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1. Introduction

Nowadays, the design of complex structures (which require a large finite element model (FE model) such as aircraft,
aerospace, etc., require the use of optimization methods. The size of the optimization problem depends on the number of
variables and constraints required, especially for the design of structures with large interactions between their various
components. Treating the problem in the conventional manner with all components considered simultaneously leads to
excessive computer run times (CPU times). In order to control this growth in the size of the problem, a multi-level
approach has to be used to decompose the problem (system-level) down into several sub-problems (element-level) taking
into account the structural coupling effects. Such an approach enables us to use parallel computer processing, leading to a
significant reduction in the computer run time and a decrease in the time needed the design cycle.

A multi-level approach is needed to decompose the entire system problem (system-level) into several sub-problems
(element-level) taking into account the various coupling effects. The multi-level approach allows individual system
components to be optimized, thus significantly reducing the time needed for the computation and the design cycle.
Various concepts have been proposed [1–7] to decompose large optimization problems down into sub-problems. It should
be noted that the design parameters of the global structure affect both the structure and sub-structures (density, Young
modulus, etc.), while the design parameters of the sub-structures can be local dimensions (e.g. geometric dimensions:
thickness, length, width). The constraints on the structure are global (e.g. structural displacement), while the constraints
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on the sub-structures are local (e.g. local stress or strain). The multi-level optimization proceeds by iterating in both
directions between the solution of the structure and the sub-structures.

The use of multi-objective and multi-level optimization [1–7] usually faces the following problems:
�
 The multi-objective optimization problem is transformed into a single-objective problem. This transformation requires
a priori knowledge of the weight of each cost function in relation to the others. In practice this is not always easy. There
may be a lack of experience or information, or the cost functions are not compatible. In addition, if the design space is
not convex, the weighting method will ignore the convex part of the whole Pareto optimal solutions, whereas this is the
part of solution where a compromise is to be found.

�
 Earlier authors [1–7] did not take the uncertainties in the design parameter into account during optimization. Indeed, it

is well known that a good theoretical solution can be catastrophic in practice if, for example, the errors during
manufacturing mean that the design variables are not achieved with sufficient precision. A solution which is sub-
optimal but is stable with regard to the uncertainty will be of much greater use to the designer.

Several optimization algorithms have been used to solve the multi-objective and multi-level problems. Evolutionary
algorithms like the genetic algorithm (GA) [1] or gradient [2] have been used at either system-level or element-level, or
specific computer codes such as AISC-LRFD, AISC and GBJ17-88 have been used [3] to optimize the steel frames.

This paper presents an original contribution to multi-objective and multi-level optimization. Our proposed method
takes into account the uncertainties in the design parameters at system-level and element-level. Taking these
uncertainties into account in the multi-objective optimization has required the introduction of robust solutions to these
uncertainties. Our solution uses a multi-level GA. The number of useful GAs depends on the number of elements at each
level of optimization.

In order to further reduce the computing time and ensure a good prediction by the FE models, at either the system-level
or element-level, one can couple the stochastic finite element method (SFEM) with a robust dynamic condensation method
with respect to the stochastic parametric modifications [8,9] in order to construct a robust reduced uncertainty model.
This condensation method is based on the Karhunen–Loeve (KL) approach. This method permits us to assign specific
uncertainties (weak, means or large level) to zones or sub-structures. The extension of this robust condensation method to
complex structures which need a large FE model also allows us to obtain a fast, robust, modal synthesis for such structures.

This paper is structured as follows: the robust multi-objective and multi-level optimization approach is presented in
Section 2. The multi-level approach for beam and plate structure models is considered in Section 3.

2. Proposed robust multi-objective and multi-level optimization strategy

This section is divided into four sub-sections. First subsection gives the principle of multi-objective optimization, the
second shows the robustness criterion used in the optimization procedure; the third presents the proposed formulation to
the multi-level decomposition, while the fourth subsection is reserved to method of robust reduction of FE model of
mechanical structures to be studied.

2.1. Robust multi-objective optimization

Before discussing robust design optimization, the mathematical statement of a deterministic (nominal) design
optimization problem is needed

minFðxÞ ¼ ðf1ðxÞ,f2ðxÞ,. . .,fkðxÞÞ
T

x 2 S

(
ð1Þ

where f1ðxÞ,f2ðxÞ,. . .,fkðxÞ are cost functions with kZ2; ðx1,x2,. . .xnÞ
T is the vector of ‘‘n’’ optimization parameters; S 2 Rn

represents all of the realizable solutions; and FðxÞ ¼ f1ðxÞ,f2ðxÞ,. . .,fkðxÞ is the vector of the functions to be optimized.
For a practical design problem, F is non-linear multi-modal and not necessarily analytical. We now consider the

robustness of the objective functions.
The design variable xi(1r irn) is assumed to be normally distributed with the mean, mxi

and the standard deviation,
sxi

. The tolerance of a design variable, Dxi is equal to 3sxi
thus, 99.73% of the design variables are between Dxi�3sxi

and
Dxiþ3sxi

. Our proposed method aims to obtain the robust Pareto front when the design variables vary within this
tolerance interval.

The distribution of the objective function is a consequence of the distribution of the design variables. The tight dispersal
of the objective function reduces the manufacturing cost since the tolerance bands of the design variables can be loosened.
Classically, the optimal solution robustness is evaluated from the deterministic optimization procedure. Kwon-Lee [10,11]
has proposed a robust optimization method in which a multi-objective function is defined to have the mean value and
standard deviation of the original objective function. The principal disadvantage of this method is that it uses a weighting
method. The weakness of the weighting method is that, unless the problem is convex, not all of the Pareto optimal
solutions may be found.
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The robust multi-objective optimization (RMO) problem defined by Kwon-Lee [10,11] is as follows:

minf ðxÞ
x
¼ a mf

m�
f
þð1�aÞ sf

s�
f

x : random design
; 0rar1

8<
: ð2Þ

where mf and sf are the mean value and the standard deviation of the objective function; and m�f and s�f are the optimal
values, considering only the mean and the standard deviation, respectively. But in this case only non-convex admissible
solutions were explored and optimal solutions could not be found.

The idea exploited in this paper is different. The robustness functions are introduced as an additional objective cost in
the multi-objective optimization problem. The aim is to find both optimal and robust solutions. A RMO problem is defined
as follows [12]:

minFðxÞ ¼ ðf1ðxÞ,f
v
1 ðxÞ,:::,fkðxÞ,f

v
k ðxÞÞ

x 2 S

T
(

ð3Þ

where

f v
i ðxÞ ¼ ðsfi

=mfi
Þ ¼

1

f r
i ðxÞ

ð4Þ

where f v
i ðxÞ and f r

i ðxÞ are, respectively, the vulnerability and robustness functions of the cost function fiðxÞ given by
Eq. (4). The ratio sfi

=mfi
is the dispersion (or the vulnerability function), where mfi

and sfi
are, respectively, the mean value

and standard deviation of fiðxÞ. We used the Latin Hypercube simulation [13] to evaluate the robustness functions with
1000 samples.

The robust solutions with respect to uncertainties are those that make it possible to simultaneously minimize the
original objective functions ðf1ðxÞ,f2ðxÞ,. . .,fkðxÞÞ and maximize their robustness ðf r

1ðxÞ,f
r
2ðxÞ,. . .,f

r
k ðxÞÞ (or to minimize their

vulnerabilities ðf v
1 ðxÞ,f

v
2 ðxÞ,. . .,f

v
k ðxÞÞ).

To search for robust and optimal solutions, one can exploit non-dominated sorting GAs of NSGA type (Non-dominated
Sorting Genetic Algorithm) [14], which enable us to further explore the design space and to cover the entire Pareto
optimal front.

The set of Pareto optimal solutions is that set formed by the solutions which are not dominated by other solutions. This
set forms the first Pareto front. That is to say, if one considers a minimization problem, where y,z 2 S are two vectors of n
optimization parameters, y dominates zðy4zÞ if and only if 8i 2 ½1,:::,n� : fiðyÞr fiðzÞ and (j 2 ½1,:::,n� : fjðyÞo fjðzÞ.

To illustrate the advantage of the proposed robustness criterion, one can consider a single-objective problem, and seeks
a solution, which is both optimal and robust. The single-objective problem is to be optimized according to

min f ðxÞ ¼ 2�e�ð
x�0:2
0:004Þ

2

�0:8e�ð
x�0:6

0:4 Þ
2

x 2 ½0,1�

(
ð5Þ

where f(x) is the cost function to be minimized and ‘‘x’’ is a distributed normal random variable. The multi-objective
optimization problem is defined as

min
x
ðf ðxÞ,f vðxÞÞ

x 2 ½0,1�

(
ð6Þ

The proposed robust optimization method is used to find the Pareto optimal design. Various tests allow us to define the
parameters of our evolutionary algorithm: the population size (30), the total number of generations (50), the crossover
probability (0.8), the mutation probability (0.1), and the sharing coefficient (sshare¼0.2).

Figs. 1 and 2 show, respectively, the optimal solutions and the robust and optimal Pareto front resulting from the RMO
procedure. All the optimal solutions (x1¼0.2 and x2¼0.4) are found in this front. The designer is able to choose the robust
optimal solutions that have the best rank in terms of vulnerability (Table 1).

To validate this strategy, we compared the solutions obtained by their deterministic and robust classifications. For the
deterministic optimization procedure, the global solution is ‘‘x1’’, which represents the optimum solution (ignoring the
robustness), while for the robust optimization procedure, ‘‘x2’’ is the robust optimum solution with low vulnerability. The
deterministic optimum performs better than the robust optimum.

The results show that the deterministic optimization is insufficient and non-robust because it does not take into
account the level of the cost functions, and the effect of uncertainties on the design parameters. Our proposed approach to
solving the robust optimization problem, based on the introduction of a dispersion function with respect to uncertainties,
makes it possible to find a solution that is both optimal and robust.

2.2. Multi-level optimization

The robust multi-objective and multi-level optimization (RMOL) problem is set as follows: we consider a complex mechanical
structure consisting of an assembly of K elements. The detailed geometry of the element ‘‘i’’ is defined by the vector of the local
3
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Fig. 2. Robust and optimal Pareto front: A—Global but non-robust optimum and B—Local robust optimum.

Table 1
Comparison between deterministic and robust solutions.

Solution Variable ‘‘x’’ f(x) fv(x) Deterministic rank Robust rank

A 0.2 0.496 0.163 1 2
B 0.4 1.2 0.158 2 1
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Fig. 1. Optimal solutions: A—Global optimum and B—Local optimum.
variables associated with X ¼ Xi=i ¼ 1...K ¼ ðxi,jÞj ¼ 1,...,nli
and the associated global variables, Y ¼ Yi=i ¼ 1...K ¼ ðyi,jÞj ¼ 1,...,ngi

. In addition,
there is a function g : Rnli-Rngi such that: Yi ¼ gðXiÞ.

For system-level optimization, the RMO problem is defined as follows:

min FðYÞ ¼ ðf1ðYÞ,f
v
1 ðYÞ,. . .,fmðYÞ,f v

mðYÞÞ
T

subject to: GjðYÞr0; j¼ 1,. . .,ns

YminrYrYMax

8><
>: ð7Þ

where fi=i ¼ 1,:::,m and f v
i=i ¼ 1,:::,m are, respectively, the cost functions and their vulnerability, and Gj represents the constraints

of the system-level problem.
For the element-level optimization (for the ith element), the RMO problem is defined as follows:

minFiðXÞ ¼ ðfi1 ðXÞ,f
v
i1
ðXÞ,. . .,fim ðXÞ,f

v
im
ðXÞÞT

subject to: GiðY
�,XÞr0;

GjðXÞr0; j¼ 1,:::,ni

XminrXrXMax

8>>>><
>>>>:

ð8Þ
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Fig. 3. Flowchart of the optimization procedure.
where FiðXÞ is the vector of the cost functions and their vulnerabilities of the element i, GjðXÞ are the constraints of the
local problem, and ni is the number of constraints; and GiðY

�,XÞ is the additional constraint of equality. This constraint links
design variables at different levels and simplifies the coupling between them. (*) denotes the variables, whose values are
the optimum outputs at element-levels and they are considered as fixed inputs in phase of optimization of system-level.

Fig. 3 presents a flowchart of the proposed optimization procedure. This proposed optimization with respect to the
multi-level decomposition is specified by the following steps:

Step 1. Define uncertain design parameters.
Step 2. Define robust multi-objective problem to be solved.
Step 3. Calculate vulnerability functions of each cost function: this is done by determining the mean value and standard

deviation of each function.
Step 4. Perform feasibility test:
This test depends on:
� Type of evolutionary algorithm used for optimization (GAy).
� Complexity of model.
� Number of design parameters.
� Correlations between design parameters.
� Complexity of cost functions to be solved (non-linear, multi-physics).
If answer is positive, go to Step 8.
If answer is negative, go to Step 5.

Step 5. Decompose structure into sub-structures: decomposition depends on geometry (section, length,), mechanical
properties (Young’s modulus, density), mechanical stress (bending, compression y), etc.

Step 6. Reduce FE model of structure and sub-structures by KL approach.
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Optimal and robust 
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Fig. 4. Multi-level algorithm: inter level migration flowchart.
Step 7. Run multi-level optimization procedure.
Step 8. Give optimal design (optimal and robust solution at lower cost).

The application of the proposed methodology requires the following:
�
 At element-level: the design parameters considered are geometric (section, thickness,y) which are specific to the
element or sub-structure.

�
 At system-level: in this step, the material properties of the structure: Young’s modulus (E), density (r), etc. are design

parameters that will be considered.

�
 For embedding between sub-structures: from outset conditions for connections are required as a constraint in local

optimization problems.

To solve this multi-level problem, a combination of multi-level GAs is proposed (Fig. 4). The number of GAs chosen
depends on the system being studied and the number of sub-systems that it has.

The optimization is managed by the GA_global (server), which simultaneously activates the AG_elements (terminals) to
solve the element problems. They can communicate with each other if the elements (sub-structures) are connected to each
other. Once the AG_elements converge, GA_global uses the values of the optimal design parameters of the sub-structures
(from optimization at element-level) to make global optimization, while respecting the constraints imposed on the
structure or sub-structures. The results of this global optimization allow the designer to make decisions during the pre-
project and project phases.

2.3. Robust modal synthesis method with respect to structural modifications and uncertainties

To further reduce the computational time without losing the accuracy of the solutions, a robust modal synthesis
method for the structural modifications and uncertainties is proposed. This method, based on the KL approach, is used in
the optimization procedure discussed in this paper.

If we attribute a level of uncertainty to either zones or sub-structures, the stochastic equilibrium equation of the
damped non-linear structure submitted to a deterministic harmonic excitation, can be written as follows:

ð�o2MðyÞþð1þ iZÞKðyÞÞUðo,yÞ ¼ feðoÞ ð9Þ

or

ðZ0ðyÞþDZðo,yÞÞUðo,yÞ ¼ feðoÞ ð10Þ

where the mean dynamic stiffness matrix is

Z0ðoÞ ¼ ð�o2M0þð1þ iZÞK0ÞUðo,yÞ
6



The stochastic dynamic stiffness matrix is

DZðo,yÞ ¼
Xq

r ¼ 1

ð�o2Mrþð1þ iZÞKrÞxr

Uðo,yÞ is the response vector of the stochastic model and feðoÞ is the vector of the applied forces.
Eq. (10) can be rewritten in the form

Z0ðoÞUðo,yÞ ¼ fDðo,yÞþ feðoÞ ð11Þ

where fDðo,yÞ ¼�DZðo,yÞUðo,yÞ is the random force vector associated with the unknown modifications of the initial
structure. Eq. (11) is then interpreted as the dynamic equilibrium equation of the non-linear initial model submitted to
fDðo,yÞ.

In practice, the resolution of the non-linear problem (Eq. (11)) by the Monte Carlo simulation is very expensive. The
condensation of this model by the standard reduction method is insufficiently predictive and robust with respect to the
parametric perturbations. Thus we can then develop a dynamic condensation method adapted to the stochastic models
[15] which uses an iterative procedure. The stochastic model condensed by a reduction of the nominal model, T0 can be
written, in the frequency domain, as follows:

Zc
0ðoÞU

cðo,yÞ ¼ f c
Dðo,yÞþ f c

e ðoÞ ð12Þ

The optimal modes are extracted from the frequency responses sampled from each sub-structure submitted to the
junction forces at the interfaces. These modes (f1,. . .,fk,. . .,fM) are determined by using the ‘‘snapshots’’ method in the
frequency domain, where one can suppose that fkðxÞðk¼ 1,. . .,MÞ is a linear combination of samples

fk ¼
XM
i ¼ 1

ai,kUi ð13Þ

where ai,k are the eigenvectors of the problem: CAk ¼ lkAk with k¼ 1,. . .,M; and C is the covariance matrix with a
general term

Cij ¼
1

M
UT

i Ujði,j¼ 1,. . .,MÞ and Ak ¼ a1,k . . . aM,k

h iT

The responses Uiði¼ 1,. . .,MÞ which intervene in Eq. (13) are obtained from the movement equation of a sub-structure
submitted to the only junctions forces Fj

ðK0�o2M0ÞUðoÞ ¼ FjðoÞ ð14Þ

These forces being a priori unknown, the proposed method in [15] uses the ‘‘single composite input’’ technique to excite
the sub-structure at the level of the j degrees-of-freedom (DOF) of junctions.

Thus, at each frequency, ok, one can introduce an excitation force FjðoÞ ¼ FjðokÞ 0
h iT

in the form

FjðokÞ ¼
1

iok�iO1

����
���� 1

iok�iO2

����
���� . . .

1

iok�iOj

����
����

" #T

ð15Þ

where i2¼�1. The frequencies Ok (k¼1, 2,y, j) are chosen arbitrarily in the sampling range [0, O].
The modes fk are used as a condensation basis and the transformation KL takes the following form:

TKL ¼ ½f1 . . . fk �, krM ð16Þ

The enrichment of the basis TKL by the random static residual uses the M responses, U01
,. . .,U0M

. For each pulsation ok

(k¼1,y, M), the force vector of the uncertain parametric modification is written as

fDk
¼�ðDK�o2

kDMÞU0ðokÞ ð17Þ

The set of vectors, fDk
allows the generation of the force basis, FD and the static residual matrix, RD ¼ K�1FD associated

with the stochastic modification forces allows the enriched optimal basis of KL to be constructed

KLT T RΔ= ð18Þ

Finally, we can dispose of the condensed stochastic model to calculate the response of the stochastic structure.

3. Numerical simulations

3.1. Two-dimensional frame

We studied a two-dimensional frame (Fig. 5) [16], composed of three columns of section ‘‘I’’ and 12 horizontal
beams of section ‘‘U’’ (Fig. 6). The horizontal beams are welded to the columns. The mechanical properties and geometric
7



characteristics of the structure are:
�
 The structure is homogeneous: Young’s modulus E¼2.1 1011 N/m2 and density r¼7800 kg/m3.

�
 The lengths of columns and horizontal beams are, respectively, 6 and 3 m.

�
 The geometric characteristics of columns (Fig. 6) are

a1 ¼ 42mm; a2 ¼ 70mm; a3 ¼ 6mm; a4 ¼ 4mm:
P2

P1

l2 = 1.5 m

l1 = 1m

y, uy

x, ux

�z

l2 = 1.5 m

Fig. 5. Two-dimensional frame.

Fig. 6. Section of two-dimensional frame.
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�
 The geometric characteristics of horizontal beams (Fig. 6) are

e1 ¼ 42mm; e2 ¼ 56mm; e3 ¼ 5mm; e4 ¼ 8mm:
The FE model of the overall structure has 54 DOF. The frame structure is supported with fixed ends at nodes 1, 2 and 3
(Fig. 5). The structure is excited at nodes 16 and 19 as: P

!
1 ¼ P1cosot: x

!
and P
!

2 ¼ P2coswt: x
!

, where P1 ¼ P2 ¼ 1N. In this
example, we solve the dynamic problem

M €yðtÞþC _yðtÞþKyðtÞ ¼ PðtÞ ð19Þ

where M, C and K are, respectively, the mass matrix, damping and stiffness of the structure. And y and P are,
respectively, the response of the model and the harmonic applied force.

The harmonic response calculated at node 19 from Eq. (20) is

yðoÞ ¼ ðK�o2Mþ joCÞ�1P ð20Þ

Damping (proportional type) can be expressed in terms of stiffness by the relationship, C ¼ ðZ=oÞK , where Z� 0:02.
The specification requires us to simultaneously minimize the overall mass and the maximum displacement at node 19

(denoted MaxD19) of the overall structure.
To meet the requirements of this specification, we divided the global structure into two groups of sub-structures. The

first group is composed by columns of section ‘‘I’’ while the second is formed by horizontal beams of section ‘‘U’’. Fig. 7
illustrates the methodology of decomposition into sub-structures (levels).

The element-level RMO problem is broken into two groups of elements: the columns and horizontal beams (Eq. (21)).

First group of elements Second group of elements

minðmii21,2,3
,f v

mi
Þ

x 2 ½a1,a2,a3,a4�

s:c : sf rsfmax
MPa

minðmjj21,:::,12
,f v

mj
Þ

x 2 ½e1,e2,e3,e4�

s:c : sc rscmax MPa

8><
>:

8><
>: ð21Þ

While the system-level RMO problem is (Eq. (22))

minðMg ,f v
Mg

,MaxD19,f v
MaxD19

Þ

Y 2 ½r,E,a�1,a�2,a�3,a�4,e�1,e�2,e�3,e�4�

s:c : a�1 ¼ e�1

8><
>: ð22Þ

where Mg ,MaxD19,f v
Mg

and f v
MaxD19

are the global mass of the structure, the maximum displacement at node 19 and their
vulnerabilities, respectively, And (n) indicates that the design parameters are optimized at element-level. It should be
noted that all the design parameters to be taken at system- or element-level are random and follow a normal distribution.
There is a 20% level of uncertainty for each design parameter.
Global Structure 
Optimize : Global Mass and 

Displacement at node 19 
Design paramters: E and ρ

Sub- structure 1 
Optimize : Mass of 

element 
Design paramters:

a1, a2, a3 and a4
with ρ = cte and E = cte 

Sub-structure 2
Optimize : Mass of   

element 
Design paramters:

e1, e2, e3 and e4
with ρ = cte and E = cte 

Condition of connection 
between elements:

a1 = e1
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Fig. 7. Procedure of multi-level optimization of two-dimensional frame.
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Fig. 8. Probability density function of the global mass and displacement obtained by Latin Hypercube method.
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Fig. 9. Whole of robust Pareto optimal solutions: 1st group of elements.
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Fig. 10. Whole of robust Pareto optimal solutions: 2nd group of elements.
Fig. 8 shows the probability density function (pdf) of the global mass and displacement obtained by the Latin
Hypercube method.

Solving the RMO problem for this first group of elements leads to a small number of solutions (Fig. 9). This is mainly
due to the presence of a constraint function and vulnerability. We chose the solution that has the best compromise
between mass and robustness (solution A). For the same reasons as given above, the resolution of the RMO problem for
the second group of elements has led to a small number of solutions (Fig. 10). Similarly, a solution which was a
good compromise between mass and robustness (solution B) was chosen. Taking account of the results of the RMO at
10



element-level, the RMO problem at system-level is

minðMgðYÞ,f v
Mg
ðYÞ,MaxD19ðYÞ,f

v
MaxD19

ðYÞÞ

Y 2 ½r,E,a�1,a�2,a�3,a�4,e�1,e�2,e�3,e�4�

with : a�1 ¼ e�1

8><
>: ð23Þ

The problem has four cost functions, two random design parameters and eight parameters which are fixed to their
optimal levels from the element-level.

Fig. 11 presents all the Pareto optimal solutions in the space of cost functions. Fig. 12 shows the behavior of the overall
structure before and after RMOL for solution C. Fig. 12 shows that the implementation of the proposed optimization
procedure was able to lower the resonance peak of the first three modes in the frequency band (0–100 Hz) and especially
that of the second mode (the aim of our study) to DD� 90%. A frequency shift was recorded for all the modes.

To determine the performance (CPUþprecision) of the RMOL, it was compared with the classical optimization method
(RMO method applied to global system). The single-level RMO problem to be solved has four cost functions and nine
random design parameters

minðMgðYÞ,f v
Mg
ðYÞ,MaxD19ðYÞ,f

v
MaxD19

ðYÞÞ

Y 2 ½r,E,a1,a2,a3,a4,e1,e2,e3,e4�

with : a1 ¼ e1

8><
>: ð24Þ
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Fig. 11. (a) and (b): Whole robust Pareto optimal solutions: system-level.
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Fig. 12. Behavior of the structure before and after RMOL: Solution C.
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Fig. 13. Whole of robust Pareto optimal solutions: RMO and RMOL.

Table 2
Performance of the proposed method.

CPU (%) Reduction (%) Error (%)

RMO 100 30 6

RMOL 70
Fig. 13 presents all the Pareto optimal and robust solutions as cost functions for the two methods (single-level and
multi-level). Table 2 presents the performance of the proposed method compared to single-level method. There is a
significant reduction in CPU time by about 30% and a precision error of less than 6%. Thus, the engineer is able to make a
rapid decision with acceptable accuracy in the project or pre-project phases. It should be noted that the error is
determined by the Mahalanobis distance ratio [17], calculated for each cloud solution for each method, compared to the
reference. The latter is created by applying the single-level RMO method which has undergone a 1% change.

3.2. GARTEUR SM—AG 19 structure

The proposed example (Fig. 14), concerns the Group for Aeronautical Research and Technology in Europe (GARTEUR)
airplane model [18]. It is a simplified model of an aircraft (length 1.5 m and wide 2 m), with a fuselage, wings and a tail
[19] (Table 3). The FE model has 91 elements and a total of 906 DOFs. Free boundary conditions are assumed. Fig. 15 shows
the simulated four-mode shapes used by GARTEUR. Fig. 16 gives the excitation nodes (1, 2, y, 11) and the observation
node located at point 1. The RMOL concept is shown in Fig. 17. This method uses a set of interconnected GAs. It should be
noted that the process of multi-level optimization is preceded by a reduction in the FE model used for the structure and
sub-structures.

The structure (system-level) is divided into five sub-structures (element-level) (see Fig. 14). In this case, five RMO
problems are solved (Eq. (25))

minðm1,f v
m1
Þ

x 2 ½h1,L1,l1,L12�

s:c : D1rD1Max

,

minðm2,f v
m2
Þ

x 2 ½h2,L2,l2�

s:c : D2rD2Max

,

minðm3,f v
m3
Þ

x 2 ½h3,L3,l3�

s:c : D3rD3Max

,

minðm4,f v
m4
Þ

x 2 ½h4,L4,l4�

s:c : D4rD4Max

,

minðm5,f v
m5
Þ

x 2 ½h5,L5,l5�

s:c : D5rD5Max

8><
>:

8><
>:

8><
>:

8><
>:

8><
>: ð25Þ

where mi=i ¼ 1,:::,5 and f v
mi=i ¼ 1,:::,5

are, respectively, the mass and its vulnerability at each sub-structure. D1Max
, D2Max

, D3Max
, D4Max

and D5Max
are local constraint functions.

While the robust multi-objective problem at system-level is

minðMgðYÞ,f v
Mg
ðYÞ,UðYÞ,f v

U ðYÞÞ

Y 2 ½E1,r1,E2,r2,E3,r3,E4,r4,E5,r5,h�1,h�2,h�3,h�4,h�5,L�1,L�2,L�3,L�4,L�5,l�1,l�2,l�3,l�4,l�5�

(
ð26Þ

where Mg , f v
Mg

, U and f v
U are, respectively, the global mass of the structure, its vulnerability, the displacement at node (1)

and its vulnerability, (n) indicates that the design parameters are optimized at element-level.
It should be noted that all the design parameters to be taken at the system- or element-level are random and follow a

normal distribution, and the level of uncertainty for each design parameter is 20%.
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Fig. 14. FE model of the GARTEUR.
Fig. 18 shows the pdf of the global mass and displacement obtained by the Latin Hypercube method.
The resolution of this optimization problem (Eq. (26)) is preceded by a robust reduction, using the FE model of the

structure by the KL method.
Fig. 19 illustrates the relative error curves on the eigenfrequencies and eigenvectors in the frequency range (0–230 Hz)

(for the global structure case (GARTEUR)): The first 20 eigen modes calculated from the model condensed by the KL
method are compared to those of the reference model. As shown in Fig. 19, the reduced model allows us to obtain a good
frequency representation over the entire useful region of the band. The quality of the reduced model relative to the
reference is also highlighted by the difference curve in terms of displacement (Fig. 20).

To compare the performance of the proposed RMOL method with the single-level RMO method, we propose to resolve
the RMO method (without multi-level decomposition and reduction by FE model).

The single-level RMO problem to be solved has four cost functions and 25 random design parameters

minðMgðYÞ,f v
Mg
ðYÞ,DðYÞ,f v

D ðYÞÞ

Y 2 E1,E2,E3,E4,E5,r1,r2,r3,r4,r5,h1,h2,h3,h4,h5,L1,L2,L3,L4,L5,l1,l2,l3,l4,l5
� �

(
ð27Þ

Fig. 21 presents the whole Pareto optimal and robust solutions to the cost functions of the two methods (single-level
RMO and RMOL). There is good agreement with the cloud of solutions from both methods.

Table 4 shows the performance of the proposed method compared to the single-level method. There is a reduction in
CPU time of about 80% and a precision error of less than 3%. This demonstrates the potential of the proposed methodology
at the pre-project or project stages.

To compare the behavior of the structure before and after RMOL, we selected a solution to whole Pareto optimal and
robust solutions. Solution A was selected from the area that represents the correct compromise between the cost functions
which were considered. Fig. 22 shows the before and after behavior of the structure for solution A.
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Fig. 16. Excitation and observation nodes.

Mode 1 : 7.039 Hz Mode 2 : 7.934 Hz 

Mode 3 : 17.223 Hz Mode 4 : 24.901 Hz 

Fig. 15. First four eigenmodes of GARTEUR.
4. Conclusions

We have proposed a RMOL method for the design of complex systems which have a large FE model. This method uses of
a combination of interconnected GAs and a robust reduction of large FEM mechanical structures using the KL method.

The proposed method also utilizes the task sharing commonly used in structural engineering. In addition, it takes into
account the presence of uncertainties in the design parameters during the optimization, which allows us to obtain robust
optimal solutions.
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Fig. 17. Procedure of multi-level optimization of GARTEUR.
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Fig. 18. Probability density function of the global mass and displacement obtained by Latin Hypercube method.
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Table 3
Mean values of geometric and mechanical parameters of the structure.

SS1 SS2 SS3 SS4 SS5

Geometric parameters (mm) L1¼400 L2¼1500 L3¼2000 L4¼400 L5¼400

l1¼100 l2¼150 l3¼100 l4¼100 l5¼100

h1¼10 h2¼50 h3¼10 h4¼10 h5¼10

L12¼300

Mechanical parameters Ei (N/m2), ri (Kg/m3) E1¼70.3�109 E2¼70.3�109 E3¼70.3�109 E4¼70.3�109 E5¼70.3�109

r1¼1269 r2¼1269 r3¼1269 r4¼1269 r5¼1269
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Fig. 22. Behavior of the structure before and after RMOL: Solution A.

Table 4
Performance of the proposed method.

CPU (%) Reduction (%) Error (%)

RMO 100 80 3

RMOL 20
The application of this method to mechanical structures like beams and plates has led to a drastic reduction in CPU
computation time compared to the single-level optimization procedure. This indicates the potential of this method as
powerful tool to aid decision-making during the pre-project or project steps when complex structures which need a large
FE model are being designed.
Appendix A

The Karhunen–Loeve decomposition of the random field Hð�Þ on the basis of the eigenfunctions frðxÞ is given by

Hðx,yÞ ¼ mðxÞþ
X1
r ¼ 1

ffiffiffiffiffi
lr

p
frðxÞxrðyÞ of truncated shape :

Ĥðx,yÞ ¼ mðxÞþ
Xq

r ¼ 1

ffiffiffiffiffi
lr

p
frðxÞxrðyÞ ðA:1Þ

where fxrðyÞ,r¼ 1,. . .,qg are the independent Gaussian standard normal variables and ðlr ,frÞ represent, respectively, the
eigenvalues and eigenvectors of the known covariance function Cðx1,x2Þ associated to Hð�Þ, whose the spectral
decomposition is written as

Cðx1,x2Þ ¼
X1
r ¼ 1

lrfrðx1Þfrðx2Þ ðA:2Þ
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The Stochastic mass Matrix is the assembly of the elementary matrices

MðyÞ ¼ [
e

Z
Oe

Hðx,yÞNT N dOe

� �
�M0þ

Xq

r ¼ 1

MrxrðyÞ ðA:3Þ

with

M0 ¼[
e

Z
Oe

mðxÞNT N dOe

� �
Mr ¼[

e

Z
Oe

ffiffiffiffiffi
lr

p
frðxÞN

T N dOe

� �
ðA:4Þ

In the same way, the stochastic stiffness matrix is written as

KðyÞ � K0þ
Xq

r ¼ 1

KrxrðyÞ ðA:5Þ

with

K0 ¼[
e

Z
Oe

mðxÞBT DB dOe

� �
; Kr ¼[

e

Z
Oe

ffiffiffiffiffi
lr

p
frðxÞB

T DB dOe

� �
ðA:6Þ

D is the matrix of elastic coefficients.
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