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Mean-field type Quadratic BSDEs

Hélène Hibon∗ Ying Hu† Shanjian Tang‡

April 23, 2017

Abstract

In this paper, we give several new results on solvability of a quadratic BSDE
whose generator depends also on the mean of both variables. First, we consider
such a BSDE using John-Nirenberg’s inequality for BMO martingales to estimate
its contribution to the evolution of the first unknown variable. Then we consider
the BSDE having an additive expected value of a quadratic generator in addition
to the usual quadratic one. In this case, we use a deterministic shift transformation
to the first unknown variable, when the usual quadratic generator depends neither
on the first variable nor its mean, the general case can be treated by a fixed point
argument.

1 Introduction

Let {Wt := (W 1
t , . . . ,W

d
t )

∗, 0 ≤ t ≤ T} be a d-dimensional standard Brownian motion
defined on some probability space (Ω,F ,P). Denote by {Ft, 0 ≤ t ≤ T} the augmented
natural filtration of the standard Brownian motion W .

In this paper, we study the existence and uniqueness of an adapted solution of the
following BSDE:

Yt = ξ +

∫ T

t

f(s, Ys,E[Ys], Zs,E[Zs]) ds−
∫ T

t

Zs · dWs, t ∈ [0, T ]. (1.1)

When f does not depend on (ȳ, z̄), BSDE (1.1) is the classical one, and it is extensively
studied in the literature, see the pioneer work of Bismut [1, 2] as well as Pardoux and
Peng [16]. When f(t, y, ȳ, z, z̄) is scalar valued and quadratic in z while it does not
depend on (ȳ, z̄), BSDE (1.1) is the so-called quadratic BSDE and has been studied
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by Kobylanski [13], Briand and Hu [4, 5]. BSDE (1.1) (called mean-field type BSDE)
arises naturally when studying mean-field games, etc. We refer to [6] for the motivation
of its study. When the generator f is uniformly Lipschitz in the last four arguments,
BSDE (1.1) is shown in a straightforward manner to have a unique adapted solution, and
the reader is referred to Buckdahn et al. [6] for more details. For the general generator
f(s, y, ȳ, z, z̄) depending quadratically on z, BSDE (1.1) is a quadratic one involving both
E[Y ] and E[Z]. The comparison principle (see [13]) is well known to play a crucial role
in the study of quadratic BSDEs (see [13]). Unfortunately, the comparison principle
fails to hold for BSDE (1.1) (see , e.g. [6] for a counter-example for comparison with
Lipschitz generators), the derivation of its solvability is not straightforward. Up to our
best knowledge, no study on quadratic mean-field type BSDEs is available. To tackle the
difficulty of lack of comparison princilpe, we use the John-Nirenberg inequality for BMO
martingales to address the solvability.

Furthermore, we study the following alternative of mean-field type BSDE, which ad-
mits a quadratic growth in the mean of the second unknown variable E[Z]:

Yt = ξ +

∫ T

t

[f1(s, Ys,E[Ys], Zs,E[Zs]) + E[f2(s, Ys,E[Ys], Zs,E[Zs])] ds

−
∫ T

t

Zs · dWs, (1.2)

where f2 is allowed to grow quadratically in both Z and E[Z], the function f1 also admits
a quadratic growth in the second unknown variable for the scalar case.

To deal with the additive expected value of f2, Cheridito and Nam [8] introduced
Krasnoselskii fixed point theorem to conclude the existence and uniqueness, by observing
that the range of the expected value of f2 is (locally) compact. Here we observe the
following fact: the expected value of f2 has no contribution to the second unknown variable
Z if f1 depends neither on the first variable Z nor on its mean. Hence we use the shift
transformation to remove the expectation of f2. In the general case, we apply the same
kind of technique and the contraction mapping principle.

Let us close this section by introducing some notations. Denote by S∞(Rn) the totality
of Rn-valued Ft-adapted essentially bounded continuous processes, and by ||Y ||∞ the
essential supremum norm of Y ∈ S∞(Rn). It can be verified that (S∞(Rn), || · ||∞) is a
Banach space. Let M = (Mt,Ft) be a uniformly integrable martingale with M0 = 0, and
for p ∈ [1,∞) we set

‖M‖BMOp(P) := sup
τ

∣∣∣∣Eτ

[
(〈M〉∞τ )

p
2

] 1
p

∣∣∣∣
∞

(1.3)

where the supremum is taken over all stopping times τ . The class {M : ‖M‖BMOp < ∞} is
denoted by BMOp, which is written as BMOp(P) whenever it is necessary to indicate the
underlying probability, and observe that ‖ · ‖BMOp is a norm on this space and BMOp(P)
is a Banach space.

Denote by E (M) the stochastic exponential of a one-dimensional local martingale M

and by E (M)ts that of Mt−Ms. Denote by β ·M the stochastic integral of a scalar-valued
adapted process β with respect to a local continuous martingale M .
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For any real p ≥ 1, Sp(Rn) denotes the set of Rn-valued adapted and càdlàg processes
(Yt)t∈[0,T ] such that

||Y ||Sp(Rn) := E

[
sup

0≤t≤T
|Yt|p

]1/p
< +∞,

and Mp(Rd×n) denotes the set of adapted processes (Zt)t∈[0,T ] with values in R
d×n such

that

||Z||Mp(Rd×n) := E

[(∫ T

0

|Zs|2ds
)p/2

]1/p
< +∞.

The rest of our paper is organized as follows. In Section 2, we study BSDE (1.1) when
f(t, y, ȳ, z, z̄) is scalar valued and quadratic in z, and uniformly Lipschitz in (y, ȳ, z̄), and
prove by the contraction mapping principle that BSDE (1.1) has a unique solution. In
Section 3, we study scalar-valued BSDE (1.2) when f2(t, y, ȳ, z, z̄) is both quadratic in
z and z̄, and f1 is quadratic in z. Finally, in Section 4, we study BSDE (1.2) in the
multi-dimentional case, where we suppose that f2(t, y, ȳ, z, z̄) is both quadratic in z and
z̄, and f1 is Lipschitz in z and z̄.

2 Quadratic BSDEs with a mean term involving the

second unknown variable

In this section we consider the following BSDE:

Yt = ξ +

∫ T

t

f(s, Ys,E[Ys], Zs,E[Zs]) ds−
∫ T

t

Zs · dWs, t ∈ [0, T ]. (2.1)

We first recall the following existence and uniqueness, a priori estimate for one-
dimensional BSDEs.

Lemma 2.1. Assume that (i) the function f : Ω× [0, T ]×R×R
d → R has the following

growth and locally Lipschitz continuity in the last two variables:

|f(s, y, z)| ≤ gs + β|y|+ γ

2
|z|2, y ∈ R, z ∈ Rd;

|f(s, y, z1)− f(s, y, z2)| ≤C|y1 − y2|+ C(1 + |z1|+ |z2|)|z1 − z2|, y1, y2 ∈ R, z1, z2 ∈ R
d;

(2.2)

(ii) the process f(·, y, z) is Ft-adapted for each y ∈ R, z ∈ R
d; and (iii) g ∈ L1(0, T ).

Then for bounded ξ, the following BSDE

Yt = ξ +

∫ T

t

[f(s, Ys, Zs)] ds−
∫ T

t

Zs · dWs, t ∈ [0, T ] (2.3)

has a unique solution (Y, Z) such that Y is (essentially) bounded and Z · W is a BMO
martingale. Furthermore, we have

eγ|Yt| ≤ Et

[
eγe

β(T−t)ξ+γ
∫ T
t

|g(s)|eβ(s−t) ds
]
.
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The following lemma plays an important role in our subsequent arguments. It indicates
that following the proof of [12, Theorem 3.3, page 57] can give a more precise dependence
of the two constants c1, c2 on β ·M .

Lemma 2.2. For K > 0, there are constants c1 > 0 and c2 > 0 depending only on K

such that for any BMO martingale M , we have for any one-dimensional BMO martingale
N such that ‖N‖BMO2(P) ≤ K,

c1‖M‖BMO2(P) ≤ ‖M̃‖BMO2(P̃)
≤ c2‖M‖BMO2(P) (2.4)

where M̃ := M − 〈M,N〉 and dP̃ := E (N)∞0 dP.

2.1 Main Results

We make the following three assumptions. Let C be a positive constant.

(A 1) Assume that there are positive constants C and γ and α ∈ [0, 1) such that the
function f : Ω × [0, T ] × R

2 × (Rd)2 → R has the following linear-quadratic growth and
globally-locally Lipschitz continuity: for ∀(ω, s, yi, ȳi, zi, z̄i) ∈ Ω× [0, T ]×R

2× (Rd)2 with
i = 1, 2,

|f(ω, s, y, ȳ, z, z̄)| ≤ C(2 + |y|+ |ȳ|+ |z̄|1+α) +
1

2
γ|z|2;

|f(s, y1, ȳ1, z1, z̄1)− f(s, y2, ȳ2, z2, z̄2)| ≤C

{
|y1 − y2|+ |ȳ1 − ȳ2|+ (1 + |z̄1|α + |z̄2|α)|z̄1 − z̄2|

+ (1 + |z1|+ |z2|)|z1 − z2|
}
;

(2.5)

The process f(·, y, ȳ, z, z̄) is Ft-adapted for each (y, ȳ, z, z̄).

(A 2) The terminal condition ξ is uniformly bounded by C.

We have the following two theorems.
The first one is a result concerning local solutions. For this, let us introduce some

notations. For ε > 0, and rε > 0, we define the ball Bε by

Bε :=

{
(Y, Z) : Y ∈ S∞, Z ·W ∈ BMO2(P),

||Y ||∞,[T−ε,T ] + ‖Z ·W‖BMO2,[T−ε,T ] ≤ rε

}
.

Theorem 2.3. Let assumptions (A 1) and (A 2) be satisfied with α ∈ [0, 1). Then, for
any bounded ξ, there exist ε > 0 and rε > 0 such that the following BSDE

Yt = ξ +

∫ T

t

f(s, Ys,E[Ys], Zs,E[Zs]) ds−
∫ T

t

Zs · dWs, t ∈ [0, T ] (2.6)

has a unique local solution (Y, Z) in the time interval [T − ε, T ] with (Y, Z) ∈ Bε.
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Example 2.4. The condition on f means that f is of linear growth with respect to (y, ȳ),
and of |z̄|1+α growth. For example, For α ∈ (0, 1),

f(s, y, ȳ, z, z̄) = 1 + |y|+ |ȳ|+ 1

2
|z|2 + |z̄|1+α.

The second theorem is a result about global solutions.

Theorem 2.5. Let assumption (A 2) be satisfied. Moreover, assume that there is a posi-
tive constant C such that the function f : Ω× [0, T ]× R

2 × (Rd)2 → R has the following
linear-quadratic growth and globally-locally Lipschitz continuity: for ∀(ω, s, yi, ȳi, zi, z̄i) ∈
Ω× [0, T ]× R

2 × (Rd)2 with i = 1, 2,

|f(s, 0, 0, 0, 0) + h(ω, s, y, ȳ, z, z̄)| ≤ C(1 + |y|+ |ȳ|),
|f(ω, s, 0, 0, z1, 0)− f(ω, s, 0, 0, z2, 0)| ≤ C(1 + |z1|+ |z2|)|z1 − z2|,
|h(s, y1, ȳ1, z1, z̄1)− h(s, y2, ȳ2, z2, z̄2)| ≤ C (|y1 − y2|+ |ȳ1 − ȳ2|+ |z1 − z2|+ |z̄1 − z̄2|)

(2.7)

where for (ω, s, y, ȳ, z, z̄) ∈ Ω× [0, T ]× R
2 × (Rd)2,

h(s, y, ȳ, z, z̄) := f(s, y, ȳ, z, z̄)− f(s, 0, 0, z, 0). (2.8)

The process f(·, y, ȳ, z, z̄) is Ft-adapted for each (y, ȳ, z, z̄) ∈ R
2 × (Rd)2.

Then, the following BSDE

Yt = ξ +

∫ T

t

f(s, Ys,E[Ys], Zs,E[Zs]) ds−
∫ T

t

Zs · dWs, t ∈ [0, T ] (2.9)

has a unique adapted solution (Y, Z) on [0, T ] such that Y is bounded. Furthermore, Z ·W
is a BMO(P) martingale.

Example 2.6. The inequality (2.7) requires that f is bounded with respect to the last
variable z̄. The following function

f(s, y, ȳ, z, z̄) = 1 + s+ |y|+ |ȳ|+ 1

2
|z|2 + | sin(z̄)|, (s, y, ȳ, z, z̄) ∈ [0, T ]× R

2 × (Rd)2,

satisfies such an inequality.

2.2 Local solution: the proof of Theorem 2.3

We prove Theorem 2.3 (using the contraction mapping principle) in the following three
subsections: in Subsection 2.2.1, we construct a map (which we call quadratic solution
map) in a Banach space; in Subsection 2.2.2, we show that this map is stable in a small
ball; and in Subsection 2.2.3, we prove that this map is a contraction.
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2.2.1 Construction of the map

For a pair of bounded adapted process U and BMO martingale V · W , we consider the
following quadratic BSDE:

Yt = ξ +

∫ T

t

f(s, Ys,E[Us], Zs,E[Vs]) ds−
∫ T

t

Zs · dWs, t ∈ [0, T ]. (2.10)

As

|f(s, y,E[Us], Zs,E[Vs])| ≤ C(2 + |E[Us]|+ |E[Vs]|1+α) + C|y|+ 1

2
γ|z|2,

in view of Lemma 2.1, it has a unique adapted solution (Y, Z) such that Y is bounded
and Z ·W is a BMO martingale. Define the quadratic solution map Γ : (U, V ) 7→ Γ(U, V )
as follows:

Γ(U, V ) := (Y, Z), ∀(U, V ·W ) ∈ S∞ × BMO2(P).

It is a transformation in the Banach space S∞ × BMO2(P).
Let us introduce here some constants and a quadratic (algebraic) equation which will

be used in the next two subsections.
Define

Cδ := e
6

1−α
γCTeCT+ 1−α

2 ( 3
1−α

γCeCT )
2

1−α ( 1+α
2δ )

1+α
1−α T ; (2.11)

β :=
1

2
(1− α)C

2
1−α (2(1 + α))

1+α
1−α ; (2.12)

µ1 := (1− α)

(
1 +

1− α

(1 + α)γ

)
= 1− α +

(1− α)2

(1 + α)γ
;

µ2 :=
1

2
(1 + α)

(
1 +

1− α

(1 + α)γ

)
=

1

2
(1 + α) +

1− α

2γ
;

(2.13)

µ := (β + Cµ1) γ
2

α−1 + 2Cµ2. (2.14)

Consider the following standard quadratic equation of A:

δA2 −
(
1 + 4γ−2eγ|ξ|∞δ

)
A+ 4γ−2eγ|ξ|∞ + 4µCδe

3eCT

1−α
γ|ξ|∞ε = 0.

The discriminant of the quadratic equation reads

∆ :=
(
1 + 4γ−2eγ|ξ|∞δ

)2 − 4δ

[
4γ−2eγ|ξ|∞ + 4µCδe

3eCT

1−α
γ|ξ|∞ε

]

=
(
1− 4γ−2eγ|ξ|∞δ

)2 − 16µδCδe
3eCT

1−α
γ|ξ|∞ε.

(2.15)

Take

δ :=
1

8
γ2e−γ|ξ|∞, ε ≤ min

{
1

3C
e−CT ,

1

8µCδ

γ−2eγ(1−
3eCT

1−α
)|ξ|∞

}
,

A :=
1 + 4γ−2eγ|ξ|∞δ −

√
∆

2δ
=

3− 2
√
∆

4δ
≤ 3

4δ
= 6γ−2eγ|ξ|∞,

(2.16)
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and we have

∆ ≥ 0, 1− δA =
1 + 2

√
∆

4
> 0,

γ−2eγ|ξ|∞ + µCδ
e

3γeCT

1−α
|ξ|∞

1− δA
ε+

1

4
A =

1

2
A.

(2.17)

Throughout this section, we base our discussion on the time interval [T − ε, T ].
We shall prove Theorem 2.3 by showing that the quadratic solution map Γ is a con-

traction on the closed convex set Bε defined by

Bε :=

{
(U, V ) : U ∈ S∞, V ·W ∈ BMO2(P),

‖V ·W‖2BMO2
≤ A, e

2
1−α

γ|U |∞ ≤ Cδe
3γeCT

1−α |ξ|∞

1−δA

}
(2.18)

(where (U, V ) is defined on Ω × [T − ε, T ] ) for a positive constant ε (to be determined
later).

2.2.2 Estimation of the quadratic solution map

We shall show the following assertion: Γ(Bε) ⊂ Bε, that is,

Γ(U, V ) ∈ Bε, ∀ (U, V ) ∈ Bε. (2.19)

Step 1. Exponential transformation.

Define
φ(y) := γ−2[exp (γ|y|)− γ|y| − 1], y ∈ R. (2.20)

Then, we have for y ∈ R,

φ′(y) = γ−1[exp (γ|y|)− 1]sgn(y), φ′′(y) = exp (γ|y|), φ′′(y)− γ|φ′(y)| = 1. (2.21)

Using Itô’s formula, we have for t ∈ [T − ε, T ],

φ(Yt) +
1

2
Et

[∫ T

t

|Zs|2 ds
]

≤φ(|ξ|∞) + CEt

[∫ T

t

|φ′(Ys)|
(
2 + |Ys|+ |E[Us]|+ |E[Vs]|1+α

)
ds

]
.

(2.22)

Since (in view of the definition of notation β in (2.12))

C|φ′(Ys)||E[Vs]|1+α ≤ 1

4
|E[Vs]|2 + β|φ′(Ys)|

2
1−α ,
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we have

φ(Yt) +
1

2
Et

[∫ T

t

|Zs|2 ds
]

≤φ(|ξ|∞) + CEt

[∫ T

t

|φ′(Ys)| (2 + |Ys|+ |E[Us]|) ds
]

+ βEt

[∫ T

t

|φ′(Ys)|
2

1−α ds

]
+

1

4
Et

[∫ T

t

|E[Vs]|2 ds
]

≤φ(|ξ|∞) + CEt

[∫ T

t

|φ′(Ys)| ((1 + |Ys|) + (1 + |E[Us]|)) ds
]

+ βEt

[∫ T

t

|φ′(Ys)|
2

1−α ds

]
+

1

4
Et

[∫ T

t

|E[Vs]|2 ds
]
.

(2.23)

In view of the inequality for x > 0,

1 + x ≤
(
1 +

1− α

γ(1 + α)

)
e

γ(1+α)
1−α

x,

we have

CEt

[∫ T

t

|φ′(Ys)| ((1 + |Ys|) + (1 + |E[Us]|)) ds
]

≤CEt

[∫ T

t

|φ′(Ys)|
(
1 +

1− α

γ(1 + α)

)(
eγ

1+α
1−α

|Ys| + eγ
1+α
1−α

|E[Us]|
)
ds

]
.

(2.24)

Since (by Young’s inequality)

|φ′(Ys)|
(
eγ

1+α
1−α

|Ys| + eγ
1+α
1−α

|E[Us]|
)
≤ (1− α)|φ′(Ys)|

2
1−α +

1 + α

2

(
e

2
1−α

γ|Ys| + e
2

1−α
γ|E[Us]|

)
,

in view of the definition of the notations µ1 and µ2 in (2.13), we have

CEt

[∫ T

t

|φ′(Ys)| ((1 + Ys) + (1 + |E[Us]|)) ds
]

≤ Cµ1Et

[∫ T

t

|φ′(Ys)|
2

1−α ds

]
+ Cµ2Et

[∫ T

t

(
e

2γ
1−α

|Ys| + e
2γ

1−α
|E[Us]|

)
ds

]
.

(2.25)

In view of inequality (2.23), we have

φ(Yt) +
1

2
Et

[∫ T

t

|Zs|2 ds
]

≤φ(|ξ|∞) + (β + Cµ1)Et

[∫ T

t

|φ′(Ys)|
2

1−α ds

]

+ Cµ2Et

[∫ T

t

(
e

2γ
1−α

|Ys| + e
2γ

1−α
|E[Us]|

)
ds

]
+

1

4

∫ T

t

|E[Vs]|2 ds

≤φ(|ξ|∞) +
[
Cµ2 + γ

2
α−1 (β + Cµ1)

]
Et

[∫ T

t

e
2γ

1−α
|Ys| ds

]

+ Cµ2Et

[∫ T

t

e
2γ

1−α
|Us| ds

]
+

1

4
E

[∫ T

t

|Vs|2 ds
]
.

(2.26)
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Step 2. Estimate of eγ|Y |∞.

In view of the last inequality of Lemma 2.1, we have

e
3

1−α
γ|Yt| ≤ Et

[
e

3
1−α

γeCT (|ξ|∞+C
∫ T

t
(2+|E[Us]|+|E[Vs]|1+α) ds)

]
. (2.27)

Since (by Young’s inequality)

3eCT

1− α
γC|E[Vs]|1+α ≤ 1− α

2

(
3eCT

1− α
γC

(
1 + α

2δ

) 1+α
2

) 2
1−α

+ δ|E[Vs]|2, (2.28)

in view of the definition of notation Cδ in (2.11), we have

e
3

1−α
γ|Yt| ≤Cδ

[
e(

3
1−α

γeCT |ξ|∞+ 3
1−α

γCeCT ε|U |∞+δ
∫ T

t
|E[Vs]|2 ds)

]
; (2.29)

and therefore using Jensen’s inequality,

e
3

1−α
γ|Yt| ≤Cδ e

( 3
1−α

γeCT (|ξ|∞+Cε|U |∞))E
[
eδ

∫ T
t

|Vs|2 ds
]
. (2.30)

It follows from (2.16) and the definition of Bε that ‖
√
δV ·W‖2BMO2(P)

≤ δA < 1, applying

the John-Nirenberg inequality to the BMO martingale
√
δV ·W , we have

e
3

1−α
γ|Yt| ≤ Cδ e

( 3e
CT

1−α
γ|ξ|∞+ 3eCT

1−α
Cγε|U |∞)

1− δ‖V ·W‖2BMO2

≤ Cδ e
( 3e

CT

1−α
γ|ξ|∞+ 3eCT

1−α
Cγε|U |∞)

1− δA
. (2.31)

Since 3eCTCε ≤ 1 (see the choice of ε in (2.16)) and (U, V ) ∈ Bε, we have

e(
3

1−α
γ|Y |∞) ≤ Cδe

( 3e
CT

1−α
γ|ξ|∞+ 1

1−α
γ|U |∞)

1− δA

≤Cδ
e

3eCT

1−α
γ|ξ|∞

1− δA


Cδ

e
3eCT

1−α
γ|ξ|∞

1− δA




1
2

≤


Cδe

3eCT

1−α
γ|ξ|∞

1− δA




3
2

,

(2.32)

which gives a half of the desired result (2.19).

Step 3. Estimate of ‖Z ·W‖2BMO2
.

From inequality (2.26) and the definition of notation µ in (2.14), we have

1

2
Et

[∫ T

t

|Zs|2 ds
]
≤ γ−2eγ|ξ|∞ + µCδ

e
3eCT

1−α
γ|ξ|∞

1− δA
ε+

1

4
A. (2.33)

In view of (2.17), we have

1

2
‖Z ·W‖2BMO2

≤ γ−2eγ|ξ|∞ + µCδ
e

3eCT

1−α
γ|ξ|∞

1− δA
ε+

1

4
A =

1

2
A. (2.34)

The other half of the desired result (2.19) is then proved.
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2.2.3 Contraction of the quadratic solution map

For (U, V ) ∈ Bε and (Ũ , Ṽ ) ∈ Bε, set

(Y, Z) := Γ(U, V ), (Ỹ , Z̃) := Γ(Ũ , Ṽ ).

That is,

Yt = ξ +

∫ T

t

f(s, Ys, E[Us], Zs, E[Vs]) ds−
∫ T

t

ZsdWs,

Ỹt = ξ +

∫ T

t

f(s, Ỹs, E[Ũs], Z̃s, E[Ṽs]) ds−
∫ T

t

Z̃sdWs.

(2.35)

We can define the vector process β in an obvious way such that

|βs| ≤ C(1 + |Zs|+ |Z̃s|),
f(s, Ys, E[Us], Zs, E[Vs])− f(s, Ys, E[Us], Z̃s, E[Vs]) = (Zs − Z̃s)βs.

(2.36)

Then W̃t := Wt−
∫ t

0
βs ds is a Brownian motion under the equivalent probability measure

P̃ defined by
dP̃ := E (β ·W )T0 dP,

and from the above-established a priori estimate, there is K > 0 such that ‖β ·W‖2BMO2
≤

K2 := 3C2T + 6C2A.
In view of the following equation

Yt − Ỹt +

∫ T

t

(Zs − Z̃s) dW̃s

=

∫ T

t

[
f(s, Ys, E[Us], Z̃s, E[Vs])− f(s, Ỹs, E[Ũs], Z̃s, E[Ṽs])

]
ds,

(2.37)

taking square and then the conditional expectation with respect to P̃ (denoted by Ẽt) on
both sides of the last equation, we have the following standard estimates:

|Yt − Ỹt|2 + Ẽt

[∫ T

t

|Zs − Z̃s|2 ds
]

= Ẽt

[(∫ T

t

(
f(s, Ys, E[Us], Z̃s, E[Vs])− f(s, Ỹs, E[Ũs], Z̃s, E[Ṽs])

)
ds

)2
]

≤C2Ẽt

[(∫ T

t

(
|Ys − Ỹs|+ |E[Us − Ũs]|+ (1 + |E[Vs]|α + |E[Ṽs]|α)|E[Vs − Ṽs]|

)
ds

)2
]

≤ 3C2(T − t)2(|U − Ũ |2∞ + |Y − Ỹ |2∞)

+ 3C2

∫ T

t

(1 + |E[Vs]|α + |E[Ṽs]|α)2 ds
∫ T

t

|E[Vs − Ṽs]|2 ds

≤ 3C2(T − t)2(|U − Ũ |2∞ + |Y − Ỹ |2∞)

+ 9C2

∫ T

t

(1 + |E[Vs]|2α + |E[Ṽs]|2α) ds
∫ T

t

|E[Vs − Ṽs]|2 ds

(2.38)
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We have for t ∈ [T − ε, T ],

∫ T

t

(1 + |E[Vs]|2α + |E[Ṽs]|2α) ds

≤
∫ T

t

(1 + E[|Vs|2]α + E[|Ṽs|2]α) ds

≤ε+ ε1−αE

[∫ T

t

|Vs|2ds
]α

+ ε1−αE

[∫ T

t

|Ṽs|2ds
]α

≤ ε1−α

(
T α + 2 + αE

∫ T

t

|Vs|2 ds+ αE

∫ T

t

|Ṽs|2 ds
)

≤ ε1−α
(
T α + 2 + α‖V ·W‖2BMO2(P)

+ α‖Ṽ ·W‖2BMO2(P)

)

≤ ε1−α(T α + 2 + 2αA).

(2.39)

Concluding the above estimates, we have for t ∈ [T − ε, T ],

|Yt − Ỹt|2 + Ẽt

[∫ T

t

|Zs − Z̃s|2 ds
]

≤ 3C2ε2(|U − Ũ |2∞ + |Y − Ỹ |2∞)

+ 9C2 (T α + 2 + 2αA) ε1−α‖(V − Ṽ ) ·W‖2BMO2(P).

(2.40)

In view of estimates (2.4), noting that 1− 3C2ε2 ≥ 2
3
, we have for t ∈ [T − ε, T ],

|Y − Ỹ |2∞ + 3c21‖(Z − Z̃) ·W‖2BMO2(P)

≤ 9C2 ε2|U − Ũ |2∞ + 27C2 (T α + 2 + 2αA) ε1−α‖(V − Ṽ ) ·W‖2BMO2(P)
.

(2.41)

It is then standard to show that there is a very small positive number ε such that
the quadratic solution map Γ is a contraction on the previously given set Bε, by noting
that A ≤ 6γ−2eγ|ξ|∞ from (2.16). The proof is completed by choosing a sufficiently small
rε > 0 such that Bε ⊂ Bε.

2.3 Global solution: the proof of Theorem 2.5

Let us first note that there exists a constant C̃ > 0 such that |ξ|2 ≤ C̃ and

|2xh(s, y, ȳ, z, z̄) + 2xf(s, 0, 0, 0, 0)| ≤ C̃ + C̃|x|2 + C̃(|y|2 + |ȳ|2)

for any (x, y, ȳ, z, z̄) ∈ R × R2 × (Rd)2. Let α(·) be the unique solution of the following
ordinary differential equation:

α(t) = C̃ +

∫ T

t

C̃ ds+

∫ T

t

(2C̃ + C̃)α(s) ds, t ∈ [0, T ].

It is easy to see that α(·) is a continuous decreasing function and we have

α(t) = C̃ +

∫ T

t

C̃[1 + 2α(s)] ds+ C̃

∫ T

t

α(s) ds, t ∈ [0, T ].
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Define
λ := sup

t∈[0,T ]

α(t) = α(0).

As |ξ|2 ≤ C̃ ≤ λ, Theorem 2.3 shows that there exists ηλ > 0 which only depends on
λ, such that BSDE has a local solution (Y, Z) on [T − ηλ, T ] and it can be constructed
through the Picard iteration.

Consider the Picard iteration:

Y 0
t = ξ +

∫ T

t

Z0
s dWs; and for j ≥ 0,

Y
j+1
t = ξ +

∫ T

t

[f(s, 0, 0, Zj+1
s , 0)− f(s, 0, 0, 0, 0)] ds

+

∫ T

t

[f(s, 0, 0, 0, 0) + f(s, Y j
s , E[Y j

s ], Z
j
s , E[Zj

s ])− f(s, 0, 0, Zj
s , 0)] ds

−
∫ T

t

Zj+1
s dWs

= ξ +

∫ T

t

[f(s, 0, 0, 0, 0) + h(s, Y j
s , E[Y j

s ], Z
j
s , E[Zj

s ])] ds

−
∫ T

t

Zj+1
s dW̃ j+1

s , t ∈ [T − ηλ, T ],

where
f(s, 0, 0, Zj+1

s , 0)− f(s, 0, 0, 0, 0) = Zj+1
s βj+1

s

and the process

W̃
j+1
t = Wt −

∫ t

0

βj+1
s 1[T−ηλ,T ](s)ds

is a Brownian motion under an equivalent probability measure P j+1 which we denote by
P̃ with loss of generality, and under which the expectation is denoted by Ẽ. Using Itô’s
formula, it is straightforward to deduce the following estimate for r ∈ [T − ηλ, t],

Ẽr[|Y j+1
t |2] + Ẽr[

∫ T

r

|Zj+1
s |2 ds]

= Ẽr[|ξ|2] + C̃Ẽr

∫ T

t

2Y j+1
s [f(s, 0, 0, 0, 0) + h(s, Y j

s , E[Y j
s ], Z

j
s , E[Zj

s ])] ds

≤ C̃ + C̃

∫ T

t

Ẽr[|Y j+1
s |2] ds+ C̃

∫ T

t

{Ẽr[|Y j
s |2] + |E[Y j

s ]|2 + 1} ds. (2.42)

In what follows, we show by induction the following inequality:

|Y j
t |2 ≤ α(t), t ∈ [T − ηλ, T ]. (2.43)

In fact, it is trivial to see that |Y 0
t |2 ≤ α(t), and let us suppose |Y j

t |2 ≤ α(t) for
t ∈ [T − ηλ, T ]. Then, from (2.42),

Ẽr[|Y j+1
t |2] ≤ C̃ + C̃

∫ T

t

[1 + 2α(s)] ds+ C̃

∫ T

t

Ẽr[|Y j+1
s |2] ds, t ∈ [T − ηλ, T ].

12



From the comparison theorem, we have

Ẽr[|Y j+1
t |2] ≤ α(t), t ∈ [T − ηλ, T ].

Setting r = t, we have
|Y j+1

t |2 ≤ α(t), t ∈ [T − ηλ, T ].

Therefore, inequality (2.43) holds.
As Yt = limj Y

j
t , our constructed local solution (Y, Z) in [T − ηλ, T ] satisfies then the

following estimate:

|Yt|2 ≤ α(t), t ∈ [T − ηλ, T ], and |Yt|2 ≤ α(t), t ∈ [T − ηλ, T ].

In particular, |YT−ηλ|2 ≤ α(T − ηλ) ≤ λ.
Taking T − ηλ as the terminal time and YT−ηλ as terminal value, Theorem 2.3 shows

that BSDE has a local solution (Y, Z) on [T − 2ηλ, T − ηλ] through the Picard iteration.
Once again, using the Picard iteration and the fact that |YT−η|2 ≤ α(T − η), we deduce
that |Yt|2 ≤ α(t), for t ∈ [T−2ηλ, T−ηλ]. Repeating the preceding process, we can extend
the pair (Y, Z) to the whole interval [0, T ] within a finite steps such that Y is uniformly
bounded by λ. We now show that Z ·W is a BMO(P ) martingale.

Identical to the proof of inequality (2.22), we have

φ(Yt) +
1

2
Et

[∫ T

t

|Zs|2 ds
]

≤φ(|ξ|∞) + CEt

[∫ T

t

|φ′(Ys)| (1 + |Ys|+ E[|Ys|]) ds
]

≤φ(|ξ|∞) + Cφ′(λ)Et

[∫ T

t

(1 + λ+ λ) ds

]
.

(2.44)

Consequently, we have

‖Z ·W‖2BMO2(P)
= sup

τ
Eτ

[∫ T

τ

|Zs|2 ds
]

≤ 2φ(|ξ|∞) + 4Cφ′(λ)(1 + λ)T.

(2.45)

Finally, we prove the uniqueness. Let (Y, Z) and (Ỹ , Z̃) be two adapted solutions.
Then, we have (recall that β is defined by (?))

Yt − Ỹt =

∫ T

t

[
h(s, Ys, E[Ys], Z̃s, E[Zs])− h(s, Ỹs, E[Ỹs], Z̃s, E[Z̃s])

]
ds

−
∫ T

t

(Zs − Z̃s) dW̃s, t ∈ [0, T ].

(2.46)

Similar to the first two inequalities in (2.38), for any stopping time τ which takes values
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in [T − ε, T ], we have

|Yτ − Ỹτ |2 + Ẽτ

[∫ T

τ

|Zs − Z̃s|2 ds
]

= Ẽτ

[(∫ T

τ

[
h(s, Ys, E[Ys], Z̃s, E[Zs])− h(s, Ỹs, E[Ỹs], Z̃s, E[Z̃s])

]
ds

)2
]

≤C2Ẽτ

[(∫ T

τ

[
|Ys − Ỹs|+ |E[Ys − Ỹs]|+ |E[Zs − Z̃s]|

]
ds

)2
]

≤ 6C2ε2|Y − Ỹ |2∞ + 3C2εẼτ

[∫ T

τ

|Zs − Z̃s|2 ds
]
+ 3C2εE

[∫ T

T−ε

|Zs − Z̃s|2 ds
]

≤ 6C2ε2|Y − Ỹ |2∞ + 3C2ε‖(Z − Z̃) · W̃‖2
BMO2(P̃ )

+ 3C2ε‖(Z − Z̃) ·W‖2BMO2(P)

≤ 6C2ε2|Y − Ỹ |2∞ + 3C2(1 + c22)ε‖(Z − Z̃) ·W‖2BMO2(P)
.

(2.47)

Therefore, we have (on the interval [T − ε, T ])

∣∣∣Y − Ỹ
∣∣∣
2

∞
+ c21

∥∥∥(Z − Z̃) ·W
∥∥∥
2

BMO2(P)

≤ 6C2ε2
∣∣∣Y − Ỹ

∣∣∣
2

∞
+ 3C2(1 + c22)ε

∥∥∥(Z − Z̃) ·W
∥∥∥
2

BMO2(P)
.

(2.48)

Note that since
|β| ≤ C(1 + |Z|+ |Z̃|),

the two generic constants c1 and c2 only depend on the sum

‖Z ·W‖2BMO2(P)
+
∥∥∥Z̃ ·W

∥∥∥
BMO2(P)

.

Then when ε is sufficiently small, we conclude that Y = Ỹ and Z = Z̃ on [T − ε, T ].
Repeating iteratively with a finite of times, we have the uniqueness on the given interval
[0, T ].

3 The expected term is additive and has a quadratic

growth in the second unknown variable

Let us first consider the following quadratic BSDE with mean term:

Yt = ξ +

∫ T

t

[f1(s, Zs) + E[f2(s, Zs,E[Zs])] ds−
∫ T

t

Zs dBs, t ∈ [0, T ] (3.1)

where f1 : Ω× [0, T ]×R
d×R

d → R satisfies: f1(·, z) is an adapted process for any z, and

|f1(t, 0)| ≤ C, |f1(t, z)− fi(t, z
′)| ≤ C(1 + |z|+ |z′|)|z − z′|)|z̄ − z̄′|), (3.2)

and f2 : Ω× [0, T ]×R
d ×R

d → R satisfies: f2(·, z, z̄) is an adapted process for any z and
z̄, and

|f2(t, z, z̄)| ≤ C(1 + |z|2 + |z′|2). (3.3)
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Proposition 3.1. Let us suppose that f1 and f2 be two generators satisfying the above
conditions and ξ be a bounded random variable. Then (3.1) admits a unique solution
(Y, Z) such that Y is bounded and Z ·W is a BMO martingale.

Proof. Let us first prove the existence. We solve this equation in two steps:
Step one. First solve the following BSDE:

Ỹt = ξ +

∫ T

t

f1(s, Zs) ds−
∫ T

t

Zs · dWs. (3.4)

It is well known that this BSDE admits a unique solution (Ỹ , Z) such that Ỹ is bounded
and Z ·W is a BMO martingale.

Step two. Define

Yt = Ỹt +

∫ T

t

E[f2(s, Zs,E[Zs])] ds. (3.5)

Then

Yt = ξ +

∫ T

t

[f1(s, Zs) + E[f2(s, Zs,E[Zs])] ds−
∫ T

t

Zs · dWs, t ∈ [0, T ]. (3.6)

The uniqueness can be proved in a similar way: Let (Y 1, Z1) and (Y 2, Z2) be two
solutions. Then set

Ỹ 1
t = Y 1

t −
∫ T

t

E[f2(s, Z
1
s ,E[Z

1
s ])] ds, Ỹ 2

t = Y 2
t −

∫ T

t

E[f2(s, Z
2
s ,E[Z

2
s ])] ds.

(Ỹ 1, Z1) and (Ỹ 2, Z2) being solution of the same BSDE (4.4), from the uniqueness of
solution to this BSDE,

Ỹ 1 = Ỹ 2, Z1 = Z2,

Hence Y 1 = Y 2, and Z1 = Z2.

Now we consider a more general form of BSDE with a mean term:

Yt = ξ +

∫ T

t

[f1(s, Ys,E[Ys], Zs,E[Zs]) + E[f2(s, Ys,E[Ys], Zs,E[Zs])] ds

−
∫ T

t

Zs · dWs. (3.7)

Here for i = 1, 2, fi : Ω × [0, T ] × R × R × R
d × R

d → R satisfies: for any (y, ȳ, z, z̄),
fi(t, y, ȳ, z, z̄) is an adapted process, and

|f1(t, y, ȳ, 0, z̄)|+ |f2(t, 0, 0, 0, 0)| ≤ C,

|f1(t, y, z, ȳ, z̄)− f1(t, y
′, z′, ȳ′, z̄′)| ≤ C(|y− y′|+ |ȳ− ȳ′|+ |z̄− z̄′|+(1+ |z|+ |z′|)|z− z′|),

|f2(t, y, z, ȳ, z̄)−f2(t, y
′, z′, ȳ′, z̄′)| ≤ C(|y−y′|+|ȳ−ȳ′|+(1+|z|+|z′|+|z̄|+|z̄′|)(|z−z′|+|z̄−z̄′|)).

We have the following result.
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Theorem 3.2. Assume that f1 and f2 satisfy the above conditions, and ξ is a bounded
random variable. BSDE (3.7) has a unique solution (Y, Z) such that Y ∈ S∞ and Z ·W ∈
BMO2(P).

Example 3.3. The condition on f1 means that this function should be bounded with
respect to (y, ȳ, z̄). For example,

f1(s, y, ȳ, z, z̄) = 1 + | sin(y)|+ | sin(ȳ)|+ 1

2
|z|2 + | sin(z̄)|,

f2(s, y, ȳ, z, z̄) = 1 + |y|+ |y′|+ 1

2
(|z|+ |z̄|)2.

Proof. We prove the theorem by a fixed point argument. Let U ∈ S∞, and V · W ∈
BMO2(P), we define (Y, Z ·W ) ∈ S∞ ×BMO2(P) as the unique solution to BSDE with
mean:

Yt = ξ +

∫ T

t

[f1(s, Us,E[Us], Zs,E[Vs]) + E[f2(s, Us,E[Us], Zs,E[Zs])] ds

−
∫ T

t

Zs · dWs. (3.8)

And we define the map Γ : (U, V ) 7→ Γ(U, V ) = (Y, Z) on S∞ × BMO2(P). Set

Ỹt = Yt −
∫ T

t

E [f2(s, Us,E[Us], Zs,E[Zs])] ds,

then (Ỹ , Z) is the solution to

Ỹt = ξ +

∫ T

t

f1(s, Us,E[Us], Zs,E[Vs]) ds−
∫ T

t

Zs dBs.

As |f1(t, y, ȳ, 0, z̄)| ≤ C, we have

|f1(t, y, ȳ, z, z̄)| ≤ C +
C

2
|z|2.

Applying Ito’s formula to φC(|Ỹ |),

φC(|Ỹt|)+
∫ T

t

1

2
φ

′′

C(|Ỹs|)|Zs|2ds ≤ φ(ξ)+

∫ T

t

|φ′
C(|Ỹs|)|(C+

C

2
|Zs|2)ds−

∫ T

0

φ′(|Ỹs|)ZsdWs,

(3.9)
we can prove that there exists a constant K > 0 such that

||Z||BMO ≤ K.

Let (U1, V 1) and (U2, V 2), and (Y 1, Z1) and (Y 2, Z2) be the corresponding solution,
and

Ỹ 1
t = ξ +

∫ T

t

f1(s, U
1
s ,E[U

1
s ], Z

1
s ,E[V

1
s ]) ds−

∫ T

t

Z1
s dBs,
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Ỹ 2
t = ξ +

∫ T

t

f1(s, U
2
s ,E[U

2
s ], Z

2
s ,E[V

2
s ]) ds−

∫ T

t

Z2
s dBs.

There exists a bounded adapted process β such that

f1(s, U
1
s ,E[U

1
s ], Z

1
s ,E[V

1
s ])− f1(s, U

1
s ,E[U

1
s ], Z

2
s ,E[V

1
s ]) = βs(Z

1
s − Z2

s ).

Then W̃t := Wt −
∫ t

0
βsds is a Brown motion under the equivalent probability measure P̃

defined by
dP̃ = ET

0 (β ·W )T0 dP.

We have

∆Ỹt +

∫ T

t

∆Zs dW̃s (3.10)

=

∫ T

t

[
f1(s, U

1
s ,E[U

1
s ], Z

2
s ,E[V

1
s ])− f1(s, U

2
s ,E[U

2
s ], Z

2
s ,E[V

2
s ])
]
ds, t ∈ [0, T ].

For any stopping time τ which takes values in [T − ε, T ], taking square and then the

conditional expectation with respect to P̃ (denoted by Ẽτ ), we have

|∆Ỹτ |2 + Ẽτ

∫ T

τ

|∆Z|2ds

=Ẽτ

(∫ T

t

[
f1(s, U

1
s ,E[U

1
s ], Z

2
s ,E[V

1
s ])− f1(s, U

2
s ,E[U

2
s ], Z

2
s ,E[V

2
s ])
]
ds

)2

≤C2Ẽτ

([∫ T

τ

(|∆Us|+ |E[∆Us]|+ |E[∆Vs]|) ds
]2)

≤C2ε(|∆U |2∞ + |∆V ·W |2BMO2(P)
).

(3.11)

Therefore, we have (on the interval [T − ε, T ])

∣∣∣∆Ỹ
∣∣∣
2

∞
+ c21 ‖(∆Z) ·W‖2BMO2(P)

≤ C2ε(|∆U |2∞ + |∆V ·W |2BMO2(P)). (3.12)

Note that since
|β| ≤ C(1 + |Z1|+ |Z2),

the generic constant c1 and c2 only depend on C and K.
As

∆Yt = ∆Ỹt +

∫ T

t

E
[
f2(s, U

1
s ,E[U

1
s ], Z

1
s ,E[Z

2
s ])− f2(s, U

2
s ,E[U

2
s ], Z

2
s ,E[Z

2
s ])
]
ds,

then

|∆Yt| ≤ |∆Ỹt|+ CE

[∫ T

t

(|∆Us|+ |E∆Us|) ds
]

+CE

[∫ T

t

(1 + |Z1
s |+ |Z2

s |+ |EZ1
s |+ |EZ2

s |) (|∆Zs|+ |E∆Zs|) ds
]

17



we deduce that

|∆Yt|2 ≤ C2
(
|∆Ỹt|2 + E

[∫ T

t

(|∆Us|+ |E∆Us|) ds
]2

E

[∫ T

t

(1 + |Z1
s |+ |Z2

s |+ |E[Z1
s ]|+ |E[Z2

s ]|) (|∆Zs|+ |E∆Zs|) ds
]2 )

,

which implies that

|∆Y |2∞ ≤ C2(|∆Ỹ |2∞ + ε|∆U |2∞ + |(∆Z) ·W |2BMO2(P)
)

≤ C2ε
(
|∆U |2∞ + ||V ·W ||2BMP2(P )

)
.

Then when ε is sufficiently small, we conclude that the application is contracting
on [T − ε, T ]. Repeating iteratively with a finite of times, we have the existence and
uniqueness on the given interval [0, T ].

4 Multi-dimensional Case

In this section, we will study the multi-dimensional case of (3.7), where f1 is Lipschitz.
Our result generalizes the corresponding one of Cheridito and Nam [8].

We first consider the following BSDE with mean term:

Yt = ξ +

∫ T

t

[f1(s, Zs,E[Zs]) + E[f2(s, Zs,E[Zs])] ds−
∫ T

t

Zs · dWs, t ∈ [0, T ](4.1)

where f1 : Ω × [0, T ] × Rd×n × R
d×n → Rn satisfies: for any z and z̄, f1(t, z, z̄) is an

adapted process, and

|fi(t, 0, 0)| ≤ C, |f1(t, z, z̄)− fi(t, z
′, z̄′)| ≤ C(|z − z′|+ |z̄ − z̄′|), (4.2)

and f2 : Ω × [0, T ] × Rd×n × Rd×n → Rn satisfies: for any z, z̄, f2(t, z, z̄) is an adapted
process, and

|f2(t, 0, 0)| ≤ C, |f2(t, z, z̄)− f2(t, z
′, z̄′)| ≤ C(1+ |z|+ |z′|+ |z̄|+ |z̄′|)(|z− z′|+ |z̄− z̄′|).

(4.3)

Proposition 4.1. Let us suppose that f1 and f2 be two generators satisfying the above
conditions and ξ ∈ L2(FT ). Then (4.1) admits a unique solution (Y, Z) such that Y ∈ S2

and Z ∈ M2.

Proof. Let us first prove the existence. Our proof is divided into the following two steps.
Step one. First consider the following BSDE

Ỹt = ξ +

∫ T

t

f1(s, Zs,E[Zs]) ds−
∫ T

t

Zs · dWs, t ∈ [0, T ]. (4.4)

It admits a unique solution (Ỹ , Z) such that Ỹ ∈ S2 and Z ∈ M2, see Buckdahn et al.
[6].
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Step two. Define

Yt = Ỹt +

∫ T

t

E[f2(s, Zs,E[Zs])] ds, t ∈ [0, T ]. (4.5)

Then, we have for t ∈ [0, T ],

Yt = ξ +

∫ T

t

[f1(s, Zs,E[Zs]) + E[f2(s, Zs,E[Zs])] ds−
∫ T

t

Zs · dWs. (4.6)

The uniqueness can be proved in a similar way: Let (Y 1, Z1) and (Y 2, Z2) be two
solutions. Then set

Ỹ 1
t = Y 1

t −
∫ T

t

E[f2(s, Z
1
s ,E[Z

1
s ])] ds, Ỹ 2

t = Y 2
t −

∫ T

t

E[f2(s, Z
2
s ,E[Z

2
s ])] ds.

(Ỹ 1, Z1) and (Ỹ 2, Z2) being solution of the same BSDE (4.4), from the uniqueness of
solution to this BSDE,

Ỹ 1 = Ỹ 2, Z1 = Z2,

Hence Y 1 = Y 2, and Z1 = Z2.

Now we consider the following more general form of BSDE with a mean term:

Yt = ξ +

∫ T

t

[f1(s, Ys,E[Ys], Zs,E[Zs]) + E[f2(s, Ys,E[Ys], Zs,E[Zs])] ds

−
∫ T

t

Zs · dWs, t ∈ [0, T ]. (4.7)

Here for i = 1, 2, fi : Ω× [0, T ]×R
n×R

n×R
d×n×R

d×n → R
n satisfies: for any (y, ȳ, z, z̄),

fi(t, y, ȳ, z, z̄) is an adapted process, and

|f1(t, y, ȳ, 0, 0)|+ |f2(t, 0, 0, 0, 0)| ≤ C, (4.8)

|f1(t, y, z, ȳ, z̄)− f1(t, y
′, z′, ȳ′, z̄′)| ≤ C(|y − y′|+ |ȳ − ȳ′|+ |z − z′|+ |z̄ − z̄′|), (4.9)

|f2(t, y, z, ȳ, z̄)−f2(t, y
′, z′, ȳ′, z̄′)| ≤ C(|y−y′|+|ȳ−ȳ′|+(1+|z|+|z′|+|z̄|+|z̄′|)(|z−z′|+|z̄−z̄′|)).

(4.10)
We have the following result.

Theorem 4.2. Assume that f1 and f2 satisfy the inequalities (4.8)-(4.10), and ξ ∈
L2(FT ). Then BSDE (4.7) has a unique solution (Y, Z) such that Y ∈ S2 and Z ∈ M2.

Example 4.3. The condition (4.8) requires that both functions f1 and f2 should be
bounded with respect to (y, ȳ). For example,

f1(s, y, ȳ, z, z̄) = 1 + | sin(y)|+ | sin(ȳ)|+ |z| + |z̄|,

f2(s, y, ȳ, z, z̄) = 1 + |y|+ |y′|+ 1

2
(|z|+ |z̄|)2.
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Proof. We prove the theorem by a fixed point argument. Let U ∈ S2, and V ∈ M2, we
define (Y, Z ·W ) ∈ S2 ×M2 as the unique solution to BSDE with mean:

Yt = ξ +

∫ T

t

[f1(s, Us,E[Us], Zs,E[Zs]) + E[f2(s, Us,E[Us], Zs,E[Zs])] ds

−
∫ T

t

Zs · dWs. (4.11)

We define the map Γ : (U, V ) 7→ Γ(U, V ) = (Y, Z) on S2 ×M2. Set

Ỹt = Yt −
∫ T

t

E [f2(s, Us,E[Us], Zs,E[Zs])] ds, t ∈ [0, T ].

Then (Ỹ , Z) is the solution to

Ỹt = ξ +

∫ T

t

f1(s, Us,E[Us], Zs,E[Vs]) ds−
∫ T

t

Zs · dWs, t ∈ [0, T ].

As |f1(t, y, ȳ, 0, 0)| ≤ C, we have

|f1(t, y, ȳ, z, z̄)| ≤ C(1 + |z|+ |z̄|).

Applying Ito’s formula to |Ỹ |2, we have

|Ỹt|2 +
∫ T

t

|Zs|2ds ≤ |ξ|2 + 2C

∫ T

t

|Ỹs|(C + |Zs|+ |E[Z]|)ds− 2

∫ T

t

(Ys, Zs · dWs). (4.12)

Further, using standard techniques, we can prove that there exists a constant K > 0 such
that

||Z||M2 ≤ K.

For (U i, V i) ∈ S2 × M2, define (Y i, Z i) = Γ(U i, V i) with i = 1, 2. Further, set for
t ∈ [0, T ],

Ỹ 1
t := ξ +

∫ T

t

f1(s, U
1
s ,E[U

1
s ], Z

1
s ,E[V

1
s ]) ds−

∫ T

t

Z1
s · dWs,

Ỹ 2
t := ξ +

∫ T

t

f1(s, U
2
s ,E[U

2
s ], Z

2
s ,E[V

2
s ]) ds−

∫ T

t

Z2
s · dWs.

We have

∆Ỹt +

∫ T

t

∆Zs dWs (4.13)

=

∫ T

t

[
f1(s, U

1
s ,E[U

1
s ], Z

1
s ,E[Z

1
s ])− f1(s, U

2
s ,E[U

2
s ], Z

2
s ,E[Z

2
s ])
]
ds, t ∈ [0, T ].
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For any t ∈ [T − ε, T ], taking square and then expectations on both sides of the last
equality, we have

E[|∆Ỹt|2] + E

[∫ T

t

|∆Zs|2ds
]

=Eτ

(∫ T

t

[
f1(s, U

1
s ,E[U

1
s ], Z

1
s ,E[Z

1
s ])− f1(s, U

2
s ,E[U

2
s ], Z

2
s ,E[Z

2
s ])
]
ds

)2

≤C2
E

([∫ T

τ

(|∆Us|+ |E[∆Us]|+ |∆Zs|+ |E[∆Zs]|) ds
]2)

≤C2ε(|∆U |S2 + |∆Z|2M2).

(4.14)

Therefore, we have (on the interval [T − ε, T ]) for a sufficiently small ε > 0,

∣∣∣∆Ỹ
∣∣∣
2

S2
+ ‖∆Z‖2M2 ≤ C2ε(|∆U |2S2). (4.15)

As

∆Yt = ∆Ỹt +

∫ T

t

E
[
f2(s, U

1
s ,E[U

1
s ], Z

1
s ,E[Z

1
s ])− f2(s, U

2
s ,E[U

2
s ], Z

2
s ,E[Z

2
s ])
]
ds,

we have

|∆Yt| ≤ |∆Ỹt|+ CE

[∫ T

t

(|∆Us|+ |E∆Us|) ds
]

+CE

[∫ T

t

(1 + |Z1
s |+ |Z2

s |+ |EZ1
s |+ |EZ2

s |) (|∆Zs|+ |E∆Zs|) ds
]
.

Moreover, we deduce that

|∆Yt|2 ≤ C2

(
|∆Ỹt|2 + E

[∫ T

t

(|∆Us|+ |E∆Us|) ds
]2

+E

[∫ T

t

(1 + |Z1
s |+ |Z2

s |+ |EZ1
s |+ |EZ2

s |) (|∆Zs|+ |E∆Zs|) ds
]2)

.

In view of (4.15)

∣∣∣∆Ỹ
∣∣∣
2

S2
+ ‖∆Z‖2M2 ≤ C2ε

(
|∆U |2S2

)
.

Then when ε is sufficiently small, we conclude that the application is contracting
on [T − ε, T ]. Repeating iteratively with a finite of times, we have the existence and
uniqueness on the given interval [0, T ].
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