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INTRODUCTION

The Operational Research community has studied many variants of the air traffic flow management problem since the beginning of the 90s. Along the years, the models have been refined in order to take into account new operational constraints.

One of the first formulations of air traffic flow management is the ground holding problem, which minimizes the sum of airborne and ground delay costs when the demand for the runways exceeds the allowed capacities. The first work under this formulation has been the Single Airport Ground Holding Problem [START_REF] Odoni | The Management Problem in Air Traffic Control[END_REF]. After that, [START_REF] Richetta | Dynamic Solution to the Ground-Holding Problem in Air Traffic Control[END_REF] has proposed a stochastic and dynamic version of the formulation.

Then, the Multi-Airport Ground Holding Problem was addressed by [START_REF] Vranas | The Multi-Airport Ground-Holding Problem in Air Traffic Control[END_REF]. This does not take into account the sector capacities,rerouting and speed changes.

The first two limitations were overcome with the model of [START_REF] Bertsimas | The Air Traffic Flow Management Problem with Enroute Capacities[END_REF]. Also, this work has the merit to use realistic instances with several thousand flights. To our knowledge, the most comprehensive formulation is the Air Traffic Flow Management Rerouting Problem [START_REF] Bertsimas | An Integer Optimization Approach to Large-Scale Air Traffic Flow Management[END_REF] which integrates all phases of a flight, different costs for ground and air delays, rerouting, continued flights and cancellations. Also, with the same mathematical framework, [START_REF] Agustin | On Air Traffic Flow Management with Rerouting. Part I: Deterministic Case[END_REF], [START_REF] Agustin | On Air Traffic Flow Management with Rerouting. Part II: Stochastic Case[END_REF] have formulated the problem in terms of routes instead of nodes.In the same manner, there is also the work of [START_REF] Clare | Air Traffic Flow Management under Uncertainty: Application of Chance Constraints[END_REF] which describes an optimization problem to minimize directly the probability of congestion of the sectors with the concept of chance constraint.

Besides, other techniques were used to solve similar problems. [START_REF] Oussedik | Air Traffic Management by Stochastic Optimization[END_REF] uses stochastic optimization methods for handling sector congestion with take-off delays and rerouting. Constraint programming was also used by [START_REF] Barnier | Slot Allocation with Constraint Programming: Models and Results[END_REF] and [START_REF] Flener | Air-Traffic Complexity Resolution in Multi-Sector Planning using Constraint Programming[END_REF]. The former solves the slot allocation problem with sector capacity constraints and the former minimizes an air traffic complexity metric for multiple sectors.

More recently, a multi-objective optimization approach has been used in air traffic control by [START_REF] Flener | Air-Traffic Complexity Resolution in Multi-Sector Planning using Constraint Programming[END_REF] to minimize an aggregated complexity metric, designed and validated by Eurocontrol1 , over sectors. Also, [START_REF] Delahaye | Airspace Congestion Smoothing by Multi-Objective Genetic Algorithm[END_REF] uses the multi-objective to model the trade-off between sector congestion and delays.

THE MATHEMATICAL MODEL

In this section, we briefly present the mathematical model wich is based on [START_REF] Marceau Caron | Multiobjective tactical planning under uncertainty for air traffic flow and capacity management[END_REF] and [START_REF] Hadjaz | Increasing Air Trafc: What is the Problem ?[END_REF]. It consists of two submodels, the flight model and the sector model. The former is used to compute the expected cost of delay and the probability of presence in the sectors. The latter takes the probability of presence for each flight and compute the expected cost of congestion. First, the flight model is defined as follows:
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Where Ω is the time line, p 1 (t 1 ) is the marginal density function for the flight f to enter the airspace at time t 1 and p i +1|i (t i +1 |t i ) is the conditional density function to be on X i +1 at time t i +1 given it was on X i at time t i . Then the probability to be in sector during the time interval ∆t = [t mi n , t max ] is :

P S ∆t s, f = F i (t max ) -F j (t mi n ) (1) 
Where F i (t ) is the cumulative density function denoting the probability that the flight f has flown over X i by time t .

Thereafter, the probability to have n flights in the sector s during time ∆t can be expressed by :

P K ∆t s = n = 1 N ∆t s + 1 N ∆t s l =0 exp(-i wl n) . N ∆t s f =1 1 -P S ∆t s, f + P S ∆t s, f exp(i wl ) (2) 
Where i = -1 and w = 2π

N ∆t s +1
. Now, we have all the elements to define our multiobjective optimization problem. Because of the stochastic context, one way to define the cost functions is to use their expected values. So the total expected cost of the delays is defined as follows:

C 1 (γ) = f ∈F E φ f T f n f ; γ | f = f ∈F Ω (t -A f ) 2 .p f n f (t ; γ | f )d t ( 3 
)
Where F is the set of flights, A f is the scheduled time of arrival of flight f , n f the number of waypoints in the flight plan f and p n f refers to the marginal density function associated to the arrival point X f n f . γ | f denotes the decision vector, the target times of arrival on the different waypoints of the flight f . Indeed, in the optimization context, we are trying to find the vector γ that minimizes the cost functions. For the expected cost of congestion, the function is:

C 2 (γ) = Ω N ∆t s n=C s +1 (n -C s ) 2 .P (K ∆t s = n; γ)d t (4)
Where C s is the capacity of the sector s and N ∆t s is the maximum number of flights that can be inside the sector at the same time with probability higher than 0 and Ω a temporal horizon sufficiently large to encompass the supports of the marginal distributions.

EXPERIMENTS

In this section, we describe the experiment on minimizing both the expected cost of delays and the expected cost of congestion with a multiobjective optimization algorithm and a probabilistic model. Then the results on a simple instance are detailed.

The chosen variation operators are shown in the table below:

NSGA-II operators

Encoding: Real Population size : 1000 Maximal number of evaluations : 30000 Selection : Binary tournament Crossover : Simulated Binary Crossover , P c = 0.9 Mutation : Polynomial, P m = 1/Number O f V ar i abl es

Experimental Setting

The chosen instance for this study, implies 21 flights, including 15 departures and 6 arrivals in the Terminal Manoeuvring Area (TMA) surrounding Mohammed V International Airport.

All the results were computed on an Intel ® Core ™ i5-4200M CPU with 4× 2.5 GHz and 4Go of memory. The model was coded in Java, for NSGA-II and SMPSO we have used the implementation provided by the jMetal framework. We have also used the Apache Commons Mathematics Library for the probabilistic distributions and the computation of the integrals. This library is freely downloaded at : http://commons.apache.org/

Analysis

Now, we will analyze each step of the methodology. The first step consists in computing the marginal probabilities over the waypoints, as depicted on figure 1, We can see that the value of the modes decreases and the supports of the distributions increase with time. This simply translates the fact that uncertainty on the target time of arrival increases with time. The next step is the computation of the probability for a flight to be in a sector along the time. This is done with (1) and figure 2 shows the result.

The probability increases when the aircraft approaches the sector and once the flight is inside the sector, the probability should not decrease until the exit.

Thereafter, we need to compute the probability that there will be n flights inside the sector at a given time with (2) and we can remark in figure 3 that the probability of congestion decreases with time since the variance of the marginals increases with time. 4) respectively. We can note that minimizing the probability of congestion for every timestamp will effectively minimize the expected cost of congestion.

Finally, when the cost functions are known, one can optimize by given different objectives to the flights. Figure 4 shows the Pareto front for 12 different solutions. Every solution is a complete schedule in the decision space and so, the Pareto front shows the trade-off between minimizing both the delays and the congestion. If the decision maker wants to minimize the chance that delaying the flights congests the sector, he shall select a solution toward the lower right corner of the graph. Otherwise, if she/he believes that the controllers can manage more flights, he can choose a schedule in the top left corner of the graph, resulting in much less delays, at the price of a higher congestion in some sectors. 

Post-Pareto Analysis

In this section, we attempt to reduce the number of trade-off solutions while considering the stochastic nature of the objective functions.

We will use a standard agglomerative hierarchical clustering technique. We have chosen a hierarchical clustering technique (over a partitioning one, such as kmeans) because it allows us to easily adapt the level of granularity of the clusters, and it does not require the number of clusters to be specified in advance.

When carrying out a hierarchical cluster analysis, the process can be represented on a diagram known as a dendrogram. This diagram illustrates which clusters have been joined at each stage of the analysis and the distance between clusters at the time of joining.

In our approach, we have generated a dendrogram from the solutions enclosed in the Pareto front as de-picted in figure 4. Figure 5 shows the dendrogram obtained using the Euclidean distance as a measure of similarity and the Ward's method as a hierarchical clustering procedure. The height of a node represents the distance between its two sub-clusters. Therefore, nodes that are low on the dendrogram form clusters whose elements are closer to each other than nodes that are placed higher up. For example, the cluster 1, 9 forms a cluster whose elements are closer to each other than the cluster 5, 8, 11. The visual inspection of a dendogram can also reveal long branches leading to isolated solutions, which may indicate the presence of "outliers". An outlier in our context is a solution that is radically different from other solutions in the set.

Once the dendrogram has been generated, we need to decide a cut-off at a certain level in order to obtain a set of clusters. For example, with a cut-off value of 60, shown with dotted line on figure 5, we have generated 3 clusters formed by the set of elements under the three branches cut by that line and framed by rectangles.

A recurrent problem that many clustering algorithms encounter is the choice of the number of clusters. Thus, different cluster validity indices have been suggested to address this problem.

The Silhouette [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF] and The Elbow method [START_REF] Thorndike | Who Belongs in the Family ?[END_REF] are two of these cluster validity techniques. They are helpful metrics to guide the choice of the best number of clusters.

Figure 6 shows the Scree plot which represents the number of clusters against the total within sum of squares, we can see that the error decreases as the number of clusters gets larger, this is because when the number of clusters increases, they should be smaller, so distortion is also smaller. The idea of the elbow method is to choose the number of clusters at which the SSE decreases abruptly. This produces an "elbow effect" in the graph. In this case, the Elbow method has selected 3 clusters.

Figure 6: Scree plot Figure 6 shows the clusters silhouette plot with an average silhouette width of 0.47, which indicates a satisfactory cluster quality. After we have validated the num-Figure 7: Silhouette plot ber of clusters, we need to select a representative solution for each cluster. To do this, the solution that is closest to its respective cluster centroid is chosen as a good representative solution. The obtained results of the clustering analysis are depicted in table 1 and figure 8 represents the final solutions.

Conclusion

This paper has presented a probabilistic model to handle the propagation of the uncertainty from the trajectories to the sectors. Then the probabilistic model was used within an optimization algorithm for scheduling all flights at boundaries of the sectors in order to minimize the expected cumulated delays and the expected sector congestion. Furthermore, in order to illustrate how the theoretical model can be useful in practice, we presented some results on an instance with 21 flights, including 15 departures and 6 arrivals in the Terminal Manoeuvring Area (TMA) surrounding Mohammed V International Airport.

The decision-making stage was then performed with the aid of data clustering techniques to reduce the size of the Pareto-optimal set in order to help the decisionmaker to select a preferred final design solution.
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Table 1 :

 1 Final compromise solutions

	Cluster Solutions	Cluster centroid	Representative solutions
			Expected Cost	Expected Cost	Expected Cost	Expected Cost
			of Delay	of Congestion	of Delay	of Congestion
	cluster1 1, 6, 9, 10	401.97	126.15	398.24	127.48
	cluster2 2, 3, 4, 7, 12	436.29	118.02	435.51	118.11
	cluster3	5, 8, 11	492.33	114.90	491.5	114.99

European Organisation for the Safety of Air Navigation, it coordinates and plans air traffic control for all of Europe. This involves working with national authorities, air navigation service providers, civil and military airspace users, airports, and other organisations. Its activities involve all gate-to-gate air navigation service operations.