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Abstract. The question of interest in this paper is the estimation
of the trend of a financial asset, and the impact of its misspecifi-
cation on investment strategies. The setting we consider is that
of a stochastic asset price model where the trend follows an un-
observable Ornstein-Uhlenbeck process. Motivated by the use of
Kalman filtering as a forecasting tool, we address the problem of
parameters estimation, and measure the effect of parameters mis-
specification. Numerical examples illustrate the difficulty of trend
forecasting in financial time series.
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Introduction

In theory, asset prices could be well described by random walks, ac-
cording to the Efficient Market Hypothesis. If this were indeed the case,
then future returns would not be predictable. Nevertheless, profession-
als in the finance industry tend to have divergent views on the subject,
and trend following strategies are the principal sources of returns for
Commodity Trading Advisors (see [33]). In fact, most quantitative
strategies are based on the more or less explicit assumption that the
trends of assets are known (see [38], [39]) and can be extracted from the
asset prices themselves. It is therefore natural to address the question
of forecasting asset trends, and to seek to provide reliable statistical
estimators.
Unfortunately, the estimation of the trend of an asset is a statisti-
cally difficult problem, mainly because of a high measurement noise:
consider for example a simple model with a constant trend dSt

St
=

µdt+ σSdW
S
t . Then, the best estimate of the trend in the least square

sense at time T is given by µ̂t = 1
T

∫ T
0

dSu
Su

. Student’s t-test will re-

ject the hypothesis µ = 0 if |µ̂T | > 1.96σS√
T

at a 5% significance level.

Therefore, with σS = 30%, the estimate µ̂T = 1% becomes statistically
relevant for observation times T > 3457 years!
The purpose of this work is to assess the feasibility of forecasting trends
modelled by an unobserved mean-reverting diffusion.
Using a Bayesian approach or maximum likelihood estimation (see e.g.
[34],[11], [5], [12] or [15]), inference methods for partially observed pro-
cesses have been applied to financial time series, mostly in the frame-
work of stochastic volatility models (see [27],[20],[30] or [14]). Closer in
spirit to our motivation, several authors have considered the situation
of an unobservable stochastic trend, and use filtering methods in this
context (most of these methods are introduced in [22]). For example,
in [49], [37] and [42] the Wiener-Kolmogorov filter (see [50] for details)
is used; in [28], [26] and [23] the trend is supposed to be a random
walk and the Kalman filter is used, and in [25] the Butterworth filter
(see [10] for details) is applied. As it turns out, most of these filters
are based on a parametric stochastic model for the trend, and their
usefulness in realistic trading strategies is therefore confronted to the
problem of parameters estimation (see [31], [41],[32] or [6] where filter-
ing methods are used in the context of trading strategies).
It is our aim to partly fill the existing gap in the quantitative finance
literature, and shed a new light on the feasability of classical trading
strategies based on the determination of asset trends. Such a prob-
lem is addressed e.g. in [23] and [24], where the emphasis is set on
Kalman filtering and the asymptotic behaviour of the maximum likeli-
hood estimator. In this paper, we focus on the question of parameters
estimation with a unobserved mean-reverting trend, and measure the
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effect of parameters misspecification.
The paper is organized as follows: in Section 1, we present the model
and recall some results on Kalman filtering. Section 2 is devoted to pa-
rameters inference using discrete time observations. The performance
of statistical estimators is evaluated by giving their asymptotic be-
haviours, and by providing, in closed form, the Cramer-Rao bound.
Section 3 introduces the continuous time misspecified Kalman filter.
We provide estimates for the impact of parameters misspecification on
trend filtering, and compute the probability to have a positive trend,
given a positive estimate. Finally, Section 4 contains numerical exam-
ples illustrating the relevance of parameters misspecification in trend
filtering.

1. Framework

In this section, the model for the asset price and the mean-reverting
dynamics of its trend is made precise. Then, the Kalman filtering
method, in a time-discretized version, is recalled.

1.1. Model.

1.1.1. Continuous time model. Consider a financial market living on
a stochastic basis (Ω,F ,F,P), where F = {Ft, t > 0} is the natural
filtration associated to a two-dimensional, uncorrelated Wiener process
(W S,W µ), and P is the objective probability measure. The dynamics
of the risky asset S is given by

dSt
St

= µtdt+ σSdW
S
t , (1)

dµt = −λµµtdt+ σµdW
µ
t , (2)

with µ0 = 0. We also assume that (λµ, σµ, σS) ∈ R∗+ × R∗+ × R∗+.
Denote by FS =

{
FSt
}

be the natural filtration associated to the price

process S. An important point is that only FS-adapted processes are
observable, which implies that agents in this market do not observe the
trend µ.

Remark 1.1. The linear and Gaussian framework has well-known
shortcomings: in practice, financial asset returns are heavy-tailed (see
[35][13]) because of jumps and volatility fluctuations. Moreover, inter-
actions between the trend and the volatility processes are possible. In
this paper, we focus on a class of simple models so as to extract easily
interpreted analytical expressions for various quantities of interest in
the context of trend forecasting and investment strategies.
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1.1.2. Discrete time model. A discrete-time version of (1)-(2) is now
presented. Let then δ be a discrete time step, and denote by the sub-
script k the value of a process at time tk = kδ. The discrete time model
is:

yk+1 =
Sk+1 − Sk

δSk
= µk+1 + uk+1, (3)

µk+1 = e−λµδµk + vk, (4)

where uk ∼ N
(

0,
σ2
S

δ

)
and vk ∼ N

(
0,

σ2
µ

2λµ

(
1− e−2λµδ

))
. The system

(3)-(4) corresponds to an AR(1) model with noise.

1.2. Optimal trend estimator.

1.2.1. Discrete Kalman filter. In this subsection, the parameters θ =
(λµ, σµ) and σS are supposed to be known. The discrete time system
(3)-(4) corresponds to a Linear Gaussian Space State model where the
observation is y and the state, µ (see [7] for details). In this case, the
optimal estimator is the conditional expectation E [µk|y1, ..., yk], given
by the Kalman filter (classical results on the discrete Kalman filter are
recalled in Appendix A).
Applications of this filter in Finance are numerous. Indeed, it can
be used for trend filtering (see [23]), for term structure models (see
[36] or [2]), for trading strategies (see [18] or [19]) and many other

applications (see [47], [3], [16] or [45]). For simplicity, we let X̂k/l

denote E [Xk|y1, ..., yl]. The Kalman filter is decomposed in two distinct
phases:

(1) An a priori estimate given µ̂k+1/k and Γk+1/k = E [(µk+1−
µ̂k+1/k)(µk+1 − µ̂k+1/k)

T
]
. This estimate is done using the tran-

sition equation (4).
(2) An a posteriori estimate. When the new observation is avail-

able, a correction of the first estimate is done to obtain µ̂k+1/k+1

and Γk+1/k+1 = E
[
(µk+1 − µ̂k+1/k+1)(µk+1 − µ̂k+1/k+1)T

]
. The

criterion for this correction is the least squares method.

Thus, µ̂k/k is the minimum variance linear unbiased estimate of the
trend µk. Formally, the iterative method is given by:

µ̂k+1/k+1 = e−λµδµ̂k/k +Kk+1

(
yk+1 − e−λµδµ̂k/k

)
, (5)

Γk+1/k+1 = (1−Kk+1) Γk+1/k, (6)

with

Kk+1 =
Γk+1/k

Γk+1/k +
σ2
S

δ

,

Γk+1/k = e−2λµδΓk/k +
σ2
µ

2λµ

(
1− e−2λµδ

)
.
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1.2.2. Stationary limit and continuous-time representation. Solving the
equation Γk+1/k+1 = Γk/k corresponding to the steady-state yields:

Γ∞ =
g (σS, λµ, σµ)− f (σS, λµ, σµ)

2e−2λµδ
,

where f (σS, λµ, σµ) =

(
σ2
S

δ
+

σ2
µ

2λµ

)(
1− e−2λµδ

)
,

and g (σS, λµ, σµ) =

√
f (σS, λµ, σµ)2 +

2σ2
Sσ

2
µ

λµδ
(e−2λµδ − e−4λµδ).

Using the stationary covariance error Γ∞, a stationary gain K∞ is
defined and the estimate can be rewritten as a corrected exponential
average:

µ̂n+1 = K∞

∞∑
i=0

e−λµδi (1−K∞)i yn+1−i. (7)

The steady-state Kalman filter has also a continuous-time limit that
depends on the asset returns. This result is recalled in the

Proposition 1. The steady-state Kalman filter µ̂ solves the following
stochastic differential equation

dµ̂t = −λµβ (λµ, σµ, σS) µ̂tdt+ λµ (β (λµ, σµ, σS)− 1)
dSt
St
, (8)

where

β (λµ, σµ, σS) =

(
1 +

σ2
µ

λ2
µσ

2
S

) 1
2

. (9)

Proof. Based on [31], the Kalman filter is given by:

E
[
µt|FSt

]
= φ (t)

(
µ̂0 +

1

σ2
S

∫ t

0

P (u)

φ (u)

dSu
Su

)
,

φ (t) = e
−λµt− 1

σ2
S

∫ t
0 P (u)du

,

where the estimation error variance P is the solution of the following
Riccati equation:

P ′ (t) =
−1

σ2
S

P (t)2 − 2λµP (t) + σ2
µ.

In this steady-state regime, we have P ′ (t) = 0. Then, the positive
solution of this equation is given by

P∞ = σ2
Sλµ (β (λµ, σµ, σS)− 1) ,

and there holds:

µ̂t = φ∞ (t)

(
µ̂0 +

1

σ2
S

∫ t

0

P∞

φ∞ (u)

dSu
Su

)
,

φ∞ (t) = e−λµβ(λµ,σµ,σS)t.
5



Since:
dφ∞ (t)

φ∞ (t)
= −λµβ (λµ, σµ, σS) dt,

Equation (8) follows. �

The Kalman filter is the optimal estimator for linear systems with
Gaussian uncertainty, and such a continuous-time representation can
be used for risk/return analysis of trend following strategies (see [9]
for details). Of course, in practice, the parameters θ = (λµ, σµ) are
unknown and must be estimated. This important question is addressed
in the next section.

2. Inference of the trend parameters

In this section, the problem of parameters inference is tackled, based
on the use of statistical estimators such as Maximum Likelihood or
Bayesian estimators. We analyze the asymptotic behaviours of sta-
tistical estimators and provide the Cramer-Rao bound in closed form.
Since these classical estimators are based on the likelihood, two on-line
computations of this function are presented in Appendix B.

2.1. Asymptotic behaviour of statistical estimators. The dis-
crete time model (3)-(4) can be reformulated using the following propo-
sition:

Proposition 2. Consider the model (3)-(4) with (λµ, σµ, σS) ∈ R∗+ ×
R∗+ × R∗+. In this case, the process (yi) is ARMA(1, 1).

The asymptotic behaviour of the classical estimators follows. In-
deed, the identifiability property and the asymptotic normality of the
maximum likelihood estimator are well known for stationary ARMA
Gaussian processes (see [8], section 10.8). Moreover, the asymptotic be-
haviour of the Bayesian estimators are also guaranteed by the ARMA(1, 1)
property of the process (yi). If the prior density function is continu-
ous and positive in an open neighbourhood of the real parameters, the
Bayesian estimators are asymptotically normal (see [46] in which a gen-
eralized Bernstein-Von Mises theorem for stationary ”short memory”
processes is given, or [40] for a discussion on the Bayesian analysis of
ARMA processes).

2.2. Cramer-Rao bound. This bound is the lowest variance of the
unbiased estimators. We recall the following result, providing a formal
description of the Cramer-Rao bound (CRB in short).

Corollary 2.1. Consider the model (3)-(4) and N observations (y1, · · ·
, yN)T . Suppose that (λµ, σµ, σS) ∈ R∗+×R∗+×R∗+. If θ̂N is an unbiased
estimator of θ = (λµ, σµ), we have:

Covθ
(
θ̂N

)
> CRB (θ) .
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This bound is given by CRB (θ) = I−1
N (θ), where IN (θ) is the Fisher

Information matrix:

(IN (θ))i,j = −E
[
∂2 log f (y1, ...yN |θ)

∂θi∂θj

]
,

and IN (θ) = NI1 (θ). Moreover, the maximum likelihood estimator

θ̂ML
N attains this bound:

√
N
(
θ̂ML
N − θ

)
→ N

(
0, I−1

1 (θ)
)
.

This result is a consequence of Proposition 2 (see [8], section 10.8).
The following result is an analytic representation of the Fisher infor-
mation matrix:

Theorem 2.2. For the model (3)-(4), if (λµ, σµ, σS) ∈ R∗+×R∗+×R∗+,
we have:

I1 (θ) =

(
1

4Π

∫ Π

−Π

f−2
θ (ω)

∂fθ
∂θi

(ω)
∂fθ
∂θj

(ω) dω

)
1≤i,j≤2

,

where fθ is the spectral density of the process (yi):

fθ (ω) =

σ2
µ

2λµ

(
1− e−2λµδ

)
+

σ2
S

δ

(
1 + e−2λµδ

)
− 2e−λµδσ2

S

δ
cos (ω)

1 + e−2λµδ − 2e−λµδ cos (ω)
.

Proof. Whittle’s formula (see [48] for details) gives the integral rep-
resentation of the Fisher information matrix. Since the process (yi)
is ARMA(1, 1), the expression of its spectral density follows (see [8],
section 4.4). �

Finally, the Cramer-Rao Bound of the trend parameters can be com-
puted using Theorem 2.2.

3. Impact of parameters misspecification

In this section, we consider the continuous-time Kalman filter with
a bad calibration in the steady-state regime. The law of the residu-
als between the filter (misspecified or not) and the hidden process is
characterized, and the impact of parameters misspecification on the
detection of a positive trend is studied.

3.1. Context. Suppose that the risky asset S is given by the model
(1)-(2) with θ∗ =

(
σ∗µ, λ

∗
µ

)
, and suppose that an agent thinks that the

parameters are equal to θ = (σµ, λµ). Assuming the steady-state regime
and using these estimates and Proposition 1, the agent implements the
continuous-time misspecified Kalman filter:

dµ̂t = −λµβµ̂tdt+ λµ (β − 1)
dSt
St
, (10)

where β = β (λµ, σµ, σS) (see Equation (9)) and µ̂0 = 0. The following
lemma gives the law of the misspecified Kalman filter:
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Lemma 3.1. Consider the model (1)-(2) with θ∗ =
(
σ∗µ, λ

∗
µ

)
. The

misspecified, continuous-time filter of Equation (10) is given by:

µ̂t = λµ (β − 1) e−λµβt
(∫ t

0

eλµβsµ∗sds+ σS

∫ t

0

eλµβsdW S
s

)
. (11)

Moreover, µ̂ is a centered Gaussian process and its variance is given
by:

Var [µ̂t] = E
[
µ̂2
t

]
=
λ2
µ (β − 1)2 (σ∗µ)2

λ∗µ
(
λµβ − λ∗µ

) [
1− e−(λµβ+λ∗µ)t

λµβ + λ∗µ

+
2e−(λµβ+λ∗µ)t − e−2λ∗µt − e−2λµβt

λµβ − λ∗µ
+
e−2λµβt − 1

2λµβ

]

+
λµ (β − 1)2 σ2

S

2β

(
1− e−2λµβt

)
.

Proof. Applying Itō’s lemma to the function f (µ̂, t) = eλµβtµ̂t, and
integrating from 0 to t yields Equation (11). Therefore, µ̂ is also a
Gaussian process. Its mean is zero (because µ∗0 = 0). Since the pro-
cesses µ∗ and W S are supposed to be independent, the variance of µ̂
is given by the sum of the variances of the terms in Equation (11).
Moreover:

Var
[∫ t

0

eλµβdW S
s

]
=

e2λµβt − 1

2λµβ
,

Var
[∫ t

0

eλµβsµ∗sds

]
=

∫ t

0

∫ t

0

eλµβ(s1+s2)Cov
(
µ∗s1 , µ

∗
s2

)
ds1ds2,

and Cov
(
µ∗s1 , µ

∗
s2

)
is given by Equation (23). The variance of the pro-

cess µ̂t follows. �

3.2. Filtering with parameters misspecification. The impact of
parameters misspecification on trend filtering can be measured using
the difference between the filter and the hidden process.
The following theorem gives the law of the residuals.

Theorem 3.2. Consider the model (1)-(2) with θ∗ =
(
σ∗µ, λ

∗
µ

)
and

the trend estimate defined in Equation (11). The process µ̂ − µ∗ is a
centered Gaussian process and its variance has a stationary limit:

lim
t→∞

Var [µ̂t − µ∗t ] =
σ2
S

2β

(
λµ (β − 1)2 + λ∗µ

(
(β∗)2 − 1

) λ∗µβ + λµ

λµβ + λ∗µ

)
,(12)

where β = β (λµ, σµ, σS) and β∗ = β
(
λ∗µ, σ

∗
µ, σS

)
as given in Equation

(9).
Moreover, if (σµ, λµ) =

(
σ∗µ, λ

∗
µ

)
, Equation (12) becomes:

lim
t→∞

Var [µ̂∗t − µ∗t ] = λ∗µσ
2
S (β∗ − 1) . (13)
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Proof. Equation (11) implies that the process µ̂ − µ∗ is a centered
Gaussian process. Its variance can be computed in closed form:

Var [µ̂t − µ∗t ] = Var [µ̂t] + Var [µ∗t ]− 2 ∗ Cov [µ̂t, µ
∗
t ] ,

where Var [µ∗t ] =
(σ∗µ)

2

2λ∗µ

(
1− e−2λ∗µt

)
, and Var [µ̂t] is given by Lemma

3.1. Since the processes W S and µ∗ are supposed to be independent,
there holds:

Cov [µ̂t, µ
∗
t ] =

λµ (β − 1)
(
σ∗µ
)2

2λ∗µ

(
1− e−(λµβ+λ∗µ)t

λµβ + λ∗µ

−e
−2λ∗µt − e−(λµβ+λ∗µ)t

λµβ − λ∗µ

)
.

The asymptotic variance is obtained by letting t→∞:

lim
t→∞

Var [µ̂t − µ∗t ] =
λµ (β − 1)

2β

[
(β − 1)σ2

S −
(
σ∗µ
)2

(β + 1)

λ∗µ
(
λµβ + λ∗µ

)]

+

(
σ∗µ
)2

2λ∗µ
,

and Equation (12) follows. Finally, Equation (13) is obtained by letting
θ → θ∗. �

Remark 3.3. Consider the well-specified case (σµ, λµ) =
(
σ∗µ, λ

∗
µ

)
. Us-

ing Equation (13), it follows that:

lim
t→∞

Var [µ̂∗t − µ∗t ]
Var [µ∗t ]

=
2

1 +

√
1 +

(σ∗µ)
2

(λ∗µ)
2
σ2
S

. (14)

Then, the asymptotic relative variance of the well-specified residuals is
an increasing function of λ∗µ and a decreasing function of σ∗µ.

3.3. Detection of a positive trend. In practice, the trend estimate
(misspecified or not) will be used to make an investment decision. For
example, a positive estimate leads to a long position. So, it is interest-
ing to estimate the probability of a positive trend knowing a positive
estimate. We derive this probability in closed form, based on the fol-
lowing proposition giving the asymptotic conditional law of the trend
(µ∗t |µ̂t = x):

Proposition 3. Consider the model (1)-(2) with θ∗ =
(
σ∗µ, λ

∗
µ

)
and the

trend estimate defined in Equation (11). Then, there holds:

(µ∗t |µ̂t = x)
L→

t→∞
N
(
M∞µ∗|µ̂,Var∞µ∗|µ̂

)
, (15)
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with:

M∞µ∗|µ̂ =
λ∗µβ

(
(β∗)2 − 1

)
(β − 1)

(
λµβ + λ∗µ (β∗)2)x, (16)

Var∞µ∗|µ̂ = Var∞µ∗

(
1−

λ∗µλµβ
(
(β∗)2 − 1

)(
λ∗µ + λµβ

) (
λµβ + λ∗µ (β∗)2)

)
, (17)

where Var∞µ∗ =
(σ∗µ)2

2λ∗µ
.

Moreover, if (σµ, λµ) =
(
σ∗µ, λ

∗
µ

)
, Equation (15) becomes:

(µ∗t |µ̂∗t = x)
L→

t→∞
N
(
x,

2Var∞µ∗
β∗ + 1

)
, (18)

where β∗ = β
(
λ∗µ, σ

∗
µ, σS

)
(see Equation (9)).

Proof. Since the estimate µ̂ and the trend µ∗ are two centered and cor-
related Gaussian processes (see Lemma 3.1 and the proof of Theorem
3.2), the conditional law (µ∗t |µ̂t = x) is Gaussian with a mean and a
variance given by:

Mµ∗t |µ̂t =
Cov (µ̂t, µ

∗
t )

Var [µ̂t]
x,

Varµ∗t |µ̂t = Var [µ∗t ]−
Cov (µ̂t, µ

∗
t )

2

Var [µ̂t]
.

Using Lemma 3.1 and the expression of Cov (µ̂t, µ
∗
t ) in the proof of

Theorem 3.2 yields

lim
t→∞

Mµ∗t |µ̂t = M∞µ∗|µ̂,

lim
t→∞

Varµ∗t |µ̂t = Var∞µ∗|µ̂,

and Equation (15) follows. Finally, Equation (18) is obtained by letting
θ → θ∗. �

The following proposition is a consequence of the previous propo-
sition. It gives the asymptotic probability to have a positive trend,
knowing a positive estimate equal to x.

Proposition 4. Consider the model (1)-(2) with θ∗ =
(
σ∗µ, λ

∗
µ

)
and the

trend estimate defined in Equation (11). In this case:

lim
t→∞

P (µ∗t > 0|µ̂t = x) = P∞ (µ∗ > 0|µ̂ = x) , (19)

where

P∞ (µ∗ > 0|µ̂ = x) = 1− Φ

 −M∞µ∗|µ̂=x√
Var∞µ∗|µ̂=x

 , (20)

10



where M∞µ∗|µ̂=x and Var∞µ∗|µ̂=x are defined in Equations (16) and (17),
and Φ is the cumulative distribution function of the standard normal
law.

Moreover, if x > 0 and (σµ, λµ) =
(
σ∗µ, λ

∗
µ

)
, this asymptotic probabil-

ity becomes an increasing function of σ∗µ and a decreasing function of
λ∗µ.

Proof. Equations (19) and (20) follow from Proposition 3. Now, con-
sider the well-specified case (σµ, λµ) =

(
σ∗µ, λ

∗
µ

)
and x > 0. Using

Equation (18), it follows that:

Var∞µ∗|µ̂∗=x = f
(
σ∗µ, λ

∗
µ, σS

)
,

where

f
(
σ∗µ, λ

∗
µ, σS

)
=

(
σ∗µ
)2

λ∗µ

(
1 +

√
1 +

(σ∗µ)
2

σ2
S(λ∗µ)

2

) .
Since

∂f

∂λ∗µ

(
σ∗µ, λ

∗
µ, σS

)
=

−
(
σ∗µ
)2

(
λ∗µ
)2

(
1 +

√
1 +

(σ∗µ)
2

σ2
S(λ∗µ)

2 +
(σ∗µ)

2

σ2
S

) ≤ 0,

∂f

∂σ∗µ

(
σ∗µ, λ

∗
µ, σS

)
=

λ∗µσ
∗
µσ

2
S

√
1 +

(σ∗µ)
2

σ2
S(λ∗µ)

2(
σ∗µ
)2

+ σ2
S

(
λ∗µ
)2 ≥ 0,

the asymptotic well-specified probability to have a positive trend, know-
ing a positive estimate equal to x is an increasing function of σ∗µ and a
decreasing function of λ∗µ. �

Remark 3.4. This probability is an increasing function of x. Indeed,
it is easier to detect the sign of the real trend with a high estimate than
with a low estimate. Moreover, this probability is always superior to
0.5. This is due to the non-zero correlation between the trend and the
filter. As shown in the previous sections, trend filtering is easier with a
small spot volatility σS. Here, the probability to make a good detection
is also a decreasing function of σS.

4. Simulations

In this section, numerical simulations are performed, in order to make
the reader aware of the trend filtering problem. First, the feasibility of
trend forecasting with statistical estimators is illustrated on different
trend regimes. Then, the effects of a bad forecast on trend filtering
and on the detection of a positive trend are discussed. Finally, we
study the numerical maximum likelihood inference of this model using

11



Kalman filtering and the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm.

4.1. Feasibility of trend forecasting. Suppose that only discrete-
time observations are available and that the time step is equal to
δ = 1/252, corresponding to daily returns.
Note that, if this time step is divided by M , the variance of the obser-

vation noise uk is multiplied by M (uk ∼ N
(

0,
σ2
S

δ

)
), so that increasing

the frequency of the observations will not be really helpful to calibrate
the trend.
We also assume that the agent uses an unbiased estimator. Given T
years of observations, The Cramer-Rao bound is given by:

CRBT (θ) =
I−1

1 (θ)

T ∗ 252
,

where I1 (θ) is given by Theorem 2.2. The smallest confidence region is
obtained with this matrix. In practice, the real values of the parameters
θ are unknown and asymptotic confidence regions are computed (re-

placing θ by the estimates θ̂ in the Fisher information matrix I1

(
θ̂
)

).

Since the goal of this subsection is to evaluated the feasibility of this
estimation problem, we suppose that we know the real values of the
parameters. In such a case, the exact Cramer-Rao bound can be com-
puted. Suppose that a target standard deviation xi is fixed for the
parameter θi. In this case, to reach the precision xi, the length of the

observations must be larger than T xi =
(I−1

1 (θ))
ii

252∗x2
i

.

We consider a fixed spot volatility σS = 30%, two target precisions
for each parameter θi and we compute T xi for several configurations.
Figures 1, 2, 3 and 4 represent the results. It is well-known that for
a high measurement noise, which means a high spot volatility, the
problem is harder because of a low signal-to-noise ratio. The higher
the volatility, the longer the observations must be. Here, we observe
that with a higher drift volatility σµ and a lower λµ, the problem is
easier. Indeed, the drift takes higher values and is more detectable.
Moreover, the simulations show that the classical estimators are not
adapted to such a weak signal-to-noise ratio: even after a long period
of observations, the estimators exhibit high variances. Indeed, the
shortest observation period is longer than 29 years. It corresponds
to a target standard deviation equal to 0.5 for a parameter λµ = 1, and

a trend standard deviation equal to σµ (2λµ)−1/2 ≈ 63%. Therefore, for
this configuration, after 30 years of observations, the standard deviation
is equal to 50% of the real parameter value λµ. After 742 years, this
standard deviation is equal to 10%. Even in such a regime, the trend
forecast with a good precision is impossible.
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Time to reach std(σ̂µ) = 0.05
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Figure 1. Time to reach a target standard deviation
on σµ equal to 0.05 (ln(years))

Time to reach std(σ̂µ) = 0.01
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Figure 2. Time to reach a target standard deviation
on σµ equal to 0.01 (ln(years))
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Time to reach std(λ̂) = 0.5
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Figure 3. Time to reach a target standard deviation
on λµ equal to 0.5 (ln(years))

Time to reach std(λ̂) = 0.1
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Figure 4. Time to reach a target standard deviation
on λµ equal to 0.1 (ln(years))

4.2. Impact of parameters misspecification on trend filtering.
This subsection illustrates the impact of parameters misspecification
on trend filtering. Using the results of Theorem 3.2, we represent, for
different configurations, and for the well- and mis-specified case, the
asymptotic standard deviation of the residuals between the trend and
the filter. Figures 5 and 6 represent the asymptotic standard deviation
of the trend and of the residuals in the well-specified case (the agent
uses the real values of the parameters) for different configurations. As
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seen in Equation (13), the asymptotic standard deviation of the well-
specified residuals is an increasing function of the drift volatility σ∗µ
and a decreasing function of the parameter λ∗µ. For λ∗µ = 1 and σ∗µ =
90%, the standard deviation of the residuals (' 44%) is inferior to the
standard deviation of the trend (' 64%). For a high λ∗µ and a small
drift volatility, the two quantities are approximately equal. This figure
leads to the same conclusions than Equation (14). Indeed, as for the
calibration problem, the problem of trend filtering is easier with a small
λ∗µ and a high drift volatility σ∗µ.

Now consider the worst configuration σS = 30%, λ∗µ = 5 and σ∗µ =
10%. Figure 7 represents the asymptotic standard deviation of the
residuals for different estimates (λµ, σµ). This regime corresponds to a

standard deviation of the trend equal to σ∗µ
(
2λ∗µ
)−1/2 ≈ 3.2% and to a

standard deviation of the residuals equal to 3.16% in the well-specified
case. If the agent implements the Kalman filter with λµ = 1 and
σµ = 90%, the standard deviation of the residuals becomes superior to
25%. Finally, consider the best configuration σS = 30%, λ∗µ = 1 and
σ∗µ = 90%. Figure 8 represents the asymptotic standard deviation of
the residuals for different estimates (λµ, σµ). This regime corresponds

to a standard deviation of the trend equal to σ∗µ
(
2λ∗µ
)−1/2 ≈ 63%

and to a standard deviation of the residuals equal to 44% in the well-
specified case. If the agent implements the Kalman filter with λµ = 5
and σµ = 10%, the standard deviation of the residuals becomes larger
than 60%. Even in a favourable regime, the impact of parameters
misspecification on trend filtering is not negligible.
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Figure 5. Asymptotic standard deviation of the trend
as a function of the trend parameters with σS = 30%.
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Figure 6. Asymptotic standard deviation of the resid-
uals of the well-specified Kalman filter as a function of
the trend parameters with σS = 30%.
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Figure 7. Asymptotic standard deviation of the resid-
uals of the misspecified Kalman filter as a function of the
trend estimate parameters with σS = 30%, λ∗µ = 5 and
σ∗µ = 10%.
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Figure 8. Asymptotic standard deviation of the resid-
uals of the misspecified Kalman filter as a function of the
trend estimate parameters with σS = 30%, λ∗µ = 1 and
σ∗µ = 90%.

4.3. Detection of a positive trend. In this subsection, Equation
(20) - giving the asymptotic probability to have a positive trend, know-
ing a trend estimate equal to a threshold x - is illustrated.
In order to compare this probability for different trend regimes, we
choose a threshold equal to the standard deviation of the filter µ̂: this
quantity is tractable in practice and moreover, since the continuous
time misspecified filter µ̂ is a centered Gaussian process, the probabil-
ity that µ̂ becomes larger than its standard deviation is independent
of the parameters

(
σ∗µ, λ

∗
µ, σµ, λµ, σS

)
.

Suppose first that the agent uses the real values of the parameters,
and consider the asymptotic probability P (µ∗ > 0|µ̂∗ =

√
Vµ̂∗
)

to have
a positive trend, knowing an estimate equal to its standard deviation.
Figure 9 represents this probability for different regimes. As seen in
Proposition 4, in the well-specified case, this probability is an increasing
function of the trend volatility σ∗µ and a decreasing function of λ∗µ.
Again, as in the calibration and filtering problems, the detection is
easier with a small λ∗µ and a high drift volatility. Now, suppose that the
agent uses wrong estimates (σµ, λµ). In this case, the agent implements
the continuous time misspecified Kalman filter. Figures 10 and 11
represent the asymptotic probability P

(
µ∗ > 0|µ̂ =

√
Vµ̂

)
for the best

and the worst configuration of Figure 9. As explained in Remark 3.4,
this probability is always superior to 0.5, even with a bad calibration
of the parameters. For each case, the probability to have a positive
trend, knowing an estimate equal to its standard deviation, does not
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vary a lot with an error on the parameters. This quantity seems to be
robust to parameters misspecifications.
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Figure 9. Asymptotic probability to have a positive
trend given a well-specified estimate equal to its standard
deviation with σS = 30%.
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Figure 10. Asymptotic probability to have a positive
trend given a misspecified estimate equal to its standard
deviation with σS = 30%, λ∗µ = 1 and σ∗µ = 90%.
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Figure 11. Asymptotic probability to have a positive
trend given a misspecified estimate equal to its standard
deviation with σS = 30%, λ∗µ = 5 and σ∗µ = 10%.

4.4. Kalman filtering in practice. In this subsection, we focus on
the numerical maximum likelihood inference of the model (1)-(2) using
Kalman filtering and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. We first illustrate the performance of a parametric boot-
strap, and then give a typical application on real market data.

4.4.1. Parametric bootstrap. Consider the discrete time model (3)-(4)
and suppose that we want to use the maximum likelihood method.
This model is Gaussian and the likelihood is thus characterized by the
moments of first and second order. When the number of observations
N is large, these moments can be difficult to compute numerically (to
mitigate these problems, two methods are introduced in Appendix B).
Here, we focus on the computation using the Kalman filter. Since we
are able to compute recursively this likelihood with a large number of
observations, we choose the direct maximization of this function using
the BFGS algorithm. An alternative way is to use the EM-algorithm
(see [21] or [17] for details). The aim of these tests is to compare the
standard deviation of this numerical maximum likelihood estimator to
the theoretical results of Theorem 2.2. So, we consider the following
parametric bootstrap:

(1) Simulate M paths of length T years with the model (3)-(4).
(2) Consider only one parameter (for example θ = σµ), the other

one is supposed to be known.
(3) On each path i ∈ {1..M}, we compute a numerical maximum

likelihood estimate θ̂ML
T,i with Kalman filtering and the BFGS

algorithm (initialised with σ0
µ = 0.1 or λ0

µ = 0.1).
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(4) The variance of θML
T is estimated by:

ˆV ar
(
θML
T

)
=

1

M − 1

M∑
i=1

(
θ̂ML
T,i −

1

M

M∑
k=1

θ̂ML
T,k

)2

.

Figures 12 and 13 illustrate the results for the estimation of the trend
mean reversion speed and of the trend volatility with M = 1000, σ∗µ =
90%, λ∗µ = 1 and σS = 30%.
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Figure 12. Standard deviation for the estimation of
λ∗µ = 1 with σ∗µ = 90% and σS = 30% on a double
logarithmic scale.
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Figure 13. Standard deviation for the estimation of
σ∗µ = 90% with λ∗µ = 1 and σS = 30% on a double
logarithmic scale.

As a conclusion, one can see that for these particular examples, the
asymptotic behaviour of the numerical maximum likelihood estimator
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is close to the asymptotic behaviour of the theoretical maximum like-
lihood estimator.

4.4.2. Example of application. This paragraph gives an example of ap-
plication of this estimator on real market data. We consider the compo-
nents {Sj, j = 1..50} of the Eurostoxx 50 on 11/11/2014. The backtest
period is from 6/19/2008 to 11/11/2014. In this test, we assume a risk
free rate equal to zero and that each stock is tradable at its closing
price and without transaction costs. We consider two self-financing
portfolios {P i, i = 1, 2}:

dP i
t

P i
t

=
50∑
j=0

ωj,it
dSjt

Sjt
,

P i
0 = 100,

based on two trend indicators {(αit (Sj)) , i = 1, 2}. Let s be a thresh-
old, for each portfolio {P i, i = 1, 2}, the allocation

(
ωj,it
)

is given by
the following rules:

(1) At each time t, we define:

N i,+
t =

{
j ∈ {1..50} \ αit

(
Sj
)
> s
}
,

N i,−
t =

{
j ∈ {1..50} \ αit

(
Sj
)
< −s

}
.

(2) If N i,+
t = ∅

∨
N i,−
t = ∅:

∀j ∈ {1..50} , ωj,it = 0,

else:

∀j ∈ {1..50} , ωj,it =
1

#N i,+
t

1j∈N i,+
t
− 1

#N i,−
t

1j∈N i,−
t

Since
∑50

j=0 ω
j,i
t = 0, the two portfolios are market neutral. We consider

the following trend indicators:

(1) (α1
t (Sj)) is the annualised sliding moving average estimator of

daily returns:

α1
t

(
Sj
)

=
252

T

T∑
k=1

dSjt−k

Sjt−k
,

with T = 252 business days.
(2) (α2

t (Sj)) is the Kalman filter estimator of the model (1)-(2)
where the parameters

(
λtµ, σ

t
µ, σ

t
S

)
are given by the numerical

maximum likelihood (introduced above) over the last 252 busi-
ness days. The initialisation of the BFGS algorithm at time
t > 0 is given by the previous estimate

(
λt−1
µ , σt−1

µ , σt−1
S

)
and

the first one is equal to (0.1, 10%, 30%).
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Figure 14 illustrates the results with s = 10%. In this example, the
portfolio with Kalman filtering outperforms the one with the sliding
moving average. Moreover, Figure 14 shows that the annualised Sharpe
ratio (see [44]) of the Kalman filtering portfolio, computed with the
daily returns, is higher and more robust to a threshold variation than
the one with the sliding moving average.

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Backtest on European stocks with a threshold = 10%

dates

P
or

tfo
lio

 v
al

ue

6/19/2008 3/31/2009 1/4/2010 9/28/2010 7/1/2011 3/9/2012 12/4/2012 9/3/2013 6/2/2014

Portfolio with sliding moving average

Portfolio with Kalman filtering

Figure 14. Portfolio evolutions with a threshold s = 10%.
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Satisfactory as the results may seem on this specific dataset, it is
however important to note that the comparison performed in this sec-
tion concerns only a very specific strategy. In a related work, a thor-
ough study of single asset investment strategies based on various crite-
ria is made, and the robustness of the investment strategy with respect
to the model parameters is actually challenged. The interested reader
is referred to [4].
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5. Conclusion

The present work tries to illustrate the difficulty of trend filtering in
a model based on an unobserved mean-reverting diffusion.

This model belongs to the class of Linear Gaussian Space State mod-
els. The advantage of this kind of system is to have an on-line method
of estimation: the Kalman filter.

In practice, the parameters of the model are unknown, and the cali-
bration of filtering parameters becomes crucial. The linear and Gauss-
ian case allows to compute, in closed form, the likelihood. The Kalman
filter can also be used for this analysis. These methods can be general-
ized to a non-constant volatility, and classical estimators can be easily
implemented in practice.

Although this framework is particularly convenient for forecasting,
the results of the analysis show that the classical estimators are not
adapted to such a weak signal-to-noise ratio. The horizons of observa-
tions needed for an acceptable precision are too long. Therefore, the
convergence is not guaranteed and the impact of misspecification on
trend filtering is not negligible.

Despite these difficulties, the non-zero correlation between the trend
and its estimate can be used for trend detection. This fact can explain
why trend following strategies work well in practice.
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Appendix A: discrete Kalman filter

Framework. This section is based on [29]. The discrete Kalman filter
is a recursive method. Consider two objects: the observations {yk} and
the states of the system {xk}. This filter is based on a Gauss-Markov
first order model. Consider the following system:

xk+1 = Fkxk + vk,

yk = Hkxk + uk.

The first equation is an a priori model, the transition equation of the
system. The matrix Fk is the transition matrix and vk is the transition
noise. The second equation is the measurement equation. The matrix
Hk is named the measurement matrix and uk is the measurement noise.
The aim is to identify the underlying process {xk}. The two noises are
supposed white, Gaussian, centered and decorrelated. In particular:

E

[(
uk
vk

)(
ul
vl

)T]
=

(
Ru
k 0

0 Rv
k

)
δkl.

The two noises are also supposed independent of xk and the initial
state is Gaussian. So, it can be proved with a recurrence that all states
are Gaussian. Therefore, just the mean and the covariance matrix are
needed for the characterization of the state. The estimation is given
by two steps. The first one is an a priori estimation given x̂k+1/k

and Γk+1/k = E
[
(xk+1 − x̂k+1/k)(xk+1 − x̂k+1/k)

T
]
. When the new ob-

servation is available, a correction of the estimation is done to ob-
tain x̂k+1/k+1 and Γk+1/k+1 = E

[
(xk+1 − x̂k+1/k+1)(xk+1 − x̂k+1/k+1)T

]
.

This is the a posteriori estimation. The criterion considered for the
a posteriori estimation is the least squares method, which corresponds
to the minimization of the trace of Γk+1/k+1.

Filter. The prediction (a priori estimation) is given by

x̂k+1/k = Fkx̂k/k,

Γk+1/k = FkΓk/kF
T
k +Rv

k.

The a posteriori estimation is a correction of the a priori estimation.
A gain is introduced to do this correction:

x̂k+1/k+1 = x̂k+1/k +Kk+1

(
yk+1 −Hk+1x̂k+1/k

)
.

As explained above, the gain Kk+1 is found by least squares method,
which corresponds to

∂trace
(
Γk+1/k+1

)
∂Kk+1

= 0.

Using straightforward matrix differentiation, the gain is found:

Kk+1 = Γk+1/kH
T
k+1

[
Hk+1Γk+1/kH

T
k+1 +Ru

k+1

]−1
,

Γk+1/k+1 = (Id −Kk+1Hk+1) Γk+1/k.
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Appendix B: Likelihood computation

The likelihood can be computed using two methods. The first one is
based on a direct calculus while the second method uses the Kalman
filter.

5.0.3. Direct computation of the likelihood. A first approach is to di-
rectly compute the likelihood. The vectorial representation of the dis-
crete time model (3)-(4) is: y1

...
yN

 =

 µ1
...
µN

+

 u1
...
uN

 ,

where (µ1, · · · , µN)T and (u1, · · · , uN)T , knowing θ = (σµ, λµ), are two

independent Gaussian processes. Therefore the vector (y1, · · · , yN)T ,
knowing θ, is also a Gaussian process. The likelihood is then charac-
terized by the mean My1:N |θ and the covariance Σy1:N |θ:

My1:N |θ = 0 (µ0 = 0 is assumed) , (21)

Σy1:N |θ = Σµ1:N |θ + Σu1:N |θ, (22)

where Σu1:N |θ =
σ2
S

δ
IN and Σµ1:N |θ = (Cov (µt, µs))1≤t,s≤N . Since the

drift µ is an Ornstein Uhlenbeck process, then:

Cov (µt, µs) =
σ2
µ

2λµ
e−λµ(s+t)

(
e2λµs∧t − 1

)
. (23)

Finally, the likelihood is given by:

f (y1, ...yN |θ) = 1

(2π)N/2
√
detΣy1:N |θ

e

(
−1
2

(y1,...,yN )Σ−1
y1:N |θ

(y1,...,yN )T
)
. (24)

Remark 5.1. When the dimension N is large, it is difficult and nu-
merically unstable to directly invert the covariance matrix Σy1:N |θ and
compute its determinant. An iterative approach, the details of which
are given in Appendix C, is preferred.

5.0.4. Computation of the likelihood using the Kalman filter. The like-
lihood can also be evaluated via the prediction error decomposition
(see [43] for details):

f (y1, ...yN |θ) = f (yN |y1, ...yN−1, θ) f (y1, ...yN−1|θ) .

=
N∏
n=1

f (yn|y1, ...yn−1, θ) ,

where the conditional laws are given in the following proposition:

Proposition 5. The process (yn|y1, ...yn−1, θ) is Gaussian:

(yn|y1, ...yn−1, θ) ∼ N
(
Myn|n−1

,Varyn|n−1

)
,
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with

Myn|n−1
= e−λδµ̂n−1/n−1,

Varyn|n−1
= e−2λδΓn−1/n−1 +

σ2
µ

2λ

(
1− e−2λδ

)
+
σ2
S

δ
.

The a posteriori estimate of the trend µ̂n−1/n−1 and the covariance
error Γn−1/n−1 are given by Kalman filtering (see Equations (5) and
(6)).

Proof. Since the process yn is Gaussian, so is the process (yn|y1, ...yn−1, θ).
Moreover, using Equations (3)-(4), we have:

Myn|n−1
= µ̂n/n−1 + 0,

µ̂n/n−1 = e−λδµ̂n−1/n−1 + 0,

and

Varyn|n−1
= Γn/n−1 +

σ2
S

δ
,

Γn/n−1 = e−2λδΓn−1/n−1 +
σ2
µ

2λ

(
1− e−2λδ

)
.

�

Remark 5.2. In practice, the volatility is not constant. However, if the
volatility σS is FS-adapted, the two methods can be suitably modified
and implemented. This assumption is satisfied if the volatility is a
continuous process.

Appendix C: Iterative methods for the inverse and the
determinant of the covariance matrix

We provide here, for the sake of completeness, some standard itera-
tive methods to compute the inverse and the determinant of a covari-
ance matrix.

Inverse of the covariance matrix. The use of the Matrix Inversion
Lemma on Equation (21) gives:

Σ−1
y1:N |θ = Σ−1

µ1:N |θ − Σ−1
µ1:N |θA

−1
N Σ−1

µ1:N |θ,

where AN = δ
σ2
S
IN + Σ−1

µ1:N |θ. Then, we have to compute the inverse of

the matrices AN and Σµ1:N |θ.

Inverse of the matrix AN . Suppose that A−1
N is computed. The matrix

AN+1 can be broken into four sub-matrices:

AN+1 =

(
B1 B2

B3 B4

)
,
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where

B1 =
δ

σ2
S

+
2λµ

(
eλµδ + e−λµδ

)
σ2
µ (eλµδ − e−λµδ)

,

B2 =
( −2λµ

σ2
µ(eλµδ−e−λµδ)

0 · · · 0
)
,

B3 = BT
2 ,

B4 = AN .

Therefore, the matrix AN+1 can be inverted blockwise.

Inverse of the matrix Σµ1:N |θ. The following lemma is used (see [1] for
details):

Lemma 5.3. Let µ be an Ornstein Uhlenbeck process with parameters
θ = (λµ, σµ). The covariance matrix of µ1, .., µN is Σµ1:N |θ. Then:

Σ−1
µ1:N |θ

=
2λµ

σ2
µ(eλµδ−e−λµδ)

BN,

BN=



eλµδ+e−λµδ −1 0 ··· ··· 0

−1 eλµδ+e−λµδ −1
...

...

0 −1 eλµδ+e−λµδ −1

...
...

... ... ... ...
...

... −1 eλµδ+e−λµδ −1 0

...
... −1 eλµδ+e−λµδ −1

0 ··· ··· 0 −1 eλµδ



.

Therefore, the inverse of the matrix Σµ1:N+1
is given by:

Σ−1
µ1:N+1|θ =



2λµ(eλµδ+e−λµδ)
σ2
µ(eλµδ−e−λµδ)

−2λµ

σ2
µ(eλµδ−e−λµδ)

0 · · · 0

−2λµ

σ2
µ(eλµδ−e−λµδ)

0
...
0

Σ−1
µ1:N |θ


.

Procedure. Finally, at time t, the inverse of the covariance matrix is
given by the following protocol:

• Computation of the matrix A−1
t using A−1

t−1.
• Computation of the matrix Σ−1

µ1:t|θ using Σ−1
µ1:t−1|θ.

• Using Σ−1
y1:t|θ = Σ−1

µ1:t|θ − Σ−1
µ1:t|θA

−1
t Σ−1

µ1:t|θ, the matrix Σ−1
y1:t|θ is

obtained.

Determinant of the covariance matrix. The iterative computation
of det

(
Σy1:N |θ

)
is based on the following lemma:
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Lemma 5.4. The determinant of the matrix Σy1:N |θ is given by:

det
(
Σy1:N |θ

)
=

det
(
IN +

σ2
S

δ
Σ−1
µ1:N |θ

)
det
(

Σ−1
µ1:N |θ

) , (25)

and for N ≥ 2, we have:

det

(
Σ−1
µ1:N+1|θ

)
= g(λµ,σµ)(eλµδ+e−λµδ) det

(
Σ−1
µ1:N |θ

)
−g(λµ,σµ)2 det

(
Σ−1
µ1:N−1|θ

)
,

det

(
IN+1+

σ2
S
δ

Σ−1
µ1:N+1|θ

)
=

(
1+

σ2
S
δ
g(λµ,σµ)(eλµδ+e−λµδ)

)
det

(
IN+

σ2
S
δ

Σ−1
µ1:N |θ

)
−
(
σ2
S
δ
g(λµ,σµ)

)2

det

(
IN−1+

σ2
S
δ

Σ−1
µ1:N−1|θ

)
,

where

g (λµ, σµ) =
2λµ

σ2
µ (eλµδ − e−λµδ)

.

Proof. The multiplication of Equation (21) by Σ−1
µ1:N |θ gives:

Σ−1
µ1:N |θΣy1:N |θ = IN +

σ2
S

δ
Σ−1
µ1:N |θ.

Equation (25) follows. Using Lemma 5.3, The matrices(
IN +

σ2
S

δ
Σ−1
µ1:N |θ

)
and Σ−1

µ1:N |θ are tridiagonal. The recursive computa-

tion of their determinant is then possible. �
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