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Use of global sensitivity analysis to assess the soil poroelastic
parameter influence
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• A global sensitivity analysis applied to poroelastic wave propagation is presented.
• The most influential porous parameters for a soil configuration are investigated.
• Partial variances are determined with the Extended FAST method.
• A specific focus on the interactions between parameters is proposed.
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In this study, we show how a global sensitivity analysis method can be used to obtain
relevant information for the interpretation of the mechanical wave propagation phenom-
ena involved in a poroelastic soil that takes into account the presence of water. The
present investigation addresses the issue of the identification and the ranking of the most
influential parameters. The sensitivity indices provide a variance-based measure of the
uncertainty effects of the input parameters on the mechanical outputs of the model. It
allows quantification of, on the one hand, the influence of each parameter and on the
other hand, the possible interactions between all the parameters. Numerical simulations
are performed in a laboratory-scale configuration: a fluid medium overlying a poroelastic
material is submitted to a transient excitation, and the coupling of the acoustic and Biot
models is solved using a semi-analytical approach. The analysis of the temporal and
spatial evolution of partial variances highlights the most important parameters and the
complementary information contained in the signals in function of both the time and the
receiver location. In particular, we show that the description of the poroelastic waves is
governed by only a restricted number of parameters for the configuration under study.

1. Introduction

The present investigation addresses the issue of the use of a global sensitivity analysis method applied to a poroelastic
wave propagation problem. Obtaining structural images of a porous material, and estimating its physical properties, is a
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topic of considerable interest in many branches of activities in geophysics, underwater acoustics, civil engineering, and
biomechanics [1–8].

One of the most important problems in the characterization of porous materials is the large number of unknown
parameters and their associated uncertainties, which makes the inversion process tedious and difficult [1,3,9–13]. In this
context, sensitivity analysis (SA), i.e. the study of the impact of model inputs on model outputs, may provide relevant
information about the relationships between uncertain model input parameters and model outputs. This physical insight
into models of wave propagation in heterogeneous media may help in a second stage in setting up a subtler strategy: (i) to
characterize the material by identifying the main parameters controlling the variability of the model output, or to modify
the model itself by a reduction of the influential input parameters; (ii) to help construct experimental designs for model
inversion.

SA has always been practiced since the existence of simulation models, often using simple empirical techniques such as
perturbing a given input and analyzing the impact of this perturbation onmodel outputs using simple graphical or numerical
representations of the gap between perturbed and baseline simulations. However, it has become increasingly popular
over the last twenty years with the development of both new techniques, computational power and solid mathematical
background. Many different methods are now available for SA [14] and the development of new methods, improving
computational efficiency, or description of model behavior, or relaxing the need of restrictive hypotheses is still a dynamic
research field [15]. SA methods are traditionally divided into two families: local and global methods [16]. Local methods
study the local impact of model inputs onmodel outputs. In this framework, inputs often vary one at a time (when one input
is varied, the others are held constant) within a small interval around a nominal value. These methods are computationally
easy to implement but the volume of the explored input space is very limited, which prevents from a full description of the
model behavior. Global sensitivity analysis (GSA)methods incorporate the influence of thewhole range of variation ofmodel
inputs and often evaluate the impact of the inputs while all the other parameters can vary. Among global methods, variance-
based methods are very popular. Their principle is to apportion the total variance of model outputs to the various input
factors and to their interactions, given their uncertainty distributions. They are model-independent and they can deal with
nonlinearmodels. To the best of our knowledge, GSA techniques have, however, still rarely been applied towave propagation
in poroelastic environments.

In this study, both temporal evolution for specific simulated sensors, and spatial description for a given time, of the
sensitivity indices are analyzed to highlight themost influentialmechanical parameters, and the field and period of influence.
The poroelastic 2D laboratory-scale configuration under study is a combination of two half-spaces. The upper half-space
is a purely acoustic medium, in which a source point emits temporal cylindrical waves. The excitation term, the quality
of the interface, and the acoustical parameters are supposed to be perfectly well known a priori. The lower half-space
is a poroelastic material, described by the low-frequency Biot partial differential equation solved with a semi-analytical
approach [17,18]. The mechanical parameters in this region are uncertain and assumed independent. It is supposed in this
paper that their uncertainties are described by a uniform law, considering that the range of uncertainties for each parameter
covers ±10% of their presumed value [12,19]. Mechanical output fields of interest are the solid velocity vertical component
and the pore pressure. The full waveform response is considered. The poroelastic configuration under study respects the
three following requirements: (i) it is of interest to various applications cited before; (ii) the semi-analytical approach, which
is the kernel of the forward problem used for performing the global sensitivity analysis, has already been crosschecked and
published [17,18], and (iii) the relative code provides a running fast model, that can be used for a large number of model
evaluations required by the GSA within a reasonable computational time.

The remainder of this paper is organized as follows. In Section 2, the variance-based sensitivity indices are described.
The concepts and practical implementation of the EFAST method used to estimate these indices are described in Section 3.
In Section 4, the geometry, methodology, and numerical values are stated. Results of the GSA both in time and space are
discussed in Section 5, in which the most relevant and influential parameters are identified. The latter section ends with
comments on the genericity aspects of the study. Concluding remarks and perspectives are presented in Section 6.

2. Variance-based sensitivity indices

Sensitivity indices are variance-based: they express the partial variances of the model output that can be apportioned
to the various model inputs. We specify in the following how the functional decomposition of a model can be used, by
considering model inputs in a probabilistic space and under given hypotheses, to decompose the variance of the model
output into partial variances.

2.1. Functional ANOVA decomposition

Let us consider a model represented as a function y = f (x), with x ∈ D ⊂ Rk the vector of its k scalar input variables and
y ∈ R its unique scalar output variable (the case of multiple model outputs is discussed at the end of Section 2.3).

Each function f defined and integrable on D can be decomposed in a unique way [20]:

f (x) = f0 +

∑
i

fi(xi) +

∑
1⩽i<j⩽k

fij(xi, xj) + · · · + f12...k(x1, . . . , xk) (1)

where functions f∗ are mutually orthogonal on D for the inner-product ⟨f |g⟩ =
∫
D f (x) · g(x)dx.

2



This decomposition is often called ANOVA-decomposition or High-Dimensional-Model-Representations (HDMR) [21]. It
splits the function f into terms representing individual contributions of the different input variables and terms, often called
interaction terms, dependent on multiple input variables.

2.2. Variance decomposition

Let us now suppose that the vector of input variables x is unknown and may be represented by a vector of random
variables X following a given joint probability distribution π modeling its uncertainty. The random variables Xi associated to
the model input variables xi are often called factors in sensitivity analysis. It follows that Y = f (X) is also a random variable.
The functional decomposition presented in Eq. (1) can be generalized to any probability law π on D by considering the
inner-product ⟨f |g⟩ =

∫
D f (x) · g(x) · π (x)dx. The different terms of the functional decomposition can then be expressed in

the function of conditional expectations using their orthogonal properties:

f0 = E(Y )
fi(xi) = E(Y |Xi = xi) − f0
fij(xi, xj) = E(Y |Xi = xi, Xj = xj) − f0 − fi(xi) − fj(xj)
...

(2)

where E(Y |Xi = xi) is the conditional expectation of Y given Xi = xi and E(Y |Xi = xi, Xj = xj) is the conditional expectation
of Y given Xi = xi and Xj = xj. In the following, notations E(Y |Xi) and E(Y |Xi, Xj) are used instead of E(Y |Xi = xi) and
E(Y |Xi = xi, Xj = xj) for the sake of brevity.

At this stage, two important hypotheses have to be considered:

• probability distributions of factors Xi are independent,
• function f is square-integrable on D, and as a consequence, all functions f∗ are square-integrable on D.

The hypothesis concerning the independence of the Xi distributions can be restrictive in practice. This point is discussed at
the end of Section 5.

Considering (1) and (2), the variance of Y = f (X) can then be expressed as:

V(Y ) =

∑
i

Vi +
∑

1⩽i<j⩽k

Vij + · · · + V1,2,...,k

with
Vi = V(E(Y |Xi))
Vij = V(E(Y |Xi, Xj)) − Vi − Vj
....

(3)

The variance of Y can thus be expressed as a sum of individual contributions of the different factors and of their
interactions.

2.3. Main and total effects

Vi is the partial variance of Y attributed solely to Xi, i.e. explained by the variations of Xi alone independently of the
variations of the other factors. Vi is often called main or principal effect of Xi.

Vij is the partial variance of Y attributed to the second order effect of Xi and Xj, i.e. it can be explained by the variations of
Xi and Xj on their uncertainty domains but not by the sum of their main effects. It describes the interaction between Xi and
Xj, i.e. the fact that the effect of Xi (resp. Xj) may depend on the values of Xj (resp. Xi).

As computing (2k
− 1) partial variances of decomposition (3) is practically often intractable, [22] introduced the concept

of total-effect. The partial variance VTi attributed to the total effect of Xi is:

VTi = Vi +
∑

1⩽j̸=i⩽k

Vij + · · · + V1,2,...,k (4)

It includes the effect of Xi alone as well as interactions with any combination of other factors. The difference between VTi
and Vi is the partial variance attributed to the interactions of all orders between Xi and the other factors. Moreover, from (3)
and (4), we have:

VTi = V(Y ) − V(E(Y |X∼i)) (5)

where∼i stands for ‘‘all indices except i’’.V(E(Y |X∼i)) is the sum of the partial variances attributed to the effects of all orders
implying all factors except Xi.

All these partial variances are defined in [0,V(Y )]. If
∑

iVi = V(Y ) then the model is said to be additive whereas
V(Y ) −

∑
iVi > 0 indicates the presence of interaction effects. Estimation of the k pairs (Vi, VTi) is often performed in

practice since it yields a good and synthetic, although non exhaustive, characterization of the sensitivity pattern for a model,
as mentioned by [16]. These sensitivity indices allow to address several GSA settings as discussed in [23].
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In the literature, variance-based sensitivity analyses are usually presented using Sobol indices. These indices, introduced
in [20], have been widely used these last twenty years for sensitivity analysis studies. They correspond to the normalization
of the partial variances Vi, Vij, . . . , V1,2,...,k and VTi through the total variance V(Y ). In our study, we have chosen to use partial
variances instead of Sobol indices becausewehave to handlemultivariatemodel outputs. Handling sensitivity ofmultivariate
model outputs such as dynamic or spatial variables can be achieved in severalways [24]. Graphical representation of dynamic
(resp. spatial) evolution of sensitivity indices allows having an exhaustive view of the factor importance on the selected
variable and of their temporal or spatial variability. In this context, using partial variances is useful to directly appreciate the
variations in time and space of the response uncertainty whereas Sobol indices naturally hide this information owing to the
normalization. The use of Sobol indices may thus highlight important parameters at some period and/or spatial area where
this uncertainty is very small.

3. Extended FAST

The computation of partial variances Vi does not raise any particular issue and many methods are available to compute
them. Estimating the total effects of VTi requires ad hoc numerical experimental design and associated estimators. Two
families ofmethods are actually available for computing bothVi andVTi: the so-called Sobol and FASTmethods. They typically
require several dozen thousands of model simulations for obtaining precise estimates for partial variances. The Fourier
Amplitude Sensitivity Test (FAST) method has been introduced by [25–27]. Then, [28–30] proposed some implementations
and further improvements but these first versions were, however, only able to estimate first order indices. Saltelli et al. [31]
proposed a set of extensions to the classical FAST method introducing the possibility of computing total indices leading
to the so-called Extended-FAST (EFAST) method. Continuous improvements were proposed the last 15 years: extension to
non-uniformly distributed factors [32,33]; computation of first-order indices for correlated factors [34,35]; improvements
of computing efficiency for first [35–37] and higher order indices [38,39]. The FAST method is considered to be robust [38],
and is very popular since Saltelli and colleagues recommended its use [40,41]. The reader can refer for examples to [33]
or [35] for short reviews of studies using this method. Different comparisons with the Sobol method have shown that the
FAST approach is less computationally demanding for equivalent precision [31,41,42].

3.1. Concepts and practical implementation

The main principle of the FAST method is to make the model input variables oscillating at different frequencies and
to assess the importance of the variables by scrutinizing the Fourier coefficients of the model output at some specific
frequencies. For that, a variable substitution f (x) = f (G1(s),G2(s), . . . ,Gk(s)) is performed with:

xi = Gi(sin(ωis + ϕi)) ∀i = 1, 2, . . . , k (6)

where s is a scalar variable, ωi is the integer frequency associated to variable xi, Gi is the transformation function, and ϕi is a
random phase-shift chosen uniformly in [0, 2π ], which allows a change in the starting point of the scheme.

The variations of s within [−π, π] make all variables vary simultaneously in order to explore the input space. The
multidimensional integrals on vector xnecessary for the computation of variances and conditional expectations (Eqs. (3) and
(5)) are transformed into more easily tractable one-dimension integrals on scalar s [25]. An appropriate choice for functions
Gi is however necessary so that variations in s make variables xi varying following the probability distributions of factors
Xi. Lu and Mohanty [32] proposed to use Gi(z) = F−1

i (1/π arcsin(z) + 1/2), with F−1
i the inverse cumulative distribution

function of the probability distribution of Xi. The values of the variables xi are thus computed using:

xi = F−1
i

(
1
π

arcsin(sin(ωis + ϕi)) +
1
2

)
, ∀i = 1, 2, . . . , k (7)

with ϕi randomly chosen in [0, 2π ] (see Eq. (6)), and F−1(p) = a + p(b − a) for uniform distributions of support [a, b] and
0 < p < 1.

Using integer frequenciesωi implies that variables xi oscillate periodically at frequencyωi and function f to be a periodical
function of swith a period of at most 2π . f can be thus expanded into Fourier series over the domain of integer frequencies
l ∈ Z:

f (x) =

+∞∑
l=−∞

(Al cos(ls) + Bl sin(ls)) (8)

where Al and Bl are Fourier coefficients defined as:

Al =
1
2π

∫ π

−π

f (s) cos(ls)ds

Bl =
1
2π

∫ π

−π

f (s) sin(ls)ds
(9)
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The spectrum of the Fourier series expansion is defined as ∧l = A2
l + B2

l and it characterizes the amplitude of f at frequency
l. It can be shown that total variance V(Y ) (Eq. (3)) can be expressed as the sum of the elements of the Fourier spectrum of
f [25]:

V(Y ) = 2
+∞∑
l=1

∧l (10)

If factor Xi has a strong impact on the model output, the oscillations of f (x) at frequency ωi and associated harmonics
(i.e. frequencies pωi, with p being a non-null integer) should be of high amplitude. The importance of the Fourier component
of f associated toXi is quantified by summing the elements of the spectrumcorresponding to this frequency and its associated
harmonics. The partial variance of Y attributed to the main effect of Xi is thus obtained by:

Vi = 2
+∞∑
p=1

∧pωi (11)

In practice the infinite summation is not convenient. Because f is square-integrable, it is expected that the amplitude of
the spectrum at the harmonic pωi decays with p so that, after a certain number of harmonics (say M), the contribution of
high-order terms to the total variance are negligible (albeit with some interference/aliasing effects). The main effect of Xi
can thus be approximated by:

V̂i = 2
M∑

p=1

Λpωi (12)

M is called the interference factor and is usually chosen between [4,6].
The authors in [31] further proposed a heuristic, recently corroborated by [43], to compute the total effect of Xi by setting

a high value to ωi (typically ωi = 2M max(ω∼i)) and low ones to the other frequencies (gathered in the vector of frequencies
ω∼i). V(E(Y |X∼i)), the sum of the partial variances attributed to the effects of all orders implying all factors except Xi (Eq.
(5)), is then computed by summing the spectrum elements of all frequencies between 1 and M max(ω∼i), assuming that
interaction effects implying ωi are negligible at these frequencies. The total variance and the partial variance of Y attributed
to the total effect of Xi are thus obtained by:

V̂ = 2
Mωi∑
l=1

∧l (13)

and

V̂T i = 2
Mωi∑
l=1

∧l − 2
M max(ω∼i)∑

l=1

∧l = 2
Mωi∑

l=M max(ω∼i)+1

∧l (14)

As a consequence, the minimum number of model runs to limit the problem of aliasing is N = 2Mωi + 1 according to the
Nyquist–Shannon theorem. Better results might however be obtained using N = 4Mωi + 1 [31]. The key elements for an
efficient estimate of the partial variances are the choice of the interference factorM and frequency set ω∼i.

The authors in [31] proposed an algorithm to compute these frequency sets ωi and ω∼i and the partial variances V̂i and
V̂T i provided the number of factors k, the sample size N and the interference factor M . This algorithm is described in detail
in Appendix A. In this study we used a Matlab implementation of this algorithm [44]. An R implementation can be found in
the widely used package ‘‘sensitivity’’ [45] available on the CRAN.

A global scheme describing the different steps necessary for the computation of the partial variances is presented in Fig. 1.
It must be noted that they can be computed independently for each model output variables (or for each time step or spatial
point of a given model output variable) at no extra-cost by using the same model simulations.

3.2. Configuration of use in this study

The choice of N , M , and of the Nyquist constraint has been determined in a preliminary study conducted on a restricted
model configuration (1 spatial point) limiting the amount of stored data and of associated post-treatments. Several values
have been experimented for M (4 and 6), N (257, 513, 1025, and 2049), and for the Nyquist constraint (N = 2Mωi + 1 and
N = 4Mωi +1). Each sensitivity analysis has been repeated 5 times by changing the starting point of the search-curve using
random values of ϕi. A dummy parameter, that does not appear in the model equations, has been considered to test the
significance of the estimated parts of variance [46]. Final estimates of V̂i and V̂Ti have been computed by taking the averages
of the values obtained for the different repetitions. 211420 simulations were performed for conducting this preliminary
study. The final choice (N = 1025, M = 4 and N = 2Mωi + 1) has been determined by (i) considering the convergence
of the V̂i and V̂Ti values and of the parameter rankings, (ii) checking that the sum of the V̂i is not larger than V̂ , and (iii)
checking that the V̂i and V̂Ti values of the dummy parameter are close to zero. A new study using these selected values has
been then conducted on the model in its full spatial configuration (see next Section). The total cost of this new analysis was
5Nk = 51 250 model simulations.
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Fig. 1. Synthetic presentation for the estimation of partial variances V̂i and total effects V̂Ti of factor Xi (i = 1, 2, . . . , k).

4. Model and configuration under study

Fig. 2 presents a graphical description summarizing themethodology. The use of the EFASTmethod generates a numerical
experimental design. With these sets of uncertain parameter values, the direct problem is performed, and results are post-
processed to obtain the variances and sensitivity indices. This approach emphasizes the main influence parameters.

The configuration presented below has been chosen to illustrate the methodology because:

• it is of interest to applications in the field of underwater acoustics, material wave characterization, or civil engineering
for natural or artificial media [1–8],

• the semi-analytical approach, which is the kernel of the forward problem used for performing the global sensitivity
analysis, has already been crosschecked and published [17,18],

• the computational cost of the semi-analytical approach allows for numerous repetitions.

4.1. Geometry

The 2D configuration under investigation is a fluid half-space ΩF above a homogeneous poroelastic half-space ΩP , as
shown in Fig. 3. The x and y geometrical axes point rightward and upward, respectively. A causal source point S(t) located
in the fluid at (xs = 0, ys > 0) emits cylindrical waves. The expression of S(t) is given in Appendix B.1.

4.2. Physical model: inputs and outputs

The fluid domain ΩF is governed by the acoustic equations, recalled in Appendix B.2. The physical parameters are the
density ρF and the bulk modulus KF supposed to be perfectly known.

The poroelastic medium ΩP is modeled using the low-frequency Biot theory [47–49], recalled in Appendix B.3. It
corresponds to the medium to be investigated. The 10 uncertain physical parameters of the Biot theory are:

• the dynamic viscosity η, the bulk modulus KF , and the density ρF of the saturating fluid; notations ρF and KF are used
both in ΩP and ΩF but only those concerning ΩP are supposed to be uncertain, which, from a physical point of view,
takes into account a partial saturation of the porous material,

• the density ρS , the bulk modulus KS , and the shear modulus µ of the elastic skeleton,
• the connected porosity φ, the tortuosity a∞, the absolute permeability κ , and the bulk modulus of the dry isotropic

matrix KM .
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Fig. 2. Methodology applied for the global sensitivity analysis (GSA).

Fig. 3. Configuration under study : fluid medium ΩF over a homogeneous poroelastic half-space ΩP .

The fluid/porous interface I has been chosen in this study to be modeled as an ‘‘open-pore’’ interface [48,50,51], recalled
in Appendix B.4. Other interface conditions could be taken into account [17] but this is not under the scope of application of
the present work.

The inputs of the global sensitivity analysis study are the 10 porous parameters. The range of variations is given in
Section 4.3. The outputs of interest are: the acoustic pressure p in ΩF , the solid velocity u̇ = (u̇x, u̇y)T and the pore pressure
p in ΩP . The overlying dot denotes the partial derivative with respect to time and u is the solid displacement.

7



Table 1
Mean (or targeted) physical parameters and acoustic properties relative to
the mean poroelastic half-space.

Saturating fluid ρF (kg/m3) 1000
KF (Pa) 2.25 109

η (Pa s) 10−3

Grain ρS (kg/m3) 2760
µ (Pa) 3.40 109

KS (Pa) 4.0 1010

Matrix φ 0.24
a∞ 2.3
κ (m2) 3.9 10−13

KM (Pa) 5.8 109

Table 2
Characteristic velocities (at fC = 20 kHz, central frequency of the source
term); cPf and cPs are the two compressional poroelastic wave celerities, cS
is the shear poroelastic wave celerity and cF is the fluid wave celerity.

Phase velocities cPf (fC ) (m/s) 2636.8
cPs(fC ) (m/s) 571.5
cS (fC ) (m/s) 1210.8
cF (m/s) 1500.0

The approach uses a direct model based on integral transforms. Details are given in [17,18]. Appendix C only presents the
main characteristics of the semi-analytical approach.

4.3. Numerical values

The excitation source S(t) is located in the fluid domain near the interface at point (xs = 0, ys = 4.0 10−3) m. The source
emits a combination of sinusoids of central frequency 20 kHz during the time period t ∈ [0, 5.10−5

] s.
The acoustic mediumΩF is water with ρF = 1000 kg/m3 and KF = 2.25 109 Pa. The poroelastic half-spaceΩP consists of

water-saturated sand [52]. Table 1 gives the 10 mean (or targeted) values of the poroelastic parameters. The EFAST analysis
is conducted with random parameters uniformly distributed with a ±10% variation around these mean values, used for
instance in [12] or [19].

Values for the shear wave speed and the low and fast wave speeds are given in Table 2.

5. Results and discussion

Results concern first receivers located in the upper fluid part ΩF , then at the fluid/porous medium interface I and, at the
end, in the porous medium ΩP . For points located in the fluid, we focus on the full waveform pressure p response whereas
for points located in the porous medium, we focus both on the full waveform pressure p and the vertical component of the
solid velocity u̇y.

5.1. Upper fluid part ΩF

Fig. 4 shows the temporal evolution of the partial variances for fluid pressure at the receiver located at (x = 0.3; y = 0.3)
m. The temporal fluctuation of the total variance due to the variation of the 10 studied parameters in their uncertainty
domain corresponds to the sumof the colored contribution of each parameter and of their interaction. The temporal variation
of the fluid pressure mean (blue curve) indicates that variances significantly different from zero are concentrated on the
wave passage, i.e. centered around t = d/cF + tC/2 ≈ 0.31 ms in this case. This behavior has been observed at every spatial
point studied although the time domain of the wave passage obviously differs with the point location and medium under
study. Thus, only a restricted temporal part of the signal corresponding to the time domain for which the total variance
is significantly different from zero are shown in the Figures (we have selected, for all the results, the temporal part of the
simulated measure for which the variance is higher than one percent of the variance maximum value).

On Fig. 4, the variance reaches a value of 5.10−6 Pa, which gives a standard deviation of about 2.10−3 Pa compared to
the maximum value of the fluid pressure mean of 8.10−2 Pa. This corresponds to a 2.5% fluctuation. A direct inspection of
the results reveals that for this chosen point, the variance is mainly explained by four parameters : ρS , φ, KF , and µ. The
strong contrast between the fluid and solid densities, and the location of the source near the interface, highlight the impact
of parameter ρS . Other parameters have really minor contributions.

Figs. 5 and 6 present, respectively, the partial variances for fluid pressure at various x (0.1; 0.2; 0.4; 0.5) m but at a fixed
elevation y = 0.3 m, and at various y (0.1; 0.2; 0.4; 0.5) m but at a fixed abscissa value x = 0.3 m. The same scales are used
for the variance and the pressure mean values on all the subfigures.
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Fig. 4. Full time (s) evolution of the partial variances for fluid pressure (Pa) at a selected location (x = 0.3, y = 0.3) m in ΩF . Total variance is the
sum of the colored contribution of each parameter and of their interaction. The blue curve represents the full time response of the fluid pressure mean.
Only the temporal part of the simulated measure for which the variance is higher than one percent of the variance maximum value has been drawn. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Full time (s) evolution of the partial variances for fluid pressure (Pa) at: (x = 0.1; y = 0.3) m (top left); (x = 0.2; y = 0.3) m (top right);
(x = 0.4; y = 0.3) m (bottom left); (x = 0.5; y = 0.3) m (bottom right).
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Fig. 6. Full time (s) evolution of the partial variances for fluid pressure (Pa) at: (x = 0.3; y = 0.1) m (top left); (x = 0.3; y = 0.2) m (top right);
(x = 0.3; y = 0.4) m (bottom left); (x = 0.3; y = 0.5) m (bottom right).

The total variance varies considerably as a function of both time and space. These fluctuations of the total variance are not
linked with those of the pressure mean. For example, in Fig. 5 (bottom left), the maximum values of variance and pressure
mean occur at the same time, leading to a standard deviation of 8% at this time step. In Fig. 5 (bottom right), it is no longer
the case and themaximum value of variance appears for a low level of the pressuremean. Consequently, themaximum level
of information that can be extracted from observation of fluid pressure on the studied parameters does not always coincide
with the maximum of the fluid pressure, as could have been expected. A full waveform inspection of the variance and mean
of the signal clearly provides more information than the study at specific given times chosen a priori.

When x increases, the cumulated variance increases and the parts due to parameters ρS andµ become preponderant, see
Fig. 5.When xdecreases, the influence ofµ andρS is reduced and fluid parametersφ andKF remain at the same level, since the
influence of the pressure wave comes either directly from the excitation source or after being converted into a surface wave
on the surface between the fluid and the poroelastic half spaces. The other parameters are irrelevant. Interaction between
the parameters is negligible, except in a narrow zone near the interface.

Fig. 6 confirms that the influence of µ and ρS is lower when moving away from the poroelastic surface, due to a strong
decreasing impact of the surface wave, and that the influence of both φ and KF remains stable.

5.2. Fluid/porous medium interface I

Fig. 7 (left) presents the time evolution of the partial variances of the pore pressure at the interface between the upper
fluid and the porous medium at (x = 0, 3; y = −0.01) m.

The global level of variance explained at the interface by the variation of the selected parameters is more than ten times
higher than the maximal one observed in the fluid part. Moreover, the pressure mean value is much lower. The variance
reaches a value of 3.10−4 Pa, which gives a standard deviation of 1.7 10−2 Pa compared to the maximum value of the fluid
pressure mean of 2.5 10−2 Pa. This corresponds to a 70% fluctuation for this simulated measure. The signal is divided into

10



Fig. 7. Full time (s) evolution of the partial variances for: the pore pressure p (Pa) (left) and the vertical velocity u̇y (m/s) (right) at a selected location
(x = 0.3, y = −0.01) m, near the fluid–porous medium interface I .

two parts: the first one corresponds to the fast compressional wave (arrival time centered around 0.14 ms) and the second
one is due to the shear and surface (of Pseudo-Stoneley type) waves (arrival time estimated after the arrival time of shear
wave S at 0.28 ms). A factor 2 between the compressional and shear/surface waves is noticed on Fig. 7 (left) whereas the
variance is much higher for the surface contribution.

For the time period corresponding to fast compressional wave Pf wave influence, parameters ρS and µ are the most
relevant ones, and in a fewer level, other parameters φ, KF , and KM also show a small influence. For the time period
corresponding to S and surface waves influence, the pressure response is governed by parameters ρS and µ. The pressure,
that does not intrinsically depend on the shear effect, is under its influence owing to the strong mechanical couplings of the
Biot theory. As the fluid/porous interface has been considered as an ‘‘open-pore’’ interface, the same sensitivity is observed
for a point situated inside the fluid part ΩF near the interface. Moreover, an interaction (indicated in brown) between the
parameters clearly appears. Note that as the influence of ρS and µ decreases, the interactions increases. Fig. 8 (top) shows
that the interaction only occurs between parameters ρS and µ.

Fig. 7 (right) presents the time evolution of the partial variances for the same receiver but for the vertical solid velocity.
Only the shear and surface wave contribution is seen. Even if the intrinsic value of the variance is low, it yields a standard
deviation of similar order of magnitude than this of the pressure, relative to the velocity amplitude. As for the pressure,
the variance is entirely linked to variations of parameters ρS and µ, intrinsically and by their mutual interaction. Indeed,
the considerable level of interaction observable on Fig. 7 (right) only implies these two parameters, as confirmed on Fig. 8
(bottom). Other parameters absolutely do not influence the response.

The same trend is observed along the fluid/porous medium interface no matter x (results not shown), except for sensors
located near the excitation source where all the body and surface waves are still not decoupled.

5.3. Porous medium ΩP

Fig. 9 (left) presents the temporal evolution of the pore pressure partial variances at (x = 0; y = −0.3)m.We can observe
similar levels of pressure variance inside the porous medium. Most relevant parameters are in a hierarchic ranking : (i) ρS ,
(ii) KF , KM and µ, (iii) φ and KS in a minor way. Other input parameter effects (a∞, κ, ν and ρF ) are negligible. Unlike in the
fluid half-space, interaction occurs for all the influential parameters, see Fig. 10. The analysis of the partial variances of the
vertical solid velocity does not give supplementary information (not shown here).

The representation of the pore pressure partial variances directly below the solicitation at (x = 0; y = −0.01) m shows
different results, Fig. 9 (right). Near the surface and below the solicitation, the most relevant parameters are porosity φ and
fluid bulk modulus KF . Fluid-type parameters become preponderant. The influence of permeability is also seen: it appears
then that permeability κ becomes influential when the sensor is located near the surface and is entirely quasi submitted to
a compressional effect. There is no interaction between the parameters.

5.4. Assessment

Fig. 11 presents the spatial distribution of the log10 partial variances for the fluid pressure at T = 0.19 ms. It is a
complementary way to analyze the results, and it confirms the main results presented in the previous subsections. They
are summarized in Table 3.
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Fig. 8. Full time (s) evolution of the first order partial variances (in blue) and interaction terms (in brown) for ρS (left) and µ (right) for: the pore pressure
p (Pa) (top) and the vertical velocity u̇y (m/s) (bottom) at a selected location (x = 0.3, y = −0.01) m, near the fluid–porous medium interface I .

Fig. 9. Full time (s) evolution of the partial variances for the pore pressure p (Pa) at selected locations: (x = 0, y = −0.3) m (left) and (x = 0, y = −0.01)
m (right) belonging to the porous medium ΩP directly under the solicitation.

For the configuration under study, the main conclusions are:

• a 10% uniform fluctuation of tortuosity a, dynamic viscosity η, fluid density ρF , and bulk modulus of the skeleton
KS has a very small impact on the pressure and vertical velocity responses. Consequently, these parameters will be
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Fig. 10. Full time (s) evolution of the first order partial variances (in blue) and interaction terms (in brown) for KF (top left), KM (top right), µ (bottom left)
and ρS (bottom right) for the pore pressure p (Pa) at (x = 0, y = −0.3) m.

Table 3
Synthesis of the major parameters of influence.

Different parts Influential parameters Interaction Relative Figures

ΩF (pressure) ρS , φ, KF , µ minor/no 4, 5, 6
µ influence decreasing for points closer to the source

I (pressure) ρS , µ and φ, KF , KM minor for P wave, 7 (left), 8 (top)
yes for S wave

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I (velocity) ρS , µ yes 7 (right), 8 (bottom)

ΩP (pressure) (i) mainly ρS yes 9 (left), 10
(ii) then KF , KM , µ
(iii) and φ, KS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
near pressure field: φ, KF , κ , ρF no 9 (right)

difficult to estimate in an inversion process but at the same time their values do not need to be precisely known to
obtain reliable results from the model,

• the sensitivity analysis shows that complementary information is contained in the signals function of both the time
and the receiver location, because of the different waves traveling:

– the partial variance fluctuation of a mechanical quantity (pressure, velocity) relative to the shear wave passage
is greatly linked to the grain parameters of the porous medium µ and ρS ,

– the partial variance fluctuation of a mechanical quantity relative to the fast compressional wave passage can
be due to the fluid parameters of the porous medium, such as porosity φ, fluid bulk modulus KF and intrinsic
permeability κ ,

– analysis of partial variances shows interaction between parameters, specifically during the shear wave passage
and not during the compressional wave passage,
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Fig. 11. Spatial distribution (m) of the log10 partial variances for the fluid pressure (Pa) due to uncertainties in φ, a∞ , KF , KM , µ, ρS , ρF , KS , κ and η at
T = 0.19 ms. T = 0.19 ms has been chosen to emphasize the influence of each wave, i.e., to separate clearly the various waves in the media and to make
visible non-zero simulated signal in thewhole space under consideration This figure has been plottedwith theMatlab grid data function from a 156 receiver
grid.

– studying the pressure response inside the porous medium or in the fluid part isolates the influence of the
compressional waves whereas studying the vertical velocity includes the influence of the shear waves,

– due to surface waves of Pseudo-Stoneley type, the model provides a more complex response at the interface:
vertical velocity is governed by parameters µ and ρS whereas pressure is governed either by fluid parameters
(weak direct shear solicitation), or by solid parameters (strong direct shear solicitation).

Itmust be emphasized that results obtainedwith variance-basedmethods are rarely generic. Paleari and Confalonieri [53]
have recently shown the strong influence of factor distributions on the results of a sensitivity analysis conducted with
the Sobol method. The conclusions given here are thus likely to be strongly linked to the problem under study: geometry,
frequencies involved, kind of material, and choice of uncertainty range. We have chosen to illustrate the potentiality of the
EFASTmethod on an academic case but it is important to understand that a SA has to be led for each particular configuration.
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5.5. Comments on the application of the SA methodology

If, as explained above, the results of the application of variance-based methods can hardly be regarded as generic, these
methods are themselves clearly generic. They can be applied regardless of:

• the type of model studied; these methods are called model-free, i.e. they do not require any assumption about the
shape of the model,

• the uncertainty distribution of the factors studied, provided such distributions are independent and the number of
studied factors is not too important.

It however happens in practice that uncertainties about unknown factors depend on each other. It may be the case for
example when these uncertainties result from experimental data [54] or when they are constrained by some engineering
processes [55]. In this case, new terms appear in the variance decomposition formulation, Eq. (3): the partial variance owing
to a given factor may be influenced by its dependence on other inputs making the results of the classical approaches difficult
to interpret. Several alternatives have been proposed in the recent years to address this problem, see [56] for a short review.

Estimating partial variances using variance-basedmethods is computational expensive and thus not appropriate for very
high-dimensional problems [14]. In practice, it is advised to apply these methods to a number of factors inferior to about
twenty [57]. Although it is not the case in this study, the number of uncertain input factors of complex models usually
exceeds this limit. In this case, screening methods are usually applied in a first step to identify the set of important factors
on which variance-based method can be eventually applied [58].

6. Conclusion and further work

Taking into account, explicitly, the fluid part of a porous material is a laudable goal and has been done in this manuscript
by a complete poroelastic approach. However, at the same time, the use of an elaborate model increases the number of
parameters, which leads to a difficulty in handling them. Consequently, it is of interest to both use an elaborated model
and try to restrict it only to the influential parameters in correlation with the configuration under study. Sensitivity analysis
methods have proven in many domains and applications to be efficient tools for exploring model behavior under input
parameter uncertainties and complex relationships between model inputs and outputs. However, this kind of analysis is
still rarely applied to wave propagation in poroelastic environments.

In this study, we have used a global sensitivity analysis method for studying the simulation of fluid pressure and solid
velocity full waveform responses in a configuration representing a fluid overlying a poroelastic medium, subjected to a
transient excitation. This method has allowed us to track the most influential parameters. It has been shown to be powerful
in highlighting the complementary information contained in the signal function of both the time and the receiver location.

If themethodology proposed here is generic, the results obtained are strongly linked to the characteristics of the problem
under study: soil nature and geometry, frequencies under study, and parameter uncertainty distributions. This pleads for
a systematic application of such kinds of methods when new configurations are studied. If the EFAST method is relatively
costly in terms of number of model simulations required, more computationally efficient methods such as RBD-FAST or
metamodelling strategies can be applied for more computationally demanding models.

When considering an inversion process, a preliminary sensitivity analysis can be of great help in the construction of the
inversion strategy. For instance, in the example studied, since the interface points are particularly sensitive to the shear
Lamé constant and solid bulk density, the inversion can ensure that measurements at the interface have information on
these parameters. On the contrary, since near the source, the porosity and fluid bulk modulus become more influential, the
inversion process should consider near field response. This will be the next step of our work.
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Appendix A. EFAST algorithm

Saltelli et al. [31] proposed an algorithm to perform EFAST that can be summarized as follows:
(1) Choose an interference factorM and sampling size N so that N − 1 is a multiple of 4.M2

(2) Set i = 1
(3) Generate ωi the frequency of factor Xi:
ωi =

N−1
2M

(4) Generate k low frequencies a follows:
ω∼i = (1, ∆ + 1, 2∆ + 1, . . . , (k − 1)∆ + 1)T , with ∆ = floor

(
N−1
4kM2

)
If ∆ = 0, ω∼i may contain different values but with repetitions (see [31])
(5) Generate randomly k phase-shifts (ϕ1, . . . , ϕk) ∈ [0, 2π ]

k
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(6) Generate the EFAST sample :
sq = −π +

(2q−1)π
N , q = 1, . . . ,N

xqj = F−1
j ( 1

π
arcsin

(
sin
(
ωjsq + ϕj

))
+

1
2 ), j = 1, . . . , k and q = 1, . . . ,N

(7) For each draw xq = (xq1, . . . , xqk) with q = 1, . . . ,N:
run the model and save the model response of interest f (xq)
(8) Compute the Fourier coefficients as follows:
Âl =

1
N

∑N
q=1 cos(lsq) × f (xq)

B̂l =
1
N

∑N
q=1 sin(lsq) × f (xq)

∀l ∈
{
−

N−1
2 , . . . ,−1, 0, 1, . . . , N−1

2

}
(9) Evaluate the total variance V̂ and partial variances (V̂i, V̂T i)
(10) Set i = i + 1,

(11) If i > k stop, otherwise resume from (3).
As suggested by an anonymous reviewer, this algorithm could be written in an alternative way by initially setting∆ = M

and deducing from its value the list of frequencies, ω∼i and ωi, and the sample size N . In case the computational cost is not
affordable, the value of ∆ could eventually be decreased.

Appendix B. Theoretical equations

B.1. Source expression

The source term is expressed as:

S(t) =

⎧⎪⎨⎪⎩
4∑

m=1

am sin(βm ωC t) if 0 < t <
1
fC

0 otherwise

where βm = 2m−1 and ωC = 2π fC ; the central frequency fC = 20 kHz. The coefficients am are: a1 = 1, a2 = −21/32,
a3 = 63/768, a4 = −1/512 [17]. The Fourier transform of S(t) is explicitly given by:

S∗(ω) =

4∑
m=1

am
βm ωC

2π

exp(i 2π ω/ωC ) − 1
ω2 − β2

m ω2
C

B.2. Acoustic equations for the fluid medium

The acoustic equations are written as follows:{p = −KF ∇ · U

∆ p −
ρF

KF
p̈ = −S(t) δ(x)δ(y − ys)

with δ the Dirac distribution and p̈ = ∂2p/∂t2. The parameters and variables are defined in the main text, see Section 4.2.

B.3. Biot model for the poroelastic medium

The low-frequency Biot model is valid at frequencies below the critical value defined as:

fc =
η φ

2π a∞ κ ρF

Based on the constitutive equations and the conservation of momentum in porous media, one obtains [47–49]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ =

((
KM −

2
3
µ

)
∇.U −

(
1 −

KM

KS

)
p
)

I + 2µΞ

p = −

(
1 − φ −

KM
KS

KS
+

φ

KF

)−1 ((
1 −

KM

KS

)
∇.u + ∇.w

)
∇ Σ = (φ ρF + (1 − φ) ρS) ü + ρF ẅ

−∇ p = ρF ü +
a∞ ρF

φ
ẅ +

η

κ
ẇ

where u is the solid displacement, U = (Ux, Uy)T is the fluid displacement, w = φ (U − u) = (wx, wy)T is the relative
displacement, I is the identity tensor, Σ is the stress tensor, Ξ =

1
2

(
∇ u + ∇

T u
)
is the strain tensor, and p is the pore

pressure. The mechanical parameters are defined in the main text, see Section 4.2.
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B.4. Interface conditions

The interface condition between the fluid half-space and the porous medium can be described using the following
conditions:

[p]0 = 0; (σyy)−0 = −(p)+0 ; (σxy)−0 = 0; (uy)−0 + (wy)−0 = (Uy)+0 ,

where [p]0 = (p)+0 − (p)−0 denotes the jump in the fluid pressure from ΩF to ΩP across y = 0, and (p)+0 = limε→0+p(x, ε, t).

Appendix C. Main characteristics of the semi-analytical approach

To solve the partial differential systems issued from the fluid upper part and from the porous medium, we use a semi-
analytical method, detailed in [18], and whose main steps, in the present configuration, are summarized as follows:

• in the porous medium, Helmholtz decompositions provides a (u, w) second-order wave formulation,
• applying x and t Fourier transforms yields decoupled ordinary differential systems in the frequency–wavenumber

domain, associated with fast and slow compressional waves Pf and Ps, and with shear wave S,
• the pressure field in the fluid upper part is developed analytically in the frequency–wavenumber domain,
• the interface conditions between the fluid and porous medium are taken into account to couple the two parts,
• the global systemprovides the solutions in terms of displacements or stresses/pressure in the frequency–wavenumber

domain,
• to finish, inverse transforms over the horizontal wavenumber and the frequency are performed numerically to obtain

displacement, stress, and pressure fields in the time and space domain.

The integrand over the horizontal wavenumber shows fast oscillatory behavior and the envelope of the maximum
amplitudes shows sharp peaks. Consequently, an alternative technique to the usual Fast Fourier Transform for evaluating
the integral properly has been chosen, based on the Filon quadrature, which is particularly accurate and suitable for dealing
with these integrals. The Filon quadrature has been specifically adapted to carefully treat the sharp changes in the integrand
occurring around the wavenumbers of the propagating waves : the wavenumbers are calculated and sorted out to divide the
entire integration interval into several parts. The quadrature is then performed by discretizing finely in the neighborhood of
these wavenumbers and more coarsely farther away. The integral is truncated depending on the highest wavenumber and
adapted to each frequency.

Numerical integration over the frequency variable is done using a Simpson quadrature with a regular grid.
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