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1LIMSAD, Hassan II University, Faculty of Science, Casablanca 

Abstract. Air travel demand is important and many travellers choose to drive to larger airports instead 

of flying from a small airport for many reasons, especially availability of non-stop flights. Another 

reason is perceived reliability of service. Consultants have pointed to a large number of delays and 

cancellations as reasons for low passenger. However, the effect of these flight delays on actual travel 

times is less clear. Because connections are usually necessary when traveling from small airports, 

departure delays may lead to missed connections. In the case of a cancellation, need to wait several 

hours (often overnight) for the next flight due to the small number of daily departures. This paper 

evaluate the impact of delays and cancellations on the profit earned through the seats captured on new 

opened routes. This aspect of decision-making comes in the form of multi-objective problem by testing 

the impact of a new opened route in terms of flight delays costs, financial gain and the quality of the 

service provided to a target customer. The NSGA-II algorithm is adopted to generate a front of Pareto-

optimal compound of a number of optimal departure times to the new destination while ensuring the 

best fill rate, and a minimum flight delays. The experiences are based on the flights of the Royal Air 

Maroc Company on the Casablanca hub. 

1 Introduction 

In Air Transport field, the most important factor sought by 

the potential passenger is the shortness of the trip. 

Passengers therefore preferred the direct flights between 

the airport of origin and destination. When the passenger 

is obliged to carry out a correspondence, airlines have an 

incentive to attract these passengers to increase the 

profitability of their lines by providing a continuous 

service from airport of departure, passing via the 

connecting airport until reaching the final destination. 

Royal Air Morocco (RAM), the Morocco’s flag carrier, 

hopes to take place among the major airlines pulling 

profits from the position of the Morocco being the Africa 

portal on Europe and well obviously at the air hub put at 

his disposal in Casablanca. In addition to its flights to more 

than 80 destinations, Royal Air Morocco now offers more 

flights around the world by many airline partners. An 

alliance would benefit the position of RAM to the 

Morocco, but also central Africa / Western, the largest 

international market of RAM after Europe. In this work, 

we are interested in the problem of insertion of the new 

departure and arrival times to the existing program of an 

airline, and we opted for multi-objective optimization to 

solve this problem, the multi 

objective optimization meets the need to satisfy conflicting 

requirements. Therefore, to travel from Casablanca to 

Agadir, we will seek to minimize the cost; the time spent 

and maximize comfort. The plane will be cheap, fast, and 

polluting while the car will be economic, long and low in 

pollutants. Finally, the train will be a compromise solution. 

As there are no better in every way than another solution, 

a different compromise according to persons must be 

chosen. The choice is subjective, and it is essential to 

provide the set of choices so do not exclude a possibility. 

Multi objective optimization is primarily a tool for 

decision support, and it is a person who will make the final 

decision.  

2 Outline of the paper 

This article will focus on the application of optimization 

algorithms evolutionary (EA) using air routes scheduling 

problems and provide a brief overview on how airlines use 

these techniques to develop and assess the decisions of 

schedule amendments required at the last minute. Section 

2 of this document provides a mathematical formulation of 

the problem of adding new lines in an existing program, 

under specific constraints, cost and profitability associated 

with a given calendar change. Section 3 explains the 

optimization process to fix the problem. Section 4 will 



 

provide experimental results that explain more and 

detailed model and the optimization process, discuss 

possible extensions of the other sketches and model of 

research. Section 5 concludes the paper and specifies 

certain points of view. At the end of the paper, we provide 

a complete list of references highlighted in the document. 

3 Methods 

3.1 Problem Formulation 

A wide variety of problems in industry, and many other 

fields, involve the simultaneous optimization of several 

objectives. In many cases, the objectives are defined in 

incomparable units, and they present some degree of 

conflict among them (i.e., one objective cannot be 

improved without deterioration of at least another 

objective). These problems are called Multiobjective 

Optimization Problems (MOPs). Let us consider our 

problem of new route insertion in an existing flight 

program, where the air transport company is interested in 

minimizing the total duration of the generated delays over 

the hub to improve customer service. On the other hand, 

the company also wants to maximize the number captured 

seats in order to improve the market benefits. Clearly, 

these objectives are in conflict since capturing more seats 

increases benefits, but increases generated delays. In 

addition, the objectives of this problem are expressed in 

different measurement units. The method most commonly 

adopted in Multiobjective optimization to compare 

solutions is the one called Pareto dominance relation [1], 

which, instead of a single optimal solution, leads to a set of 

alternatives with different trade-offs among the objectives. 

These solutions are called Pareto optimal solutions or non-

dominated solutions. Although there are multiple Pareto 

optimal solutions, in practice, only one solution has to be 

selected for implementation. Therefore, in the 

Multiobjective optimization process we can distinguish 

two tasks, namely: i) find a set of Pareto optimal solutions, 

and ii) choose the most preferred solution out of this set. 

Since Pareto optimal solutions are mathematically 

equivalent, the latter task requires a Decision Maker (DM) 

who can provide subjective preference information to 

choose the best solution in a particular instance of the 

Multiobjective optimization problem. In this paper, the 

company wants to open a new destination, and the purpose 

is of course the conquest of new markets. Indeed, after the 

opening of a new air route on departure from its air hub, 

the company will seek to connect this new destination with 

other airports served by the same company. A study of the 

market is developed beforehand to set among airports 

served by the company, those that present important 

potential of passengers wishing to go to the new 

destination via a connecting flight through the hub of the 

company. Let us note by x the departure time toward the 

new destination. Actually, x is the decision variable of the 

problem, which will affect the two criteria considered in 

the problem. We will also note by "t"  the total duration of 

the flight to the new destination, and of course the value x 

+t is the scheduled return hour from the new destination. 

We will limit our study to the 20 first airports ranked by 

origin-and-destination passenger volume and the busiest 

one is airport k where k = 1. However, decision-makers 

may extend targets considered according to demand and 

importance of the proposed destination. Let Ak (resp. Dk) 

the set of the weekly arrivals time (resp. departures time) 

from an airport k ϵ K (K = {1,2,..,20) to the hub, where K 

is the set of twenty airports served weekly by RAM 

company and ranked by origin-and-destination passenger 

volume. aki the ith arrival time (resp. dkj the jth departure 

time)  with i,j ϵ {1,2,..,Nk}.  aki and dkj are ranked in 

ascending order), and Nk is the weekly frequency of routes 

between hub and given airport k ϵ K, we take the minute as 

unit of time. We note that, arrivals and departures time 

during the week are included in the interval [0, 10080]. 

𝛼𝑘𝑖 = {
1  𝑂𝑢𝑡𝑏𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑜𝑟 𝑎𝑘𝑖

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝛿𝑘𝑗 = {
1  𝐼𝑛𝑡𝑏𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑜𝑟 𝑑𝑘𝑗

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

wk are the weight vectors given by: 

𝑤𝑘 =
𝑃𝑘

∑ 𝑃𝑖
20
𝑖=1

     and       ∑ 𝑤20
𝑘=1 𝑘

= 1 

𝑃𝑘 is the origin-and-destination passenger volume 

recorded in a year between a given airport k served by the 

RAM company and the new destination, ∑ 𝑃𝑖
20
𝑖=1  is the sum 

of the passenger volume of the twenty busiest air routes 

served by RAM, ranked by origin-and-destination 

passenger volume. This parameter is introduced to 

encourage the connection of airports with important 

passenger volume. x ϵ [x + t + tmin,10080- tmax], where tmin 

is the minimum connecting time, and tmax is the maximum 

allowed connecting time. 

 

Fig. 1. The Inbound step, pass through the hub to join the new 

destination, and return for the outbound step. 

 

 Figure 1 illustrates the Outbound and Inbound 

connections, where the flight Inbound step (red color), 

pass through the hub to join the new destination, and return 

back again via the hub for the Outbound step (black color). 

During the optimization process, each random value x 

generates two intervals: [x - tmax , x - tmin] and [x + t + tmin 

, x + t + tmax].  An Outbound connection is realized when 

a given value 𝑎𝑘𝑖  comes inside Arrival time window [x - 
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tmax , x – tmin] ,(𝛼𝑘𝑖 = 1) . In addition, the Inbound one is 

realized when a given value 𝑑𝑘𝑗  is cached inside departure 

time window [x + t + tmin , x + t + tmax], (𝛿𝑘𝑗 = 1). 

𝑆𝑇𝑎𝑘𝑖 : is the actual time of occurrence of the estimated 

arrival 𝑎𝑘𝑖  ;  

𝑆𝑇𝑑𝑘𝑗 : is the actual time of occurrence of the estimated 

departure 𝑑𝑘𝑗  ;  

𝐶𝑘𝑖 : is the unit time delay cost of arrival 𝑎𝑘𝑖  ; 

𝐶𝑘𝑗 : is the unit time delay cost of departure 𝑑𝑘𝑗  ; 

We note  𝑋𝑖𝑗
𝑘 = 𝛼𝑘𝑖 ×  𝛿𝑘𝑗  where   

𝑋𝑖𝑗
𝑘 = {

1  𝐹𝑢𝑙𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑜𝑟 𝑎𝑘𝑖 𝑎𝑛𝑑  𝑑𝑘𝑗

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

3.2 Multiobjective functions 

In order to find the best departure time x, we maximize 

the objective function f1 and minimise f2 : 

𝑓1(𝑥) = ∑ 𝑤𝑘  ×  𝑋𝑖𝑗
𝑘

𝑘𝑖𝑗                            (1)       

𝑓2(𝑥) = ∑[ 𝐶𝑘𝑖   𝑋𝑖𝑗
𝑘  (𝑆𝑇𝑎𝑘𝑖 − 𝑎𝑘𝑖 − ∆𝜏) 

𝑘𝑖𝑗

        (2) 

            + 𝐶𝑘𝑗   𝑋𝑖𝑗
𝑘  (𝑆𝑇𝑑𝑘𝑗 − 𝑑𝑘𝑗 − ∆𝜏 ) ]   

A good choice of x, will enhance the value of the Objective 

function f1 will be maximized with guaranteeing the 

connection in both directions, Outbound and Inbound 

through the factors 𝛼𝑘𝑖 multiplied by 𝛿𝑘𝑗, and by 

promoting the best passenger volume through wk. 

f1 is expressed through scalarization method, the weighted 

sum (WS) method. The WS method is the commonly used 

scalarization method because of its simplicity, ease of use, 

and direct translation of weight into the relative 

importance of the objectives [2]. 

Its drawbacks are also well known and discussed in 

literature [3]. These include the followings: 

 It misses solution points on the non-convex part 

of the Pareto surface; 

  Its diversity cannot be controlled, therefore even 

distribution of weights does not translate to 

uniform distribution of the solution points; 

 The distribution of solution points is highly 

dependent on the relative scaling of the objective. 

For efficient results, the objective function 𝑓2 calculates 

only the flight Delay Losses of connected flights. Thus the 

found results will help to quantify the impact of cumulated 

delays caused by these connections, and then will give us 

an idea about the resulting costs if we opt for this strategy. 

Finally, the minimization of 𝑓2 will involve the reduction 

of the generated delays and will make subsequently the 

correspondence more comfortable for passengers, and 

therefore, will automatically reduce the costs related to 

passenger accommodation and all other related charges.   

𝑓2 is the Objective Function of Flight Delay Losses. In  

most cases, either the arrival or departure flights, the actual 

arrival time is almost impossible to be consistent with the 

estimated time, so we make the following provision. The 

following two situations are not treated as delay: (1) the 

actual time is earlier or later than the estimated time within 

Δ𝞽: (2) all the flights, which are in advance of the 

estimated time landing or taking off. 

4 Numerical Implementation 

4.1 NSGA-II Algorithm 

The evolutionary optimization algorithm used to validate 

numerically the theoretical framework described above is 

called the Non-dominated Sorting Genetic Algorithm 

(NSGA-II) [4, 5]. NSGA-II uses a fast non-dominated 

sorting approach, with complexity O(MN2), an elitism 

approach, and uses the scaled crowding distance as a 

secondary diversity criterion, that requires no additional 

parameter, and figure 2 describes the NSGA-II procedure. 

All design variables here are continuous, and the variation 

operators have been chosen accordingly, as in described by 

Deb [6] . More precisely, all experiments use the simulated 

binary crossover operator (SBX) and the polynomial 

mutation, which can handle directly the box constraints. 

The other parameters of the algorithm are the population 

size, which is equal to the archive size, the probability of 

crossover, the probability of mutation, the dispersion 

coefficients, and the number of generations before 

termination. NSGA-II has been chosen here for its long 

record of successes, demonstrating its robustness to find a 

good approximation of the Pareto front. Further work will 

investigate whether other MOEAs outperform NSGA-II 

on this problem. A good candidate is SMPSO [7] that has 

excellent performances on continuous problems. 

 

Fig. 2.  NSGA-II procedure. 

4.2 Results and discussion 

Following the air carrier demand, we focus on the test of 

20 airports; obtained results are given by figure 3 showing 

Pareto’s front solutions with the corresponding 



 

coordinates. We obtain six optimal solutions, offering the 

possibility to connect 20-targeted airports to the new 

opening, maintaining an interesting fill rate and 

minimizing the stopover time over the hub. 

 

 Fig. 3. Pareto optimals of twenty airports case. 

 

Following the air carrier demand, we focus on the test of 

20 airports; obtained results are given by figure 2 gives 

Pareto’s front solutions with the corresponding 

coordinates. We obtain six optimal solutions, offering the 

possibility to connect 20-targeted airports to the new 

opening, maintaining an interesting fill rate and 

minimizing the effect of flight delays.  Table 1 gives 

details of flight rotation corresponding to each solution 

from Pareto front. We notice that Airports ranked in 

following orders 15, 16, 17, and 18 are not connected by 

the obtained solutions. S4 and S5  are very interesting 

solutions, connecting 12 (respect 11) of the 20 tested 

airports. Solution S4 provides 10h35min maximum 

stopover time on the hub of Casablanca in outbound step, 

and less than one hour (55 minutes) as minimal stopover 

time. Departure time is Saturday at 06:30 UTC from 

Casablanca, the return is the same day at 23:00, and the 

inbound step is 1 hour 15 minutes stopover time in 

Casablanca and 08h20min maximum before continuing 

correspondences back to connected airports. Obtained 

Departures from Casablanca fits perfectly the fleet 

programming strategy adopted by Royal Air Maroc 

Company. Indeed, the company sends daily almost the 

two-thirds of its fleet on Africa within half an hour before 

midnight to return in the morning on the Casablanca hub 

before continuing to Europe, America and golf countries. 

Moreover, knowing that the best potentials of this example 

are African countries friends and allies of Morocco, the 

obtained arrival from the new opening around 23:00 

(UTC) is perfectly convenient to the fleet departures to 

Africa starting around 23:30 (UTC). Similarly, a departure 

time toward the new opening at 06:30 (UTC) is a perfect 

knowing that the vast majority of those arrivals lands in 

Casablanca before 06:00 (UTC). 

Table 1. (𝑓1;  𝑓2) Solutions with correspondent Rotations 

5 Conclusions and Future works 

Airline managers and decision makers in general, are 

probably interested to examine the results of this paper, 

allowing them a dynamic planning of their fleets without 

need to review the existing flight schedule. Indeed, when 

we take the decision to open a new destination, the reason 

may be political or purely commercial; we will be able 

with this model to insert this new program without losing 

scheduled connections and without causing major delays 

during the correspondences. We are all aware that the 

delay is a boring parameter and causes additional and 

significant costs for the airlines. Then this solution will 

serve as a tool to support the decision for an air carrier to 

amend its program and even think about increasing the 

number of frequencies on a specific route due to an 

unforeseen event without constraint to bring changes to the 

initial program. The Pareto front has been achieved using 

the algorithm of NSGA-II and the numerical results are 

based on the real case of the program of the Moroccan 

airline Royal Air Morocco (RAM) on the hub of 

Casablanca. Finally, we are all convinced that the 

aerospace industry is one of the most affected sectors by 

the hourly disruptions and delays due to several 

parameters. Airlines put and after developing, a program 

will face delays that spread quickly to connected flights, 

which induces considerably important and unexpected 

costs for airlines [8]. The primary goal now is to seek an 

effective way to minimize the impact of disruptions, 

reducing delays and the number of flights affected. In 

addition and for the perspective of this paper [9, 10], we 

will include the criterion of disruptions to introduce the 

aspect of robustness. 
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