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Abstract
In the context of mid-frequency elastodynamical analysis of periodic structures, the Floquet-Bloch theorem

has been recently applied. The latter allows the use of limited-size modeling of a representative cell to

characterize waves dispersion properties of the assembled structure. The theorem provides a rigorous and

well posed spectral problem representing waves dispersion in viscolelastic media. In particular, the wave-

FEM (WFE) method and associated techniques are based on the Floquet-Bloch approach. Most of the current

applications are limited either to undamped or to slightly damped systems. Through the mesh of the k-space

(k being the wave number vector) inside or at the boundary of the first Brillouin zone is performed. For each

wave headings a linear spectral problem is solved in order to obtain the corresponding eigenfrequency and

the corresponding Floquet vector. Such process is more easily implemented for undamped structures but face

some drawbacks when damping is considered. In this paper, the Floquet-Bloch theorem is used to set up an

alternative technique in order to estimate the dispersion characteristics of a periodic structure. The approach

is based on the same basic assumption, but the generalized eigenvalue problem which has to be solved differs

from the one usually considered in WFE. Instead of discretising the k-space, the harmonic frequency and

the wave heading are used to scan the k-space. Then the formulated eigenvalue problem is solved and the

dispersion characteristics are obtained, including spatial attenuation terms. Some fundamentals properties of

the eigensolutions are discussed, and the methodology is finally applied on a 2D waveguide application which

can be found in the literature for an undamped case. The same example is considered with various damping

levels, in order to illustrate the performances and specificities the efficiency of proposed approach. The

proposed approach finds application in the analysis of wave propagation in the presence of damping materials

or shunted piezoelectric patches, as well as in actively controlled systems, where equivalent damping terms

are associated with the considered control scheme.
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1 Introduction

Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically elegant

means to optimize mechanical components with regards to vibration and acoustic criteria, among others.

However, achieving this objective may lead to different outcomes depending on the context of the optimiza-

tion. In the preliminary stages of a product’s development, one mainly needs optimization tools capable of

rapidly providing global design direction. Such optimization will also depend on the frequency range of inter-

est. One usually discriminates between the low frequency (LF) range and the medium frequency (MF) range,

especially if vibration and noise are considered. However, it should be noted that LF optimization of vibra-

tion is more common in the literature then MF optimization. For example, piezoelectric materials and other

adaptive and smart systems are employed to improve the vibroacoustic quality of structural components, es-

pecially in the LF range (Preumont 1997, Nelson & S.J. 1992, Banks, Smith & Wang 1996). Recently, much

effort has been spent on developing new multi-functional structures integrating electro-mechanical systems

in order to optimize their vibroacoustic behavior over a larger frequency band of interest(Collet, Cunefare &

Ichchou 2009, Thorp, Ruzzene & Baz 2001). However, there is still a lack of studies in the literature for MF

optimization of structural vibration. To that end, the focus of this study is to provide a suitable numerical

tool for computing wave dispersion in 2D periodic systems incorporating controlling electronics devices.

The main final aim is to allow their optimization in order to optimize vibroacoustic diffusion in 2D wave’s

guides. Two numerical approaches can be distinguished for computing that dispersion: the semi-analytical

finite element method (SAFE) and the wave finite element (WFE) method. In the former approach, the

displacement field is modeled exactly in the direction of wave propagation by using a harmonic function

and approximately in the directions perpendicular by using finite elements (FE). An eigenvalue problem is

then formulated by introducing the displacement field into the governing equations. Solving the eigenvalue

problem for a given frequency gives the wave numbers of all the propagating modes. The main disadvantage

of the SAFE method is that FE used are not standard so they must be specifically defined for each applica-

tion. Nevertheless, a large amount of FE has been developed since 1975 to compute dispersion curves of

rails (Mead 1996), laminated composite plates (Mace & Manconi 2008, Gonella & Ruzzene 2008) and vis-

coelastic laminated composite plates (Akrout 2005). To avoid development of specific FE, the WFE method

considers the structures as periodic in order to model, with standard FE, a period of the structure. By using

the periodic structure theory (PST) introduced by Mead (Mead 1996), an eigenvalue problem can be formu-

lated from the stiffness and mass matrix of the FE model to find wave numbers of all the propagating waves.

Contrary to SAFE method, the displacement field is now approximated in the direction of propagation. Thus,

some numerical issues can arise when the size of FE are too coarse. As recommended by Mace and Manconi

(Mace & Manconi 2008), a minimum of six elements per wavelength is a good rule of thumb to ensure a

reliable analysis. The WFE method has been successfully used to deal with wave propagation in two di-

mensional structures (Manconi 2008, Berthaut, Collet & Ichchou 2008). One of the main problem all these

approaches is the difficulty to compute the damped wave numbers in the whole Brillouin domain necessary

for optimizing vibroacoustic behavior of such periodic structures. After recalling in the two first parts of this

paper the Floquet then the Bloch theorems, we introduce a new numerical formulation for computing the

multi-modal damped wave numbers in the whole first Brillouin domain of a periodical structures. Then a

2D numerical application is presented allowing us to validate the method and to use it for estimating the 2D

band gaps as well as a suitable evanescence’s indicator that could be used for control optimization.

2 Elasto-Dynamical application of the Floquet-Bloch Theorem

In this section the application of the celebrated Floquet-Bloch theorem is presented in the context of elasto-

dynamic. First we recall the main results in a one-dimensional setting by Floquet (Floquet 1883) and later

rediscovered by Bloch (Bloch 1928) in multidimensional problems. These results are recalled here since

these references may be difficult to find. Application to bi-dimensional elastodynamical problem is pro-

posed leading to very general numerical implementation for computing waves dispersion for periodically
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distributed damped mechanical systems.

2.1 The Floquet Theorem

The Floquet theory is a methodology to solve periodical ordinary differential equations of the form:

dw

dx
(x) = A(x)w(x) ∀x ∈ R, (1)

where is the unknown vector (w(x) : R → C
n) and A(x) is a given matrix of continuous periodic functions

with period r1, i.e. A(x + r1) = A(x).
The Floquet Theorem indicates that any solution of this linear system can be expressed as a linear combina-

tion of functions V (x)ekx, where V (x) is a r1-periodic function and k ∈ C is a scalar complex value. The

theory provides a way to evaluate V and k from the solution of an eigenvalue problem.

Among the many mathematical aspects of the theory, some points should be mentioned to the reader for

proper understanding:

• Starting from any given basis W (x) ∈ C
n of fundamental solutions of (1), a new basis of solutions

normalized so that P0(0) = In can be defined, In being the n × n identity matrix:

P0(x) = W (x)W−1(0). (2)

It is then possible to search for W (x + r1) on this basis. The calculations lead to:

W (x + r1) = P0(x)W (r1) = W (x)W−1(0)W (r1). (3)

P0 is then called Floquet propagator since it allows one to evaluate W (x + r1) from the knowledge

of W (r1). The next step in the theory is to provide a technique to obtain P0.

• First of all, a diagonalization of the Floquet propagator is performed in x = r1:

P0(r1) = ZΛZ−1, (4)

where Λ and Z are solutions of the following eigenproblem:

λjZj = P0(r1)Zj . (5)

Λ is then a diagonal matrix with λj terms, and Z is the matrix grouping eigenvectors Zj . The eigen-

values can also be written as:

Λ = ekr1 , (6)

where k is a diagonal matrix whose generic term is kj such that λi = ekjr1 , kj being called the Floquet

or characteristic exponents, while λj are the Floquet or characteristic multipliers.

• The computation is not performed directly on P0: a more convenient way to obtain the solution of the

set of ordinary differential equations is to try to identify Y , which is the Floquet propagation of basis

vectors Z such that Y (x) = P0(x)Z. It can be shown that:

Y (x + r1) = Y (x)ekr1 . (7)

Y (x) are solutions of the initial periodic problem (1) restricted to elementary cell [0, r1], with fixed

boundary conditions at x = 0 and x = r1. So the eigenvectors Zj and eigenvalues λj = ekj .r1 are

solutions of the following generalized eigenvalue problem:











dY

dx
(x) = A(x)Y (x) ∀x ∈ [0, r1],

Y (0) = Z,
Y (r1) = ZΛ.

(8)
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The Floquet propagators are then obtained using the backward relationship:

P0(x) = Y (x)Z−1, (9)

and a basis of solutions is given by :

W (x) = Y (x)W (0). (10)

• An alternative way to compute the Floquet propagators is to introduce the undamped Floquet Vectors

Vi defined as:

V (x) = Y (x)e−kx, (11)

where V is the matrix regrouping the vectors Vj . It can be shown that these function are r1 periodic,

and that they are solutions of the following problem:











dV

dx
(x) = A(x)V (x) − V (x)k ∀x ∈ [0, r1],

V (0) = Z,
V (r1) = Z.

(12)

The generalized eigenvalue problem (12) is equivalent to (8) and gives eigenvectors Zi and eigenvalues

ki. The solution in terms of Floquet propagator can then be expressed as:

P0(x) = V (x)ekxZ−1, (13)

while a basis of solutions is given by :

W (x) = V (x)ekxW (0). (14)

Equation (14) is called the Floquet Normal form of the fundamental basis W (x). We underline on

equation (14) that the characteristic multipliers are also the eigenvalues of the linear Poincaré maps

defined as the function w(x) → w(x + r1), w(x) being solution of (1).

Some interesting properties can be derived from the theory:

• The Floquet exponents are not unique since e
(k+i 2mπ

r1
)r1 = ekr1 if m is an integer.

• The Floquet vectors are periodic, so they are bounded on all R.

• The stability of homogeneous solutions of (1) are also given by the value of the Lyapunov exponents,

which are The real parts of the Floquet exponents. The solutions are asymptotically stable if all

Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and

unstable otherwise.

2.2 The Bloch Theorem

The Bloch theorem gives the form of homogeneous states of Schrdinger equation with periodic potential.

This theorem can be considered as a multidimensionnal application of the Floquet theorem (Joannopoulos,

Meade & Winn 1995). The periodic medium (or potential) properties satisfy M(x + R.m) = M(x),
m ∈ Z3 where R = [r1, r2, r3] ∈ R

3×3 the matrix grouping the three lattice’s basis vectors (in 3D). We

can also define the primitive cell as a convex polyhedron of R3 called Ωx. The reciprocal unit cell is denoted

by Ωk limited by the reciprocal lattice vector defined by the three vectors gj so that : ri.gj = 2πδij (δi,j the

Kronecker index). We note G = [g1, g2, g3] the reciprocal lattice matrix in the later. If ΩR is the irreductible

primitive cell, ΩG corresponds to the first Brillouin zone of the lattice. One can see (Kittel 1986) for details.
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Figure 1: Generic 3D periodic cells

The Bloch Theorem stipulates that any functions u(x) ∈ L2(R3,Cn) can be expressed as

u(x) =

∫

Ωk

eikxũ(x,k)dk (15)

where the Bloch amplitude ũ(x,k) is Ωx-periodic in x and has the representations

ũ(x,k) =
∑

n∈Z3

û(k + Gn)eiGn.x, u(x) =
|Ωx|

(2π)3

∑

n∈Z3

u(x + Rn)eik(x+Rn) (16)

where û(k) stands for the Fourier transform of u(x). One can also demonstrate that the mean value of the

Bloch amplitude is the Fourier amplitude of u(x) for the corresponding wave vector : 〈ũ(.,k)〉Ωx
= û(k).

Using the Bloch theorem to represent the solutions of periodical partial derivative equations implies that all

derivatives are shifted by k in the sense given by the used spatial operator.

Based on that theorem one can define the expansion functions vm(x,k), called the Bloch eigenmodes, such

they can be used to represent the Bloch amplitudes of any solution of the corresponding partial derivative

equation as

ũ(x,k) =
∑

m

um(k)vm(x,k) (17)

and at the same time diagonalize the partial derivative equations. One notes that the expansion coefficients

um(k) depend on the applied disturbance and also on the induced wave vector.

2.3 Application to Elastodynamic

Let us consider an infinite periodic elastodynamic problem as presented in figure 1. The harmonic homoge-

neous dynamical equilibrium of system is driven by the following partial derivative equation :

ρω2w(x) + ∇C∇sym(w(x)) = 0 ∀x ∈ R
3 (18)

where w(x) ∈ R3 is the displacement vector, C stands for the Hook elasticity tensor, ε(x) = ∇sym(w(x)) =
1
2(∇wT (x) + w(x)∇T ) the strain tensor. By considering a primitive cell of the periodic problem ΩR and by

using the Bloch theorem, we can search the associated Bloch eigenmodes (17)and the dispersion functions

by searching the eigen solutions of the homogeneous problem (18) as :

w(x) = wn,k(x,k)eik.x (19)
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For 3D applications, the wave vectors supposed to be complex if damping terms are added into equation

(20), can be written as k = k





sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)



 where θ, φ represent the direction angles into the recip-

rocal lattice domain as shown in figure 2(b). This decomposition assumes that real and imaginary parts of

vector k are co-linear. In the following, we note Φ =





sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)



 that direction vector.

3.1 Weak Formulation

If wn,k(x) is a solution of equations (20), also ∀w̃n,k(x) ∈
{

H1(ΩR,C3)/w̃n,k(x − Rn) = w̃n,k(x) ∀x ∈ ΓR

}

we have :
∫

ΩR

ρω2n(k)w̃n,k(x)wn,k(x) − ε̃n,k(x)Cεn,k(x)

+ikκ̃n,k(x)Cεn,k(x) − ikε̃n,k(x)Cκn,k(x) + k2κ̃n,k(x)Cκn,k(x)dΩ

+

∫

ΓR

w̃n,k(x)(C(εn,k(x) + ikκn,k(x))).ndΓ = 0 (22)

where εn,k(x) = ∇sym(wn,k(x)) is the strain, κn,k(x) = 1
2(wn,k(x).ΦT + Φ.wT

n,k(x)) the symmetric

dyadic tensor or the dyadic product of the displacement wn,k(x) and direction vector Φ. ˜means that the

specified operator is applied to the test functions and n is the unitary outpointing normal vector on the

considered boundary.

This weak formulation is simply obtained by integrating equation (20) projected onto any test function

w̃n,k(x). The boundary integral vanishes as the test functions are chosen so that w̃n,k(x − Rn) = w̃n,k(x)
on ΓR that implies C(εn,k(x+R)+ikκn,k(x+R)).n(x + R) = −C(εn,k(x)+ikκn,k(x)).n(x). That cor-

responds to the exact compensation of the boundary applied generalized constrains C(εn,k(x)+ ikκn,k(x)).
For a polyhedron cell, each boundary is a polyhedral plane sub-domain that can be associated with a parallel

opposite one. The symmetry conditions called wn,k(x−Rn) = wn,k(x) explicitly link these associated sur-

faces. As the corresponding normal vector n are opposite, κn,k(x + R) = κn,k(x) and the stress condition

can be restricted to C(εn,k(x + R)).n(x + R) = −C(εn,k(x)).n(x) on the two opposite surfaces. Thus,

all boundary integrations vanish and the used weak formulation is :

∀w̃n,k(x) ∈
{

H1(ΩR,C3)/w̃n,k(x − Rn) = w̃n,k(x) ∀x ∈ ΓR

}

∫

ΩR

ρω2n(k)w̃n,k(x)wn,k(x) − ε̃n,k(x)Cεn,k(x)

+ikκ̃n,k(x)Cεn,k(x) − ikε̃n,k(x)Cκn,k(x) + k2κ̃n,k(x)Cκn,k(x)dΩ = 0 (23)

3.2 Numerical Computation

The numerical implementation is obtained by using a standard finite elements method to discretize the weak

formulation (23). The assembled matrix equation is given by :

(K + λL(Φ) − λ2H(Φ) − ω2n(λ, Φ)M)wn,k(Φ) = 0 (24)

where λ = ik, M and K are respectively the standard symmetric definite mass and symmetric semi-

definite stiffness matrices coming from
∫

ΩR
ρω2

n(k)w̃n,k(x)wn,k(x)dΩ and
∫

ΩR
ε̃n,k(x)Cεn,k(x)dΩ terms
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in the weak formulations. L is an skew-symmetric matrix associated with term
∫

ΩR
−κ̃n,k(x)Cεn,k(x) +

ε̃n,k(x)Cκn,k(x)dΩ and H is a symmetric semi-definite positive matrix linked to
∫

ΩR
κ̃n,k(x)Cκn,k(x)dΩ.

When k and Φ are fixed, the system (24) is a linear eigen value problem allowing us to compute the disper-

sion functions ω2n(k,Φ) and the associated Bloch eigenvector wn,k(Φ).

This approach has been widely used for developing homogenization techniques and spectral asymptotic

analysis (Allaire & Congas 1998). It can also be applied for computing wave’s dispersion even if Floquet

propagators is preferred for 1D or quasi 1D computation (Ichchou, Akrout & Mencik 2007, Houillon, Ich-

chou & Jezequel 2005, Mencik & Ichchou 2005). Nevertheless these approaches has been only developed

for undamped mechanical system that is to say representing by a set of real matrices. In this case, most of the

previously published works present techniques based on the mesh of a real k-space (i.e k or λ and Φ) inside

the first Brillouin zone for obtaining the corresponding frequency dispersion and the associated Floquet vec-

tors. For undamped system only propagative or evanescent waves exist corresponding to a family of eigen

solutions purelly real or imaginary. Discrimination between each class of waves is easy. If damped system is

considered, that is to say if matrices K, L,H are complex, evanescent part of propagating waves appears as

the imaginary part of ω2
n(λ, Φ) and vice versa. It also becomes very difficult to distinguish the two family of

wave but also to compute the corresponding physical wave’s movements by applying spacial deconvolution.

Another possibility much more suitable for computing damped system and dedicated for time and space

deconvolution and computation of diffusion properties (Collet et al. 2009, Mencik & Ichchou 2005) is to

consider the following generalized eigen value problem :

(K − ω2M) + λn(ω, Φ)L(Φ) − λ2
n(ω, Φ)H(Φ))wn,k(Φ) = 0 (25)

In this problem, the pulsation ω is a real parameter corresponding to the harmonic frequency. Wave’s num-

bers and Floquet vector are also computed. An inverse Fourier transformation in the k-space domain can

lead us to evaluate the physical wave’s displacements and energy diffusion operator when the periodic distri-

bution is connected to another system (Collet et al. 2009). Another temporal inverse Fourier transformation

can furnish a way to access spatio-temporal response for non-homogeneous initial conditions. As L is skew-

symmetric, the obtained eigen values are quadruple (λ, λ̄,−λ,−λ̄) collapsing into real or imaginary pairs

(or a single zero) when all matrices are real (i.e for an undamped system). In this case a real pairs of eigen

values correspond to evanescent modes oriented in two opposite directions on the k-space and imaginary

values to two traveling waves propagating in opposite direction.

As previously mentioned, the real part of k = kΦ vector is restricted to stand inside the first Brillouin zone

(cf figure 2(b)). In the quadratic eigen value problem (25) nothing restricts computation to only find eigen

values satisfying this condition. For direction vector Φ orthogonal to the lattice facelets (i.e for Φp1
= [1, 0]T

and Φp2
= [0, 1]T in 2D rectangular cell) we have the same periodical conditions as expressed for one

dimensional wave guide in equation (11): if λi(Φp) is an eigen value associated to wi,k(Φp) then ∀m ∈ Z
3,

λ + i.ΦT
p (G.m) is also an eigen value associated to wi,k(Φp)e

−i.ΦT
p (G.m)x. Thus, for undamped system,

all obtained eigenvalues are periodically distributed in the k-space along its principal directions.

4 Applications for computing 2D waves dispersion

We only present here 2D wave guide application. Thus, we can easily find on literature comparative work to

validate this new computational methodology. Two different systems are considered in this section. The first

one corresponds to the undamped system used in (Wu, Wu & Hsu 2009) to validate our computation and the

second one correspond to the damped version of the same system.
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(a) (b)

Figure 5: Unrefined (a) and refined (b) Meshes case

For each parameter ω and φ, one reformulates the quadratic eigen value problem as a linear one by doubling

the state dimension. After constraint handling, it is possible to write the system in the form Ax = λBx.

The algorithm computes the largest eigenvalues of the matrix C = A−1B. To do this, the solver uses the

ARPACK FORTRAN routines for large-scale eigenvalue problems (Lehoucq, Sorensen & Yang 1998). This

code is based on a variant of the Arnoldi algorithm: the implicitly restarted Arnoldi method (IRAM). The

ARPACK routines must perform several matrix-vector multiplications Cv, which they accomplish by solving

the linear system Ax = Bv using here a Pardiso solver (Schenk & Gärtner 2002).

For all presented example computations have been carried out with ω = 2π.[1000 : 1000 : 200000] (fre-

quency between 1 and 200 kHz) and with φ = [0 : π
20 : π

2 ].

The used mesh is shown in figure 4.1.1. The first mesh case consists of 296 tetrahedral Lagrange quadratic

elements for 1947 degrees of freedom and the refined one of 1550 tetrahedral Lagrange quadratic elements

for 23913 degrees of freedom.

4.1.2 Dispersion along Γ − X direction of the undamped system

The first computation has been made to compare our algorithm with the previously obtained results presented

in (Wu et al. 2009). Let us apply our method for computing the wave’s dispersion functions of the undamped

system along the Γ − X direction (i.e for φ = 0). We present in figure 6 three different computations

of the same dispersion curves. The first one (plain red line) corresponds to the direct simulation of the

undamped system by fixing k along the Γ−X segment in the Brillouin zone and computing the corresponding

eigenfrequencies ω by using a standard numerical method (Aberg & Gudmundson 1997, Mace & Manconi

2008) based on equation (20). The second and third dispersion curves (in dotted and crossed lines in the

figure 6) show, respectively, the obtained results with the unrefined and refined meshes cases. The results

show a really good agreement between a standard computation method (Aberg & Gudmundson 1997, Mace

& Manconi 2008) used to obtained the reference results as proposed by (Wu et al. 2009) and our method

with the refined mesh. We point out that the evanescent modes are included into the computation and are

represented by crosses points with a null imaginary parts located along the frequency axis. It also show

up the convergence of the refined model compare to the unrefined one. These computations validates the

numerical implementation of the proposed method.

For evaluating the band-gap of the periodic system, we propose to use an indicator of the minimal evanes-

cence ratio of all the computed waves for each considered frequencies, defined as :

Ind(ω, φ) = min
n

∣

∣

∣

∣

Real(λn)

|(λn)|

∣

∣

∣

∣

(26)

We present in figure 7 the plot of this indicator for both mesh cases. We can also figure out location of the

first two stop bands of the system : the first one is form 40 to 50 MHz and the second from 156 to 176
MHz. Precision of these results depends on the frequency discretization rate. The obtained band-gap is
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Figure 7: Evanescence ratio Ind(ω). plain lines : refined mesh, dashed line : unrefined mesh

totally comparable with those computed by Wu (Wu et al. 2009). Figure 7 allows us to observe convergence

of the obtained results when refined mesh density is improved.

As previously mentioned, the Bloch theorem only allows computation of waves dispersion into the first

irreductible Brillouin Zone, here for kcos(φ) and ksin(φ) inside the shaded area in figure 4. The obtained

wavenumbers are symmetrical according to the boundary conditions of the corresponding polyhedral surface.

This properties is observed on figure 8 where the whole set of obtained wavenumbers (i.e the imaginary parts

of λn(ω)) is plotted. We observe that they are symmetrical with respect to the vertical axes on ± π
dx

= 100π
when φ = 0.

4.2 Dispersion of the damped system in the whole 2D K-space

The proposed computational method allows us to compute multi modal wave’s propagations in the complete

2D K-space in the first Brillouin zone. The proposed methodology is based on the direct computation of

complex wave numbers as a function of frequency. The Bloch theorem is expended in the case of damped

system and the obtained values become complex integrating phase velocity and evanescent part for each

computed wave number associated to the real and imaginary parts of the obtained eigenvalues of equation (5).
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Figure 8: Whole propagative wave numbers (imag(λn(ω)) when φ = 0
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Figure 9: Propagative wave numbers of damped system (imag(λn(ω)) when φ = 0 (left) and φ = 18o

The damping behavior is introduced by assuming a complex Hook elasticity tensor. The same methodology

could have been realized by introducing any kind of linear viscoelastic modeling such as viscous behavior

or any other complex frequency-dependent terms.

Calculations have been done considering a 1% damping ratio on the same structure as the one presented

before. A specific procedure has been developed to track the waves from one frequency to another, in

order to follow the characteristic propagating waves: starting from a set of waves which are considered as

propagative (typically such that the ratio of the real part of eigenvalue to its modulus is lower than 5%),

a MAC-based correlation criteria is computed to associate the waves from one frequency step to another.

When new waves appear or some of them loose correlation, the frequency step is adapted in order to enhance

the ability to follow the waves.

The figure 9 illustrates the typical results of the analysis. Propagative wave numbers of the damped system

are shown for φ = 0 and φ = 18o. It can be observed that if φ = 0, the symmetry illustrated in figure 8

still exists, while as soon as other directions are considered, the symmetry in the dispersion diagram does

not exist anymore. This can be explained by the fact that the periodicity of the initial pattern is lost when the

orientation is not parallel to one of the side of the initial cell. Concerning the correlation, some surprising

results can be observed: in some cases the correlation indicator fails to follow a given mode, even for small

frequency steps. It is not yet clear if this is a numerical artefact or if this can be explained physically. One

should emphasized that the MAC-based correlation is not mathematically justified since it does not constitute

a scalar product for the considered base. This point is currently under investigation.

Figure 10 illustrates the stop bands directivity of the damped system using the evanescence indicator sat-
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Figure 10: Directivity of damped system using evanescence indicator saturated at unit value

urated at unit value for a sake of visualization. The full red areas correspond to stop band in which only

evanescent waves can exist. The stop bands can exist even in the case of lightly damped system. These

bands can be angle-dependent and exist only for particular directions.

5 Concluding remarks

We propose here a validated numerical procedure able to compute the damped wave’s dispersion functions

in the whole first Brillouin domain of elastodynamical wave’s guides. The method was applied for de-

termining the 2D band-gaps of the well known 2D periodic structures studied by (Wu et al. 2009) when

damping is considered. Based on this approach, we also propose a suitable criterion indicating the evanes-

cence ratio of computed waves. It can be also used for optimizing electronics circuits and transducers for

controlling vibroacoustic behavior of such system. The introduced damping operator can be frequency de-

pendent as a viscous one but can also be much more complicated. It can compass particular dissipation

phenomenoms such as those induced by distributed shunted piezoelectric patches as proposed in (Beck,

Cunefare & Ruzzene 2008, Casadei, Beck & Ruzzene 2009). The proposed method furnishes an efficient

tool for future optimization of distributed shunted piezoelectric cells as proposed in the case of 1D wave

guide in (Collet et al. 2009).
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