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PERFORMANCE ANALYSIS OF THE OPTIMAL
STRATEGY UNDER PARTIAL INFORMATION

Ahmed Bel Hadj Ayed1,2, Grégoire Loeper 2, Sofiene El Aoud 1,
Frédéric Abergel 1

Abstract. The question addressed in this paper is the perfor-
mance of the optimal strategy, and the impact of partial infor-
mation. The setting we consider is that of a stochastic asset price
model where the trend follows an unobservable Ornstein-Uhlenbeck
process. We focus on the optimal strategy with a logarithmic util-
ity function under full or partial information. For both cases, we
provide the asymptotic expectation and variance of the logarith-
mic return as functions of the signal-to-noise ratio and of the trend
mean reversion speed. Finally, we compare the asymptotic Sharpe
ratios of these strategies in order to quantify the loss of perfor-
mance due to partial information.

Introduction

Optimal investment was introduced by Merton in 1969 (see [11] for
details). He assumed that the risky asset follows a geometric Brownian
motion and derived the optimal investment rules for an investor max-
imizing his expected utility function. Several generalisations of this
problem are possible. One of them is to consider a stochastic unob-
servable trend, which leads to a system with partial information. This
hypothesis seems to be realistic since only the historical prices of the
risky asset are available to the public. For example, Karatzas and Zhao
(see [8]) study the case of an unobservable constant trend, Lakner (see
[9]) and Brendle (see [3]) consider a stochastic asset price model where
the trend is an unobservable Ornstein Uhlenbeck process, and Sass and
Hausmann (see [13]) suppose that the trend is given by an unobserved
continuous time, finite state Markov chain.

In this paper, we consider a stochastic asset price model where the
trend is an unobservable Ornstein Uhlenbeck process and we focus on
the optimal strategy with a logarithmic utility function under partial
or complete information.

The purpose of this work is to characterize the performance of these
strategies as functions of the signal-to-noise ratio and of the trend mean
reversion speed and to quantify the loss of performance due to partial
information. The loss of utility due to incomplete information was
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already studied by Karatzas and Zhao (see [8]), by Brendle (see [3])
and by Rieder and Bäuerle (see [12]). Here, the trading strategy per-
formance is measured with the asymptotic Sharpe ratio (see [14] for
details).

The paper is organized as follows: the first section presents the model
and recalls some results from filtering theory.

In the second section, the optimal strategy with complete informa-
tion is investigated. This portfolio is built by an agent who is able
to observe the trend and aims to maximize his expected logarithmic
utility. We provide, in closed form, the expectation and variance of the
logarithmic return as functions of the signal-to-noise ratio. We also
show that the asymptotic Sharpe ratio of the optimal strategy with
complete information is an increasing function of the signal-to-noise
ratio.

In the third section, we consider the optimal strategy under partial
information. This corresponds to an unobservable trend process and to
an agent who aims to maximize his expected logarithmic utility. In this
case, we provide, in closed form, the expectation and variance of the
logarithmic return as functions of the signal-to-noise ratio and of the
trend mean reversion speed. Then, we derive the asymptotic Sharpe
ratio and we show that this is an increasing function of the signal-to-
noise ratio and an unimodal (increasing then decreasing) function of
the trend mean reversion speed. After that, we introduce the partial
information factor which is the ratio between the asymptotic Sharpe
ratio of the optimal strategy with partial information and the asymp-
totic Sharpe ratio of the optimal strategy with full information. This
factor measures the loss of performance due to partial information. We
show that this factor is bounded by a threshold equal to 2

33/2
.

In the fourth section, numerical examples illustrate the analytical
results of the previous sections. The simulations show that, even with
a high signal-to-noise ratio, a high trend mean reversion speed leads
to a negligible performance of the optimal strategy under partial infor-
mation compared to the case with complete information.

1. Setup

This section begins by presenting the model, which corresponds to an
unobserved mean-reverting diffusion. After that, we reformulate this
model in a completely observable environment (see [10] for details).
This setting introduces the conditional expectation of the trend, know-
ing the past observations. Then, we recall the asymptotic continuous
time limit of the Kalman filter.

1.1. The model. Consider a financial market living on a stochastic
basis (Ω,F ,F,P), where F = {Ft, t > 0} is the natural filtration asso-
ciated to a two-dimensional (uncorrelated) Wiener process (W S,W µ),
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and P is the objective probability measure. The dynamics of the risky
asset S is given by

dSt
St

= µtdt+ σSdW
S
t , (1)

dµt = −λµtdt+ σµdW
µ
t , (2)

with µ0 = 0. We also assume that (λ, σµ, σS) ∈ R∗+ × R∗+ × R∗+. The
parameter λ is called the trend mean reversion speed. Indeed, λ can
be seen as the ”force” that pulls the trend back to zero. Denote by
FS =

{
FSt
}

be the natural filtration associated to the price process S.

An important point is that only FS-adapted processes are observable,
which implies that agents in this market do not observe the trend µ.

1.2. The observable framework. As stated above, the agents can
only observe the stock price process S. Since, the trend µ is not F S-
measurable, the agents do not observe it directly. Indeed, the model
(1)-(2) corresponds to a system with partial information. The following
proposition gives a representation of the model (1)-(2) in an observable
framework (see [10] for details or Appendix A for a proof).

Proposition 1. The dynamics of the risky asset S is also given by

dSt
St

= E
[
µt|FSt

]
dt+ σSdNt, (3)

where N is a
(
P,FS

)
Wiener process.

Remark 1.1. In the filtering theory (see [10] for details), the process
N is called the innovation process. To understand this name, note that:

dNt =
1

σS

(
dSt
St
− E

[
µt|FSt

]
dt

)
.

Then, dNt represents the difference between the current observation and
what we expect knowing the past observations.

1.3. Optimal trend estimator. The system (1)-(2) corresponds to
a Linear Gaussian Space State model (see [4] for details). In this case,
the Kalman filter gives the optimal estimator, which corresponds to the
conditional expectation E

[
µt|FSt

]
. Since (λ, σµ, σS) ∈ R∗+ ×R∗+ ×R∗+,

the model (1)-(2) is a controllable and observable time invariant sys-
tem. In this case, it is well known that the estimation error variance
converges to an unique constant value (see [7] for details). This cor-
responds to the steady-state Kalman filter. The following proposition
(see [1] for a proof) gives a first continuous representation of the steady-
state Kalman filter:

Proposition 2. The steady-state Kalman filter has a continuous time
limit depending on the asset returns:

dµ̂t = −λβµ̂tdt+ λ (β − 1)
dSt
St
, (4)
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where

β =

(
1 +

σ2
µ

λ2σ2
S

) 1
2

. (5)

The following proposition gives a second representation of the steady-
state trend estimator µ̂:

Proposition 3. Based on Equation (4), it follows that:

dµ̂t = −λµ̂tdt+ λσS (β − 1) dNt. (6)

Proof. Replacing dSt
St

in Equations (4) by the expression of Equation

(3), we find Equation (6). �

Remark 1.2. It is well known that the Kalman estimator is a Gauss-
ian process. Here, we find that the steady-state trend estimator µ̂ is
an Ornstein Uhlenbeck process. In practice, the parameters (λ, σµ, σS)
are unknown and must be estimated (see [1] where the authors assess
the feasibility of forecasting trends modeled by an unobserved mean-
reverting diffusion). In this paper, we assume that the parameters are
known.

2. Optimal strategy under complete information

In this section, the optimal strategy under full information is inves-
tigated. This strategy is built by an agent who is able to observe the
trend µ. Formally, it corresponds to the case FS = F. Given this
framework, we consider the optimal strategy with a logarithmic utility
function. We provide, in closed form, the asymptotic expectation and
variance of the logarithmic return, and the asymptotic Sharpe ratio of
this strategy as functions of the signal-to-noise ratio.

2.1. Context. Consider the financial market defined in the first sec-
tion with a risk free rate and without transaction costs. Let P o be a
self financing portfolio given by:

dP o
t

P o
t

= ωot
dSt
St
,

P o
0 = x,

where ωot is the fraction of wealth invested in the risky asset (also
named the control variable). The agent aims to maximize his expected
logarithmic utility on an admissible domain Ao for the allocation pro-
cess. In this section, we assume that the agent is able to observe the
trend µ. Formally, it means that Ao represents all the F-progressive
and measurable processes and the solution of this problem is given by:

ω∗ = arg sup
ω∈Ao

E [ln (P o
t ) |P o

0 = x] .
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As is well known (see [9] or [2] for examples), the solution of this
problem is given by:

dP o
t

P o
t

=
µt
σ2
S

dSt
St
, (7)

P o
0 = x. (8)

2.2. Performance analysis of the optimal strategy under com-
plete information. The following proposition gives the stochastic dif-
ferential equation of the portfolio P o:

Proposition 4. Consider the portfolio P o given by Equation (7). In
this case,

d ln(P o
t ) =

µ2
t

2σ2
S

dt+
µt
σS
dW S

t . (9)

Proof. Using Equation (7) and Itô’s lemma on the process ln(P o
t ), the

result follows. �

The asymptotic expected logarithmic return is the first indicator to
assess the potential of a trading strategy. The second one can be the
variance of the logarithmic return. This indicator can be useful as a
measure of risk. Moreover, let SRT be the annualized Sharpe-ratio at
time T of a portfolio (PT ) defined by:

SRT =
E
[
ln
(
PT
P0

)]
√
T Var

[
ln
(
PT
P0

)] . (10)

This indicator measures the expected logarithmic return per unit of
risk. The Sharpe ratio is a prime metric for an investment.

Remark 2.1. This definition of the Sharpe ratio is different from the
original one (see [14]). Here, this indicator is computed on logarithmic
returns.

The following theorem gives the asymptotic expectation, variance
and Sharpe ratio of the logarithmic return:

Theorem 2.2. Consider the portfolio given by Equation (7). In this
case:

lim
T→∞

E
[
ln
(
P oT
P o0

)]
T

=
SNR

2
, (11)

lim
T→∞

Var
[
ln
(
P oT
P o0

)]
T

= SNR, (12)

SRo
∞ =

√
SNR

2
. (13)
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where SNR is the signal-to-noise-ratio:

SNR =
σ2
µ

2λσ2
S

. (14)

Proof. Integrating the expression of Proposition 4 from 0 to T and
taking the expectation, it gives:

E
[
ln

(
P o
T

P o
0

)]
=

1

2σ2
S

∫ T

0

E
[
µ2
t

]
dt+ 0.

Since µ is an Ornstein-Uhlenbeck process:

E [µt] = 0,

Var [µt] = σ2
µ

1− e−2λt

2λ
.

Then, tending T to ∞, Equation (11) follows. Since the processes W S

and µ are supposed to be independent:

Var

[
ln

(
P o
T

P o
0

)]
=

1

4σ4
S

Var

[∫ T

0

µ2
tdt

]
+

1

σ2
S

Var

[∫ T

0

µtdW
S
t

]
.

Since the process
(∫ T

0
µtdW

S
t

)
T≥0

is a martingale:

Var

[∫ T

0

µtdW
S
t

]
=

∫ T

0

E
[
µ2
t

]
dt =

σ2
µ

2λ

(
T +

1− e−2λT

2λ

)
,

Moreover, Isserlis’ theorem (see [6] for details) gives:

Var

[∫ T

0

µ2
tdt

]
= 2

∫ T

0

∫ T

0

(E [µsµt])
2 dsdt.

Since µ is an Ornstein Uhlenbeck:

Var

[∫ T

0

µ2
tdt

]
=
σ4
µe
−4λT (e4λT (4λT − 5) + e2λT (8λT + 4) + 1

)
8λ4

.

Equation (12) follows. Finally, using the definition of the Sharpe ra-
tio (see Equation (10)) and the results of Equations (11) and (12),
Equation (13) follows. �

Theorem 2.2 shows that the asymptotic expectation and the asymp-
totic variance logarithmic return are linear functions of the signal-to-
noise ratio and that the asymptotic Sharpe ratio is a linear function
of the ratio between the asymptotic trend standard deviation and the
volatility.
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3. Optimal strategy under partial information

In this section, the Merton’s problem under partial information is
investigated. We consider the case of a logarithmic utility function. We
provide, in closed form, the asymptotic expectation and variance of the
logarithmic return, and the asymptotic Sharpe ratio of this strategy as
functions of the signal-to-noise ratio and of the trend mean reversion
speed. After that, we introduce the partial information factor which is
the ratio between the asymptotic Sharpe ratio of the optimal strategy
with partial information and the asymptotic Sharpe ratio of the optimal
strategy with complete information. We close this section by showing
that this factor is bounded by a threshold equal to 2

33/2
.

3.1. Context. Consider the financial market defined in the first sec-
tion with a risk free rate and without transaction costs. Let P be a
self financing portfolio given by:

dPt
Pt

= ωt
dSt
St
,

P0 = x,

where ωt is the fraction of wealth invested in the risky asset. The agent
aims to maximize his expected logarithmic utility on an admissible
domain A for the allocation process. In this section, we assume that
the agent is not able to observe the trend µ. Formally, A represents all
the FS-progressive and measurable processes and the problem is:

ω∗ = arg sup
ω∈A

E [ln (Pt) |P0 = x] .

The solution of this problem is well known and easy to compute (see
[9] for example). Indeed, it has the following form:

ω∗t =
E
[
µt|FSt

]
σ2
S

.

Using the steady-state Kalman filter, the optimal portfolio is given by:

dPt
Pt

=
µ̂t
σ2
S

dSt
St
, (15)

P0 = x, (16)

where µ̂ is given by Equation (4).

3.2. Performance analysis of the optimal strategy under par-
tial information. The following proposition gives the stochastic dif-
ferential equation of the portfolio:

Proposition 5. The optimal portfolio process of Equation (15) follows
the dynamics:

d ln(Pt) =
1

2σ2
Sλ (β − 1)

dµ̂2
t +

[
µ̂2
t

σ2
S

(
β

(β − 1)
− 1

2

)
− 1

2
λ (β − 1)

]
dt,

7



where β is given by Equation (5).

Proof. Equation (15) is equivalent to (by Itô’s lemma):

d ln(Pt) =
µ̂t
σ2
S

dSt
St
− 1

2

µ̂2
t

σ2
S

dt.

Using Equation (4),

d ln(Pt) =
µ̂t
σ2
S

dµ̂t
λ (β − 1)

+
µ̂2
t

σ2
S

β

(β − 1)
dt− 1

2

µ̂2
t

σ2
S

dt,

Itô’s lemma on Equation (4) gives:

dµ̂2
t = 2µ̂tdµ̂t + λ2

(
βσµ,λ,σS − 1

)2
σ2
Sdt.

Using this equation, the dynamic of the logarithmic wealth follows. �

Remark 3.1. Proposition 5 shows that the returns of the optimal strat-
egy with partial information can be broken down into two terms. The
first one represents an option on the square of the realized returns
(called Option profile). The second term is called the Trading Impact.
These terms are introduced and discussed in [5]. The option profile at
the time T is:

Option ProfileT =
1

2σ2
S

1

λ (β − 1)
(µ̂2

T − µ̂2
0).

With the assumption of an initial trend estimate equal to 0, the Option
profile is always positive. The Trading Impact is a cumulated function
of the trend estimate:

Trading impactT =

T∫
0

[
µ̂2
t

σ2
S

(
β

(β − 1)
− 1

2

)
− 1

2
λ (β − 1)

]
dt.

When T →∞, it becomes the preponderant term. The Trading Impact
is positive on the long term T if the drift estimate µ̂t verifies:

1

T

T∫
0

µ̂2
tdt >

λσ2
S(β − 1)

2 β
β−1 − 1

, (17)

Equation (17) can be seen as a condition for the trend following strategy
to generate profits in the long term.

The following theorem gives the asymptotic expectation, variance
and Sharpe ratio of the logarithmic return:
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Theorem 3.2. Consider the portfolio given by Equation (15). In this
case:

lim
T→∞

E
[
ln
(
PT
P0

)]
T

=
λ

4
(β − 1)2 , (18)

lim
T→∞

Var
[
ln
(
PT
P0

)]
T

=
λ

8

(
β2 − 1

)2
, (19)

lim
T→∞

SRT =

√
λ

2

β − 1

β + 1
, (20)

where β is given by Equation (5).

Proof. Based on Equation (6), µ̂ is an Ornstein-Uhlenbeck process:

E [µ̂t] = 0,

Var [µ̂t] = (λσS (β − 1))2
1− e−2λt

2λ
.

Integrating the expression of Proposition 5 from 0 to T and taking the
expectation, it gives:

E
[
ln

(
PT
P0

)]
=

(β − 1)

4

(
1− e−2λT

)
− λ(β − 1)

2
T

+

(
β

β − 1
− 1

2

)[
λ

2
(β − 1)2T − λ

2
(β − 1)2

1− e−2λT

2λ

]
Then, tending T to ∞, Equation (18) follows. Integrating the expres-
sion of Proposition 5 from 0 to T and taking the variance, it gives:

Var

[
ln

(
PT
P0

)]
=

1

(2λ (β − 1)σ2
S)

2Var
[
µ̂2
T

]
+

1

σ4
S

(
β

β − 1
− 1

2

)2

Var

[∫ T

0

µ̂2
tdt

]

+
2
(

β
β−1 −

1
2

)
(2λ (β − 1)σ4

S)
Cov

[
µ̂2
T ,

∫ T

0

µ̂2
tdt

]
.

Moreover

Var
[
µ̂2
T

]
= Cov

[
µ̂2
T , µ̂

2
T

]
,

Var

[∫ T

0

µ̂2
tdt

]
=

∫ T

0

∫ T

0

Cov
[
µ̂2
s, µ̂

2
t

]
dsdt,

Cov

[
µ̂2
T ,

∫ T

0

µ̂2
tdt

]
=

∫ T

0

Cov
[
µ̂2
s, µ̂

2
T

]
ds,

9



and the expression of Cov [µ̂2
s, µ̂

2
t ] is given in Lemma 5.1 (see Appendix

B). Then

Var
[
µ̂2
T

]
=

λ2σ4
S (β − 1)4

2

(
1− 2e−2λT + e−4λT

)
,

Var

[∫ T

0

µ̂2
tdt

]
=

λ2σ4
S (β − 1)4

2

(
1− e−2λT

2λ

+
e−2λT − e−4λT

2λ
− 2Te−2λT

)
,

Cov

[
µ̂2
T ,

∫ T

0

µ̂2
tdt

]
=

λσ4
S (β − 1)4

2

(
T − 5

4λ
+
e−2λT

λ

+
e−4λT

4λT
+ 2Te−2λT

)
.

Finally, using these expressions and tending T to ∞, Equations (19)
and (20) follow. �

The following result is a corollary of the previous theorem. It rep-
resents the asymptotic expectation, variance and Sharpe ratio of the
logarithmic return as a function of the signal-to-noise-ratio and of the
trend mean reversion speed λ.

Corollary 3.3. Consider the portfolio given by Equation (15). In this
case:

lim
T→∞

E
[
ln
(
PT
P0

)]
T

=
1

2

(
SNR + λ−

√
λ (λ+ 2SNR)

)
, (21)

lim
T→∞

Var
[
ln
(
PT
P0

)]
T

=
SNR2

2λ
, (22)

lim
T→∞

SRT =

(
λ

2

)3/2

(√
1 + 2SNR

λ
− 1
)2

SNR
, (23)

where SNR is the signal-to-noise-ratio (see Equation (14)). Moreover:

(1) For a fixed parameter value λ,
- the asymptotic expected logarithmic return is an

increasing function of SNR,
- the asymptotic Sharpe ratio is an increasing function of

SNR.
(2) For a fixed parameter value SNR,

- the asymptotic expected logarithmic return is a decreasing
function of λ,

- the asymptotic Sharpe ratio is a decreasing function of λ
10



if:

SNR <
3

2
λ, (24)

and an increasing function of λ if SNR > 3
2
λ.

The maximum asymptotic Sharpe ratio is attained for λ = 2
3
SNR and

is equal to:

SRMax
∞ =

√
SNR

33/2
. (25)

Proof. Using Equation (14) and Equation (5), it follows that:

β =

√
1 +

2SNR

λ
.

Injecting this expression in Equation (18), we find:

lim
T→∞

E
[
ln
(
PT
P0

)]
T

= L (SNR, λ) ,

where

L (SNR, λ) =
1

2

(
SNR + λ−

√
λ (λ+ 2SNR)

)
.

Since

∂L (SNR, λ)

∂SNR
=

1

2

1− 1√
1 + 2SNR

λ

 ≥ 0,

the asymptotic expected logarithmic return is an increasing function
of SNR. Moreover:

∂L (SNR, λ)

∂λ
=

1

2

(
1− λ+ SNR√

λ (λ+ 2SNR)

)
≤ 0,

it follows that the asymptotic expected logarithmic return is a de-
creasing function of λ. Moreover, using Equations (14), (5) and (19),
Equation (22) follows.

Now, with Equations (14), (5) and (20), we find:

lim
T→∞

SRT = SR∞ (SNR, λ) ,

where

SR∞ (SNR, λ) =

(
λ

2

)3/2

(√
1 + 2SNR

λ
− 1
)2

SNR
.

Since

∂SR∞
∂SNR

=
λ

3
2

(√
1 + 2SNR

λ
− 1
)2

2SNR2
√

2
(
1 + 2SNR

λ

) ≥ 0,

11



the asymptotic Sharpe ratio is an increasing function of SNR. More-
over:

∂SR∞
∂λ

=

(√
1 + 2SNR

λ
− 1
)(

3λ
(

1−
√

1 + 2SNR
λ

)
+ 2SNR

)
4
√

2λSNR
√

1 + 2SNR
λ

.

Then, the sign of ∂SR∞
∂λ

is given by the sign of:

A (SNR, λ) =

(
3λ

(
1−

√
1 +

2SNR

λ

)
+ 2SNR

)
.

Using β =
√

1 + 2SNR
λ

, this expression can be factorised:

A (SNR, λ) = λ (β − 1) (β − 2) .

Since β ≥ 1, A (SNR, λ) is negative if and only if β ≤ 2 (and positive
if and only if β ≥ 2), which is equivalent to the condition of Equation
(24). Equation (25) is obtained using SNR = 3

2
λ in Equation (23). Note

that SR∞ is always positive. Since SR∞ is an increasing function of λ
if λ < 2

3
SNR and a decreasing function after this point, the maximum

value of this function is given by Equation (25). �

3.3. Impact of partial information on the optimal strategy. In
order to measure the impact of the investor’s inability to observe the
trend on the optimal strategy performance, we introduce the partial
information factor. This indicator represents the ratio between the as-
ymptotic Sharpe ratio of the optimal strategy with partial information
and the asymptotic Sharpe ratio of the optimal strategy with complete
information:

PIF =
SR∞
SRo
∞
, (26)

where SR∞ is the asymptotic Sharpe ratio of the optimal strategy with
partial information, and SRo

∞ is the asymptotic Sharpe ratio of optimal
strategy with full information. The following theorem gives the analytic
form of this indicator.

Theorem 3.4. The partial information factor is given by:

PIF =

(
λ

SNR

)3/2

(√
1 + 2SNR

λ
− 1
)2

√
2

, (27)

where SNR is the signal-to-noise-ratio (see Equation (14)).
If SNR < 3

2
λ (respectively, SNR > 3

2
λ):

(1) For a fixed parameter value SNR, this indicator is a decreasing
function (respectively, an increasing function) of λ.

(2) For a fixed parameter value λ, this indicator is an increasing
function (respectively, a decreasing function) of SNR.
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Moreover:

PIF ≤ 2

33/2
, (28)

and this bound is attained for λ = 2
3
SNR.

Proof. This expression of the partial information factor is a conse-
quence of Equations (13) and (23). Moreover:

∂PIF

∂SNR
=

√
λ
(√

2SNR
λ

+ 1− 1
)(

3λ
(√

2SNR
λ

+ 1− 1
)
− 2SNR

)
2SNR5/2

√
4SNR
λ

+ 2
.

This expression is positive if and only if SNR ≤ 3
2
λ. The dependency

on the mean reversion speed λ comes from Corollary 3.3. �

Remark 3.5. Equation (28) shows that in the best configuration (with
λ = 2

3
SNR), the asymptotic Sharpe ratio of the optimal strategy with

partial information is approximatively equal to 38.49% of the asymp-
totic Sharpe ratio of the optimal strategy with complete information.

Moreover, the intuition tells us that a high signal-to-noise ratio and
a small trend mean reversion speed λ involves a small impact of partial
information on the optimal strategy performance (and then a high PIF).
This is true if and only if SNR ≤ 3

2
λ.

4. Simulations

In this section, numerical examples are computed in order to illus-
trate the analytical results of the previous sections. The figure 1 rep-
resents the asymptotic Sharpe ratio of the optimal strategy with full
information as a function of the signal-to-noise ratio. If the signal-
to-noise ratio is inferior to 1, which corresponds to a trend standard
deviation inferior to the volatility of the risky asset, the asymptotic
Sharpe ratio of the optimal strategy with complete information is in-
ferior to 0.5.

Now, suppose that λ ∈ [1, 252] and that the trend is an unobservable
process. The figure 2 represents the asymptotic Sharpe ratio of the op-
timal strategy with partial information as a function of the trend mean
reversion speed λ and of the signal-to-noise ratio. Since λ ∈ [1, 252]
and SNR< 1, Equation (24) is satisfied and this Sharpe ratio is an
increasing function of SNR and a decreasing function of λ. Moreover,
the maximal value is inferior to 0.2. We also observe that, even with a
high signal-to-noise ratio, a high mean reversion parameter λ leads to
a small Sharpe ratio.

The figure 3 represents the partial information factor, which corre-
sponds to the ratio between the asymptotic Sharpe ratios of the optimal
strategy with partial and full information (see Equation (26)). Using
Equation (28), this indicator is bound by 2

33/2
. Since SNR < 3

2
λ, this

indicator is a decreasing function of λ and an increasing function of
13



SNR. Even with a high signal-to-noise ratio, a high mean reversion
parameter λ leads to a negligible performance of the optimal strategy
with partial information compared to the case with full information.

The figures 4 and 5 represents the asymptotic Sharpe ratio of the
optimal strategy with partial information and the partial information
factor as functions of the signal-to-noise ratio and of λ with λ ∈ [0, 2].
Theses figures illustrate that, if SNR > 3

2
λ, these quantities are in-

creasing functions of the trend mean reversion speed λ (and the partial
information factor is also a decreasing function of the signal-to-noise
ratio).

0.2 0.4 0.6 0.8 1.0
SNR

0.1

0.2

0.3

0.4

0.5

SR

Figure 1. Asymptotic Sharpe ratio of the optimal
strategy with complete information as a function of the
signal-to-noise ratio.
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Figure 2. Asymptotic Sharpe ratio of the optimal
strategy with partial information as a function of the
trend mean reversion speed λ and of the signal-to-noise
ratio.

Figure 3. Partial information factor as a function of
the trend mean reversion speed λ and of the signal-to-
noise ratio.
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Figure 4. Asymptotic Sharpe ratio of the optimal
strategy with partial information as a function of the
trend mean reversion speed λ and of the signal-to-noise
ratio with λ ∈ [0, 2].

Figure 5. Partial information factor as a function of
the trend mean reversion speed λ and of the signal-to-
noise ratio with λ ∈ [0, 2].

5. Conclusion

The present work quantifies the loss of performance in the optimal
trading strategy due to partial information with a model based on an
unobserved mean-reverting diffusion.

If the trend is observable, we show that the asymptotic Sharpe ratio
of the optimal strategy is only an increasing function of the signal-to-
noise ratio.

Under partial information, this asymptotic Sharpe ratio becomes a
function of the signal-to-noise ratio and of the trend mean reversion
speed. Even if the asymptotic Sharpe ratio is also an increasing func-
tion of the signal-to-noise ratio, we find that the dependency on the

16



trend mean reversion speed is not monotonic. Indeed, this is an uni-
modal (increasing then decreasing) function of the trend mean reversion
speed.

We also show that the ratio between the asymptotic Sharpe ra-
tio of the optimal strategy with partial information and the asymp-
totic Sharpe ratio of the optimal strategy with complete information
is bounded by a threshold equal to 2

33/2
. Given this result, we surely

conclude that the impact of partial information on the optimal strategy
is not negligible.

Moreover, the simulations show that even with a high signal-to-noise
ratio, a high trend mean reversion speed leads to a negligible perfor-
mance of the optimal strategy under partial information compared to
the performance of the optimal strategy with complete information.
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Appendix A: Proof of Proposition 1

Proof. Let K be a (P, {Ft}) martingale defined by:

dKt

Kt

=
−µt
σS

dW S
t ,

and the probability measure P̃ defined by:

dP̃
dP

= KT .

With the Girsanov’s theorem, it follows that the process:

W̃ S
t = W S

t +

∫ t

0

µs
σS
ds,

is a
(
P̃, {Ft}

)
Wiener process. Note also that:

dSt
St

= σdW̃ S
t .

Now, introduce the process N , defined by:

Nt = W̃ S
t −

∫ t

0

E
[
µs|FSs

]
σS

ds,

as W̃ S
t and E

[
µt|FSt

]
are

{
FSt
}

measurable, Nt is
{
FSt
}

measurable.
The process N is also integrable. Let τ be a bounded stopping time.
we have

E [Nτ ] = E [N0] = 0.

Then, N is a continuous martingale and N0 = 0. Note that

d 〈N〉t = dt

Using Levy’s criteria, the process N is a
(
P,
{
FSt
})

Wiener process. �
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Appendix B: Auto-covariance function of the square
steady state Kalman filter

the following lemma gives the auto-covariance function of the process
µ̂2:

Lemma 5.1. Consider the process µ̂ defined in Equation (4). Its auto-
covariance function is given by:

Cov
[
µ̂2
s, µ̂

2
t

]
=
λ2σ4

S (β − 1)4

2
e−2λt

(
e2λs + e−2λs − 2

)
, (29)

with 0 ≤ s ≤ t.

Proof. Since µ̂ is a centred Ornstein Uhlenbeck process, there exists a
Brownian motion B such that, for all s ∈ R+:

µ̂s = e−λsλσS (β − 1)Bf(s),

where f (s) = e2λs−1
2λ

is a time change. Then, for all s, t such that
0 ≤ s ≤ t, we have:

Cov
[
µ̂2
s, µ̂

2
t

]
= e−2λ(t+s)λ4σ4

S (β − 1)4Cov
[
B2
f(s), B

2
f(t)

]
.

Since B is a Wiener process:

E
[
B2
f(s)

]
= f (s) .

Let
{
FBt
}

be the filtration generated by the process B. So:

E
[
B2
f(s), B

2
f(t)

]
= E

[
B2
f(s)E

[
B2
f(t)|FBs

]]
= E

[
B2
f(s)

E
[(
B2
f(s)

+2
∫ f(t)
f(s)

BudBu+f(t)−f(s)
)
|FBs

]]
= E

[
B2
f(s)

(
B2
f(s) + f (t)− f (s)

)]
= 3f (s)2 + (f (t)− f (s)) f (s) .

Then

E
[
B2
f(s), B

2
f(t)

]
= 2f (s)2 + f (t) f (s) ,

and Equation (29) follows using:

Cov
[
B2
f(s), B

2
f(t)

]
= E

[
B2
f(s), B

2
f(t)

]
− E

[
B2
f(s)

]
E
[
B2
f(t)

]
.

�
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