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Introduction

In theory, asset prices could be well described by random walks, according to the Efficient Market Hypothesis. If this were indeed the case, then future returns would not be predictable. Nevertheless, professionals in the finance industry tend to have divergent views on the subject, and trend following strategies are the principal sources of returns for Commodity Trading Advisors (see [START_REF] Lempérière | Two centuries of trend following[END_REF]). In fact, most quantitative strategies are based on the more or less explicit assumption that the trends of assets are known (see [START_REF] Markovitz | Portfolio Selection[END_REF], [START_REF] Merton | Continuouse-Time Finance[END_REF]) and can be extracted from the asset prices themselves. It is therefore natural to address the question of forecasting asset trends, and to seek to provide reliable statistical estimators. Unfortunately, the estimation of the trend of an asset is a statistically difficult problem, mainly because of a high measurement noise: consider for example a simple model with a constant trend dSt St = µdt + σ S dW S t . Then, the best estimate of the trend in the least square sense at time T is given by µ t = 1 T T 0 dSu Su . Student's t-test will reject the hypothesis

µ = 0 if | µ T | > 1.96σ S √ T
at a 5% significance level. Therefore, with σ S = 30%, the estimate µ T = 1% becomes statistically relevant for observation times T > 3457 years! The purpose of this work is to assess the feasibility of forecasting trends modelled by an unobserved mean-reverting diffusion. Using a Bayesian approach or maximum likelihood estimation (see e.g. [START_REF] Leroux | Maximum-likelihood estimation for hidden markov models[END_REF], [START_REF] Cappé | Inference in Hidden Markov Models[END_REF], [START_REF] Benmiloud | Parameter Estimation in Hidden Markov Chains and Segmentation of Images[END_REF], [START_REF] Casarin | Online data processing: comparison of Bayesian regularized particle filters[END_REF] or [START_REF] Dahia | Nouvelles méthodes en filtrage particulaire. Application au recalage de navigation inertielle par mesures altimétriques[END_REF]), inference methods for partially observed processes have been applied to financial time series, mostly in the framework of stochastic volatility models (see [START_REF] Jacquier | Bayesian analysis of stochastic volatility models[END_REF], [START_REF] Eraker | Mcmc analysis of diffusion models with application to finance[END_REF], [START_REF] Kim | Stochastic volatility: Likelihood inference and comparison with arch models[END_REF] or [START_REF] Chib | Markov chain monte carlo methods for stochastic volatility models[END_REF]). Closer in spirit to our motivation, several authors have considered the situation of an unobservable stochastic trend, and use filtering methods in this context (most of these methods are introduced in [START_REF] Genay | An Introduction to Wavelets and Other Filtering Methods in Finance and Economics[END_REF]). For example, in [START_REF] Whittle | Prediction and Regulation by Linear Least-Square Methods[END_REF], [START_REF] Maravall | Stochastic linear trends[END_REF] and [START_REF] Pollock | Wiener-kolmogorov filtering, frequency-selective filtering, and polynomial regression[END_REF] the Wiener-Kolmogorov filter (see [START_REF] Wiener | Extrapolation, Interpolation, and Smoothing of Stationary Time Series With engineering applications[END_REF] for details) is used; in [START_REF] John | Optimal properties of exponentially weighted forecasts[END_REF], [START_REF] Holt | Forecasting seasonals and trends by exponentially weighted moving averages[END_REF] and [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF] the trend is supposed to be a random walk and the Kalman filter is used, and in [START_REF] Harvey | General model-based filters for extracting cycles and trends in economic time series[END_REF] the Butterworth filter (see [START_REF] Butterworth | On the theory of filter amplifiers[END_REF] for details) is applied. As it turns out, most of these filters are based on a parametric stochastic model for the trend, and their usefulness in realistic trading strategies is therefore confronted to the problem of parameters estimation (see [START_REF] Lakner | Optimal trading strategy for an investor: the case of partial information[END_REF], [START_REF] Pham | Optimal Portfolio in Partially Observed Stochastic Volatility Models[END_REF], [START_REF] Laskry | Contrôle stochastique avec informations partielles et applications la finance[END_REF] or [START_REF] Brendle | Portfolio selection under incomplete information[END_REF] where filtering methods are used in the context of trading strategies). It is our aim to partly fill the existing gap in the quantitative finance literature, and shed a new light on the feasability of classical trading strategies based on the determination of asset trends. Such a problem is addressed e.g. in [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF] and [START_REF] Harvey | Estimation procedures for structural time series models[END_REF], where the emphasis is set on Kalman filtering and the asymptotic behaviour of the maximum likelihood estimator. In this paper, we focus on the question of parameters estimation with a unobserved mean-reverting trend, and measure the effect of parameters misspecification. The paper is organized as follows: in Section 1, we present the model and recall some results on Kalman filtering. Section 2 is devoted to parameters inference using discrete time observations. The performance of statistical estimators is evaluated by giving their asymptotic behaviours, and by providing, in closed form, the Cramer-Rao bound. Section 3 introduces the continuous time misspecified Kalman filter. We provide estimates for the impact of parameters misspecification on trend filtering, and compute the probability to have a positive trend, given a positive estimate. Finally, Section 4 contains numerical examples illustrating the relevance of parameters misspecification in trend filtering.

Framework

In this section, the model for the asset price and the mean-reverting dynamics of its trend is made precise. Then, the Kalman filtering method, in a time-discretized version, is recalled.

1.1. Model.

1.1.1. Continuous time model. Consider a financial market living on a stochastic basis (Ω, F, F, P), where F = {F t , t 0} is the natural filtration associated to a two-dimensional, uncorrelated Wiener process (W S , W µ ), and P is the objective probability measure. The dynamics of the risky asset S is given by

dS t S t = µ t dt + σ S dW S t , (1) 
dµ t = -λ µ µ t dt + σ µ dW µ t , (2) 
with µ 0 = 0. We also assume that (

λ µ , σ µ , σ S ) ∈ R * + × R * + × R * + . Denote by F S = F S t
be the natural filtration associated to the price process S. An important point is that only F S -adapted processes are observable, which implies that agents in this market do not observe the trend µ.

Remark 1.1. The linear and Gaussian framework has well-known shortcomings: in practice, financial asset returns are heavy-tailed (see [START_REF] Mandelbrot | The variation of certain speculative prices[END_REF] [START_REF] Chakraborti | Econophysics review: I. empirical facts[END_REF]) because of jumps and volatility fluctuations. Moreover, interactions between the trend and the volatility processes are possible. In this paper, we focus on a class of simple models so as to extract easily interpreted analytical expressions for various quantities of interest in the context of trend forecasting and investment strategies. 2) is now presented. Let then δ be a discrete time step, and denote by the subscript k the value of a process at time t k = kδ. The discrete time model is:

Discrete time model. A discrete-time version of (1)-(

y k+1 = S k+1 -S k δS k = µ k+1 + u k+1 , (3) 
µ k+1 = e -λµδ µ k + v k , (4) 
where

u k ∼ N 0, σ 2 S δ and v k ∼ N 0, σ 2 µ 2λµ 1 -e -2λµδ
. The system (3)-( 4) corresponds to an AR(1) model with noise.

1.2. Optimal trend estimator.

1.2.1. Discrete Kalman filter. In this subsection, the parameters θ = (λ µ , σ µ ) and σ S are supposed to be known. The discrete time system (3)-( 4) corresponds to a Linear Gaussian Space State model where the observation is y and the state, µ (see [START_REF] Brockwell | Introduction to time series and forecasting[END_REF] for details). In this case, the optimal estimator is the conditional expectation E [µ k |y 1 , ..., y k ], given by the Kalman filter (classical results on the discrete Kalman filter are recalled in Appendix A). Applications of this filter in Finance are numerous. Indeed, it can be used for trend filtering (see [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF]), for term structure models (see [START_REF] Manoliu | Energy futures prices: term structure models with kalman filter estimation[END_REF] or [START_REF] Babbs | Kalman filtering of generalised vasicek term structure models[END_REF]), for trading strategies (see [START_REF] Dilellio | A Kalman filter control technique in mean-variance portfolio management[END_REF] or [START_REF] Elliott | Pairs trading[END_REF]) and many other applications (see [START_REF] Wells | The Kalman Filter in Finance[END_REF], [START_REF] Bebendo | The dynamics of the volatility skew: A Kalman filter approach[END_REF], [START_REF] Das | Market risk beta estimation using adaptive kalman filter[END_REF] or [START_REF] Stasinakis | Forecasting us unemployment with radial basis neural networks, kalman filters and support vector regressions[END_REF]). For simplicity, we let X k/l denote E [X k |y 1 , ..., y l ]. The Kalman filter is decomposed in two distinct phases:

(1) An a priori estimate given μk+1/k and Γ k+1/k = E [(µ k+1 -μk+1/k )(µ k+1 -μk+1/k ) T . This estimate is done using the transition equation ( 4). (2) An a posteriori estimate. When the new observation is available, a correction of the first estimate is done to obtain μk+1/k+1 and Γ k+1/k+1 = E (µ k+1 -μk+1/k+1 )(µ k+1 -μk+1/k+1 ) T . The criterion for this correction is the least squares method. Thus, μk/k is the minimum variance linear unbiased estimate of the trend µ k . Formally, the iterative method is given by:

µ k+1/k+1 = e -λµδ µ k/k + K k+1 y k+1 -e -λµδ µ k/k , (5) 
Γ k+1/k+1 = (1 -K k+1 ) Γ k+1/k , (6) 
with

K k+1 = Γ k+1/k Γ k+1/k + σ 2 S δ , Γ k+1/k = e -2λµδ Γ k/k + σ 2 µ 2λ µ 1 -e -2λµδ .
1.2.2. Stationary limit and continuous-time representation. Solving the equation Γ k+1/k+1 = Γ k/k corresponding to the steady-state yields:

Γ ∞ = g (σ S , λ µ , σ µ ) -f (σ S , λ µ , σ µ ) 2e -2λµδ , where f (σ S , λ µ , σ µ ) = σ 2 S δ + σ 2 µ 2λ µ 1 -e -2λµδ ,
and

g (σ S , λ µ , σ µ ) = f (σ S , λ µ , σ µ ) 2 + 2σ 2 S σ 2 µ λ µ δ (e -2λµδ -e -4λµδ
).

Using the stationary covariance error Γ ∞ , a stationary gain K ∞ is defined and the estimate can be rewritten as a corrected exponential average:

µ n+1 = K ∞ ∞ i=0 e -λµδi (1 -K ∞ ) i y n+1-i . (7) 
The steady-state Kalman filter has also a continuous-time limit that depends on the asset returns. This result is recalled in the Proposition 1. The steady-state Kalman filter µ solves the following stochastic differential equation

d µ t = -λ µ β (λ µ , σ µ , σ S ) µ t dt + λ µ (β (λ µ , σ µ , σ S ) -1) dS t S t , (8) 
where

β (λ µ , σ µ , σ S ) = 1 + σ 2 µ λ 2 µ σ 2 S 1 2 . ( 9 
)
Proof. Based on [START_REF] Lakner | Optimal trading strategy for an investor: the case of partial information[END_REF], the Kalman filter is given by:

E µ t |F S t = φ (t) µ 0 + 1 σ 2 S t 0 P (u) φ (u) dS u S u , φ (t) = e -λµt-1 σ 2 S t 0 P (u)du
, where the estimation error variance P is the solution of the following Riccati equation:

P (t) = -1 σ 2 S P (t) 2 -2λ µ P (t) + σ 2 µ .
In this steady-state regime, we have P (t) = 0. Then, the positive solution of this equation is given by

P ∞ = σ 2 S λ µ (β (λ µ , σ µ , σ S ) -1)
, and there holds:

µ t = φ ∞ (t) µ 0 + 1 σ 2 S t 0 P ∞ φ ∞ (u) dS u S u , φ ∞ (t) = e -λµβ(λµ,σµ,σ S )t .
Since:

dφ ∞ (t) φ ∞ (t) = -λ µ β (λ µ , σ µ , σ S ) dt, Equation (8) follows. 
The Kalman filter is the optimal estimator for linear systems with Gaussian uncertainty, and such a continuous-time representation can be used for risk/return analysis of trend following strategies (see [START_REF] Bruder | Risk-Return Analysis of Dynamic Investment Strategies[END_REF] for details). Of course, in practice, the parameters θ = (λ µ , σ µ ) are unknown and must be estimated. This important question is addressed in the next section.

Inference of the trend parameters

In this section, the problem of parameters inference is tackled, based on the use of statistical estimators such as Maximum Likelihood or Bayesian estimators. We analyze the asymptotic behaviours of statistical estimators and provide the Cramer-Rao bound in closed form. Since these classical estimators are based on the likelihood, two on-line computations of this function are presented in Appendix B.

2.1. Asymptotic behaviour of statistical estimators. The discrete time model ( 3)-( 4) can be reformulated using the following proposition:

Proposition 2. Consider the model (3)-(4) with (λ µ , σ µ , σ S ) ∈ R * + × R * + × R * + .
In this case, the process (y i ) is ARMA(1, 1). The asymptotic behaviour of the classical estimators follows. Indeed, the identifiability property and the asymptotic normality of the maximum likelihood estimator are well known for stationary ARMA Gaussian processes (see [START_REF] Brockwell | Time series: Theory and Methods[END_REF], section 10.8). Moreover, the asymptotic behaviour of the Bayesian estimators are also guaranteed by the ARMA(1, 1) property of the process (y i ). If the prior density function is continuous and positive in an open neighbourhood of the real parameters, the Bayesian estimators are asymptotically normal (see [START_REF] Tamaki | The bernstein-von mises theorem for stationary processes[END_REF] in which a generalized Bernstein-Von Mises theorem for stationary "short memory" processes is given, or [START_REF] Monahan | Fully bayesian analysis of arma time series models[END_REF] for a discussion on the Bayesian analysis of ARMA processes).

2.2.

Cramer-Rao bound. This bound is the lowest variance of the unbiased estimators. We recall the following result, providing a formal description of the Cramer-Rao bound (CRB in short). 

, • • • , y N ) T . Suppose that (λ µ , σ µ , σ S ) ∈ R * + × R * + × R * + .
If θN is an unbiased estimator of θ = (λ µ , σ µ ), we have:

Cov θ θN CRB (θ) .
This bound is given by CRB (θ) = I -1 N (θ), where I N (θ) is the Fisher Information matrix:

(I N (θ)) i,j = -E ∂ 2 log f (y 1 , ...y N |θ) ∂θ i ∂θ j ,
and I N (θ) = N I 1 (θ). Moreover, the maximum likelihood estimator θ M L N attains this bound:

√ N θ M L N -θ → N 0, I -1 1 (θ)
. This result is a consequence of Proposition 2 (see [START_REF] Brockwell | Time series: Theory and Methods[END_REF], section 10.8). The following result is an analytic representation of the Fisher information matrix:

Theorem 2.2. For the model (3)-(4), if (λ µ , σ µ , σ S ) ∈ R * + × R * + × R * + , we have: I 1 (θ) = 1 4Π Π -Π f -2 θ (ω) ∂f θ ∂θ i (ω) ∂f θ ∂θ j (ω) dω 1≤i,j≤2
, where f θ is the spectral density of the process (y i ):

f θ (ω) = σ 2 µ 2λµ 1 -e -2λµδ + σ 2 S δ 1 + e -2λµδ - 2e -λµδ σ 2 S δ cos (ω)
1 + e -2λµδ -2e -λµδ cos (ω) .

Proof. Whittle's formula (see [START_REF] Whittle | The analysis of multiple stationary time series[END_REF] for details) gives the integral representation of the Fisher information matrix. Since the process (y i ) is ARMA(1, 1), the expression of its spectral density follows (see [START_REF] Brockwell | Time series: Theory and Methods[END_REF], section 4.4).

Finally, the Cramer-Rao Bound of the trend parameters can be computed using Theorem 2.2.

Impact of parameters misspecification

In this section, we consider the continuous-time Kalman filter with a bad calibration in the steady-state regime. The law of the residuals between the filter (misspecified or not) and the hidden process is characterized, and the impact of parameters misspecification on the detection of a positive trend is studied.

3.1. Context. Suppose that the risky asset S is given by the model ( 1)-( 2) with θ * = σ * µ , λ * µ , and suppose that an agent thinks that the parameters are equal to θ = (σ µ , λ µ ). Assuming the steady-state regime and using these estimates and Proposition 1, the agent implements the continuous-time misspecified Kalman filter:

d µ t = -λ µ β µ t dt + λ µ (β -1) dS t S t , (10) 
where β = β (λ µ , σ µ , σ S ) (see Equation ( 9)) and µ 0 = 0. The following lemma gives the law of the misspecified Kalman filter:

Lemma 3.1. Consider the model (1)-( 2) with θ * = σ * µ , λ * µ . The misspecified, continuous-time filter of Equation ( 10) is given by:

µ t = λ µ (β -1) e -λµβt t 0 e λµβs µ * s ds + σ S t 0 e λµβs dW S s . (11) 
Moreover, µ is a centered Gaussian process and its variance is given by:

Var [ µ t ] = E µ 2 t = λ 2 µ (β -1) 2 σ * µ 2 λ * µ λ µ β -λ * µ 1 -e -(λµβ+λ * µ) t λ µ β + λ * µ + 2e -(λµβ+λ * µ) t -e -2λ * µ t -e -2λµβt λ µ β -λ * µ + e -2λµβt -1 2λ µ β + λ µ (β -1) 2 σ 2 S 2β 1 -e -2λµβt .
Proof. Applying Itō's lemma to the function f ( µ, t) = e λµβt µ t , and integrating from 0 to t yields Equation [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. Therefore, µ is also a Gaussian process. Its mean is zero (because µ * 0 = 0). Since the processes µ * and W S are supposed to be independent, the variance of µ is given by the sum of the variances of the terms in Equation [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. Moreover:

Var t 0 e λµβ dW S s = e 2λµβt -1 2λ µ β , Var t 0 e λµβs µ * s ds = t 0 t 0 e λµβ(s 1 +s 2 ) Cov µ * s 1 , µ * s 2 ds 1 ds 2 ,
and Cov µ * s 1 , µ * s 2 is given by Equation [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF]. The variance of the process µ t follows.

3.2.

Filtering with parameters misspecification. The impact of parameters misspecification on trend filtering can be measured using the difference between the filter and the hidden process. The following theorem gives the law of the residuals. Theorem 3.2. Consider the model (1)-( 2) with θ * = σ * µ , λ * µ and the trend estimate defined in Equation [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. The process µ -µ * is a centered Gaussian process and its variance has a stationary limit:

lim t→∞ Var [ µ t -µ * t ] = σ 2 S 2β λ µ (β -1) 2 + λ * µ (β * ) 2 -1 λ * µ β + λ µ λ µ β + λ * µ ,( 12 
)
where β = β (λ µ , σ µ , σ S ) and β * = β λ * µ , σ * µ , σ S as given in Equation (9). Moreover, if (σ µ , λ µ ) = σ * µ , λ * µ , Equation (12) becomes: lim t→∞ Var [ µ * t -µ * t ] = λ * µ σ 2 S (β * -1) . ( 13 
)
Proof. Equation [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] implies that the process µ -µ * is a centered Gaussian process. Its variance can be computed in closed form:

Var [ µ t -µ * t ] = Var [ µ t ] + Var [µ * t ] -2 * Cov [ µ t , µ * t ] ,
where

Var [µ * t ] = (σ * µ) 2 2λ * µ
1 -e -2λ * µ t , and Var [ µ t ] is given by Lemma 3.1. Since the processes W S and µ * are supposed to be independent, there holds:

Cov [ µ t , µ * t ] = λ µ (β -1) σ * µ 2 2λ * µ 1 -e -(λµβ+λ * µ) t λ µ β + λ * µ - e -2λ * µ t -e -(λµβ+λ * µ) t λ µ β -λ * µ .
The asymptotic variance is obtained by letting t → ∞:

lim t→∞ Var [ µ t -µ * t ] = λ µ (β -1) 2β (β -1) σ 2 S - σ * µ 2 (β + 1) λ * µ λ µ β + λ * µ + σ * µ 2 2λ * µ ,
and Equation ( 12) follows. Finally, Equation ( 13) is obtained by letting θ → θ * .

Remark 3.3. Consider the well-specified case (σ µ , λ µ ) = σ * µ , λ * µ . Using Equation [START_REF] Chakraborti | Econophysics review: I. empirical facts[END_REF], it follows that:

lim t→∞ Var [ µ * t -µ * t ] Var [µ * t ] = 2 1 + 1 + (σ * µ) 2 (λ * µ) 2 σ 2 S . (14) 
Then, the asymptotic relative variance of the well-specified residuals is an increasing function of λ * µ and a decreasing function of σ * µ . 3.3. Detection of a positive trend. In practice, the trend estimate (misspecified or not) will be used to make an investment decision. For example, a positive estimate leads to a long position. So, it is interesting to estimate the probability of a positive trend knowing a positive estimate. We derive this probability in closed form, based on the following proposition giving the asymptotic conditional law of the trend (µ * t |μ t = x): Proposition 3. Consider the model (1)-( 2) with θ * = σ * µ , λ * µ and the trend estimate defined in Equation [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. Then, there holds:

(µ * t |μ t = x) L → t→∞ N M ∞ µ * |μ , Var ∞ µ * |μ , (15) 
with:

M ∞ µ * |μ = λ * µ β (β * ) 2 -1 (β -1) λ µ β + λ * µ (β * ) 2 x, (16) 
Var ∞ µ * |μ = Var ∞ µ * 1 - λ * µ λ µ β (β * ) 2 -1 λ * µ + λ µ β λ µ β + λ * µ (β * ) 2 , ( 17 
)
where [START_REF] Dahia | Nouvelles méthodes en filtrage particulaire. Application au recalage de navigation inertielle par mesures altimétriques[END_REF] becomes:

Var ∞ µ * = (σ * µ ) 2 2λ * µ . Moreover, if (σ µ , λ µ ) = σ * µ , λ * µ , Equation
(µ * t |μ * t = x) L → t→∞ N x, 2Var ∞ µ * β * + 1 , ( 18 
)
where β * = β λ * µ , σ * µ , σ S (see Equation ( 9)). Proof. Since the estimate μ and the trend µ * are two centered and correlated Gaussian processes (see Lemma 3.1 and the proof of Theorem 3.2), the conditional law (µ * t |μ t = x) is Gaussian with a mean and a variance given by:

M µ * t |μt = Cov (μ t , µ * t ) Var [μ t ] x, Var µ * t |μt = Var [µ * t ] - Cov (μ t , µ * t ) 2 Var [μ t ]
. Using Lemma 3.1 and the expression of Cov (μ t , µ * t ) in the proof of Theorem 3.2 yields

lim t→∞ M µ * t |μt = M ∞ µ * |μ , lim t→∞ Var µ * t |μt = Var ∞ µ * |μ ,
and Equation ( 15) follows. Finally, Equation ( 18) is obtained by letting θ → θ * .

The following proposition is a consequence of the previous proposition. It gives the asymptotic probability to have a positive trend, knowing a positive estimate equal to x. Proposition 4. Consider the model (1)-( 2) with θ * = σ * µ , λ * µ and the trend estimate defined in Equation [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. In this case:

lim t→∞ P (µ * t > 0|μ t = x) = P ∞ (µ * > 0|μ = x) , (19) 
where

P ∞ (µ * > 0|μ = x) = 1 -Φ   -M ∞ µ * |μ=x Var ∞ µ * |μ=x   , (20) 
where M ∞ µ * |μ=x and Var ∞ µ * |μ=x are defined in Equations ( 16) and ( 17), and Φ is the cumulative distribution function of the standard normal law.

Moreover, if x > 0 and (σ µ , λ µ ) = σ * µ , λ * µ , this asymptotic probability becomes an increasing function of σ * µ and a decreasing function of λ * µ . Proof. Equations ( 19) and ( 20) follow from Proposition 3. Now, consider the well-specified case (σ µ , λ µ ) = σ * µ , λ * µ and x > 0. Using Equation [START_REF] Dilellio | A Kalman filter control technique in mean-variance portfolio management[END_REF], it follows that:

Var ∞ µ * |μ * =x = f σ * µ , λ * µ , σ S , where 
f σ * µ , λ * µ , σ S = σ * µ 2 λ * µ 1 + 1 + (σ * µ) 2 σ 2 S (λ * µ) 2 . Since ∂f ∂λ * µ σ * µ , λ * µ , σ S = -σ * µ 2 λ * µ 2 1 + 1 + (σ * µ) 2 σ 2 S (λ * µ) 2 + (σ * µ) 2 σ 2 S ≤ 0, ∂f ∂σ * µ σ * µ , λ * µ , σ S = λ * µ σ * µ σ 2 S 1 + (σ * µ) 2 σ 2 S (λ * µ) 2 σ * µ 2 + σ 2 S λ * µ 2 ≥ 0,
the asymptotic well-specified probability to have a positive trend, knowing a positive estimate equal to x is an increasing function of σ * µ and a decreasing function of λ * µ . Remark 3.4. This probability is an increasing function of x. Indeed, it is easier to detect the sign of the real trend with a high estimate than with a low estimate. Moreover, this probability is always superior to 0.5. This is due to the non-zero correlation between the trend and the filter. As shown in the previous sections, trend filtering is easier with a small spot volatility σ S . Here, the probability to make a good detection is also a decreasing function of σ S .

Simulations

In this section, numerical simulations are performed, in order to make the reader aware of the trend filtering problem. First, the feasibility of trend forecasting with statistical estimators is illustrated on different trend regimes. Then, the effects of a bad forecast on trend filtering and on the detection of a positive trend are discussed. Finally, we study the numerical maximum likelihood inference of this model using Kalman filtering and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

4.1. Feasibility of trend forecasting. Suppose that only discretetime observations are available and that the time step is equal to δ = 1/252, corresponding to daily returns. Note that, if this time step is divided by M , the variance of the observation noise u k is multiplied by M (u k ∼ N 0, σ 2 S δ ), so that increasing the frequency of the observations will not be really helpful to calibrate the trend. We also assume that the agent uses an unbiased estimator. Given T years of observations, The Cramer-Rao bound is given by:

CRB T (θ) = I -1 1 (θ) T * 252 ,
where I 1 (θ) is given by Theorem 2.2. The smallest confidence region is obtained with this matrix. In practice, the real values of the parameters θ are unknown and asymptotic confidence regions are computed (replacing θ by the estimates θ in the Fisher information matrix I 1 θ ).

Since the goal of this subsection is to evaluated the feasibility of this estimation problem, we suppose that we know the real values of the parameters. In such a case, the exact Cramer-Rao bound can be computed. Suppose that a target standard deviation x i is fixed for the parameter θ i . In this case, to reach the precision x i , the length of the observations must be larger than

T x i = (I -1 1 (θ)) ii 252 * x 2 i
. We consider a fixed spot volatility σ S = 30%, two target precisions for each parameter θ i and we compute T x i for several configurations. Figures 1,2, 3 and 4 represent the results. It is well-known that for a high measurement noise, which means a high spot volatility, the problem is harder because of a low signal-to-noise ratio. The higher the volatility, the longer the observations must be. Here, we observe that with a higher drift volatility σ µ and a lower λ µ , the problem is easier. Indeed, the drift takes higher values and is more detectable. Moreover, the simulations show that the classical estimators are not adapted to such a weak signal-to-noise ratio: even after a long period of observations, the estimators exhibit high variances. Indeed, the shortest observation period is longer than 29 years. It corresponds to a target standard deviation equal to 0.5 for a parameter λ µ = 1, and a trend standard deviation equal to σ µ (2λ µ ) -1/2 ≈ 63%. Therefore, for this configuration, after 30 years of observations, the standard deviation is equal to 50% of the real parameter value λ µ . After 742 years, this standard deviation is equal to 10%. Even in such a regime, the trend forecast with a good precision is impossible. This subsection illustrates the impact of parameters misspecification on trend filtering. Using the results of Theorem 3.2, we represent, for different configurations, and for the well-and mis-specified case, the asymptotic standard deviation of the residuals between the trend and the filter. Figures 5 and6 represent the asymptotic standard deviation of the trend and of the residuals in the well-specified case (the agent uses the real values of the parameters) for different configurations. As seen in Equation ( 13), the asymptotic standard deviation of the wellspecified residuals is an increasing function of the drift volatility σ * µ and a decreasing function of the parameter λ * µ . For λ * µ = 1 and σ * µ = 90%, the standard deviation of the residuals ( 44%) is inferior to the standard deviation of the trend ( 64%). For a high λ * µ and a small drift volatility, the two quantities are approximately equal. This figure leads to the same conclusions than Equation [START_REF] Chib | Markov chain monte carlo methods for stochastic volatility models[END_REF]. Indeed, as for the calibration problem, the problem of trend filtering is easier with a small λ * µ and a high drift volatility σ * µ . Now consider the worst configuration σ S = 30%, λ * µ = 5 and σ * µ = 10%. Figure 7 represents the asymptotic standard deviation of the residuals for different estimates (λ µ , σ µ ). This regime corresponds to a standard deviation of the trend equal to σ * µ 2λ * µ -1/2 ≈ 3.2% and to a standard deviation of the residuals equal to 3.16% in the well-specified case. If the agent implements the Kalman filter with λ µ = 1 and σ µ = 90%, the standard deviation of the residuals becomes superior to 25%. Finally, consider the best configuration σ S = 30%, λ * µ = 1 and σ * µ = 90%. Figure 8 represents the asymptotic standard deviation of the residuals for different estimates (λ µ , σ µ ). This regime corresponds to a standard deviation of the trend equal to

σ * µ 2λ * µ -1/2 ≈ 63%
and to a standard deviation of the residuals equal to 44% in the wellspecified case. If the agent implements the Kalman filter with λ µ = 5 and σ µ = 10%, the standard deviation of the residuals becomes larger than 60%. Even in a favourable regime, the impact of parameters misspecification on trend filtering is not negligible. 

-giving the asymptotic probability to have a positive trend, knowing a trend estimate equal to a threshold x -is illustrated.

In order to compare this probability for different trend regimes, we choose a threshold equal to the standard deviation of the filter μ: this quantity is tractable in practice and moreover, since the continuous time misspecified filter μ is a centered Gaussian process, the probability that μ becomes larger than its standard deviation is independent of the parameters σ * µ , λ * µ , σ µ , λ µ , σ S . Suppose first that the agent uses the real values of the parameters, and consider the asymptotic probability P (µ * > 0|μ * = V μ * to have a positive trend, knowing an estimate equal to its standard deviation. Figure 9 represents this probability for different regimes. As seen in Proposition 4, in the well-specified case, this probability is an increasing function of the trend volatility σ * µ and a decreasing function of λ * µ . Again, as in the calibration and filtering problems, the detection is easier with a small λ * µ and a high drift volatility. Now, suppose that the agent uses wrong estimates (σ µ , λ µ ). In this case, the agent implements the continuous time misspecified Kalman filter. Figures 10 and11 represent the asymptotic probability P µ * > 0|μ = V μ for the best and the worst configuration of Figure 9. As explained in Remark 3.4, this probability is always superior to 0.5, even with a bad calibration of the parameters. For each case, the probability to have a positive trend, knowing an estimate equal to its standard deviation, does not vary a lot with an error on the parameters. This quantity seems to be robust to parameters misspecifications. In this subsection, we focus on the numerical maximum likelihood inference of the model ( 1)-( 2) using Kalman filtering and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. We first illustrate the performance of a parametric bootstrap, and then give a typical application on real market data. and suppose that we want to use the maximum likelihood method. This model is Gaussian and the likelihood is thus characterized by the moments of first and second order. When the number of observations N is large, these moments can be difficult to compute numerically (to mitigate these problems, two methods are introduced in Appendix B).

Here, we focus on the computation using the Kalman filter. Since we are able to compute recursively this likelihood with a large number of observations, we choose the direct maximization of this function using the BFGS algorithm. An alternative way is to use the EM-algorithm (see [START_REF] Frydman | Maximum Likelihood Estimation of Hidden Markov Processes[END_REF] or [START_REF] Dembo | Parameter Estimation of Partially Observed Continious Time Stochastic Processes Via EM Algorithm[END_REF] for details). The aim of these tests is to compare the standard deviation of this numerical maximum likelihood estimator to the theoretical results of Theorem 2.2. So, we consider the following parametric bootstrap:

(1) Simulate M paths of length T years with the model ( 3)-( 4).

(2) Consider only one parameter (for example θ = σ µ ), the other one is supposed to be known. (3) On each path i ∈ {1..M }, we compute a numerical maximum likelihood estimate θML T,i with Kalman filtering and the BFGS algorithm (initialised with σ 0 µ = 0.1 or λ 0 µ = 0.1).

(4) The variance of θ M L T is estimated by:

V ar θ M L T = 1 M -1 M i=1 θML T,i - 1 M M k=1 θML T,k 2 
. As a conclusion, one can see that for these particular examples, the asymptotic behaviour of the numerical maximum likelihood estimator is close to the asymptotic behaviour of the theoretical maximum likelihood estimator. 4.4.2. Example of application. This paragraph gives an example of application of this estimator on real market data. We consider the components {S j , j = 1..50} of the Eurostoxx 50 on 11/11/2014. The backtest period is from 6/19/2008 to 11/11/2014. In this test, we assume a risk free rate equal to zero and that each stock is tradable at its closing price and without transaction costs. We consider two self-financing portfolios {P i , i = 1, 2}:

Figures
dP i t P i t = 50 j=0 ω j,i t dS j t S j t , P i 0 = 100, based on two trend indicators {(α i t (S j )) , i = 1, 2}.
Let s be a threshold, for each portfolio {P i , i = 1, 2}, the allocation ω j,i t is given by the following rules:

(1) At each time t, we define:

N i,+ t = j ∈ {1..50} \ α i t S j > s , N i,- t = j ∈ {1..50} \ α i t S j < -s . ( 2 
) If N i,+ t = ∅ N i,- t = ∅: ∀j ∈ {1..50} , ω j,i t = 0, else: ∀j ∈ {1..50} , ω j,i t = 1 #N i,+ t 1 j∈N i,+ t - 1 #N i,- t 1 j∈N i,- t Since 50
j=0 ω j,i t = 0, the two portfolios are market neutral. We consider the following trend indicators:

(1) (α 1 t (S j )) is the annualised sliding moving average estimator of daily returns:

α 1 t S j = 252 T T k=1 dS j t-k S j t-k
, with T = 252 business days. (2) (α 2 t (S j )) is the Kalman filter estimator of the model ( 1)-( 2) where the parameters λ t µ , σ t µ , σ t S are given by the numerical maximum likelihood (introduced above) over the last 252 business days. The initialisation of the BFGS algorithm at time t > 0 is given by the previous estimate λ t-1 µ , σ t-1 µ , σ t-1 S and the first one is equal to (0.1, 10%, 30%). Figure 14 illustrates the results with s = 10%. In this example, the portfolio with Kalman filtering outperforms the one with the sliding moving average. Moreover, Figure 14 shows that the annualised Sharpe ratio (see [START_REF] Sharpe | Mutual fund performance[END_REF]) of the Kalman filtering portfolio, computed with the daily returns, is higher and more robust to a threshold variation than the one with the sliding moving average. Satisfactory as the results may seem on this specific dataset, it is however important to note that the comparison performed in this section concerns only a very specific strategy. In a related work, a thorough study of single asset investment strategies based on various criteria is made, and the robustness of the investment strategy with respect to the model parameters is actually challenged. The interested reader is referred to [START_REF] Bel Hadj Ayed | Robustness of the optimal trading strategy[END_REF].

Conclusion

The present work tries to illustrate the difficulty of trend filtering in a model based on an unobserved mean-reverting diffusion.

This model belongs to the class of Linear Gaussian Space State models. The advantage of this kind of system is to have an on-line method of estimation: the Kalman filter.

In practice, the parameters of the model are unknown, and the calibration of filtering parameters becomes crucial. The linear and Gaussian case allows to compute, in closed form, the likelihood. The Kalman filter can also be used for this analysis. These methods can be generalized to a non-constant volatility, and classical estimators can be easily implemented in practice.

Although this framework is particularly convenient for forecasting, the results of the analysis show that the classical estimators are not adapted to such a weak signal-to-noise ratio. The horizons of observations needed for an acceptable precision are too long. Therefore, the convergence is not guaranteed and the impact of misspecification on trend filtering is not negligible.

Despite these difficulties, the non-zero correlation between the trend and its estimate can be used for trend detection. This fact can explain why trend following strategies work well in practice.

Appendix A: discrete Kalman filter

Framework. This section is based on [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF]. The discrete Kalman filter is a recursive method. Consider two objects: the observations {y k } and the states of the system {x k }. This filter is based on a Gauss-Markov first order model. Consider the following system:

x k+1 = F k x k + v k , y k = H k x k + u k .
The first equation is an a priori model, the transition equation of the system. The matrix F k is the transition matrix and v k is the transition noise. The second equation is the measurement equation. The matrix H k is named the measurement matrix and u k is the measurement noise.

The aim is to identify the underlying process {x k }. The two noises are supposed white, Gaussian, centered and decorrelated. In particular:

E u k v k u l v l T = R u k 0 0 R v k δ kl .
The two noises are also supposed independent of x k and the initial state is Gaussian. So, it can be proved with a recurrence that all states are Gaussian. Therefore, just the mean and the covariance matrix are needed for the characterization of the state. The estimation is given by two steps. The first one is an a priori estimation given xk+1/k and Γ k+1/k = E (x k+1 -xk+1/k )(x k+1 -xk+1/k ) T . When the new observation is available, a correction of the estimation is done to obtain xk+1/k+1 and Γ k+1/k+1 = E (x k+1 -xk+1/k+1 )(x k+1 -xk+1/k+1 ) T . This is the a posteriori estimation. The criterion considered for the a posteriori estimation is the least squares method, which corresponds to the minimization of the trace of Γ k+1/k+1 .

Filter. The prediction (a priori estimation) is given by

xk+1/k = F k xk/k , Γ k+1/k = F k Γ k/k F T k + R v k .
The a posteriori estimation is a correction of the a priori estimation. A gain is introduced to do this correction: xk+1/k+1 = xk+1/k + K k+1 y k+1 -H k+1 xk+1/k .

As explained above, the gain K k+1 is found by least squares method, which corresponds to ∂trace Γ k+1/k+1 ∂K k+1 = 0.

Using straightforward matrix differentiation, the gain is found: -1 e λµδ +e -λµδ -1

K k+1 = Γ k+1/k H T k+1 H k+1 Γ k+1/k H T k+1 + R u
0 ••• ••• 0 -1 e λµδ                               .
Therefore, the inverse of the matrix Σ µ 1:N +1 is given by:

Σ -1 µ 1:N +1 |θ =         
2λµ(e λµδ +e -λµδ ) Procedure. Finally, at time t, the inverse of the covariance matrix is given by the following protocol:

• Computation of the matrix A -1 t using A -1 t-1 . • Computation of the matrix Σ -1 µ 1:t |θ using Σ -1 µ 1:t-1 |θ . • Using Σ -1 y 1:t |θ = Σ -1 µ 1:t |θ -Σ -1 µ 1:t |θ A -1 t Σ -1 µ 1:t |θ , the matrix Σ -1 y 1:t |θ is obtained.

Determinant of the covariance matrix. The iterative computation of det Σ y 1:N |θ is based on the following lemma:

Corollary 2 . 1 .

 21 Consider the model (3)-(4) and N observations (y 1
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 1 Figure 1. Time to reach a target standard deviation on σ µ equal to 0.05 (ln(years))
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 2 Figure 2. Time to reach a target standard deviation on σ µ equal to 0.01 (ln(years))
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 56 Figure 5. Asymptotic standard deviation of the trend as a function of the trend parameters with σ S = 30%.
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 7843 Figure 7. Asymptotic standard deviation of the residuals of the misspecified Kalman filter as a function of the trend estimate parameters with σ S = 30%, λ * µ = 5 and σ * µ = 10%.
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 9 Figure 9. Asymptotic probability to have a positive trend given a well-specified estimate equal to its standard deviation with σ S = 30%.
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 101144 Figure 10. Asymptotic probability to have a positive trend given a misspecified estimate equal to its standard deviation with σ S = 30%, λ * µ = 1 and σ * µ = 90%.
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 41 Parametric bootstrap. Consider the discrete time model (3)-(4)

Figure 12 .Figure 13 .

 1213 Figure 12. Standard deviation for the estimation of λ * µ = 1 with σ * µ = 90% and σ S = 30% on a double logarithmic scale.
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 1415 Figure 14. Portfolio evolutions with a threshold s = 10%.

k+1 - 1 ,

 1 Γ k+1/k+1 = (I d -K k+1 H k+1 ) Γ k+1/k .

σ 2 µ

 2 ( e λµδ -e -λµδ ) -2λµ σ 2 µ( e λµδ -e -λµδ ) 0 • • • 0 -2λµ σ 2µ( e λµδ -e -λµδ ) 0

  [START_REF] Casarin | Online data processing: comparison of Bayesian regularized particle filters[END_REF] and 13 illustrate the results for the estimation of the trend mean reversion speed and of the trend volatility with M = 1000, σ *
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Appendix B: Likelihood computation

The likelihood can be computed using two methods. The first one is based on a direct calculus while the second method uses the Kalman filter. 5.0.3. Direct computation of the likelihood. A first approach is to directly compute the likelihood. The vectorial representation of the discrete time model ( 3)-( 4) is:

, are two independent Gaussian processes. Therefore the vector (y 1 , • • • , y N ) T , knowing θ, is also a Gaussian process. The likelihood is then characterized by the mean M y 1:N |θ and the covariance Σ y 1:N |θ :

where Σ u 1:

Since the drift µ is an Ornstein Uhlenbeck process, then:

Finally, the likelihood is given by:

Remark 5.1. When the dimension N is large, it is difficult and numerically unstable to directly invert the covariance matrix Σ y 1:N |θ and compute its determinant. An iterative approach, the details of which are given in Appendix C, is preferred.

5.0.4.

Computation of the likelihood using the Kalman filter. The likelihood can also be evaluated via the prediction error decomposition (see [START_REF] Schweppe | Evaluation of likelihood functions for gaussian signals[END_REF] for details):

where the conditional laws are given in the following proposition:

Proposition 5. The process (y n |y 1 , ...y n-1 , θ) is Gaussian:

The a posteriori estimate of the trend μn-1/n-1 and the covariance error Γ n-1/n-1 are given by Kalman filtering (see Equations ( 5) and ( 6)).

Proof. Since the process y n is Gaussian, so is the process (y n |y 1 , ...y n-1 , θ). Moreover, using Equations ( 3)-( 4), we have:

and

Remark 5.2. In practice, the volatility is not constant. However, if the volatility σ S is F S -adapted, the two methods can be suitably modified and implemented. This assumption is satisfied if the volatility is a continuous process.

Appendix C: Iterative methods for the inverse and the determinant of the covariance matrix

We provide here, for the sake of completeness, some standard iterative methods to compute the inverse and the determinant of a covariance matrix.

Inverse of the covariance matrix. The use of the Matrix Inversion Lemma on Equation ( 21) gives:

. Then, we have to compute the inverse of the matrices A N and Σ µ 1:N |θ .

Inverse of the matrix

N is computed. The matrix A N +1 can be broken into four sub-matrices:

where

Therefore, the matrix A N +1 can be inverted blockwise.

Inverse of the matrix Σ µ 1:N |θ . The following lemma is used (see [START_REF] Akesson | Discrete eigenfunction expansion of multidimensional brownian motion and the ornstein-uhlenbeck process[END_REF] for details): Lemma 5.3. Let µ be an Ornstein Uhlenbeck process with parameters θ = (λ µ , σ µ ). The covariance matrix of µ 1 , .., µ N is Σ µ 1:N |θ . Then:

Lemma 5.4. The determinant of the matrix Σ y 1:N |θ is given by:

and for N ≥ 2, we have:

where

µ (e λµδ -e -λµδ )

.

Proof. The multiplication of Equation ( 21) by Σ -1 µ 1:N |θ gives: