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1 Introduction

Limit order books have attracted a considerable amount of attention since the electronification of

financial markets in the early ’90s. The historical quote-driven markets, where designated market

makers used to provide liquidity to all participants, have largely evolved into order-driven markets,

where buy and sell orders are matched continuously in a double auction queueing system.

In an order-driven market, participants can submit orders of three basic types: limit order, market

order and cancellation:

• Limit order: An order that specifies an upper/lower price limit (also called “quote”) at which

one (commonly called “liquidity provider”) is willing to buy/sell a certain number of shares.

The advantage of the limit order is that the transaction price is better than the instantaneous

mid-price. However, there is no certainty that the limit order will be executed. Currently

most markets adopt the “first in first out” rule, i.e. the priorities of limit orders are decided

first according to price, and then to arrival time. A limit order can be entirely, partly or not

executed.

• Market order: An order that triggers an immediate buy/sell transaction for a certain number of

shares at the best available opposite quote(s). The advantage is to offer an immediate execution,

however the price is worse than the mid-price. A market order can be executed with different

limit orders as counterparties. The price is not necessarily the best limit price, if the quantity is

big enough that the order eats up completely the first limit and hits the second or higher limits.

• Cancellation : An order that removes an existing limit order.

In addition to these three main types of orders, there exist various order services provided by the

exchanges such as ”stop loss”, ”good til’ canceled”... Also note that some markets allow orders, such
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as ”iceberg” orders, to provide hidden liquidity, making their presence difficult to infer from the order

flow. Nevertheless, it is commonly agreed upon - and verified in practice - that the basic orders carry

enough information for market microstructure studies.

An example is given in Figure 1.
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Figure 1: Illustrative order book example. Blue bars on the left half of the figure represent the available

buy orders with prices P ·b and total quantities V ·b . These correspond to the buyer side, also called the

bid side. Participants in the bid side are providing liquidity with prices at which they are ready to

buy some quantities of the stock. The right hand bars represent the sell side, commonly called the

ask side or offer side, where participants willing to sell post their orders with the prices they are ready

to sell the stock. The line in the middle corresponds to the mid-price level and is computed as the

average between the best (highest) bid price and the best (lowest) ask price. A transaction occurs

when a sell order and a buy order are at least partially matched. A queue of limit orders with the

same price is called a limit. Different colors in the same limit represent orders with different priority

with darker bars having higher execution priority.

Limit order books have been extensively studied, both from empirical and mathematical points of

view, see e.g. [Abergel et al., 2016] for a survey of their properties. In particular, the mathematical

modelling of limit order books is itself an active research area that has many useful and practical

applications, and this paper is a contribution to the field.

A particularly popular class of order book models is that of Markovian models, starting with the

so-called zero-intelligence models as in [Smith et al., 2003], then enriched with more complex and

realistic contributions such as [Cont et al., 2010] or [Huang et al., 2015]. In Markovian models the

order flows are described by point processes with state-dependent conditional intensities.

More to the point, many empirical studies have identified some memory properties of financial mar-

kets. To name a few, [Gopikrishnan et al., 2000][Bouchaud et al., 2009] underline a significant pos-

itive autocorrelation and slow decay of the trade flow. [Chakraborti et al., 2011] confirms that the

Poisson hypothesis for the arrival of orders is not empirically satisfied, whereas [Eisler et al., 2012]

is an in-depth study of the correlation between, and price impact of, orders of all types. These
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findings advocate for a direct modelling of the temporal dependencies between order arrivals. As a

consequence, Hawkes processes have come up as a natural modelling choice, and triggered a lot of

interest in recent studies on market microstructure and limit order books. [Bacry and Muzy, 2014,

Bacry et al., 2013, Bacry et al., 2016] propose various models of price and order flow models. An ex-

tensive survey of the application of Hawkes process in finance can be found in [Bacry et al., 2015]. In

the specific context of limit order books, [Large, 2007] is an early study of Hawkes processes applied

to order book modelling, Hawkes-process-based limit order book models are introduced and math-

ematically investigated in [Abergel and Jedidi, 2015][Zheng et al., 2014] and, in a sligthly different

direction, [Rambaldi et al., 2016] models the order volumes - in addition to their types - based on a

multivariate Hawkes process.

This paper is a contribution to this latter strand of research.

In most papers involving Hawkes processes for order book modelling, the natural quantities of interest

are the inter-event durations - or : inter-event forward recurrence times. They will be the main objects

under scrutiny in the present work as well.

The quality of various Hawkes-process-based order book models will be assessed using some objective

criteria: a model will be deemed satisfactory if it can reproduce as many as possible of the stylized

facts of financial data. Our approach starts with a precise empirical analysis of the dependencies

between order arrivals of various types. Then, models built from multivariate, possibly nonlinear,

Hawkes processes with multiple exponential kernels are introduced. Once a model is designed, it is

evaluated: the distribution of forward recurrence times, as well as the signature plot1, are used as

selection criteria. With this approach, we are able to discriminate between various Hawkes-process-

based models, and provide a financial interpretation of the more successful ones in terms of their

behaviour at various time scales, and the presence of inhibition as well as excitation effects.

The paper is organized as follows: Section 2 presents our most relevant empirical findings, laying

the ground for the modelling based on linear and nonlinear Hawkes processes discussed in Section

3. In Section 4, some numerical aspects of model calibration are discussed in detail. Finally, some

concluding remarks are presented in Section 5.

2 Empirical findings: the interdependencies of order book events

In this section, we present our main empirical findings on the dependencies between order arrivals.

These findings pave the way for the modelling avenues followed in the next sections.

2.1 Data and Framework

This paper focuses on the DAX listed 30 stocks trading in XETRA - the electronic trading venue of

the Frankfurt Stock Exchange. Three months (February to April 2016) of tick-by-tick data are used

in this study. The data consist in the list of all trades and order book states any time a modification

or a transaction occurs - with a resolution of 1µs (10−6s). As is classical for high frequency financial

1A characterization of the realized price volatility at various frequencies.
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data, see e.g. [Muni Toke, 2017] for a recent survey on order book reconstruction, some data cleaning

was involved in order to identify limit orders, market orders and cancellations given the states of the

order book and the list of trades.

Due to the large quantity of data, problems such as mismatches of quantities and lack of synchroniza-

tion were expected. However, such anomalies represent less than 3% of the data, and our results are

thus reliable.

2.2 Event definitions

In this study, any change that modifies the best limits of the order book is called an “event”2. More

precisely, an event can be a limit order, a market order, or a cancellation, and can affect the best

bid or best ask. Moreover, events will be tagged according to whether they change the mid-price or

not. Table 1 summarizes the definitions and notations for the various event types considered in this

paper.

2.3 Statistical dependencies between order book events

Table 2 represents the empirical probabilities of occurrence of an event of type j (in column), con-

ditioned on the fact that the last observed event is of type i (in row). The last row represents the

unconditional probabilities of each type of events.

To simplify the interpretation of the results, Table 3 represents the ratio of conditional probabilities

to unconditional probabilities, rounded to one decimal. It aims at revealing the mutual relationships

between events, and ratios greater than two are highlighted.

Results of Table 3 are quite symmetric and no significant differences are observed between the buy

and the sell side. Therefore, only the buy side is interpreted in detail below:

• L0
buy: adds liquidity to the first limit, signalling an increase of market demand at the current

price level. This stimulates L1
buy and M1

buy events, based on the new consensus for a higher

price. The corresponding probabilities for orders of type 0 are also increased, based on a similar

reasoning but in a less aggressive way. On the other hand, the selling activity decreases in

general except for C1
sell, because some newly added limit orders may be cancelled shortly after.

One notable thing is the sharp decrease of C1
buy, as the newly added limit order probably comes

from another trader, making it very unlikely that the first limit should be cancelled.

• C0
buy: decreases liquidity on the buy side. It triggers successive cancellations C0

buy and C1
buy:

cancellations tend to follow themselves. M0
buy, M

0
sell, M

1
buy and M1

sell become less likely, revealing

the influence of low liquidity on the participants’ willingness to generate executions.

• M0
buy: largely increases the probability of M0

buy and M1
buy. This is commonly attributed to order

splitting and the momentum effect (other participants following the move). L1
buy and C1

sell are

also stimulated as a new price consensus emerges.

2This simplifying choice essentially means that a level-1 order book is considered.
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Notation Definition

M , L, C, O market order, limit order, cancellation, any order.

M0, L0, C0, O0 market order, limit order, cancellation, any order,

that does not change the mid-price.

M1, L1, C1, O1 market order, limit order, cancellation, any order,

that changes the mid-price.

Mbuy, Msell buy/sell market order.

M0
buy, M

0
sell buy/sell market order that does not change the mid-price:

i.e. order quantity < best ask/bid available quantity.

M1
buy, M

1
sell buy/sell market order that changes the mid-price:

ie. order quantity ≥ best ask/bid available quantity.

Lbuy, Lsell buy/sell limit order.

L0
buy, L

0
sell buy/sell limit order that does not change the mid-price:

i.e. order price ≤ / ≥ best bid/ask price.

L1
buy, L

1
sell buy/sell limit order that changes the mid-price:

ie. order price > / < best bid/ask price.

Cbuy, Csell buy/sell cancellation.

C0
buy, C

0
sell buy/sell cancellation that does not change the mid-price:

i.e. partial cancellation at best bid/ask limit or cancellation

at another limit.

C1
buy, C

1
sell buy/sell cancellation that changes the mid-price:

ie. total cancellation of best bid/ask limit order.

Table 1: Event types definitions

• L1
buy: improves the offered price to buy. The first effect is a strong increase in the probability

of M1
sell, i.e., participants entirely consume the new liquidity as the offered price has become

higher. The second effect is an increase in the probability of C1
buy, i.e., the new liquidity is

rapidly cancelled. This is consistent with a similar observation made for L0
buy orders, and might

reflect some sort of market manipulation where agents are posting fake orders. Not surprisingly,

the conditional probability of C0
buy is almost zero, because after one limit order is submitted,

it cannot be partially cancelled. The fact that probability is not exactly 0 may be due to poor

data synchronization, or the existence of hidden liquidity.

• C1
buy: a total cancellation of the best buy limit increases the probability of C0

buy - order cancel-
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L0
buy L0

sell C0
buy C0

sell M0
buy M0

sell L1
buy L1

sell C1
buy C1

sell M1
buy M1

sell

L0
buy 27.94 9.73 26.24 20.99 1.09 0.50 4.98 1.78 0.08 3.60 2.65 0.44

L0
sell 9.63 28.43 20.36 26.50 0.58 1.01 1.83 4.94 3.55 0.08 0.43 2.68

C0
buy 21.64 24.72 29.33 7.51 0.66 0.57 2.92 4.28 4.97 1.32 0.97 1.11

C0
sell 24.04 21.97 7.45 29.82 0.64 0.58 4.30 2.85 1.32 5.00 1.08 0.95

M0
buy 20.69 8.02 6.96 11.18 9.08 0.59 9.64 0.86 1.12 6.65 24.27 0.94

M0
sell 7.19 20.72 10.18 6.90 0.64 9.63 0.72 9.39 6.67 1.10 0.93 25.92

L1
buy 32.48 10.83 1.17 26.57 0.92 0.94 4.38 1.68 8.89 4.93 2.43 4.77

L1
sell 10.24 33.61 26.27 1.14 0.94 0.90 1.71 4.32 4.88 8.97 4.54 2.47

C1
buy 14.46 12.40 51.27 4.59 0.26 0.10 8.42 4.06 2.83 0.96 0.51 0.15

C1
sell 11.85 14.60 4.32 52.25 0.10 0.22 3.96 8.41 0.91 2.77 0.14 0.48

M1
buy 12.23 6.18 4.56 30.18 1.04 0.64 24.94 4.39 1.16 8.70 3.35 2.64

M1
sell 5.93 12.67 29.80 4.63 0.71 1.09 4.36 24.68 8.88 1.13 2.59 3.52

O 19.93 20.42 20.23 20.74 0.79 0.73 4.02 3.99 2.93 2.95 1.62 1.65

Table 2: Conditional probabilities of occurrences per event type

L0
buy L0

sell C0
buy C0

sell M0
buy M0

sell L1
buy L1

sell C1
buy C1

sell M1
buy M1

sell

L0
buy 1.4 0.5 1.3 1.0 1.4 0.7 1.2 0.4 0.0 1.2 1.6 0.3

L0
sell 0.5 1.4 1.0 1.3 0.7 1.4 0.5 1.2 1.2 0.0 0.3 1.6

C0
buy 1.1 1.2 1.4 0.4 0.8 0.8 0.7 1.1 1.7 0.4 0.6 0.7

C0
sell 1.2 1.1 0.4 1.4 0.8 0.8 1.1 0.7 0.5 1.7 0.7 0.6

M0
buy 1.0 0.4 0.3 0.5 11.5 0.8 2.4 0.2 0.4 2.3 15.0 0.6

M0
sell 0.4 1.0 0.5 0.3 0.8 13.2 0.2 2.4 2.3 0.4 0.6 15.7

L1
buy 1.6 0.5 0.1 1.3 1.2 1.3 1.1 0.4 3.0 1.7 1.5 2.9

L1
sell 0.5 1.6 1.3 0.1 1.2 1.2 0.4 1.1 1.7 3.0 2.8 1.5

C1
buy 0.7 0.6 2.5 0.2 0.3 0.1 2.1 1.0 1.0 0.3 0.3 0.1

C1
sell 0.6 0.7 0.2 2.5 0.1 0.3 1.0 2.1 0.3 0.9 0.1 0.3

M1
buy 0.6 0.3 0.2 1.5 1.3 0.9 6.2 1.1 0.4 2.9 2.1 1.6

M1
sell 0.3 0.6 1.5 0.2 0.9 1.5 1.1 6.2 3.0 0.4 1.6 2.1

Table 3: Conditional probability leverage

lations come in succession as market makers lose interest to provide liquidity even at the new

best limit - and that of L1
buy events, as traders may re-offer at the previous best price to gain

priority. Events of other types become less frequent.

• M1
buy: consumes all the offered liquidity at the best ask. It stimulates L1

buy and C1
sell as a

higher price consensus emerges among market participants. The probability of M1
buy increases,

indicating a short term momentum effect, and order splitting.

As a conclusion to this empirical section, let us just say that strong temporal dependencies between

events are identified. Some orders actually triggers other events, a fact that can be seen as self- or

cross-excitation phenomena. There are also some inhibition effects, when incoming orders prevent

other events to occur. These two important features will be the target of the modelling approach

presented in the next section.
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3 Modelling dependencies using Hawkes processes

It has now become widely accepted in the high frequency and market microstructure community that

limit order books are worth modelling, and that the price dynamics can easily be extracted from that

of the order book. In fact, the complexity of inter-event dependencies is so rich that most significant

features of the price dynamics : co-existence of time scales, leverage effect, signature plot, long term

diffusivity... can be derived from advanced order book models.

In this section, point-process-based order book models are studied, building on the 12 event types

previously introduced: E = {L0
buy, L

0
sell, C

0
buy, C

0
sell, M

0
buy, M

0
sell, L

1
buy, L

1
sell, C

1
buy, C

1
sell, M

1
buy, M

1
sell}.

Recall that events with superscript 1 have an instantaneous price impact: in particular, it is clear that

events in Eup = {L1
buy, C

1
sell, M

1
buy} lead to a price increase, whereas those in Edown = {L1

sell, C
1
buy,

M1
sell} result in price decrease.

The arrival of order book events is modelled by a 12-variate simple point process

N(t) = (NL0
buy

(t), . . . , NM1
sell

(t)). Of interest is the associated intensity process (λL0
buy

(t), . . . , λM1
sell

(t)).

Assuming that the process is simple means that two events cannot occur at the same time, a fairly

realistic assumption due to the high time resolution of modern stock exchanges.

Since the focus in this paper is on temporal interdependencies, N is actually modelled as a 12-variate

counting process, and the marks determining the price jump when an event of type 1 occurs are

not modelled. Rather, a simplifying assumption is made, namely, that the jump of the best bid or ask

price following an event of type 1 is always one tick. This approximation reduces the dimensionality

of the point process, while being consistent with the real behaviour of the chosen data set, for which

the average jump size of the best bid and ask prices is 1.08 ticks3. Under this assumption, the

reconstructed mid-price dynamics easily obtains as a by-product of event arrivals:

S(t) = S(0) +

 ∑
e∈Eup

Ne(t)−
∑

e′∈Edown

Ne′(t)

× η

2
, t > 0

where η > 0 is the tick size.

This simplification will be taken into account when comparing the performances of the model with

the behaviour of real data.

Clearly, events of type 0 do not directly influence the price, rather, their impact will come from their

influence on the intensities of the event arrival process.

As already said in the introduction, it has long been recognized that the class of Hawkes processes is

particularly well suited to the modelling of point processes interacting via their conditional intensities.

Here, we build on the results of Section 2 and study two classes models respectively based on linear

and nonlinear Hawkes processes that capture well the main characteristics of market dynamics.

3Actually, for some large tick stocks, the average is even smaller than 1.01.
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The performances of the models are presented in this section, while some more technical aspects

pertaining to their calibration are deferred until Section 4.

3.1 Linear Hawkes process models

In this short paragraph, we recall some essential definitions and results on the particularly interest-

ing class of point processes introduced in [Hawkes and Oakes, 1974]. We refer the interested readers

to [Hawkes and Oakes, 1974][Massoulié, 1998][Brémaud and Massoulié, 1996] for a more in-depth pre-

sentation of these processes, and to [Abergel and Jedidi, 2015][Zheng et al., 2014] for their use in order

book modelling.

A multivariate point process ((Ti, Xi))i∈N∗ , associated to a counting process (N(t))t∈R+ = (N1(t), . . . , NM (t))t∈R+

with conditional intensity process (λ(t))t∈R+ = (λ1(t), . . . , λM (t))t∈R+ , is called a (linear, multivariate)

Hawkes process [Hawkes and Oakes, 1974][Massoulié, 1998] if there holds for m ∈ {1, . . . ,M} :

λm(t) = µm +
M∑
n=1

∫ t

0
φmn(t− s)dNn(s)

where µm are positive real numbers and φmn are nonnegative functions.

The µm are the base intensities and can be viewed as background intensities. Whenever an event

occurs, the intensities increase, making subsequent events arrive at a higher frequency. Such effects

are controlled by φmn. The functions φmn, the kernel functions, control the instantaneous increases

and the relaxation speeds of the intensities in response to excitations.

For a multivariate Hawkes process, φmm describe the self-excitations, while φmn for m 6= n measure

the cross- (or: mutual) excitations, that is, the impact of an event of type n on the arrival of an event

of type m.

A convenient, alternate way to express the intensity process is provided by the following equation:

λ(t) = µ+ Φ ? dN (1)

where Φ(t) is the M ×M matrix whose entries are φmn(t), “?” denotes the “matrix convolution“

Φ ? dN =

∫
R
φ(t− s)dN(s)

and φ(t− s)dN(s) stands for the standard matrix-vector product.

It is clear that Hawkes processes are fully determined by their baseline intensity µ and the matrix

Φ of kernel functions. In the following, we will concentrate on exponential kernels. This particular

choice is classical, one of its main advantages being the Markovianity of the joint process (N,λ), see

e.g. [Massoulié, 1998]. For the models considered in this work, the intensities follow Equation (1),

where Φ is a 12× 12 kernel function matrix describing the excitation between events of various types:

Φ = (φij)i,j∈E .

What we call 1-exponential and 2-exponential Hawkes models differ by the number of exponential

functions used to define each kernel, namely:
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• For the 1-exponential Hawkes model, φij(t) = αij exp(−βijt)

• For the 2-exponential Hawkes model, φij(t) =
∑2

p=1 αijp exp(−βijpt)

3.2 Performances of the linear Hawkes models

The adequacy of a linear Hawkes-process-based order book model is now evaluated, according to two

criteria: a goodness-of-fit criterion for the distribution of forward recurrence times, and a criterion

based on the signature plot generated by the model.

As a matter of fact, it is generally agreed upon that such statistical properties of the price process as

the unconditional distribution of returns or the diffusive behaviour at large time scale, can easily be

reproduced even with simpler models, whereas the signature plot and the inter-event durations offer

a better challenge to discriminate among order book models.

3.2.1 Goodness of fit

It is well-known, see e.g. [Bowsher, 2007] that the transformed durations {τ}i of a Hawkes process

τmi =

∫ Ti+1

Ti

λm(s)ds

are i.i.d. exponential random variables with parameter 1. This property is used to test the goodness-

of-fit of the model to the data, by drawing Q-Q plots of the empirical quantiles with respect to the

theoretical exponential distribution quantiles.

Though a global test can be conducted by concatenating all the transformed durations, plotting each

dimension separately provides more information. This can be viewed as a marginal distribution fit

test, i.e.: Given the law of other types of orders, how well can we fit the order under scrutiny ?

The procedure is as follows: first, the parameters for several order book models (Poisson, 1-exponential

linear Hawkes, 2-exponential linear Hawkes) are calibrated, for each day in the study period. Then

the transformed durations in the model are computed, and a Q-Q plot test is then performed. The

results are shown in Figure 2.

As a first conclusion, one can easily see that a Poisson-process-based model globally fails to capture the

distributional properties of recurrence times. The performances of the 1- and 2-exponential Hawkes

models are similar, except for orders of type 0: the 2-exponential model significantly outperforms the

1-exponential model for L0 and, to a lesser extent, for C0 events. However, what is annoying is the

behaviour for C1 events: the distributions of the transformed durations in 1- and 2-exponential models

are extremely close to one another, but neither is close to the theoretical exponential distribution.

This is an important, negative feature of the linear Hawkes models that will be revisited in the

upcoming Subsection 3.3
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Figure 2: Q-Q plot goodness of fit tests of order book models.
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3.2.2 Signature plots

The signature plot reveals some of the most important stylized facts about high frequency financial

data. It is a plot of the realized variance as a function of the sampling frequencies.

The realized variance for a stochastic process Xt over a time period [0, T ] at a sampling frequency h

is simply

RV (h) =
1

T

T/h∑
n=0

(X((n+ 1)h)−X(nh))2. (2)

An important stylized fact of financial markets is that the quantity RV generally increases when h be-

comes small. This phenomenon is associated to the mean reverting behaviour of the price at short time

scales. It has long been observed and was already reported in Andersen et al. [Andersen et al., 2000].

It is noteworthy that the signature plot becomes even steeper when computed on transaction prices

rather than mid-prices because of the bid-ask bounce, and we will focus on mid-prices to avoid this

spurrious effect.

Once the model parameters are calibrated, the mid-price is easily simulated using Equation (3).

Realized variances are calculated with sampling periods from 1 to 50 seconds, with a step of 1 second.

The results for the models and the real data are shown in Figure 3.

10 20 30 40
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R
V
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4
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Data

Poisson

1-exp Hawkes

2-exp Hawkes

Figure 3: Mean signature plots of simulated price compared with real data for ALLIANZ SE.

Not surprisingly, the signature plot of the Poisson model is flat - this is expected, as the price dynamics

in this model is that of a mid-price model with Poisson jumps, due to the mapping of orders that

increase (resp. decrease) the price into upward (resp.downward) jumps.
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The 1-exponential and 2-exponential Hawkes process models behave similarly: the realized volatility

decreases when the sampling interval increases, but the long-term volatility level is too high compared

to the data. Though reproducing the overall shape of the signature plot, the linear Hawkes-process-

based order book models are not satisfactory.

3.3 Nonlinear Hawkes process model

This subsection addresses the shortcomings of linear Hawkes models in reproducing some character-

istics of forward recurrence times and signature plots. Nonlinear Hawkes processes are introduced to

overcome these difficulties, and their performances are studied.

3.3.1 Order dependencies: inconsistencies between real data and linear Hawkes models

The results presented in Paragraph 3.2.1 are now revisited in event time, temporarily ignoring the

durations. When comparing the average conditional probability matrix of the 2-exponential Hawkes

model with that of real data, one can check that most of the conditional probabilities are pretty

close. However, for several pairs, there exist huge differences between the model and the real data, in

particular for C1
buy|L0

buy, M
0
buy|C1

buy and M0
sell|C1

buy.

Table 4 below gives the list of all pairs (X,Y ) for which the probability of an event of type X,

conditioned on following an event of type Y , in the simulated order flow is either smaller than 50% or

greater than 5 times the real conditional probability (only the buy side is shown, the sell side behaves

similarly).

Pair Psimu Preal
C1
buy|L0

buy 0.402 0.048

L1
buy|L1

buy 1.628 0.141

L1
sell|L1

buy 1.288 0.171

M0
sell|C1

buy 0.545 0.068

C1
buy|C1

buy 0.548 0.072

M1
sell|C1

buy 0.854 0.037

Table 4: Conditional probability comparison between simulated order flows and real data

From a financial point of view, these discrepancies can easily be accounted for:

• A C1
buy|L0

buy sequence almost never happens, because L0
buy is a limit order added to the current

first limit and it is highly unlikely that two orders should be cancelled at the same microsecond.

• The low probabilities of L1
buy|L1

buy and L1
sell|L1

buy comes from the constraint of the bid-ask spread:

an aggressive limit order decreases the spread, and when the spread becomes one tick wide, other

price-changing limit orders are no longer possible.

• The remaining cases correspond to orders following a C1
buy order that increases the bid-ask

spread. There is no physical constraint preventing the spread from being wide, but participants
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in the market are not seemingly ready to sell when a cancellation order has already decreased

the best bid price.

From a mathematical point of view, this poor fit comes from an inherent shortcoming of the linear

Hawkes process model: the intensity for the arrival of an order of type e is written as

λe(t) = µe +
∑
e′∈E

∑
Te′<t

φee′(t− Te′)

where φe′ ≥ 0 and, by construction, λe(t) < µe cannot happen ! Consequently, inhibition effects,

leading to a temporary decrease of certain short term conditional probabilities, are not modeled.

Note that, when calibrating the linear model (see Section 4 for details), the kernels corresponding to

inhibitory behaviours are indeed forced to 0.

Below are the median values of the L1 norms of the kernels stemming from the calibration results for

C1
buy stimulations in Table 5: clearly, kernels corresponding to the event pairs listed in Table 4 have

norms equal to 0.

L0
buy L0

sell C0
buy C0

sell M0
buy M0

sell L1
buy L1

sell C1
buy C1

sell M1
buy M1

sell

C1
buy 0.1563 0.2357 0.9392 0.0914 0 0 0.3845 0.1607 0 0 0.0013 0

Table 5: Kernel L1 norm medians in the 2-exponential model

Moreover, two other event pairs come out of the calibration with 0 kernel norms, M0
buy|C1

buy and

C1
sell|C1

buy. Although less obvious from the conditional probability matrix, this phenomenon is easy

to interpret: a defensive cancellation on the bid side indicates a consensus of a fair price decrease in

the market, therefore traders are less willing to buy at the previous ask price or cancel an existing ask

order as it has already gained some queue priority with a profitable price.

3.3.2 Model definition

In order to incorporate inhibitory behaviours in the model, negative kernels are introduced in the

Hawkes process. Then, a truncation is applied to avoid meaningless negative process intensities.

In the new model, the intensities satisfy the equation

λ(t) = (µ+ Φ ? dN)+, (3)

where the entries of the matrix Φ are no longer constrained to take on positive values, and ()+ denotes

the elementwise positive part function.

When enriched with the nonlinearity, the 2-exponential Hawkes process model retains its Markovian

nature, see e.g. [Brémaud and Massoulié, 1996][Zhu, 2015] for general results on nonlinear Hawkes

processes. The negative kernels are chosen under the following form

φmn =
2∑
p=1

−αmnp exp(−βmnpt)

13



where the α’s and β’s are nonnegative real numbers. Note that we fix the same sign for the two

exponentials, in order to avoid overfitting - it is actually unexpected for interdependencies to have

different time regimes, for example an inhibitory effect in the short term that would become an

excitation in the long run.

3.4 Performances of the nonlinear Hawkes models

3.4.1 Goodness of fit

Similarly to the analysis presented in Paragraph 3.2.1, the Q-Q plots of the empirical quantiles with

respect to those of the theoretical exponential distribution are shown on Figure 4.
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Figure 4: Q-Q plot goodness of fit tests of nonlinear Hawkes model.

It appears clearly, simply by eyeballing the graphs, that the nonlinear Hawkes model leads to a

statistically more satisfactory fit than the linear 2-exponential Hawkes model previously studied. This

better performance will be confirmed by the analysis of the signature plots and forward recurrence

times.
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3.4.2 Signature plots

The signature plots of linear and nonlinear 2-exponential Hawkes models are shown in Figure 5,

and compared to that of real data. The asymptotic volatility level significantly improves with the

nonlinear model, and the resulting signature plot is overall a very good fit.
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Figure 5: Mean signature plots of linear and nonlinear 2-exponential Hawkes process compared with

real data.

3.4.3 Analysis of self- and cross-excitation recurrence times

The rationale behind the introduction of nonlinear Hawkes models was the empirically observed pres-

ence of inhibitory effects among events. As a consequence, one should hope that the inter-event

recurrence times would behave in a more realistic way with these models.

Figure 6 and 7 show the cumulative distribution function (CDF) and the probability density of the

(logarithm of) the forward recurrence times for all events of type 1 - that is, the forward recurrence

times of (or: duration between) price jumps.

Specifically, define the inter-jump duration as

∆Ti = Ti+1 − Ti

where Ti are the timestamps of the event arrivals.

According to the type of event causing the jump, these durations are furthermore separated into

two subgroups: self-excitation durations ∆T a ∈ {∆Ti|Xi = Xi+1} and cross-excitation durations

∆T c ∈ {∆Ti|Xi 6= Xi+1}.
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Inter-jump durations predicted by the model are then computed, and compared to data: although the

linear Hawkes model already performs well in reproducing the inter-jump duration distributions both

for self- and cross-excitations, one can see that the nonlinear Hawkes process further improves the fit

in the range between milliseconds and seconds (log10(∆T ) ∈ (−3, 1)).
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Figure 6: Cumulative distribution functions of log inter-jump durations for simulated price processes

compared with real data.
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Figure 7: Probability density of log inter-jump durations.
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As a conclusion, one can say that the nonlinear Hawkes model provides a very satisfactory enhancement

to the classical one, whether one uses Q-Q plots, signature plots or inter-jump recurrence times as

benchmarks. This improvement is in fact quite natural, and is related to the empirical evidence

presented in 3.3.1 on inhibition effects between events.

4 Some numerical aspects of model calibration

This section is devoted to an analysis of the numerical algorithms used to calibrate the various models

introduced in Section 3. Although rather technical, we think it is relevant - actually, very useful - for

readers interested in calibrating high-dimensional Hawkes-processes to high frequency financial data

(or other types of data).

Several optimization procedures are discussed and compared, and the best performer among those we

have tested is thorougly investigated.

4.1 Calibration with maximum likelihood estimation

Let ((Ti, Xi))i∈N∗ be a multivariate point process with associated counting process (N1(t), . . . , NM (t)),

whose intensities are to be estimated.

The log-likelihood, see [Ozaki, 1979][Rubin, 1972], of given intensities (λ1(t), . . . , λM (t)), and a sample

of observation {Ti, Xi}i∈{1,...,M}, is defined by the sum of the log-likelihood of each component:

lnL(λ, {Ti, Xi}i∈{1,...,D}) =
∑
m

lnLm(λm, {Ti, Xi}i≤D)

=
M∑
m=1

[∫ T

0
lnλm(s)dNm(s) +

∫ T

0
(−λm(s))ds

]
.

In the case of a Hawkes process with exponential kernels, a straightforward computation gives:∫ T

0
lnλm(s)dNm(s) =

∑
Tm
i

ln

[
µm +

M∑
n=1

αmnAmn(i)

]

and ∫ T

0
λm(s)ds = µmT −

M∑
n=1

∑
Tn
k

αmn
βmn

(
e−βmn(T−Tn

k ) − 1
)
,

where Amn(i) =
∑

Tn
k <T

m
i
e−βmn(Tm

i −Tn
k ) can be computed iteratively as

Amn(i) = Amn(i− 1)e−βmn(Tm
i −Tm

i−1) +
∑

Tm
i−1≤Tn

k <T
m
i

e−βmn(Tm
i −Tn

k )

so that
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lnLm(λm, {Ti, Xi}i≤D) = −µmT +

M∑
n=1

∑
Tn
k

αmn
βmn

(
e−βmn(T−Tn

k ) − 1
)

+
∑
Tm
i

ln

[
µm +

M∑
n=1

αmnAmn(i)

]
.

It is however clear, and quite unfortunate, that the likelihood function is not strictly concave. For

example, in the 1-dimensional case, its expression simplifies to

lnL(λ, {T}) = −µT +
∑
Ti

α

β

(
e−β(TD−Ti) − 1

)
+
∑
Ti

ln

µ+ α
∑
Tj<Ti

e−β(Ti−Tj)

 ,
and, letting β tend to ∞, there holds

lim
β→+∞

lnL(λ, {T}) = −µT +N(T ) lnµ,

which is finite. However, a strictly concave continuous function having a local maximum cannot tend

to a finite limit at infinity.
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Figure 8: Example of local maxima in 2-d Hawkes process likelihood function lnL2(λ2)

In fact, not only is the likelihood function not concave, but it actually has several local maxima. An

illustrative example is given in Figure 8 where we draw the contour plot of the partial likelihood

function lnL2 of a simulated 2-dimensional Hawkes process. The kernels are exponential functions

with parameters specified in Equation (4). While µ2, α21 and α22 are kept fixed, the likelihood values

are plotted as functions of β21 and β22. The two axes are presented in logarithmic scale.

It is clear that there are at least two local minima in this example.

µ =

(
0.1

0.2

)
α =

(
5.0 10.0

1.0 2.0

)
β =

(
20.0 15.0

3.0 10.0

)
(4)
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The existence of several local maxima make gradient-type algorithms less relevant for the maximum

likelihood procedure and a global optimization algorithm appears necessary. The Nelder-Mead

simplex algorithm (NM ) has been widely used in previous works on the calibration of Hawkes processes;

however we find it not stable enough when a good a priori guess is not available.

For these reasons, the Differential Evolution algorithm (DE ) [Storn and Price, 1995] has been

chosen to perform the optimization. DE is an efficient genetic evolutionary algorithm that has been

adopted in various engineering domains such as electrical power systems, artificial neural networks,

operation research, image processing... Starting from a population of randomly generated points, the

algorithm performs a mutation-crossover-selection procedure, where the population is updated to have

better objective function values and a large tentative space is scanned.

A pseudocode is given in Algorithm 1.

Algorithm 1 Differential Evolution algorithm

1: Input. Maximum total generation G, population size N ≥ 4, mutation factor F ∈ (0, 2), crossover

rate CR ∈ (0, 1), parameter domain Ω, termination criteria.

2: Output. optimal point (optimal function value, termination generation etc.).

3: // Initialization phase

4: g=1; Initialize the initial population (x1,1, . . . , xN,1) randomly such that xi,1 ∈ Ω;

5: while g ≤ G and termination criteria not met do

6: for i← 1, N do

7: // Mutation

8: Choose randomly r1, r2 and r3 in J1, NK such that i, r1, r2 and r3 are distinct;

9: Construct donner vi,g+1 ← xr1,g + F (xr2,g − xr3,g);
10: // Crossover. Construct trial element ui,g+1

11: Irand is a random integer from J1, DK;
12: for j ← 1, D do

13: randj,i ∼ U(0, 1);

14: if randj,i ≤ CR or j = Irand then

15: uj,i,g+1 ← vj,i,g+1;

16: else

17: uj,i,g+1 ← xj,i,g;

18: end if

19: end for

20: // Irand ensures that ui,g+1 6= xi,g
21: // Selection

22: if f(ui,g+1) ≤ f(xi,g) then

23: xi,g+1 ← ui,g+1;

24: else

25: xi,g+1 ← xi,g;

26: end if

27: end for

28: g ← g + 1;

29: end while
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4.2 Benchmarking the DE algorithm

Simulation-based numerical experiments are performed in order to compare the efficiency of the NM

and DE algorithms. More specifically, we consider a 2-dimensional Hawkes process where the param-

eters are specified in (4). 100 process paths are simulated for each

T ∈ {100, 250, 500, 1000, 2500, 5000, 10000, 25000}, and the parameters are calibrated from each simu-

lated path with various algorithms.

NM is used with different initialization methods. For NM random, the initial reference point is drawn

from uniform distributions. Denoting by ρ the L1 norm of the kernel (ρ = α
β ), we choose

µ ∼ U(0, 1) ρ ∼ U(0, 1) β ∼ U(0, 100) (5)

and optimize with respect to ρ instead of α.

The algorithm NM perfect refers to NM where the true input parameters are used as reference point.

The empirical probability of error for each optimization algorithm is show in Table 6 for T ∈
{250, 2500, 25000}:

Algorithm T µ1 α11 α12 β11 β12 µ2 α21 α22 β21 β22

DE

250 0.0 0.0 0.0 0.0 0.0 0.6 1.0 2.0 1.6 2.2

2500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1

25000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NM random

250 2.1 2.1 2.0 2.0 2.1 24.5 27.6 30.7 24.8 30.5

2500 1.4 1.4 1.4 1.4 1.4 12.1 14.8 16.9 14.6 18.8

25000 1.0 1.0 0.8 1.0 1.0 9.9 12.6 14.0 11.4 16.7

NM perfect

250 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6: Error rate (%) of calibration by Nelder-Mead algorithm and Differential Evolution algorithm

Clearly, with the possible exception of short time horizon, DE almost always finds the optimal point,

getting very close to the NM perfect algorithm.

4.3 Improvement in high dimensions

The local maximum problem is more severe when dealing with higher dimension and real data instead

of simulated data. In this section, we present some treatments designed to mitigate the numerical

issues and boost the convergence towards a global maximum.
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4.3.1 Some evolutions of the DE algorithm: a quick guided tour

Thanks to its wide variety of applications, DE has attracted a lot of interest, and the recent survey

paper [Das et al., 2016] documents a host of novel ideas to improve its classical form. Below is a brief

summary of some of the proposed improvements (notations are those used in Algorithm 1):

• Mutation strategy. The donner vector vi,g in mutation can be generated with different strate-

gies. The classical algorithm adopts a so-called “DE/rand/1” strategy

vi,g = xr1,g + F (xr2,g − xr3,g)

where rg1, rg2 and rg3 are mutually exclusive integers randomly chosen in J1, NK
{i}. It could be preferable to approach the current best value

vi,g = xbest,g + F (xr2,g − xr3,g)

or use more points for deviation

vi,g = xr1,g + F (xr2,g − xr3,g) + F (xr4,g − xr5,g)

Combinations of these ideas are of course possible, which create vast candidate strategies.

• Crossover. Apart from the idea of the binomial/uniform crossover, another method called

exponential crossover is also considered. The trial vector u takes the value of the donner vec-

tor v for adjacent coordinates. The benefit is limited to special structures of problems where

neighboring variables are linked but relatively independent of other variables. As a result the

binomial crossover is more frequently used.

• Adaptation of control parameter (F and CR) and strategy. It aims at adding learning

performances to the offspring generation. Either the strategies are randomly chosen from fixed

ensemble of strategies and parameters, which are designed to aid the algorithm to converge or

explore larger space so that the combination can balance the two effects; or the mutation strategy

is fixed, but the parameters can adapt to the evolution.

• Population control. The most natural idea is the reduction of population as they approach to

each other and concentrate in a small region. Such reduction can be pre-scheduled or dynamically

controlled based on the computational budget. On the other hand, varied population (instead

of monotonically decreasing) is also introduced as a choice to adapt to the evolution of the

algorithm.

Other extensions actually go beyond the classical framework, for example using new initialization

techniques, adding clustering technique for the sub-population topology, and so on. Hybridization

opens another branch of research: on the one hand DE is combined with other heuristic methods

to explore the advantages of exploration strategies, and on the other hand, local search methods are

injected into the DE algorithm to boost convergence and precision.

In the interest of tractability, we choose to concentrate on the non-hybrid extensions. In [Das et al., 2016],

the algorithm L-SHADE is reported to have the “best competitive performance among non-hybrid al-

gorithms at the CEC 2014 competition on real parameter single-objective optimization”. Compared

to the classical algorithm, L-SHADE combines adaptation in every respect - mutation, parameter

control and population control:
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• Mutation use the current− to− pbest/1 strategy, where the new donner vectors are obtained

by

vi,g = xi,g + Fi(xpbest,g − xi,g) + Fi(xr1,g − xr2,g),
where xpbest,g is randomly selected from the best bpNcmembers in generation g, where (p ∈ [0, 1])

. This strategy exhibits some greediness towards the current best points, but the existence of p

leaves the flexibility for tradeoff between exploitation and exploration.

• Parameter control In order to dynamically adapt the parameters F and CR, a record of past

candidates is maintained. Two lists of size H, MCR and MF , are kept. For each generation, Fi
and CRi are drawn randomly with certain distributions depending on randomly chosen means

from the lists:

Fi = randci(MF,ri , 0.1), CRi = randni(MCR,ri , 0.1)1{MCR,ri
6=Null},

where randn follows a normal distribution and randc, a Cauchy distribution. For each gen-

eration, the kth element (k = g mod H) of the list is updated, according to CRi and Fi that

succeed to find ameliorated points. Such mechanism introduces learning characteristics for the

F and CR selection, in order to overcome the stagnation problem.

• External archive introduction To maintain diversity, a external archive is used so that parent

vectors that are worse than the trial vectors are preserved in A. When generating donner vectors,

xr2,g can be selected from P ∪A.

• Linear population size reduction The whole population Ng decreases according to the al-

lowed total number of generations.

Ng+1 = round

((
Nmin −Ninit

G

)
∗ g +Ninit

)
,

where Ninit is the classical initial population size, and Nmin is the smallest possible population

size for a mutation strategy.

The L-SHADE is a combination of interesting ideas. Roughly stated, the current-to-pbest/1 mutation

helps approach the best candidates in the population, accelerating the convergence of the algorithm;

the parameter control aims at learning the trade-off between exploration and exploitation; the external

archive is to help keep diversity of the population so that exploration is partly internalized by the

exploitation of the abandoned history; and the population size reduction saves computational cost to

allow larger initial populations.

4.3.2 Calibrating high dimensional Hawkes order book models

Let us now turn towards the actual application of L-shade to the task at hand.

Starting from 100 different initial populations for each strategy with the same number of points

and maximum generations, we plot the histograms of the final log-likelihood function values for one

dimension of the 12-dimensional Hawkes model with real data in Figure 9, for different modifications

of DE. The classical strategy, noted as “rand/1”, serves as a reference for the suggested “current-to-

pbest/1”. The parameter adaptation is also combined with “rand/1” to provide better performances.
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We finally introduce a version with a refinement of the initial parameter intervals, noted as “better

guess”. The right subplot is a zoom of the one on the left, to further show the improvement due to

“better guess”.
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Figure 9: Distribution of optimal objective likelihood functions in different optimization strategy tests.

The right one is zoomed at the optimal zone for further illustration.

Some comments are in order :

• In the ”current-to-pbest/1” strategy, the closer p is to 0, the greedier the algorithm is, and the

more probable it is that the optimization gets trapped at a local maximum. The closer p is to

1, the more the algorithm favors exploration.

• The learning mechanism for F and CR in the adaptative version leads to some improvements.

Parameters are initialized according to the following distributions:

µm ∼ U(0,
0.2Nm

T
), ρmn ∼ (0,min(

0.2Nm

Nn
, 0.5)), βmn = u11{u0=0} + u21{u0=1}

for u0 ∼ B(1, 0.5), u1 ∼ U(0, 1) u2 ∼ U(0, 100)

derived from the physical interpretation of µ as the baseline intensity, of ρ as the integrated

intensity of the influence from event arrival, and based on the relation

E[λm,∞]T = µmT + E[
∑
n

ρmnNn].

• Although different runs starting from different initial populations do not converge to the global

maximum, some improvement may be gained from a “better guess” of the initial intervals.

Clearly, an increase of the population size plays a major role in boosting the convergence: a larger

population prevents points from getting trapped around the same local maximum. On the other
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hand, it is useless to keep all the population as the algorithm approaches the end of its iterations,

since points tend to form clusters. As a consequence, it makes sense to consider effective population

reduction techniques and use the saved computational budget to cover a larger search space.

Building on the linear population reduction method inspired by the combination of DE with clustering

algorithms in [Li and Zhang, 2011] and the use of pairwise Euclidean distance for dynamic population

control in [Yang et al., 2013], we propose an additional reduction mechanism which allows, not only

to decrease the function evaluation times, but also to avoid convergence to local maxima.

The algorithm is said to have converged if each coordinate of all the points in the population has

converged. The convergence conditions of the coordinates are

σ(µm) < er〈µm〉 or maxµm −minµm < ea,

σ(ρmn) < er〈ρmn〉 or max ρmn −min ρmn < ea,

σ(βmn) < er〈βmn〉 or 〈ρmn〉 < ea,

where σ(.) and 〈·〉 are the standard deviation and the mean value respectively, and er and ea are the

relative and absolute error tolerance. At each generation, we eliminate points that are close to the

current b best ones, using a criterion similar to the termination conditions for the population: suppose

the points are sorted according to their objective function values by descending order. For a given

point xi, if ∃j ∈ J1, bK/{i} such that all the following conditions are satisfied:

|µmi − µmj | < erµmj or |µmi − µmj | < ea

|ρmni − ρmnj | < erρmnj or |ρmni − ρmnj | < ea

|βmni − βmnj | < erβmnj or ρmnj < ea,

then xi is eliminated from the population. In practice, it is convenient to select a small value for b.

The decrease of population size saves some computational budget for the algorithm, which is very

beneficial as the computation of the likelihood function is costly.

The combination of these population reduction techniques allows to increase the initial population by

a factor of 5 to 10 with no significant impact on the total computation time, and the convergence is

largely improved.

As a conclusion, one can say that the improved version L-SHADE of the DE algorithm drastically

enhances the performances of the calibration, but despite all these efforts, we are still left with an

average failure rate of approximately 5%.

5 Conclusion

This paper is a study of Markovian Hawkes processes applied to high frequency limit order book data.

Suitably designed nonlinear Hawkes processes that include inhibitory effects and a co-existence of

time scales are shown to successfully model the dependencies between the arrival of order book events.

Thanks to the particularly well-suited distinction between events that trigger, or do not trigger, an

immediate change in the current price, the dynamics of the model fully reflect that of the price. Such
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a description helps cope with some shortcomings of order book models that were previsouly observed,

particularly concerning the realized spot price volatility.

The paper also gives a detailed analysis on a very important, albeit technical, topic: the choice of the

optimization algorithm for the maximum likelihood estimation. The L-SHADE algorithm is a signif-

icant improvement over the classical Differential Evolution algorithm, thanks to better initializations

and population control.

As a conclusion, one can say that nonlinear Hawkes processes capture well such fundamental features

of market dynamics as conditional probabilities, forward recurrence times, or the signature plot. They

provide an accurate description of the order book in the high frequency realm, as well as a realistic

behaviour of more macroscopic quantities. While leading to a better understanding of the mechanisms

driving the markets, their use in the simulation of order driven markets can also lead to a host of

potential applications.
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