
HAL Id: hal-01512435
https://hal.science/hal-01512435v2

Preprint submitted on 26 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of multiple thread pools based on
distribution of service times

Riaz Shah, Faisal Bahdur, Noor-Ul-Amin Hu, Arif Iqbal Umer, Muhammad
Javed Shad

To cite this version:
Riaz Shah, Faisal Bahdur, Noor-Ul-Amin Hu, Arif Iqbal Umer, Muhammad Javed Shad. Implemen-
tation of multiple thread pools based on distribution of service times. 2017. �hal-01512435v2�

https://hal.science/hal-01512435v2
https://hal.archives-ouvertes.fr

Article

Implementation of multiple thread pools based on distribution of

service times

Riaz Shah, Faisal Bahdur, Noor-ul-Amin, Arif Iqbal Umer, Muhammad Javed Shad

Department of Information Technology, Hazara University, Mansehra, Pakistan

E-mail: riazshah15654@gmail, msosfaisal@gmail.com, noor-netscom@hotmail.com,

arifiqbalumar@yahoo.com, javedsosm2@gmail.com

Abstract

The demand of internet is increasing day by day and web server receives millions of hits per day.

To manage these raising demands high performance web servers are required. Multithreading is

the elementary approach used in web server to achieve high performance and handle number of

requests from clients. The existing scheme which is distributed frequency based optimization

strategy DFBOS cannot distribute thread pools on the basis of service times due to this starvation

occurs. When starvation occurs it decreases response time and increases wait time. The research

aims is to explore the implementation of multiple thread pools based on distribution of service

times to avoid starvation and achieve concurrency in server site. For comparing both strategies

we have used a simulator named as Thread Pool Tester TPT which is a JAVA based simulator

and it has shown that proposed strategy is much better than the existing DFBOS. The analysis

shows that proposed scheme is increases the response time and reduces the wait time.

Keywords: Thread Pool Allocator, Slave Listener, Request Listener, Concurrency, Thread Pool,

Multithreading, Threads,

1. Introduction

To achieve concurrency at server side application we use multi threading. In similar programs

various activity can be processed in multithreading. Multi threading execute multiple process in

multiple CPUs, therefore provide enhance application retort.

Mostly used techniques to increase throughput of CPUs is multithreading. Thread-pool

administration is considered one of the challenging job in this method since it require sufficient

numbers of thread in the thread-pool tuning system which can provide better responsive time and

soaring utilizations of scheme possessions [14].

mailto:arifiqbalumar@yahoo.com
mailto:javedsosm2@gmail.com

Multithreading construction used systems resource competently and as well as provides multi

processor architecture hence it has become the supreme option for execution of server side

applications. Although require run times process of memory allotment and de allotment for

threads creation and distortion [10].

Thread pool and thread per request is the most commonly used multithreading architecture. The

both architecture has its own advantage and disadvantage. Now we are explaining it briefly as

following.

In thread per request architectures for every client request a thread is created. After the

completion of request the thread is destroyed. The advantages of these architectures are that it is

easily to implement as compare to other architecture. This strategy can be used for task which

has extensive running time like database query which is coming from a number of users on

different servers. The drawbacks of this strategy are that it consume system properties if continue

numbers of customer are convey demand to server.

In thread-pool architectures thread are generated in the initial stage of thread-pool-system. That

structural design is beneficial for O-R-Bs in which numbers of resource can be utilized by OS

and kept initially. In this strategy request is processed continuously although if the numbers of

request on server surpass then the existing thread in the pool then the exceeding task has to stay

for execution in the queue. The request may be either in ready or in waiting condition. The

benefit of this strategy in multi-threading architectures is that it is simple to execute. The

drawbacks of this strategy are unnecessary framework changing and synchronization complexity.

Although threads pool as compare to thread-per-request architecture enhance system throughput

and decrease reaction times for users [2].

1.1. Consequence of Implement Multiple Thread Pools Based On distribution of Service

Times for DFBOS

The existing strategy DFBOS equally is distributed the request among the different node’s

Increase the node’s performance through the load balance mechanism. In DFBOS they cannot

distribute thread pools on the basis of service time. In DFBOS starvation can occur which

decrease the performance of system.

In Our proposed strategy we can implement Multiple Thread Pools Based On distribution of

Service Times for DFBOS, Which can avoid the starvation and also improve the performance of

the system. Research question for the proposed scheme is as under.

i. How to remove starvation of short tasks in a Multiple Thread pool environment?

1.2. Assessing Effect of Implementation of Multiple Thread-Pools Based On distribution of

Service-Times for DFBOS

For using the effect of implementation of multiple thread pools based on distribution of service

times for DFBOS, we use the following methodology.

i. Reuse the current link queue of JAVA 5 for Implementation of Multiple Thread Pools

Based On distribution of Service Times for DFBOS.

ii. Request counter can be used for CAS code arrangement for shared resources.

iii. Code can be constructed for Implementation of Multiple Thread Pools Based On

distribution of Service Times.

iv. For performance association we use the simulator named as thread pool tester which is

based on java applications for our proposed strategy that is the implementation of

Multiple Thread Pools Based On distribution of Service Times with existing strategy

DFBOS .

2. Related Work

[1] D. C Shmist and S Vinosky, developed a thread pool system which consists of stable number

of threads in the pool. In this thread pool at the start the thread per request replica are used. They

consist of queue in which the incoming requests from clients are inserted in first in first out order

(FIFO). The threads which are exist in the thread pool pick up these request and when the

number of request are increased then the available threads in the pool, then more threads are

generated in the thread pool until it reached to the soaring water mark , and then no more threads

can be created.

In [3] Yue Shan Chang et al.., provide COBRA stipulated multithreaded ORB foundation thread

pool system. C.O.B.R.A is an object oriented atmosphere which can propagate over the computer

network for computing. The numbers of threads in the thread pool are fixed and the threads are

used to process the incoming client’s requests. The request can be received from different users

over the network and it can process continuously. The extra request from clients can be stored in

queue and it can be executed when the threads are variables.

In [5] D. C Schmidt & F. Kuhns, they both present a thread pool for COBRA real time

requirements. On the other hand when the numbers of request are increased at higher level than

the thread pool cannot grow further called the high watermark, the thread pool in which the

number of thread cannot grow further is called bounded thread pool. In real time COBRA thread

pool the threads giving the prioritization that is the threads can be divided into partitions.

In [6] K. Wang et al.., present the thread pool for internet of things (IOT), they can socket the

server to handle the simultaneous clients request on server. The communication layers generate

the large numbers of threads to process the simultaneous incoming request from users. This

thread pool model creates two pools to handle the large number of request one pool for the

incoming clients request the other for the processing of request.

In [7] D. Xu and B .Bode, presented a thread pool model for energetically determine the best

possible thread pool size and they can used the heuristic techniques. They can examine the

interior attributes of thread pool system and they can also observe the performance of thread pool

model by using various multithreaded structural design. In this thread pool model they can

calculate the average idle time (AIT) of the requests. The average ideal time is calculated after

the completion of five tasks, and the increase the thread pool size after the execution of five tasks

then the average ideal time is increased by one percent. Without any justification they can used

the different values in algorithm.

In [8] T. Ogasawara, proposed a thread pool model in which the threads are borrowed for other

pools, and they can use the heuristic computations. The measured the average ideal time for

those jobs which have in waiting state after about 20ms, then he compare the average ideal time

for all threads which are in waiting queues and then from the less thread pool system they can get

borrow. Here they can measure the average ideal time of the waiting threads but they show the

lower performance.

In [9] N. Chen and P. Lin, proposed a thread pool system for online server applications. For

proficient resource consumption they can use some extra factors in the thread pool system to

adjust the pool size. They can calculate the average wait time of the queue request and increases

the thread pool size at the extend when the wait time become turn down. The drawbacks of this

paper is lower response time recorded by clients and when they can measure the average ideal

time then the ready queue become padlock. In [10] Y. Ling et al.., proposed the most

favorable size for thread pool model. For efficient threads organization they can used the

numerical examination and the can calculate the most favorable pool size by using the

arithmetical and numerical calculations. To measure the favorable pool size they can use the

thread background control time and creation time of thread. The drawbacks of this paper are it is

difficult to measure the current parameters at kernel level and still it can’t be measured by any

web server.

In [11] J. L. Hellerstein , presented a method which can be used for analyzing and assigning the

resource management called model fuzzing. They can also calculating the output criteria at

different stages, and also analyze the concurrency level for different numbers of threads. They

can use the model for analyzing the concurrency level by using different parameters. They can

record the different alternatives of the current working system and the remaining alternatives and

then compare with each other and provide the performance of the system. They can predict that

the workload of the incoming and outgoing requests demonstrate diverse kind of attribute at

diverse times, which is concluded a wrong prediction.

In [12] J. H. Kim et al.., proposed gaussion division for manipulating prospect guess. the request

are coming the thread pool creating the threads automatically and when the numbers of request

are decreased then it delete the threads automatically means that the thread pool system work

dynamically. The prediction is unsuccessful at high and low request rate.

In [14] Kang Lyul Lee et al.., presented a guessing system named as narrative tendency

exponential moving average system (T.E.M.A) to elaborating the E.M.A. They want to avoid the

duplication of threads from E.M.A, by using arithmetical hypothesis they can calculate the rate

of change of threads in the thread pool by prediction.

In [15] S. Ramisetti and R. Wanker, proposed a thread pool model for cluster atmosphere. They

can use for calculating the concentrated requests. In this model we have to add more machines in

the cluster, there is no need of cluster alteration. For the efficiency of thread pool they can use

the load balancing algorithm. The drawbacks of this system are to load balance between the

different nodes, and also added the new nodes.

In [16] A. Bhattacharya, proposed a thread pool model for disperse cluster atmosphere. The give

the idea of perpetrator service which is disperse and which process a submitted task and control

it by using mobile controller. The thread pool system consists of threads which is independent of

each other and executed within pool. Here they can use load balancing by using mobile

controller. The drawbacks of the paper are there in no archetypal confirmation.

In [17] F. Bahadur et al.., proposed a thread pool model called FBOS. Which compute the

incoming client’s requests, and it can decrease or increase the thread pool system automatically

when the requests are coming. They can calculate different parameters such as response time,

wait time and turnaround time of the request. The drawback of this paper is that they can use the

locks which can slow the performance of the system.

In [18] Sheraz. A et all.., proposed a thread pool system which can distribute the load among

different node by using the load balancer, the drawbacks of this paper is that they cannot

distribute the thread pool on the basis of service time due to which starvation occurred.

2.1. The drawbacks of the existing system

i. The can only distribute the work load among the different.

ii. They cannot distribute the thread pool on the basis of service times.

iii. Starvation occurs which can decrees the performance of the system.

iv. Context switch and synchronization overheads.

To overcome the drawbacks of the existing DFBOS we implement multiple thread pools based

on distribution of service times to avoid starvation and achieve concurrency in server site.

3. Material and Methods

In this section we will discuss about the proposed system named as implementation of multiple

thread-pools based on distribution of service-times.

3.1. Assumption for Thread Pool System

i. Threads have the same precedence in the thread pool. In thread pool system each thread

consumes the same amount of CPU time. In thread pool system there is no classification of

clients i.e. client or supervisor, every clients have the same priority in the thread pool system.

ii. In Our proposed strategy we can implement Multiple Thread-Pools Based on distribution of

Service-Times for DFBOS. This can avoid the starvation and improve the performance of the

system.

3.2. Existing DFBOS Scheme

In figure 1 shows the existing scheme i.e. DFBOS (Load Balancing in Distributed Frequency

Based Optimization strategy) it consists of job in queue which stockpiles requests coming from

user side and hold by a dynamic job in queue. This strategy is used for first in first out (F.I.F.O)

data structures in which the requests are entered from one site and taken from other site of the

queue after the execution. After the job in queue the request is hold by load balancer thread pool

consists of threads which are used to fulfill the client’s requests. Load balancer thread pool is

connected to distributed slave server thread pool. When the requests are coming from users the

load balancer thread pool divides the load equally to itself and also to the distributed slave serve

thread pool. It can distribute the same workload among the slave nodes. After the completion of

task it can be store in job out queue. Through the load balancer mechanism every node shows its

performance. Load balancer divides the workload among the different nodes through the help of

global table, listener and register.

Listener is the pathway from loader balancer to the other slave node, and also it detects the new

incoming task which is coming from user. It also sends demand to load-balancer for the addition

or removing of new node. If new node is added to the load-balancer then it added them to the

register and calls to global table.

Register are used for the registration of new node when the listener listen about the addition of

new to the load balancer. Then it call to the global-table for the verification of new node added

or not, if the new node is added to the load balancer then the global table generates a specific IP

for the already added node.

Global table consists of IP’s of all nodes that are connected to the loader balancer, if the nodes

are added or removed from load balancer it can maintain the IP’s of that nodes. It can update the

IP’s of nodes.

The drawbacks of the existing method are that they can only distribute the work load between the

various nodes without considering service times, in the results of that it occurs starvation .i.e. if

we have different nature of jobs such that light and heavy weight if the heavy weight job acquire

the CPU then the light weight job may wait until the processing are finished. To avoid starvation

we can introduce a new technique in the next section i.e. implementation of multiple thread-

pools based on distribution of service-times.

 Figure 1 Task Distribution without considering service time in DFBOS

3.3. Implementation of Multiple Thread-Pools Based on Distribution of Service-Times

Before the start of proposed scheme, first we discuss the limitation of existing strategy that they

can distribute the work load through load balancer among the different nodes without

considering service times in the result of which the starvation occurs. Figure 2 shows the

implementation of multiple thread-pools based on distribution of service-times for DFBOS in

which we can distribute the thread pool based on distribution of service times. In this scheme we

can use the different nature jobs that is light and heavy weight jobs e.g. if we have a jobs which

processing times is 100ms and the other one which have 200ms if the 200ms job acquires the

CPU then the 100ms job will wait for 200ms for other jobs and 100ms for itself processing time

then here the starvation will occur. To avoid starvation we can divide the thread pool in to low

service time thread pool (100ms) and high service time thread pool (200ms). For validating our

strategy we can use a simulator named as thread pool tester (TPT). TPT consist of two main

agents that are client tire and the server tire. In server tire we can install the simulator and then

embed our proposed thread pool. Before the addition of any clients we can run the main server

switch for offline workload profiling table. And store they require workload in workload

profiling table. The status of jobs is non active initially. After WP table we can initiate the slave

listener for checking the new node if they can detect the new node then they can update the

thread pool table. Initially we have only one thread pool in TP table i.e. local pool, the slave

listener work continuously for detection of new node. After the TP table we can initiate the

request listener and it work continuously for detection of new request from nodes, if they can

detect the new jobs then they can check it in workload profiling table for their service times and

then send it to the required thread pool. In proposed scheme we can used two nature of jobs i.e.

100ms and 200ms, and also we can used the two pools one for 100ms and the other for

200ms.The proposed scheme improves the performance of system.

Figure 2 Block Diagram For Proposed Scheme

The proposed strategy is consisting of numerous classes. Here we can introduce the factors that

are used in our proposed strategy one by one.

Offline Workload Profiling Table: WP table is used to store the service time, status and the

thread pool of jobs. Before the addition of any node we can run our main switch for storing the

service times of jobs in WP table. Initially, the status of every job is non active and they can

reside in local pool. Initially we have only two types of jobs that are 100ms and 200ms. When

they request listener detect the jobs from the node, then they can check it in WP table for their

service time and then sent it to the required pool. After the detection of jobs its status will

become active and also its thread pool will be changed in WP table. The jobs are in sorted order

in WP table, Workload Profiling table as shown bellow.

Jobs Service Times Status Thread Pool

Job1 100ms Non active 1

Job2 200ms Non active 2

Table 1 Offline Work Load Profiling Table

Thread Pool Table: TP table consists of pools. Initially it consists of one local thread pool and

when the new server are add to the system it can also added a separate pool for it. We can also

check that thread pool is stable or not. TP table is demonstrated as follows.

Pool IP Stability

 1 Local host Yes

 2 192.48.45 Yes

Table 2 Thread Pool Table

Slave listener: Slave listener listens the port thoroughly for new node if the new node is detected

then it update the thread pool table and then passes it to the thread pool allocator. It can add new

thread pool in the TP table.

Request Listener: Request listener listens the incoming jobs from the clients thoroughly. When

the jobs are detected it can update the work load profiling table and pass it to the thread pool

allocator. Then the TP allocator allocates the thread pool for the new incoming jobs on the basis

of service times.

Thread Pool Allocator: The main agent of our proposed scheme is the TP allocator. It can call

from two sides that is slave listener and from request listener. The TP allocator performs three

main functions. It can reallocate the thread pool in work load profiling table. Second it can add a

new thread pool in thread pool table when the new slave nodes are detected. The last one it can

send a job to a specific thread pool when the incoming requests are detected.

Local Thread – Pool - System: The object of this class is initiated first. Our overall thread pool

system is represented by this class. The object of this class initializes a whole system which is

important for our thread pool system. When scheme starts it can create an instant of job-in-queue

which can store the incoming user’s request. When the user requests are coming for the first time

it can process it in the default thread pool and also store its value in log table for further use,

when the requests are for the first time from user it can also check it in log table for finding its

processing time. If the same job is processed, before it can then send it to the required thread

pool for further processing.

a. Main Server Algorithm Flowchart

When the main switch server are started for validating the proposed scheme it can initiate the

work load profiling table for storing the service time, status and pool of the jobs. Then it can

initiate the thread pool table. When the new node is added to the main server, it can add the new

thread pool for it in TP table. The TP table updates continuously, it inserts new slave server. It

starts the thread pool table which has only one local thread pool, which relates to the main server

switch. After TP table it can launch slave listener for detecting the new slave node thoroughly. If

they detect the new slave server then it can add a new thread pool for it in TP table. At second

last it can launch the request listener for detecting the new request from clients thoroughly and

can update the. At last the main server can initiate the local pool. WP table and then passes it to

the TP allocator.

Figure 3 Main Server Algorithm Flowchart

b. Slave Listener Algorithm Flowchart

It starts the slave listener launch for detecting the new slave nodes; if they can’t find the new

slave node then it can search for it thoroughly. If they can detect the node then it can then it can

check that is new are old. If they are not new then it can read the signal and update the stability

in TP table and again listen for node. If the node is new then it update the thread pool table and

add a new thread pool in TP table and then it can run the thread pool allocator for the allocation

of thread on the basis of service times. It lasts the command goes back for detecting the new

nodes.

Figure 4 Slave Listener Algorithm Flowchart

c. Request Listener Algorithm Flowchart

 Request listener is run to listens the new jobs from the clients thoroughly and then it updates the

workload profiling table and passes the job to thread pool allocator for allocation of jobs on the

basis of service times.

Figure 5 Request Listener Algorithm Flowchart

d. Slave Pool Algorithm Flowchart

At the start of the slave node is connect by giving the IP of the main server. Then it can listens

the request from the TP allocator if they cannot detect request it can listens continuously for

request if detect the request then they check the stability if stability is no then send stability off to

main server. And check the stability continuously until the node become stable and then send

stability on message to the main server and listen for new node. If the node is stable then execute

jobs.

Figure 6 Slave Pool Algorithm Flowchart

e. Thread Pool Allocator Algorithm Flowchart

The main object of our proposed scheme is the thread pool allocator. It starts the TP allocator

called by slave listener. If they can detect the new node then they can update the work load

profiling table and can also add a new pool in thread pool table, and then it can divide the

incoming request from the node by using the formula (Compute n = Active Jobs / Numbers of

Pools). If new node is not detected then thread pool allocator is called by request listener if the

new incoming jobs are not new means the jobs which are coming from nodes are already stored

in work load profiling table. Then it select the job by indexing and then check the stability of the

node if the node is not stable show the message that server is busy. If the node is stable then send

job to the pool and exit. If the request listener detects the new job then they can distribute it by

using the formula (Compute n = Active Jobs / Numbers of Pools). If the work load profiling

table has more numbers of jobs then the thread pools, they can select the n number of jobs from

WP table and send it to the next pool in TP table. If the entry is null in TP table then it goes back

pointer in TP table. If the entry is not null then it checks that all jobs are sorted if yes then exit

otherwise they can select the n number of jobs from WP table and can assign it to the next thread

pool in thread pool table.

Figure 7 Thread Pool Allocator Algorithm Flowchart

3.4 Performance Metrics

For analyzing our proposed strategy i.e. implementation of multiple thread pools based on

distribution of service times with existing strategy DFBOS we use various performance metrics.

In this section we will discuss these performance metrics one by one below.

a. Throughput

The number of jobs which can be completed in one second are called throughput.

b. Response Time Of Jobs

 The duration from the submission of jobs is to the completion of jobs and provides the required

outputs are called the response time of jobs.

c. Thread Pools

Thread pools represent the number of running threads in the pool; in our proposed strategy we

use the default thread pool, high service times and low service times thread pools.

d. Wait time

The interval which jobs spent in ready queue, the proposed scheme will minimize the wait time

to achieve maximum performance.

4. Analyses

In this section we will discuss about the imitation atmosphere that we have used for validating

our proposed thread pool system.

4.1. Thread – Pool - Tester

We use JAVA based simulator for examining dissimilar requests from clients to achieve the

required performance in our proposed scheme. We load the proposed scheme i.e. implementation

of multiple thread pools based on distribution of service times for LDFBOS on a simulation

environment named as Thread – Pool - Tester [17] generally known as TPT. Two agents

combine together in Thread Pool Tester that is client and server. On different machine we run

these both agents the machines have Intel core i5 which have four cores. The basic

diagrammatical representation of our thread pool tester is shown in figure 8.

Figure 8. Graphical representation of simulator

a. Production of Load

The server has assembled according to the load generation having Poisson division 100λ. We

have generated the two types of jobs that are 1kb and 10kb accordingly. Frequencies of each job

are 50% that is 50 % for 1kb and 50% for 10kb. Response time of 1kb job is 100ms and 10kb job

is 200ms. The cumulative load on the server as shown in figure 9.

4.2. Imitation Atmosphere

For validating our strategy we are performing simulation based environment which consist of

three machines, one for server and one for client. We have used Microsoft Window 10 in server

machine and Microsoft Window 7 on remaining two systems. The server node is Intel ® Core
TM

i7 and the remaining two nodes are Intel ® Core
TM

 i5 processors. The main memory of the server

node is 8GB and the other two nodes are 4GB. We have performed simulation for one minute

according to the load generation having Poisson distribution 100λ. We have generated the two

types of jobs that are 1kb and 10kb accordingly. Frequencies of each job are 50% that is 50 % for

1kb and 50% for 10kb. Response time of 1kb job is 100ms and 10kb job is 200ms. The

cumulative load on the server as shown in figure 9, we can use the same load generation for

existing and proposed strategy and the consequences are plotted from simulation which can be

discussed one by one in the next section for analysis.

4.3 Analysis & Results

This sector we will discuss the contrast of existing scheme with proposed strategy. We can

compare the proposed scheme that is implementation of multiple thread pools based on

distribution of service times with existing strategy DFBOS on the basis of response time and

wait time statistics.

Our proposed strategy can divide the thread pools based on distribution of service time which

cannot be considered in DFBOS they can only balance the load on nodes. In proposed strategy

we can divide the thread pool in low service time and high service time thread pools accordingly.

We can use the workload by Poisson distribution that is 100 λ. The client node can send two type

of job that is 1kb and 10kb. The response time for 1kb job is 100ms and 10kb job is 200ms. We

can store the 100ms job in low service time thread pool and 200ms job in high service time

thread pool. After dividing the thread pool on the basis of service times the simulator can

generate the graphs for wait time and response time and then we can compare the both strategies.

Figure 9 represents the load generation for both scheme. X – Axis represents time in seconds and

Y – Axis represents number of requests. We can use the same load generation of 100 λ. We can

perform the load generation for one minute.

Figure 9. Load generation on server

Figure 10 represents the contrast of response time of fulfill task by both strategies.

X - Axis shows the responses/ jobs and the Y - Axis shows the responses time in milliseconds for

both strategies. From current graph we can analyze that proposed strategy provide better

responses the existing DFBOS strategy.

Figure 10 Performance comparisons of response times

Figure 11 represents the comparisons of response time statistics for both strategies in percentile.

X - Axis represents the response time in percentile and Y - Axis represents the values in

milliseconds. Proposed scheme has increased the response time for 50 percentile is 14% and for

90 percentile is 13% as compare to existing scheme.

Figure 11 Performance comparisons of response times statistics

Figure 12 represents the comparisons of wait time for both schemes. X-Axis represents the

responses / jobs and Y-Axis represents the wait time in milliseconds. Graph shows that proposed

scheme has better wait time than existing scheme.

Figure 12 Performance comparisons of wait times

Figure 13 represents the comparisons of wait time statistics for both strategies. X - Axis

represents the average wait time and Y - Axis represents the value of wait time in milliseconds.

Graph shows that the wait time of proposed strategy is 1 millisecond and the existing scheme is 6

milliseconds.

Figure 13 Performance comparison of wait time statistics

5. Conclusion and future work

The proposed strategy can implement multiple thread pool based on distribution of service times

for distributed frequency based optimization strategy DFBOS to avoid starvation and achieve

concurrency in server site. In our research work we can divide thread pool on the basis of

service time into low service time and high service time thread pool in distributed environments.

For comparing both strategies we have used a simulator named as Thread Pool Tester TPT which

is a JAVA based simulator and it has shown that proposed strategy is superior then DFBOS.

From our analysis we have concluded that the response time of our research work is worse than

the existing DFBOS i.e. for 50 percentile the response time is 14% and for 90 percentile the

response time is 13%. The analysis can also conclude that the wait time of proposed strategy is

less as compare to the existing DFBOS i.e. wait time of proposed strategy is 1ms and existing

scheme is 6ms. In future we can elaborate our research work to sensor thread level in distributed

environments

References

[1] D. C. Schmidt and S. Vinoski, “Object Interconnections: Comparing Alternative

Programming Techniques for Multithreaded Servers - the Thread-Pool Concurrency

Model”, C++ Report, SIGS, Vol 8, No 4, April 1996.

[2] D. C. Schmidt, “Evaluating Architectures for Multi-threaded CORBA Object Request

Brokers”, Communication of the ACM (New York, USA) Volume 41, Issue 10, Oct. 1998,

pp. 54-60.

[3] Yue-Shan. Chang, W. Lo, Chii-Jet. Wang, Shyan-Ming. Yuan and D. Liang, “Design

and Implementation of Multi-Threaded Object Request Broker”. International

conference on Parallel and Distributed Systems, (Washington, DC, USA) ISSN : 1521-

9097, 1998, pp. 740-747.

[4] S. Hafizah, Ab. Hamid, M. Hairul, N. M. Nasir, W. Y. Ming and H. Hassan,

“Improving Response Time of Authorization Process of Credit Card System Using

Multi-Threading and Shared-Memory Pool Techniques”, Journal of Computer Science 4

(2), ISSN 1549-3636, 2008, pp. 151-160.

[5] D. C. Schmidt and F. Kuhns, “An overview of the real-time CORBA specification,”

IEEE Computer, vol. 33, no. 6, June 2000, pp. 56-63.

[6] K. Wang, Y. Zhang, Y. Yu, and Y. Li, "Design and optimization of socket

mechanism for services in Internet of Things", ;in Proc. WOCC, 2013, pp.327-332.

[7] D. Xu and B. Bode, “Performance Study and Dynamic Optimization Design for

Thread Pool Systems”, ;in proc. of the Int. Conf. on Computing Communications and

Control Technologies. (Austin, Texas, USA), 2004, pp. 167-174.

[8] T. Ogasawara, "Dynamic Thread Count Adaptation for Multiple Services in SMP

Environments," IEEE International Conference on Web Services (ICWS '08), Sep 23-26,

2008, pp. 585-592.

[9] N. Chen and P. Lin, “A Dynamic Adjustment Mechanism with Heuristic for Thread

Pool in Middleware”, 3rd Int. Joint Conf. on Computational Science and Optimization.

IEEE Computer Society, (Washington DC, USA), 2010, pp. 324-336.

[10] Y. Ling, T. Mullen, and X. Lin, “Analysis of optimal thread pool size”, ACMSIGOPS

Operating Systems Review, 34(2), 2000, pp. 42–55.

[11] J.L. Hellerstein, “Configuring resource managers using model fuzzing: A case

study of the .NET thread pool” IFIP/IEEE International Symposium on Integrated

Network Management (Washington, USA), 2009, pp. 1-8.

[12] J. H. Kim, S. Han, H. Ko and H. Y. Youn, “Prediction- based Dynamic Thread Pool

Management of Agent Platform for Ubiquitous Computing”, ;in Proc. of UIC 2007, pp.

1098-1107.

[13] D. Kang, S. Han, S. Yoo and S. Park, “Prediction based Dynamic Thread Pool

Scheme for Efficient Resource Usage”, ;in Proc. of the IEEE 8th Int. Conf. on Computer

and Information Technology Workshop, IEEE Computer Society, (Washington, DC,

USA), 2008, pp. 159-164.

[14] Kang-Lyul. Lee, H. N. Pham, Hee-seong. Kim, and H. Y. Youn, "A novel predictive

and self-Adaptive Dynamic Thread Pool management", Ninth IEEE International

Symposium on Parallel and Distributed Processing with applications, (Busan, Korea),

26-28 May, 2011, pp. 26-28.

[15] S. Ramisetti and R. Wanker, "Design of hierarchical Thread Pool Executor", Second

International conference on modeling and Simulation, (kualalampur, Malaysia), 2011,

pp. 284-288.

[16] A. Bhattacharya, “Mobile Agent Based Elastic Executor Service”, Ninth

International Joint Conference on Computer Science and Software Engineering (JCSSE),

2012, pp. 351-356.

[17] F. Bahadur, M. Naeem, M. Javed, A. Wahab, “FBOS: Frequency Based

Optimization Strategy For Thread Pool System”, The Nucleus 51, No. 1, 2014, pp. 93-

107.

[18] Sheraz Ahmad “Load Balancing in Distributed Framework for Frequency Based

Thread Pools”/thesis IT Department Hazara University Mansehra

 [19] F. Bahadur, “ThreadPoolTester Simulation Tool” Availble:

https://github.com/faisalsher/ThreadPoolTester, Aug. 12, 2015 [Accessed: Aug. 12,

2015].

https://github.com/faisalsher/ThreadPoolTester

