2005],
Dacar [Dubus and Merle, 2007] and Deploy-

2

June 2015 • Vol. 15

ment Factory [Hnetynka, 2005]. DAnCE is
a QoS-enabled Component Deployment and
Configuration Engine targeted for DRE sys-
tems. This framework deals only with CORBA
Component Model. Whereas Deployment Fac-
tory is an unified environment for deploy-
ing component based applications. It pro-
poses a generic component model which is
an extension to the OMG D&C specification.
These frameworks do not provide mechanisms
for redeployment and dynamic reconfigura-
tion. However, Dacar is a model-based frame-
work for deploying autonomic software dis-
tributed systems. It is based on a control loop
and Event-Condition-Action (ECA) rules. The
main limitation of these research activities is
the manual deployment planning. The de-
signer should assign the software components
to the hardware ones which is a hard task es-
pecially with large scale systems.

Other research activities have pro-
posed architecture-based approaches
using ADL (Architecture Description
Language) [Hoareau and Mahéo, 2006,
Malek et al., 2012] and
graphs [Heydarnoori and Mavaddat, 2006,
Zhang et al., 2010,
Bouassida Rodriguez et al., 2008]. Hoareau
et al [Hoareau and Mahéo, 2006] present
a support for deploying and executing an
application built with hierarchical compo-
nents. It presents an ADL extension for
specifying a context-aware deployment. This
deployment is performed in a propagative
way and is driven by constraints put on the
resources of the target hosts. The frame-
work presented in the work of Malek et
al [Malek et al., 2012] aims at finding the most
appropriate deployment architecture for a
distributed software system with respect to
multiple QoS dimensions. The framework
supports formal modeling of the problem
that provides a set of algorithms for find-
ing the optimal deployment. Heydarnoori et
al [Heydarnoori and Mavaddat, 2006] propose
a graph based deployment planning approach
for maximizing the reliability of component-
based applications. They demonstrate that

this deployment problem corresponds to the
multiway cut problem in graph theory. Also,
the work of Zhang et al [Zhang et al., 2010]
defines a component graph to represent
component-based distributed applications
and a tree network topology to describe the
runtime environment. It defines the resource
cost objective function and formulates com-
ponent deployment optimization problem as
mathematical programming problem.

Other research studies like [A. Dearle, 2004,
Matougui and Leriche, 2012] have proposed
a dedicated language (Domain Specific
Language) for deployment. Dearle and
Kirby [A. Dearle, 2004] propose a framework
for autonomic management deployment
and configuration of component-based dis-
tributed applications. An initial deployment
goal is specified using Deladas (DEclara-
tive LAnguage for Describing Autonomic
Systems). A constraint solver is used to
find a configuration that satisfies the goal,
and the configuration is deployed automat-
ically. If, during execution, the goal is no
longer being met, a full restart of the de-
ployment process is performed. Matougui
et al [Matougui and Leriche, 2012] propose
the j-ASD middleware that addresses the
autonomic deployment of ubiquitous systems.
This middleware provides a DSL specifying
deployment constraints. This specification
is compiled into a constraint satisfaction
problem, which is resolved automatically by a
constraint solver. The generated deployment
plan is dynamically executed by a mobile
agent system.

We can note that the research ac-
tivities [Hoareau and Mahéo, 2006,
Malek et al., 2012,
Heydarnoori and Mavaddat, 2006,
Zhang et al., 2010, A. Dearle, 2004,
Matougui and Leriche, 2012] deal only with
resource constraints during the construction
of the deployment architecture. They do not
take into account the respect of structural
constraints to validate he deployment archi-
tecture. Whereas, in our work, we deal with
both structural and resource constraints.

3

June 2015 • Vol. 15

i. Problem statement

The efficiency of software systems relies on
the correctness of their deployment. Actu-
ally, a deployment architecture must satisfy a
set of constraints related to both software ar-
chitecture (i.e, hierarchy of components and
their connectivity) and target environment
(i.e, structural constraints and resource con-
straints). Indeed, for large distributed sys-
tems with many requirements and constraints,
it is hard to construct a correct deployment
architecture that satisfies both structural and
resource constraints manually. So, there is a
need for a new method that automates the con-
struction of the deployment architecture and
guarantee its correctness. To address these
issues, we propose a formal method based
on the formal language Bigraph and on a
multi-scale modeling approach that supports
automation by a refinement process.

III. Preliminaries

i. Bigraphs

Bigraphs [Milner, 2001] formalise distributed
systems by emphasizing both locality and con-
nectivity. A bigraph consists principally of
hyperedges and nodes which can be nested
and have ports. Each hyperedge can connect
many ports on different nodes (for example,
v0, v1 and v2 are joined by e1 in Figure 1). A
bigraph combines two graphical structures -a
place graph and a link graph- based on the same
node set, hence the term bigraph.

Place graph: It is a hierarchical tree that
describes the locality of the nodes. In this
graph, trees are rooted by regions represented
by dashed rectangles (cf. Figure 1). There can
also be sites, represented as grey rectangles. A
site is a hole that can host new nodes.

Link graph: It is an hypergraph that de-
scribes the connectivity of nodes. Within this
graph, there can be outer names like y0, y1, y2
(cf. Figure 1) and inner names like x0, x1 (cf.
Figure 1) represented as open links. These
names define the connection points at which

0 1

0 1

e1

e0

x0 x1

y0 y1 y2

v0
v1 v2

Building

Computer

Agent

Figure 1: A Bigraph G

coincident names may be fused to form a sin-
gle link.

Control: Each node in the bigraph is as-
signed a control. Controls (in the case of the bi-
graph G in Figure 1, Building, Computer and
Agent) indicate the node type and the node
ports’ number through the arity. We can use
the notation "X-node", which means a node
that has been assigned the control X.

Interfaces: Bigraphs can be built through
their interfaces. We distinguish two types of
interfaces: inner interface and outer interface.
The inner interface is defined by I=<m, X>,
where m is the number of sites in the bigraph
and X the set of its inner names. The outer in-
terface is defined by J=<n, Y> where n is the
number of regions and Y is the set of outer
names. In a conventional manner, the inner
names are drawn below the bigraph and the
outer names above it. In this example, I=<2,
{x0,x1}> and J=<2, {y0,y1,y2}>.

ii. Bigraphical Reactive System

A BRS (Bigraphical Reactive System) is a set of
bigraphs and a set of reaction rules that may
be applied to rewrite these bigraphs. Each re-
action rule consists of two bigraphs: a Redex R
and a Reactum R’. The application of the rule
consists of identifying the image of R in a bi-
graph and replacing it by the corresponding
R’. For example in Figure 2, the rule allows an
Agent-node to enter a Building-node which is
placed in the same region. The site (grey rect-
angle) in the Redex represents all other possi-
ble occupants of the Building-node which are
unchanged after applying this rule.

4

June 2015 • Vol. 15

x

Building

x

Redex R Reactum R’

0 0

Agent

y y

Agent

Building

Figure 2: A reaction rule

The graphical representation used
above is handy for modeling, but un-
wieldy for reasoning. Fortunately, bi-
graphs have an associated term lan-
guage [Birkedal et al., 2006]. The correspond-
ing algebraic expression (using details in
table 1) of this rule is: Agentx,y|Building.d0 →
Building.(Agentx,y|d0)

Table 1: The term language for Bigraphs

Algebraic Meaning
expression
U||V Juxtaposition of roots
U|V Juxtaposition of nodes
U.V Nesting (U contains V)
Kx K-node linked to an outer

name x
di Site numbered i
/xU U with outer name x replaced

by an edge

IV. The proposed approach

In order to construct a deployment architec-
ture, we need to describe the software archi-
tecture, the execution environment and the re-
lation between them. Based on this issue, we
propose an approach for deployment model-
ing of distributed systems which defines three
models:

• Software architecture model: This model
describes software components, their
properties and their architecture (i.e, hier-
archy of components and connections be-
tween them).

• Execution environment model: This
model describes the runtime environment
including physical nodes, hosts, devices,
etc as well as their resource constraints
and their architecture.

• Integration model: To obtain a deploy-
ment architecture, we should define the
relation between the two models to map
software components on physical ones.

The key objective of our work is to auto-
mate the construction of a correct deployment
architecture that respects the defined models.
For this, we have proposed a formal method
which is based on a formal language to guar-
antee the correctness of the deployment archi-
tecture. This formal language should be able
to describe both software and physical compo-
nents. It should emphasize both hierarchy and
connectivity of components. It should also
provides information on both static and dy-
namic aspect of the system since we intend to
deal with autonomic systems in future work.
We have noticed that BRS is the most appro-
priate language that supports these require-
ments.

Furthermore, our formal method provides
three steps to be followed as highlighted in
Figure 3:

• Step 1: Description In this step, the de-
signer describes the necessary informa-
tion like software and hardware compo-
nents, their properties and their resource
constraints. Each component is repre-
sented with Bigraph as a node type an-
notated with attributes to indicate proper-
ties or available resources. The designer
describes also the structural constraints
through conditions on the hierarchy and
the connectivity of nodes.

• Step 2: Generation In this step, the gen-
eration of the deployment architecture is
performed automatically following a mul-
tiscale modeling approach. In fact, for
each model (i.e., environment execution
model and software architecture model),
a large scale is defined by the designer.
Then, it is refined by successively adding

5

June 2015 • Vol. 15

Figure 3: The proposed approach

Redex Reactum

X

0 0

X

Y Redex Reactum

Building

0 0

Computer

Building

Redex Reactum

Building

0 0

Agent

Building

Intanciated
 rules

Figure 4: A meta-reaction rule for nesting a node and
examples of its instantiated rules

smaller scale details until reaching the last
scale. Hence, we obtain the set of possible
deployment architectures by linking the
two models(cf. Figure 3).
The refinement process is performed by
applying specific rules. Since we aim to
facilitate the modeling task for the de-
signer, we have proposed the concept of
meta-rule to describe the transition be-
tween scales. Thus, the designer iden-
tifies the corresponding meta-rule which
will be instantiated automatically accord-
ing to the specification in order to have
the necessary rules for scale transitions.
With BRS, a meta-rule is a meta-reaction
rule that contains nodes having a variable
control (i.e., a variable can represent any
control). For example the meta-rule de-
fined in Figure 4 allows to nest a node
in another one. This meta-rule is instanti-
ated to have two rules with the controls
Building, Computer and Agent. The first
one allows to nest a computer-node in a
builiding-node and the second one allows
to nest an agent-node in a building-node.

• Step 3: Selection In our ongoing work, a

deployment architecture is selected from
those generated in the previous step ac-
cording to resource constraints. Hence,
we obtain a deployment architecture that
respects both structural and resource con-
straints.

• Step 4: Execution After selecting the ad-
equate deployment architecture, it is de-
ployed effectively using a deployment ser-
vice. To do this, we intend to use the
deployment service of the FACUS frame-
work [Sancho, 2010]. This service takes
as input a deployment descriptor (i.e.,
an XML file) and executes its by placing
software components into correspondent
hosts.

V. Multi-scale modeling for

communicating systems

In our work, we address communicating sys-
tems. These systems are formed by Commu-
nicating groups. Each group is composed of
devices which share common interest.

Since we aim to facilitate the modeling task
to the designer, we have defined, for these sys-
tems, the scales of each model and we have
defined the necessary meta-rules to be applied
for the transitions between these scales and for
the integration model.

i. The execution environment model

This model is represented by the following
scales and transitions (we use the notation
"scale i" where i is the scale number):

• Scale i: such i ∈ [0, n] where n corre-
sponds to the depth of nesting in a bi-

6

June 2015 • Vol. 15

Figure 5: Multiscale modeling for communicating sys-
tems

graph. For i = 0, we obtain the first scale.
• Transition from scale i to scale i + 1: The

transition to the scale i + 1 is obtained by
applying a meta-reaction rule allowing to
nest a node depicted in Figure 4. The cor-
responding algebraic expression of this
rule is:
Nest a node: X.d0 → X.(Y|d0)
This rule enables to nest a node. So, the
transition between two scales leads to in-
crement by 1 the depth of nesting. There-
fore, this meta-rule can be applied several
times in order to add many nodes resid-
ing in the same node.

• Scale i + 1: such i ∈]0, n]. With i=n, we
obtain the scale n that represents all phys-
ical entities and their composition (i.e, hi-
erarchy). So, we reach this scale when
there is no physical entities to add.

• Transition from scale n to scale n + 1:
The transition to the scale n + 1 is charac-
terized by defining the link graph. So, we
add hyperedges that represent the com-
munication between different devices of
the application. This operation is defined
by a closure /x ◦ G (i.e., outer names
x under a bigraph G is replaced by an
edge). Hence, we link nodes belonging
the same communication group (i.e., hav-
ing the same outer name).

• Scale n + 1: This is the last scale of the ex-
ecution environment model. It represents
all the physical entities and their commu-
nication.

ii. The integration model

We propose that the relation between the soft-
ware architecture model and the execution en-
vironment model is a transition from scale
n + 1 of the execution environment model
to scale 0 of the software architecture model.
The latter includes sender and receiver com-
ponents. In fact, each communication group is
ensured by a set of senders and receivers. We
consider that communication is done in pull
mode (i.e., response to a request). So, an en-
tity belonging a communication group should
contains a pair of sender and receiver.

To ensure this transition, we define the fol-
lowing meta-rule:
Add a sender and a receiver:
Yx → Yx.(Sr.x|Rc.x)
We nest in each node having an outername x,
a sender (Sr-node) and a receiver (Rc-node),
then we nest in both of them an x-node that
mark their communication group.

iii. The software architecture model

For communicating systems, the software ar-
chitecture model includes the entities that take
part in the communication like senders, re-
ceivers and communication middleware com-
ponents. Hence, we have identified for this
model the necessary components, three scales
and transitions between them by defining cor-
responding meta-rules (cf. Figure 5).

• Scale 0: represents sender and receiver
components.

• Scale 1: provides the middleware compo-
nents that ensure the communication be-
tween the application components. Here,
we use the Event-Based Communications
(EBC) [Meier and Cahill, 2002]. EBC is
a communication model which provides
three types of EBC entities: event produc-
ers (EP), event consumers (EC) and channel
managers (CM). The EP and EC can be con-
nected to CM, but they can not be directly
interconnected. The EP can send data to
the CM to which they are connected. The
CM returns a copy of the received data to

7

June 2015 • Vol. 15

all the EC connected to it.
This scale is obtained by nesting an EP-
node in each sender, an EC-node in each
receiver and a CM-node for each commu-
nication group in a node that belongs to
this group.

• Transition from scale 0 to scale 1: This
transition is performed by applying a set
of meta-reaction rules defined by the alge-
braic expressions given below:
Add an EP: Sr.x → Sr.EP.x
Add an EC: Rc.x → Rc.EC.x
Add a CM: /x X1x||...||Xnx → /x
X1x||...||(Xnx|CM.x)
For the third rule (Add a CM), n is the
number of nodes belong a communica-
tion group. It will be instantiated for each
communication group.

• Scale 2: This is the last scale of the soft-
ware architecture model. It consists at
enriching the link graph by adding new
edges that link EBC components.

• Transition from scale 1 to scale 2: Reach-
ing the scale 2 is obtained by applying a
set of meta-reaction rules given below:
Link EP to CM:
EP.x||CM.x → /y EPy||CMy.x
Link EC to CM:
EC.x||CM.x → /y ECy||CMy.x

VI. Case study: Smart Home

In order to apply our approach, we consider
a case study named "Smart Home" denoted in
the Figure 6. Each room in a smart home can
be equipped with heterogeneous devices (sen-
sors like thermometer, presence sensor, light
sensor, etc and actuators like air conditioner,
lamp, etc). These devices are connected to a
home gateway that manages their communica-
tion to ensure an intelligent home control like
lighting control and temperature control. Sen-
sors record information such as rooms light-
ing, human presence, temperature, etc. The
home gateway receives these information and
analyses them in order to configure the de-
vices.

Table 2: The node controls

Control Meaning Arity
H Home 0
R Room 0
HG Home gateway 2
D Device: 1

sensor or actuator

i. The execution environment model

For the smart home, the execution environ-
ment model represents home, rooms, home
gateway and devices. It includes the follow-
ing scales.

• Scale 0: The designer identifies the node
controls as given in Table 2. Then, he
models this scale using a bigraph. For the
smart Home, this bigraph contains one
H-node that represents a Home (cf. Fig-
ure 7).

• Transition from scale 0 to scale 1 (adding
Rooms and Home Gateway): The transi-
tion to the scale 1 is obtained by instanti-
ating the meta-rule for nesting a node. So,
the rule is: H.d0 → H.(R|d0).
This rule enables to add a Room (R-node)
in a Home. We apply this rule as many
times as the number of rooms in the home.
This number is given by the designer.
Here, we have 3 rooms.
The meta-rule for nesting a node is instan-
tiated again to add a Home Gateway. The
rule is: H.d0 → H.(HG|d0)

• Scale 1: This scale presents a home, three
rooms and a home gateway. Its bigraph is
depicted in Figure 7.

• Transition from scale 1 to scale 2 (adding
Devices): The transition to the scale 2
is obtained by instantiating the meta-rule
for nesting a node.
So, the rule is: R.d0 → R.(D|d0).
This rule enables to add a device (D-node)
in a room. We apply this rule as many
times as the number of devices in the
room. Here, we have 5 devices.

• Scale 2: In this scale, we obtain the
bigraph specifying the home, the home

8

June 2015 • Vol. 15

Figure 6: Smart Home

gateway and the 3 rooms. One of these
rooms contains 5 devices. This bigraph is
depicted in Figure 7.

• Transition from scale 2 to scale 3 (con-
necting entities within groups): The
transition to scale 3 is obtained by apply-
ing the closure operation on the bigraph
of the scale 2: /gt gl ◦ scale2
This closure operation enables to link
lighting communication group (i.e., links
the Home Gateway with the three devices
having an outer name gl: presence sensor,
light sensor and lamp). It enables also to
link temperature communication group
(i.e., links the Home Gateway with the
two other devices having an outer name
gt: thermometer and air conditioner).

• Scale 3: The scale bigraph is defined in
the last part of Figure 7.

ii. The integration model

The transition from scale n of the execution en-
vironment model to scale 0 the software archi-
tecture model is obtained by instantiating the
meta-rule for adding a sender and a receiver
for devices within the temperature communi-
cation group and devices within lighting com-
munication group. For sake of shortness, we
present the instantiated rules for temperature
communication group:
Dgt.d0 → Dgt.(Sr.gT|Rc.gT|d0)
This rule enables to add a sender (Sr-node)
and a receiver (Rc-node) in a device (D-node).
The gT-node nested in a sender or a re-

H
R R R HG

H

H R

R

HG

R

D

gt

D

gt

D

gl

D

gl

D

gl

Scale 0

Scale 1

Scale 2

H R

R

HG

R

D D D

D

Scale 3

D

gt gl

glgt

Figure 7: Scales of the execution environment model for
Smart Home

9

June 2015 • Vol. 15

ceiver denotes the temperature communica-
tion group. We instantiate the meta-rule again
to add senders and receivers in the home gate-
way. So the rule is:
HGgt.d0 → HGgt.(Sr.gT|Rc.gT|d0)

iii. The software architecture model

This model represents senders, receivers and
EBC components.

• Scale 0: This scale represents the execu-
tion environment model including sender
and receiver components.

• Transition from scale 0 to scale 1 (adding
EBC components): The transition to the
scale 1 is obtained by instantiating the
three meta-rules of adding EP, adding
EC and adding CM. So, the instantiated
rules for the temperature communication
group are:
Sr.gT → Sr.EP.gT
Rc.gT → Rc.Ec.gT
/gt Dgt||Dgt||HGgt → /gt
Dgt||(Dgt|CM.gT)||HGgt

• Scale 1: At this scale, we have the
execution environment model (home,
home gateway, rooms and devices) with
senders, receivers and EBC components.
The bigraph at this scale is like the bi-
graph at the scale 2 depicted in Figure 8
but without the colored hyperedges. In
this scale, we can obtain many Bigraphs
due to the choice of the channel manager
placement (i.e., the CM-node is deployed
on one node belongs to the communica-
tion group).

• Transition from scale 1 to scale 2 (con-
necting EBC components): The transition
to the scale 2 is obtained by instantiating
the two meta-rules of linking an EP to a
CM and linking an EC to a CM:
EP.gT||CM.gT → /z EPz||CMz.gT
EC.gT||CM.gT → /u ECu||CMu.gT

• Scale 2: The bigraph obtained at this
scale is denoted in Figure 8. It depicts
deployment infrastructure, senders, re-
ceivers and connected EBC components.

H

R

HG

D

D

D

D

D

SrEP

Rc

Sr

Rc

Rc

Sr

Rc

Sr

EC

EC EC

EP EP

EP

EC

CM

CMgT

gL

Rc

SrEP

EC

EPSr

Rc EC

Sr EP

EC
Rc

R

R

Figure 8: The Bigraph at the scale 2

So, it defines one of the set of deployment
architectures.

VII. Validation with BPL

In order to verify the feasibility of the
case study, we model our BRS using
the BPL Tool (Bigraphical Programming
Languages) [Hojsgaard and Glenstrup, 2011].
BPL is a tool for experimenting with bigraphi-
cal models. It provides manipulation and sim-
ulation of BRS. It relies on an SML (Standard
ML) compiler with an interactive mode to pro-
vide a command line interface. The language
used in the BPL Tool is called BPLL (BPL Lan-
guage), and it consists of a number of SML
constructs which allows to write BPLL directly
in SML programs.

i. Execution environment model im-
plementation

For the implementation of our case study, we
create a SML file to define the BRS for the exe-
cution environment model. Listing 1 presents
a portion of this file. In this listing we define:

• The signature of the system denoted in
lines 2-5. It is the set of nodes controls (H
representing the Home, R representing a
Room, D representing a Device and HG
representing the Home Gateway)

10

June 2015 • Vol. 15

• The rules denoted in lines 7-17 (i.e., rule
for adding a room, adding a home gate-
way, adding a device and connecting enti-
ties within groups). For the sake of short-
ness, we present in listing 1 only the rules
implementation that are required for the
temperature communication group.

• The tactics for prescribing the sequence
in which reaction rules should be ap-
plied (lines 18-22 of listing 1). Accord-
ing to these tactics, we apply the rule
for adding a room three times, then the
rule for adding a home gateway, then the
rule for adding a device two times for the
temperature communication group and
three times for the lighting communica-
tion group and finally the connecting en-
tities rule within the temperature commu-
nication group and within the lighting
communication group.

• The initial system denoted in line 24 of
listing 1. It represents the Home.

Listing 1: Execution environment model implementa-
tion

1 (* Nodes controls *)

2 val H = active0 ("H")

3 val R = active0 ("R")

4 val D = active ("D" -:1)

5 val HG = active ("HG" -:2)

6 (* Rules for execution environment model *)

7 val add_room =" add_room ":::

8 H o idp(1) --[0|->0]--|> H o (idp(1) `|` R

9 o <->)

10 val add_HG =" add_HG "::: H o (idp (1))

11 --[0|->0]--|> (-/gt*-/gl) o H o (idp (1)

12 `|` HG[gt,gl] o <->)

13 val add_device_gt =" add_device_gt ":::

14 H o (idp(1) `|` R o idp (1)) --[0|->0,1|->1]

15 --|> -/gt o H o (idp(1) `|` R o (idp(1) `|`

16 D[gt] o gT))

17 [...]

18 (* Tactics *)

19 val rules = mkrules[add_room ,add_HG ,...]

20 val tactics_01 = 3 TIMES_DO react_rule

21 "add_room" ++ react_rule "add_HG"

22 [...]

23 (* Initial system : scale 0 *)

24 val scale0 = H o <->

After running the simulation, we obtain the
expression of each scale in BPLL. Listing 2 rep-
resents the expression of the bigraph obtained
at scale 3 depicted in Figure 7. It contains the
home, the rooms, the home gateway and con-
nected devices within communication groups.

Listing 2: Scale 3 Bigraph of execution environment
model

1 val scale3 = -//[gl,gt] o H o (R o <-> `|`

2 R o <-> `|` R o (D[gt] o <-> `|` D[gt] o <->

3 `|` D[gl]o <-> `|` D[gl]o <->) `|` HG[gt,gl]

4 o <->) :0 -> 1: agent

ii. Software architecture model im-
plementation

To implement the software architecture model,
we complete the SML file with the nodes con-
trols (i.e., Sr representing a Sender, Rc repre-
senting a Receiver, EC representing an Event
Consumer, EP representing an Event Producer
and CM representing a Channel Manager), the
rules and their tactics (i.e., rules for adding
senders and receivers, rules for adding EBC
components and rules for connecting EBC
components within communication groups).

After running the simulation of the software
architecture model implementation, we obtain
the expression of its scales in BPLL. Listing 3
denotes the bigraph obtained at scale 2 in
which EBC components are connected. It cor-
responds to the bigraph depicted in Figure 8.

Listing 3: Scale 2 Bigraph of software architecture
model

1 val scale2 =-//[y,x,gt,gl] o H o (R o <-> `|`

2 R o<-> `|` HG[gl ,gt] o (Sr o ep[x] o <-> `|`

3 Rc o ec[x] o <-> `|` Sr o ep[y] o <-> `|` Rc

4 o ec[y] o <-> `|` cm[y] o gL) `|` R o(D[gl]o

5 (Sr o ep[y] o <-> `|` Rc o ec[y] o <->) `|`

6 D[gt] o(Sr o ep[x] o <-> `|` Rc o ec[x] o

7 <->) `|` D[gt] o(cm[x] o gT `|` Sr o ep[x] o

8 <-> `|` Rc o ec[x] o <->) `|` D[gl] o (Sr o

9 ep[y] o <-> `|` Rc o ec[y] o <->)))

10 : 0 -> 1 : agent

VIII. Conclusion and future

work

In this paper, we have focused on one of
the challenging tasks of software deployment
which consists in the construction of a correct
deployment architecture. To tackle this issue,
we have proposed a formal method based on
bigraphical reactive systems. This formal lan-
guage allows to guarantee a correct by con-
struction architectures. This method provides

11

June 2015 • Vol. 15

three steps. At the first step, the designer de-
scribes the necessary information for the ex-
ecution environment model, the software ar-
chitecture model and the integration model.
Then, the second step consists in generating
automatically all the correct deployment archi-
tectures following a multiscale modeling ap-
proach. In fact, for each model, a large scale is
defined by the designer. Then, it is refined by
successively adding smaller scale details. This
refinement process is performed by applying
specific rules. Finally, the third step is the
selection of the efficient deployment architec-
ture according to resource constraints. In our
work, we have addressed communicating sys-
tems. For these systems, we have identified
some information in order to ease the task for
the designer in the description step. In fact,
we have defined the component types for the
software architecture model, the scales of each
model and the transition between them and
also the integration model. Finally, in order
to illustrate our approach, we have presented
a case study called Smart Home and its im-
plementation using BPL Tool. In future work,
we aim to focus on the third step of our ap-
proach (i.e, selecting the efficient deployment
architecture according to resource constraints).
Then we intend to deal with autonomic sys-
tems by planning redeployment actions. More-
over, we are working at implementing a tool
for Bigraph transformations since we have no-
ticed some weaknesses of BPL Tool and we
have noticed also that it does not meet our
needs.

References

[A. Dearle, 2004] A. Dearle, G. Kirby, A. M.
(2004). A framework for constraint-based
deployment and autonomic management of
distributed applications. In International
Conference on Autonomic Computing, pages
300–301.

[Birkedal et al., 2006] Birkedal, L., Debois, S.,
Elsborg, E., Hildebrandt, T., and Niss, H.
(2006). Bigraphical models of context-aware

systems. In Aceto, L. and Ingólfsdóttir, A.,
editors, Proceedings of the 9th International
Conference on Foundations of Software Science
and Computation Structure (FoSSaCS’06), vol-
ume 3921 of Lecture Notes in Computer Sci-
ence, pages 187–201. Springer-Verlag.

[Bouassida Rodriguez et al., 2008]
Bouassida Rodriguez, I., Van Wambeke,
N., Drira, K., chassot, C., and Jmaiel, M.
(2008). Multi-layer coordinated adaptation
based on graph refinement for coopera-
tive activities. Communications of SIWN,
4(1):163–167.

[Deng et al., 2005] Deng, G., Balasubrama-
nian, J., Otte, W., Schmidt, D. C., and
Gokhale, A. S. (2005). Dance: A qos-
enabled component deployment and config-
uration engine. In Component Deployment,
pages 67–82.

[Dubus and Merle, 2007] Dubus, J. and Merle,
P. (2007). Towards Model-Driven Validation
of Autonomic Software Systems in Open
Distributed Environments. In Workshop M-
ADAPT, in conjunction with ECOOP 2007.

[Gassara et al., 2013] Gassara, A., Bouas-
sida Rodriguez, I., and Jmaiel, M. (2013).
Towards a multi-scale modeling for archi-
tectural deployment based on bigraphs. In
Software Architecture - 7th European Confer-
ence, ECSA 2013, Montpellier, France, July
1-5, 2013. Proceedings, pages 122–129.

[Heydarnoori and Mavaddat, 2006]
Heydarnoori, A. and Mavaddat, F. (2006).
Reliable deployment of component-based
applications into distributed environments.
In Proceedings of the Third International
Conference on Information Technology: New
Generations, ITNG’06, pages 52–57. IEEE
Computer Society.

[Hnetynka, 2005] Hnetynka, P. (2005). A
model-driven environment for component
deployment. In Proceedings of the Third ACIS
International Conference on Software Engineer-
ing Research, Management and Applications,

12

June 2015 • Vol. 15

SERA’05, pages 6–13. IEEE Computer Soci-
ety.

[Hoareau and Mahéo, 2006] Hoareau, D. and
Mahéo, Y. (2006). Constraint-based deploy-
ment of distributed components in a dy-
namic network. In Proceedings of the 19th in-
ternational conference on Architecture of Com-
puting Systems, pages 450–464.

[Hojsgaard and Glenstrup, 2011] Hojsgaard,
E. and Glenstrup, A. J. (2011). The bpl tool:
A tool for experimenting with bigraph-
ical reactive systems. Technical Report
TR-2011-145, IT University of Copenhagen.

[Malek et al., 2012] Malek, S., Medvidovic, N.,
and Mikic-Rakic, M. (2012). An extensi-
ble framework for improving a distributed
software system’s deployment architecture.
Software Engineering, IEEE Transactions on,
38(1):73–100.

[Matougui and Leriche, 2012] Matougui,
M. E. and Leriche, S. (2012). A middle-
ware architecture for autonomic software
deployment. In ICSNC’12 : The Seventh
International Conference on Systems and
Networks Communications, pages 13–20.
XPS.

[Meier and Cahill, 2002] Meier, R. and Cahill,
V. (2002). Taxonomy of distributed event-
based programming systems. In The Com-
puter Journal, pages 585–588.

[Milner, 2001] Milner, R. (2001). Bigraphical
reactive systems: basic theory. Technical Re-
port UCAM-CL-TR-523, University of Cam-
bridge, Computer Laboratory.

[Object Management Group, 2006] Object
Management Group, I. (2006). Deployment
and configuration of component-based dis-
tributed applications specification, version
4.0.

[Sancho, 2010] Sancho, G. (2010). Adaptation
d’architectures logicielles collaboratives dans les
environnements ubiquitaires. Contribution à
l’interopérabilité par la sémantique. Theses,

Université des Sciences Sociales - Toulouse
I.

[Zhang et al., 2010] Zhang, Q., Qiu, D., Tian,
Q., Sun, L., and Xu, X. (2010). Deployment
planning of component-based distributed
applications using mathematical program-
ming. In Computational Intelligence and Soft-
ware Engineering (CiSE 2010), pages 1 –4.

13

