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Abstract

The Markov chain model (MCM) has become a popular tool in the agricultural economics
literature to describe how farms experience structural change and to study the impact of
various drivers of this process, including public support. Even though some studies have
accounted for heterogeneity across farms by letting transition probabilities depend on
covariates depicting farms/farmers' characteristics, only observed heterogeneity has been
considered. Assuming that structural change may also relate to unobserved individual
farms' characteristics, we applied a restricted mixed Markov chain model (M-MCM),
namely the mover-stayer model (MSM), in the agricultural context to relax the assumption
of homogeneity in the transition process which grounds the usual MCM. We consider a
mixture of two types of farms, the `stayers' who always remain in their initial size category,
and the `movers' who follow a �rst-order Markovian process. An empirical application
to a panel of commercial French farms over 2000-2013 shows that the MSM is a better
modeling framework to recover the underlying transition probability matrix as well as to
perform long-run farm size distribution forecasts.
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1. Introduction

The farming sector has faced important structural changes over the last decades. In most
developed countries, particularly in Western Europe and United States, the total number
of farms has been decreased signi�cantly and their average size increasing continually,
implying some changes in the distribution of farms by category of sizes. Such structure
changes in the farming sector may have important consequences for equity within agricul-
ture (regarding income distribution and competitiveness among farms), for productivity
and e�ciency of farming as well as on the demand for government services and infrastruc-
ture and the well-being of local communities (Weiss, 1999). Therefore, structural change
has been the subject of considerable interest among agricultural economists and policy
makers, in particular to understand the mechanisms underlying these changes in order
to identify key drivers that in�uence the observed trends and to generate prospective
scenarios either to reverse the situation or to draw appropriate support programs.

As Zimmermann et al. (2009) show, it has become quite common in the agricultural
economic literature to study the way farms experience structural change thanks to the
so-called Markov chain model (MCM). Basically, this model states that, as the size of
farms changes according to some stochastic process, farms move from one size category
to another over time. Methodologically, most of these studies have used `aggregate' data,
that is, cross-sectional observations of the distribution of a farm population into a �nite
number of size categories: such data are most often easier to obtain than individual-level
data, and Lee et al. (1965) and Lee et al. (1977) have shown that robustly estimating a
MCM from such aggregate data is possible. Since then, because estimating a MCM may
well be an ill-posed problem as the number of parameters to be estimated is often larger
than the number of observations (Karantininis, 2002), much e�ort has been dedicated
to developing e�cient ways to parameterize and estimate these models, ranging from a
discrete multinomial logit formulation (MacRae, 1977; Zepeda, 1995), the maximization of
a generalized cross-entropy model with instrumental variables (Karantininis, 2002; Huettel
and Jongeneel, 2011; Zimmermann and Heckelei, 2012), a continuous re-parameterization
(Piet, 2011), to the use of Bayesian inference (Storm et al., 2011).

Empirically, MCMs have been �rst used within a stationary and homogeneous ap-
proach, assuming that transition probabilities are invariant over time and that all agents
in the population change categories according to the same unique stochastic process.
Despite improvements in the speci�cation and the estimation method of this basic model,
the resulting estimated parameters generally lead to erroneous farm size distributions
forecasts (Hallberg, 1969; Stavins and Stanton, 1980) because of this homogeneity as-
sumption (McFarland, 1970). Since then, several studies have been therefore devoted to
improve the Markov chain modeling framework. Two approaches have been particularly
investigated; �rst, assuming that transition probabilities of farms may vary over time, non-
stationary MCMs have been developed in order to investigate the e�ects of time-varying
variables on farm structural change, including agricultural policies (see Zimmermann et al.
(2009)); second, assuming that the transition process may be di�erent according to some
farms/farmers' characteristics (regional location, type of farms, legal status, age group,
etc.), some studies have accounted for farms heterogeneity in modeling structural change.

In the agricultural economics literature, heterogeneity of farms has been mostly in-
corporated using MCMs either by letting the transition probabilities depend on a set
of dummy variables (see Zimmermann and Heckelei (2012) for a recent example) or by
�tting the usual MCM to sub-populations, partitioned ex-ante based on the some exoge-
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nous variables (see Huettel and Jongeneel (2011) for example). To our knowledge, only
observed heterogeneity has been considered in this studies, implying that all farms sharing
same observed characteristics follow the same and unique stochastic process. However,
as it has been found in some other strands of the economic literature, the factors driving
the evolution of the structure of the farms at the individual level may also relate to
unobserved farms/farmers' characteristics (Langeheine and Van de Pol (2002)). There-
fore, as farm-level data become more widely available, we propose to use a more general
modeling framework than the simple MCM, namely the mixed-MCM (M-MCM), which
allows accounting for unobserved heterogeneity in the transition process. This extended
modeling framework has been applied to study population mobility or structural change
in some other strands of the economic literature. For example, applications have been
made to study labor mobility (Blumen et al., 1955; Fougère and Kamionka, 2003), credit
rating, income or �rm size dynamics (Dutta et al., 2001; Frydman and Kadam, 2004;
Frydman and Schuermann, 2008; Cipollini et al., 2012).

Since structural change in agriculture refers to a long-run process (it may take time
for farms to make at least one transition), we assume that accounting for heterogeneity in
the rate of movement of farms (unobserved heterogeneity) may allow recovering the data
generating this process in a more e�cient way than the simple MCM. Therefore, using
the M-MCM should lead to estimate more accurately the transition probabilities of farms.
This modeling framework should thus leads to better farm size distribution forecasts and
to investigate more e�ciently the e�ects of time-varying variables on farm structural
change, including agricultural policies as well as individual farms/farmers' characteristics.
As an illustration, we apply the simplest version of the M-MCM, the mover-stayer model
(MSM), to estimate the transition probability matrices and to perform short-, medium-
and long-run out-of sample forecasts of farm size distributions using an unbalanced panel
of 14,298 commercial French farms observed over 2000-2013. The objective is to compare
the performance of a such modeling framework with respect to the simple MCM: �rst, in
predicting the transition probabilities of farms; then, in performing farm size distribution
forecasts over time.

The originality of this article is threefold: �rst, we implemented a MSM to account for
unobserved heterogeneity across farms in their transition process; second, we computed a
new index to compare distance between transition probability matrices or between farm
size distributions; third, we use bootstrap sampling method to insure robustness of our
results. The article is structured as follows. First, we introduce how the traditional MCM
can be generalized into the M-MCM and the how speci�c MSM is derived. Second, we
develop the method used to estimate the MSM parameters and to assess the performance
of the model. Third, reports our application to France, �rst describing the data used and
then presenting the results. Finally, we conclude with some considerations on how to
extend further the approach described here.

2. Modeling transition process using Markov chain framework

Consider a population of agents which is partitioned into a �nite number J of categories
or `states of nature'. Assuming that agents move from one category to another during a
certain period of time r according to a stochastic process leads to de�ning the number

3



nj,t+r of individuals in category j at time t+ r as given by:

nj,t+r =
J∑

i=1

ni,tφ
(r)
ij,t (1)

where ni,t is the number of individuals in category i at time t, and φ
(r)
ij,t is the probability

of moving from category i to category j between t and t + r. As such, φ
(r)
ij,t is subject to

the standard non-negativity and summing-up to unity constraints for probabilities:

φ
(r)
ij,t ≥ 0, ∀i, j, t∑J

j=1 φ
(r)
ij,t = 1, ∀i, t.

(2)

In the following, without loss of generality, we restrict our analysis to the station-
ary case where the r-step transition probability matrix (TPM), P(r)

t = {φ(r)
ij,t}, is time-

invariant, i.e., P(r)
t = P(r) for all t. In matrix notation, equation (1) then rewrites:

Nt+r = Nt × P(r) (3)

where Nt+r = {nj,t+r} and Nt = {nj,t} are row vectors.

2.1. The simple Markov chain model (MCM)

The simple (stationary) MCM approach consists in approximating the r-step TPM (P(r))
by the 1-step transition matrix P(1) raised to the power r. Under �rst-order Markov
assumption (i.e., the situation at any future period depends only on the situation at
the preceding period) and using individual level data, Anderson and Goodman (1957)

have shown that the true (observed) r-step transition probabilities (φ
(r)
ij ) which can be

computed from a contingency table, are the maximum likelihood of the MCM parameters
(Π(r) = {π(r)

ij }) given by:

π̂
(r)
ij =

n
(r)
ij∑
j n

(r)
ij

(4)

where n
(r)
ij is the total number of r-step transitions from category i to category j during the

period of observation and
∑

j n
(r)
ij the total number of r-step transitions out of category

i. Thus, φ
(1)
ij = π̂

(1)
ij . Then, under population homogeneity and stationary assumptions,

state Π̂(r) = (Π̂)r to approximate P(r).
In doing so, the MCM approach assumes that the agents in the population are ho-

mogeneous, i.e., they all move according to the same stochastic process described by
Π̂. However, in general, Π̂(r) proves to be a poor estimate of P(r) (Blumen et al., 1955;
Spilerman, 1972). In particular, the main diagonal elements of Π̂(r) largely underestimate

those of P(r). This means that, in general, π̂
(r)
ii � φ

(r)
ii . In the farming context, this mean

that the simple MCM tends to overestimate mobility of farm because of the homogeneity
assumption.

2.2. Accounting for unobserved heterogeneity: the mixed Markov chain model (M-MCM)

One way to obtain a 1-step TPM which leads to a more consistent r-step estimate consists
in relaxing the assumption of homogeneity in the transition process which underlies the
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MCM approach. This leads to considering a mixture of Markov chains which may captures
population heterogeneity for example in the rate of movement among states (Frydman,
2005).

More precisely, consider a population partitioned in a discrete number G of homo-
geneous types of agents instead of just one and each agent follows one of these types
which describe elementary Markov processes, the general form of the M-MCM consists in
decomposing the 1-step transition matrix as:

P = {pij} =
G∑

g=1

SgMg (5)

where Mg = {mij,g} is the TPM de�ning the 1-step Markov process followed by type-g
agents, and Sg = diag(si,g) is a diagonal matrix which gathers the shares of type-g agents
in each category. Since every agent in the population has to belong to one and only one
type g, the constraint that

∑G
g=1 Sg = I must hold, where I is the J × J identity matrix.

Because we consider here only the stationary case, it is assumed that neither Mg nor
Sg vary over time.

Then, the r-step TPM for any future time period r can be approximated as:

P(r) =
G∑

g=1

Sg(Mg)
r. (6)

With the so-de�ned MCM and M-MCM modeling frameworks, it should be noted
that: (i) the M-MCM reduces to the MCM if G = 1, that is, the homogeneity assumption
holds and; (ii) the aggregate overall M-MCM process described by P(r) may no longer be
Markovian even if each agent type follows a speci�c Markov process.1

2.3. The Mover-Stayer model (MSM)

In this article, we stick to the simplest version of the M-MCM, namely the mover-stayer
model (MSM) �rst proposed by Blumen et al. (1955). In this restricted approach, only two
types of homogeneous agents are considered, those who always remain in the same cate-
gory (the `stayers') and those who follow a �rst-order Markovian process (the `movers').
Formally, this leads rewriting equation (5) in a simpler form as:

P = S + (I− S) M. (7)

With respect to the general formulation (5), this corresponds to setting G = 2 and
de�ning S1 = S and M1 = I for stayers, and S2 = (I− S) and M2 = M for movers.
According to the Frydman (2005)'s speci�cation of M-MCM presented in Section A.1 in
appendix, the mover-stayer model is equivalent to imposing the rate of movement for
stayers to be zero. Thus, the overall population r-step TPM can be approximated as:

P(r) = S + (I− S) Mr. (8)

1According to equation (6), the situation at future periods not only depends on the situation at one
or some previous periods but also depends on the initial agent distribution.
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3. Estimating the mover-stayer model (MSM)

At �rst, Blumen et al. (1955) have used a simple calibration method base on the maximum
likelihood to estimate the MSM parameters. Then, since Goodman (1961) has shown that
Blumen et al. (1955) estimators are biased, alternative methods have been developed to
obtain consistent ones using, for example, minimum chi-square (Morgan et al., 1983),
maximum likelihood (Frydman, 1984; Frydman and Kadam, 2004) or Bayesian inference
(Fougère and Kamionka, 2003). Frydman (2005) is the �rst who has developed a maximum
likelihood estimation method for the general M-MCM from which can be easily derived
estimators for the MSM. We report this strategy simplifying for the MSM, using our own
notations introduced above.

3.1. The maximum likelihood under complete information

Within the MSM framework where only two types of agents are considered (`S' standing
for stayers and `M ' for movers) and under complete information, that is, stayers and
movers (identi�ed by indicators Yk,S and Yk,M = 1 − Yk,S, respectively) are perfectly
known, the log-likelihood of the MSM for the whole population writes:

logLMSM =
n∑

k=1

Yk,Sloglk,S +
n∑

k=1

(1− Yk,S)loglk,M (9)

where the �rst sum on the right hand-side is the log-likelihood of stayers and the second
one is the log-likelihood of movers. Conditional on knowing that k was initially in category
i, the likelihood that k is a stayer, lk,S, is equivalent to sik,S, the proportion of agents
who never move out of category i during the whole period of observation (see section A.2
in appendix). And, the likelihood that agent k is a mover writes (Frydman and Kadam,
2004):

lk,M = sik,M
∏
i 6=j

(mij)
nij,k

∏
i

(mii,M)nii,k (10)

where sik,M = 1− sik,S is the share of movers initially in category ik, nij,k is the number
of transitions from category i to category j made by agent k, nii,k is the total times that
agent k stay in category i. Therefore, on the right hand-side of equation (10), the �rst
product is the probability to move out of category i while the second one is the probability
to stay in this category from one period to the next even if agent k is a mover.

Substituting lk,S and lk,M in equation (9), the log-likelihood of the MSM for the whole
population rewrites:

logL =
∑
i

bilog(1− si)+
∑
i

bi,Slog[si/(1− si)]+
∑
i 6=j

nijlog(mij)+
∑
i

nii,M log(mii) (11)

where bi and bi,S are the total number of agents and the total number of stayers, respec-
tively, who were initially in category i, si is category-i share of stayers, nij =

∑n
k=1 nij,k is

the total number of transitions from category i to category j, mij andmii are the elements
of the generator matrix (M) of movers and nii,M is the total number of times that movers
stay in category i.

Then, maximizing equation (11) with respect to the unknown parameters si and mij

leads to the optimal values of the MSM parameters. Therefore, solving ∂logLMSM/∂si = 0
gives the optimal share of stayers in each category i:

ŝi =
bi,S
bi
. (12)
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Likewise, solving ∂logLMSM/∂mij = 0, gives:

mij =
nijmii

nii,M

∀i 6= j (13)

Then, setting
∑J

i 6=j mij = 1 − mii, the maximum likelihood of mii (i.e., the probability
for movers to remain in their starting category i) is obtained by:

m̂ii =
nii,M

ni + nii,M

(14)

where ni is the total number of transitions out of category i, and nii,M = nii − nii,S with
nii and nii,S are the total number of times that all agents and stayers remain in state i,
respectively. Finally, substituting equation (14) into (13), the maximum likelihood of mij

(i.e., the probability for movers to make a transition from the category i to the category
j) is given by:

m̂ij =
nij

ni

(1− m̂ii) ∀i 6= j, i, j = 1, · · · , J (15)

3.2. The expectation-maximization (EM) algorithm under incomplete information

Some authors have shown that equation (11) is actually di�cult to use directly because it
is unlikely that one knows beforehand which agents are stayers and which are movers
(Frydman, 1984; Fuchs and Greenhouse, 1988; Swensen, 1996). Indeed, because the
transition process is assumed to be a stochastic process, even movers may remain for
a long time period in their initial category before moving, so that they may not appear as
movers on the observed period. Alternatively, Fuchs and Greenhouse (1988) and van de
Pol and Langeheine (1989) suggest that the MSM parameters can be estimated using the
EM algorithm developed by Dempster et al. (1977). Concretely, the EM algorithm allows
estimating the probability to be a stayer for each agent in the population given its initial
category.

Following Frydman and Kadam (2004), the four steps of the EM algorithm are de�ned
in the case of the MSM as follows:

(i) Initialization: Arbitrarily choose initial values s0i for the share of stayers and m
0
ii for

the main diagonal entries of the generator matrix (M) of movers.

(ii) Expectation: At iteration p of the algorithm, compute the probability of observing
agent k as generated by a stayer, Ep(Yk,S). If at least one transition is observed for agent
k, then set Ep(Yk,S) = 0, otherwise set it to:

Ep(Yk,S) =
spi

spi + (1− spi )(m
p
ii)

nii,k
. (16.i)

Using the resulting Ep(Yk,S), then compute:

� the expected value of the total number of stayers in category i, Ep(bi,S), as:

Ep(bi,S) =
n∑

k=1

Ep(Yk,S) (16.ii)
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� the expected value of the total number of times that stayers remain in category i,
Ep(nii,S), as:

Ep(nii,S) =
n∑

k=1

Ep(Yk,S)nii,k (16.iii)

� and the expected value of the total number of times that movers remain in category
i, Ep(nii,M), as:

Ep(nii,M) = nii − Ep(nii,S) (16.iv)

(iii) Maximization: Update spi and m
p
ii as follows:

sp+1
i =

Ep(bi,S)

bi
and mp+1

ii =
Ep(nii,M)

ni + Ep(nii,M)
. (16.v)

(iv) Iteration: Return to step (ii) using sp+1
i and mp+1

ii and iterate until convergence.

When convergence is reached, ŝ∗i and m̂
∗
ii so obtained are considered as the optimal

estimators. Then, m̂∗ij derives from m̂∗ii as in equation (15).
According to Frydman (2005), the standard errors for the MSM parameters were

computed directly from the EM equations using the method proposed by Louis (1982)
presented in the section A.3 in appendix. Then, the standard errors on the 1-year TPM
were derived using the Delta method according to equation (7). As equation (8) is rel-
atively more complicated, bootstrap sampling method was used to compute standard
deviations on r-step TPMs (Efron, 1979, 1981).

4. Assessing the MSM performance

To assess the performance of the MSM with respect to the simple MCM, two types of
measure were used.

4.1. Likelihood test ratio

To test the goodness-of-�t of the MSM with respect to a simple MCM, a likelihood test
ratio was performed. This statistical test allows comparing the performance of the two
models in recovering the data generating the process under study. According to general
Frydman and Kadam (2004), the likelihood ratio statistic for the MSM is given by:

Γ =
LMCM(Π̂)

LMSM(Ŝ, M̂)
(17)

where LMCM and LMSM are the estimated maximum likelihood for MCM and MSM,
respectively. Theoretically, the asymptotic distribution of −2logΓ, under H0, is chi-square
with (G − 1) × J degrees of freedom. In the case of the MSM, the likelihood ratio tests
the hypothesis that the process involves according to a simple MCM (H0 : S = 0) against
the hypothesis that it is a mixture of movers and stayers (H1 : S 6= 0). The log-likelihood
for both models can be derived from equation (11), where si = 0 and nii,M = nii (∀i ∈ J)
for the simple MCM.
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4.2. TPMs and distributions distance

In order to test the usefulness of the MSM and to compare its merits relative to the
MCM, the parameters from both models were estimated. The estimated parameters were
then used to compute r-step TPMs (where Π̂(r) = (Π̂)r for the MCM and P̂∗(r) = Ŝ +
(I− Ŝ)(M̂∗)r for the MSM) which were used to perform out-of-sample short-, medium-
and long-run forecasts of farm distributions across categories according to equation (1).
The resulting TPMs and distributions from both models were compared to the observed
ones based on the average of marginal errors (AME) given by:

AME =
1

W

∑
i,j

√√√√( φ̂(r)
ij − φ

(r)
ij

φ
(r)
ij

)2

(18)

where W = J2 is the total number of elements; φ̂
(r)
ij and φ

(r)
ij are predicted and observed

values, respectively. φ̂
(r)
ij are the elements of the r-step TPM predicted using either the

MCM (φ̂
(r)
ij = π̂

(r)
ij ) or the MSM (φ̂

(r)
ij = p̂

∗(r)
ij ) estimates as described above, respectively,

and φ
(r)
ij are elements of the observed r-step TPM (P(r)) given by (Anderson and Goodman,

1957):

φ
(r)
ij =

n
(r)
ij∑
j n

(r)
ij

, (19)

where n
(r)
ij is the total number of r-step transitions from category i to category j and∑

j n
(r)
ij the total number of r-step transitions from category i. When compared distribu-

tions the AMEs is computed over the resulting row vector, that is, W = J
Contrary to some indexes of dissimilarity (see Jafry and Schuermann (2004)) or a

residual matrix (see Frydman et al. (1985) for example), the AME provides a global
distance between the predicted TPM or the distribution across categories and the observed
ones. The AME can be interpreted as the average percentage of deviations on predicting
the observed overall population TPM or the distribution across categories. The higher is
the AME, the more the resulting TPM or distribution is di�erent from the observed ones.
Therefore, the best model is the one which gives the lowest AME.

5. Empirical application

5.1. Data used

For our empirical application, we used data from the �Réseau d'Information Comptable
Agricole� (RICA) for France. The RICA (or Farm Accountancy Data Network (FADN) in
English) is de�ned at the European Union level and consists of an annual survey carried
out by the Member States of the European Union. In France, the RICA focuses on
`commercial' farms, that is, farms whose standard output (SO) is greater than or equal
to 25,000 Euros. The information collected on farms refer to physical and structural
characteristics, on the one hand, economic and �nancial characteristics, on the other
hand. To comply with French accounting standards, the speci�c questionnaire de�ned
at the European Union level has been adapted at national level and referenced as RICA
France. The RICA France is produced and disseminated by the statistical and foresight
service of the French ministry for agriculture. Individual farm level data were available
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from 2000 to 2013 for the full sample surveyed, i.e., around 7,000 farms each year. To
each farm in the dataset is assigned has a weighted factor which allows insuring the
representativeness of the sample. The weighted factor also allows extrapolating the total
number of commercial French farms by years based on the Farm Structure Survey (FSS)
organised by Eurostat.2

As we considered all farms in the sample whatever their type of farming, we chose
to concentrate on size as de�ned from an economic perspective. In accordance with
the European regulation (CE) Nº1242/2008, RICA France farms are classi�ed into 14
economic size (ES) categories, evaluated in terms of total SO expressed in Euros.3 This
corresponds to ES category 6 and above. To simplify and because some categories of
farms are less represented in the sample than others, we aggregated the 9 size categories
available in the RICA France sample into 5: less than 50,000 Euros of SO and below
(ES6); between 50,000 and 100,000 Euros of SO (ES7); between 100,000 and 150,000
Euros of SO and between 150,000 and 250,000 Euros of SO (both in ES8); more than
250,000 Euros of SO (ES9 and above).

Since the RICA France database is a rotating panel, farms which enter (respectively,
leave) the sample a given year cannot be considered as representing actual entries into
(exits from) the agricultural sector (around 10% of the French FADN sample is renewed
each year). Because we cannot identify entries into nor exits from the sector, we cannot
thus work directly on farm numbers. Alternatively, we chose to work on size change of
on-going farms, i.e., without considering entries nor exits. We concentrated on farm sizes
in terms of shares of farms by size categories, which is another way to analyze farm size
distribution. We used the weighted factors to compute the actual farm size distributions
for the whole population of commercial French farms for each available year. Table 1 and
Figure 1 present the evolution over the whole studied period of sample farm numbers by
ES categories and average ES in thousand of Euros of SO for the studied panel.

Furthermore, the average economic size of farms has increased over the period of
observation as well as the standard deviations which is a common observed feature for
the whole population of farms in France (see Butault and Delame (2005) and Agreste
Primeur (2011)). Table 1 shows that the observed shares of farms by category of sizes for
the overall population as well as the average ES are di�erent from for the RICA France
sample ones. This is because farms in smaller categories have higher individual weights
than those in larger ones. However, the same trend is observed, that is, the shares of
farms for smaller categories (less than 100,000 Euros of SO) have decreased from 2000 to
2013 while the ones for larger categories (150,000 Euros of SO and above) have increased.
Likewise, the average ES has also decreased while the standard deviation has increase
during the same period. Figure 1 shows that the shares of farms in the category of sizes
less than 100,000 Euros of SO tend to decrease from 2000 to 2013 while the ones for
categories with more than 150,000 Euros of SO tend to increase.

Despite the limitations mentioned above, the RICA France farm sample provides
an opportunity to use the approach developed in this article because: �rst, individual
farm history is available; second, some farms remain a relative long time period in the
sample. In order to observe at least one transition for each agent, we kept only farms

2To learn more about RICA France, see http://www.agreste.agriculture.gouv.fr/. To learn
more about FADN in general, see http://ec.europa.eu/agriculture/rica/index.cfm.

3SO is being used as the measure of economic size since 2010. Before this date, economic size was
measured in terms of standard gross margin (SGM). However, SO calculations have been retropolated
for 2000 to 2013, allowing for consistent time series analysis (European Commission, 2010).
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Table 1

Distribution by economic size (ES) class and average ES for the studied samplea

Years Number of farms by ES class Total Average ES

0-50 50-100 100-150 150-250 ≥ 250 (std. dev.)

2000 790 2,234 1,629 1,762 1,342 7,757 168.88 (179.01)
87,924 129,691 59,857 67,367 41,457 386,296 134.46 (151.72)

2001 746 2,231 1,625 1,817 1,382 7,801 170.98 (180.88)
84,442 123,900 57,583 67,741 41,890 375,556 136.75 (155.04)

2002 713 2,128 1,663 1,818 1,443 7,765 177.57 (198.12)
81,228 118,571 58,104 65,448 42,344 365,695 140.99 (184.50)

2003 690 1,975 1,562 1,693 1,393 7,313 176.27 (193.55)
78,249 113,662 56,961 64,946 42,859 356,677 141.08 (176.08)

2004 707 1,940 1,538 1,707 1,437 7,329 177.67 (188.47)
75,481 109,118 56,118 64,252 43,419 348,388 142.63 (169.30)

2005 741 1,927 1,516 1,711 1,467 7,362 178.03 (181.95)
72,896 104,906 54,811 64,112 44,007 340,732 144.55 (161.46)

2006 756 1,922 1,488 1,688 1,491 7,345 181.21 (209.21)
70,516 101,035 54,202 63,443 44,740 333,936 146.99 (171.49)

2007 774 1,845 1,552 1,694 1,511 7,376 182.27 (191.10)
68,286 97,435 54,032 62,390 45,491 327,634 150.08 (172.33)

2008 780 1,866 1,511 1,721 1,587 7,465 185.49 (200.25)
66,201 94,098 52,412 62,889 46,338 321,938 153.47 (185.00)

2009 778 1,816 1,517 1,734 1,624 7,469 188.43 (205.95)
64,243 90,970 51,137 63,151 47,278 316,779 156.14 (186.03)

2010 652 1,885 1,537 1,770 1,608 7,452 190.53 (199.03)
62,429 88,104 51,320 62,062 48,267 312,182 157.88 (174.96)

2011 638 1,856 1,468 1,791 1,658 7,411 194.89 (207.58)
60,743 85,444 49,285 63,292 49,381 308,145 162.11 (189.23)

2012 651 1,797 1,396 1,794 1,679 7,317 200.28 (249.45)
59,152 82,943 47,911 63,953 50,626 304,585 166.69 (227.41)

2013 658 1,769 1,361 1,804 1,701 7,293 202.41 (240.15)
57,668 80,638 46,821 64,414 51,939 301,480 169.49 (225.53)

a ES in 1000 Euros of standard output
Notes: For each year, the �rst row is the total farm numbers by ES class and the average ES observed in the RICA France
full sample; the second row is the total number of farms by ES class and the average ES extrapolated using the weighted
factor.

Source: Agreste, RICA France 2000-2013 � authors' calculations

present during at least two consecutive years in the database. Our unbalanced panel thus
counted 14,831 individual farms, out of the 17,285 farms in the original database. This led
to observe 85,196 individual 1-year transitions from 2000 to 2013 (100,027 observations
for the selected panel).
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Figure 1: Extrapolated farm shares by category of sizes and average Economic Size (ES)

Source: Agreste, RICA France 2000-2013 � authors' calculations

Before proceeding with the results of our analysis, it should be noted that because
we chose to work with a subset of the full sample, the transition probabilities reported in
the next section should be viewed as size change probabilities conditional on having been
observed over a speci�c number of consecutive years during the whole period under study,
and should not be considered as representative for the whole population of commercial
French farms.

5.2. Results

We estimated the MSM and the MCM on the RICA France data. As the goal of this study
is to develop a robust modeling approach to describe the observed transition process of
farms which may lead to better farm size distributions forecasts, the quality of the model
was evaluated on out-of-sample forecasts. Therefore, we split the RICA France sample into
two parts: (i) observations from 2000 to 2010 were used to estimate parameters for both
models; (ii) the resulting parameters were then used to forecast farm size distributions
in 2011, 2012 and 2013 in order to assess the out-of-sample forecasting power of each
model on a short-, medium- and long-run perspectives. We assumed that 11 years is
long enough to observe at least one transition for farms therefore to provide consistent
parameter estimation for both models. We used three di�erent years for out-of-sample
forecasts in order to insure robustness of the results.
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Table 2

Farm numbers and total observations from 2000 to 2010, by subsamples

Subsamples

1 2 3 4 5 6 7 8 9 10

Farms 13,123 11,291 9,322 7,680 6,257 5,107 4,112 3,448 2,801 2,170
Observations 78,434 74,770 68,863 62,295 55,180 48,280 41,315 36,003 30,180 23,870

Notes: subsample 1 corresponds to the subset of farms remaining present in the database at least 2 consecutive years;
subsample 2 to those remaining at least 3 consecutive years; and so forth.

Source: Agreste, RICA France 2000-2010 � authors' calculations

5.2.1. In-sample estimation

For the estimation phase, ten subsamples could be constructed according to the minimum
number of consecutive years a farm remains present in the database, from two to eleven.
Thus, subsample 1 corresponds to the subset of farms remaining present in the database
at least 2 consecutive years; subsample 2 to those remaining at least 3 consecutive years;
and so forth . Table 2 shows that from subsample 1 to subsample 10 we lost around 83% of
the total number of farms and about 70% of the total number of observation meaning that
several farms remain relative short time period in the sample. Then, using each subsample
the MCM and MSM parameters were estimated and used to predict the 10-year (or 10-
step) TPMs (where Π̂(10) = (Π̂)10 for the MCM and P̂∗(10) = Ŝ + (I− Ŝ)(M̂∗)10 for the
MSM). The resulting 10-year TPMs were compared to the observed one (i.e, the TPM
describing movements of farms across ES classes from 2000 to 2010) based on the average
of marginal errors (AME) as previously described .

In the following, because it would take too much space to present the results obtained
from all subsamples, estimated matrices and detailed results are reported for subsample 10
only, that is, when considering the subset of farms which remain at least 11 consecutive
years in the database which is a balanced panel for 2,170 individual farms, leading to
23,870 observations over the 11 years (see table 2). However, it should be noted that
the derived matrices and results, hence conclusions, remain very similar to those reported
here when considering any of the other subsamples.

The corresponding observed 1-year TPM computed from subsample 10 (which is the
maximum likelihood of the MCM) is reported in table 3. As it usually found in the
literature, we observe that this TPM is strongly diagonal, meaning that its main diagonal
elements exhibit by far the largest values and that probabilities rapidly decrease as we
move away from the main diagonal. This means that, overall, farms are more likely to
remain in their initial size category from one year to the next (see Piet (2011)). This
does not mean no size change at all but, at least, no su�cient change to move to another
category as we de�ned them. Table 3 also shows that the probability for commercial
French farms to remain in their starting ES class from one year to the next is lower
for farms in intermediate categories. This means that farms from these categories are
more likely to change category of sizes which is also a common feature in the agricultural
economics literature (see Piet (2011); Ben Arfa et al. (2014) for example).
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Table 3

Computed observed 1-year TPM (P(1)) (subsample 10)

ES class Total

0-50 50-100 100-150 150-250 ≥ 250 transitions

E
S
cl
as
s

0-50 0.917 0.079 0.002 0.002 0.001 1,651
50-100 0.030 0.898 0.065 0.005 0.002 5,083
100-150 0.002 0.062 0.854 0.080 0.002 4,514
150-250 0.001 0.004 0.054 0.886 0.055 5,685
≥ 250 0.000 0.001 0.003 0.048 0.948 4,767

Notes: the observed 1-year TPM computed from the contingency table is the the maximum likelihood of the MCM; the
computed log-likelihood is logLMCM = −8, 689.36.

Source: Agreste, RICA France 2000-2010 � authors' calculations

In order to estimate the stayer shares S, and the generator matrix of movers M, which
both de�ne the MSM, we implemented the EM algorithm estimation method as previously
developed. Table 4 reports the corresponding shares of stayers by size category and
generator matrix of movers. Firstly, the estimated stayer shares show that the probability
to be a stayer is closer or above 0.30 whatever the category considered. In other words,
for every category, 30% of the farms are likely to remain in their initial category; this
share even goes beyond 60% for farms over 250,000 Euros of SO and is almost 50%
for farms below 50,000 Euros of SO. meaning that farms of these categories are more
likely to remained in their starting category than those in the intermediate categories.
This result could be explained by the fact that farms below 50,000 Euros of SO may
face some economic constraints while farms above 250,000 Euros of SO may reach an
optimal economic size. Secondly, the generator matrix reveals that, conditional on having
been observed eleven times, movers remain between more than four years and a half (for
intermediate ES class) and almost eight years (for farms above 250,000 Euros of SO) in
their initial category before leaving it, recalling that the average time spent by movers in a
particular category is given by 1/(1−mii) (see section A.1 in appendix). This result thus
con�rms that farms which remain in a particular category for a long time, even during the
whole observation period, are not necessarily stayers. Altogether, these two results are in
agreement with the strong diagonality found for the observed 1-year TPM (see Table 3).
This is re�ected in 1-year MSM TPM (P̂∗) which is also strongly diagonal.
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Table 4

Estimated stayer shares (ŝ∗i ), mover generator matrix (M̂∗) and overall population 1-year TPM (P̂∗) (subsample 10)

Stayers shares Movers generator matrix (M̂∗) Overall population TPM (P̂∗)

(ŝ∗i ) 0-50 50-100 100-150 150-250 ≥ 250 0-50 50-100 100-150 150-250 ≥ 250

E
S
cl
a
ss

0-50 0.494 0.837 0.154 0.004 0.004 0.001 0.917 0.078 0.002 0.002 0.001

(0.036) (0.041) (0.012) (0.002) (0.002) (0.001) (0.019) (0.011) (0.001) (0.001) (.)

50-100 0.422 0.055 0.815 0.118 0.009 0.003 0.032 0.893 0.068 0.005 0.002

(0.021) (0.004) (0.022) (0.006) (0.002) (0.001) (0.003) (0.012) (0.005) (0.001) (0.001)

100-150 0.291 0.002 0.089 0.793 0.113 0.003 0.002 0.062 0.854 0.080 0.002

(0.016) (0.001) (0.005) (0.020) (0.005) (0.001) (0.001) (0.004) (0.014) (0.005) (0.001)

150-250 0.371 0.002 0.007 0.087 0.816 0.088 0.001 0.005 0.055 0.884 0.055

(0.017) (0.001) (0.001) (0.004) (0.020) (0.004) (0.000) (0.001) (0.004) (0.012) (0.004)

≥ 250 0.650 0.001 0.003 0.007 0.114 0.875 0.000 0.001 0.003 0.040 0.956

(0.021) (0.001) (0.001) (0.002) (0.007) (0.027) (0.000) (0.001) (0.001) (0.005) (0.009)

Notes: estimated parameters in bold font; bootstrap standard errors in parenthesis (1000 replications); the computed log-likelihood is logLMSM = −7, 783.90.

Source: Agreste, RICA France 2000-2010 � authors' calculations
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The 1-year MSM TPM for the overall population, P̂∗, derives from the estimated
parameters Ŝ∗ = {ŝ∗i } and M̂∗ according to equation (7). At �rst glance, the resulting
matrix, which is reported in Table 4, may look di�erent from the observed one reported
in Table 3, which also de�nes the MCM. However, a close examination of the standard
errors associated with the elements of P̂∗ reveals that every observed probabilities fall
within the 95% con�dence interval of their estimated counterpart pij. In other words,
this means that the MSM leads to estimate a matrix which is not statistically di�erent
from the true (observed) underlying transition process. Moreover, the �t of the models
measured by the likelihood ratio shows that the MSM better �t the data than the MCM.
The likelihood ratio test is −2logΓ = 1,810.99 which is highly signi�cant (the critical
value is χ2

0.001(5) = 20.52 ). This means that the MSM allows recovering the data gener-
ating the transition process of commercial French farms in a more e�cient way than the
simple MCM. Therefore, the MSM should lead to better approximation of farm transition
probabilities of farms over time� that is, the r-step TPM.

Table 5 reports both the 10-year MCM TPM, Π̂(10) = (Π̂)10, and the 10-year MSM
TPM, P̂∗(10) obtained from Ŝ∗, M̂∗ given equation (8). Table 5 shows that the TPMs
predicted by both models are obviously di�erent from the observed one. Most of the
predicted transition probabilities fall out of the 5%-95% percentile con�dence interval for
both models. Overall, the MSM matrix however appears to be a better approximation
than the MCM matrix when compared to the actually observed 10-year TPM (P(10)). In

particular, we �nd as expected that π̂
(10)
ii � φ

(10)
ii while p̂

∗(10)
ii is much closer to φ

(10)
ii . This

means that the MCM tends to largely overestimate mobility of farms particularly on the
long-run, with respect to the MSM. Furthermore, a close examination of all the transition
probabilities individually shows that overall the MSM leads to a better approximation
than the MCM in 16 out of the 25 predicted probabilities and in general the transition
probabilities are more robustly predicted using the MSM.

5.2.2. In-sample assessment

The AMEs obtained for each model prove that the MSM leads to a better approximation
of the observed 10-year TPM than the MCM whatever the subsample considered (see
Figure 2). For all subsamples, the AME is never higher than 0.85 for the MSM while it
is always over 0.95 for the MCM meaning that, with respect to the MCM, the 10-year
TPM obtained using the MSM is always closer to the observed one in term of percentage
of deviations. Figure 2 also shows that the accuracy of the 10-year TPM prediction
increases for both models when increasing the number of consecutive years farms remain
in the database. This could be explained by the fact that farms remaining short time
periods in the sample could be noise for the model parameter estimation. The shorter is
the time period that farms remain in the database the more incomplete is the information
about them. Therefore, a balanced panel should provide better approximation of the
underlying transition probabilities for both models. From Figure 2, it should be noted
also that the resulting AMEs for the MSM seem more stable than those for the MCM,
suggesting that farms remaining short time periods are more noise for the MCM than for
the MSM. Nevertheless, the computed standard errors show that the accuracy of both
models decreases when increasing the number of consecutive years farms remain in the
database, probably because a decrease of the number of observations when increase the
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Table 5

Observed 10-year TPM and the predicted ones for both models (subsample 10)

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S
cl
as
s

0-50 0.715 0.235 0.029 0.014 0.007
50-100 0.107 0.641 0.199 0.038 0.015
100-150 0.020 0.146 0.536 0.268 0.030
150-250 0.010 0.032 0.096 0.630 0.232
≥ 250 0.005 0.021 0.020 0.124 0.830

a) Observed 10-year TPM (P(10))

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S
cl
as
s

0-50 0.476 0.361 0.106 0.043 0.014
(0.028) (0.020) (0.008) (0.006) (0.004)

50-100 0.141 0.467 0.240 0.116 0.036
(0.011) (0.015) (0.011) (0.007) (0.004)

100-150 0.044 0.234 0.338 0.281 0.103
(0.004) (0.011) (0.013) (0.011) (0.007)

150-250 0.015 0.082 0.193 0.428 0.282
(0.002) (0.005) (0.010) (0.013) (0.013)

≥ 250 0.005 0.026 0.068 0.245 0.656
(0.001) (0.003) (0.005) (0.013) (0.018)

b) Predicted MCM 10-year TPM (P̂(10))

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S
cl
as
s

0-50 0.690 0.140 0.097 0.053 0.020
(0.017) (0.010) (0.007) (0.005) (0.003)

50-100 0.060 0.684 0.126 0.090 0.040
(0.007) (0.010) (0.007) (0.005) (0.003)

100-150 0.041 0.119 0.586 0.164 0.090
(0.004) (0.007) (0.012) (0.009) (0.006)

150-250 0.018 0.062 0.117 0.676 0.127
(0.002) (0.004) (0.006) (0.010) (0.009)

≥ 250 0.005 0.021 0.048 0.093 0.833
(0.001) (0.002) (0.003) (0.005) (0.008)

c) Predicted MSM 10-year TPM (Π̂(10))

Notes: estimated parameters in bold font; bootstrap standard deviations in parenthesis (1000 replications); the observed
TPM (P(10)) was computed directly from data (see text).

Source: Agreste, RICA France 2000-2010 � authors' calculations
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Figure 2: Computed average of marginal errors (AME) between the observed and
predicted 10-year TPMs for both models, by subsamples

Notes: subsample 1 corresponds to the subset of farms remaining present in the database at least 2 consecutive years;
subsample 2 to those remaining at least 3 consecutive years; and so forth. The con�dence intervals are based on the
percentiles, that is, the lower and upper bounds are the percentiles 5% and 95%, respectively.

Source: Agreste, FADN France 2000-2010 � authors' calculations

number of years that farms remain in the database (see Table 2).4

Considering subsample 10, the AME on the overall predicted 10-year TPM is around
0.95 for the MCM while it is about 0.78 for the MSM meaning that the predicted 10-
year TPM for the MSM is about 17% closer the observed TPM one than for the MCM
(see Table 6). However, the MSM improvement mainly comes from the main diagonal
elements: when only considering those, the MSM does about �ve times better than the
MCM (0.292/0.057=5.12), while both models almost compare for o�-diagonal elements.
This result con�rms that accounting for heterogeneity in the rate of movement avoid
overestimating the mobility of farms. Thus, the transition process of farms is more
accurately estimated particularly for the main diagonal elements. Since transitions of
farms may be relatively slow, such a modeling framework (the MSM) should lead to more
accurate forecasts of farm sizes distribution on long-run, with respect to the MCM.

4Since we used bootstrap to compute standard deviations, we used the percentile method to construct
the con�dence interval for the AMEs as well as for the r-step transition probabilities. This method
is relevant for censored data and when the bootstrapped distribution for the estimated parameter is
approximatively normal (Efron, 1981).
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Table 6

Average of marginal errors (AME) between observed 10-year TPM (P(10)) and predicted
ones (Π̂(10) and P̂∗(10)) (subsample 10)

TPM Overall Main diagonal O�-diagonal

MCM 0.949 0.292 0.657
(0.044) (0.010) (0.036)

MSM 0.781 0.057 0.724
(0.034) (0.007) (0.035)

Notes: bootstrap standard deviations in parenthesis (1000 replications).

Source: Agreste, RICA France 2000-2010 � authors' calculations

5.2.3. Out-of-sample forecasting

Given the transition process described by the models within the resulting TPMs and
observed farm distributions, one might want to know how these distributions look like
some years after and also how the models recover them. Therefore, out-of-sample short-,
medium- and long-run forecasts were performed using both models as follows. For a short-
run perspective, the estimated 1-year TPMs (Π̂ for the MCM and P̂∗ for the MSM) and
the observed distributions in 2010, 2011 and 2012 were used to forecast the distributions in
2011, 2012 and 2013, respectively. For medium-run forecasts, the predicted 5-year TPMs
(where Π̂(5) = (Π̂)5 for the MCM and P̂∗(5) = Ŝ + (I− Ŝ)M̂∗5 for the MSM) and the
observed distributions in 2006, 2007 and 2008 were used while for long-run forecasts the
predicted 11-year TPMs (where Π̂(11) = (Π̂)11 for the MCM and P̂∗(11) = Ŝ+(I− Ŝ)M̂∗11

for the MSM) and the observed distributions in 2000, 2001 and 2002 were used. Then, the
resulting short-, medium- and long-run distributions from both models were compared to
the observed distributions in 2011, 2012 and 2013 based on the AMEs. Figure 3 presents
the AMEs computed for both model using 1000 bootstrap replications.

Figure 3 shows that as expected the accuracy of both models decreases when increas-
ing the forecast horizon time. The computed AMEs are smaller for short-run forecasts
than for medium- and long-run ones for both models. However, while both models al-
most compare short-run farm distribution forecasts, the MSM performs better than the
MCM for medium- and long-run forecasts. The resulting AMEs are almost equivalent
for short-run forecasting while for the long-run, for example, the MSM does almost one
time and a half better than the MCM. This means that overall the MSM leads to a closer
approximation of the observed farm size distributions than the MCM particularly on the
long-run. Figure ?? also shows that the accuracy on forecasting farm size distributions as
well as the robustness of the results decrease more rapidly for the MCM than for the MSM
when increased the horizon time of projections. Considering only medium- and long-run
forecasts, the AME increases about 27% on average over the three years for the MCM
(0.088/0.121=0.273) while it increases only about 17% for the MSM (0.068/0.082=0.171).
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Figure 3: Average of marginal errors (AME) between observed and forecasting farm size
distributions for both models.

Notes: see text for an explanation on how short-, medium- and long-run forecasts were obtained.

Source: Agreste, RICA France 2000-2013 � authors' calculations

Concluding remarks

As has already been found in other strands of the economic literature, the empirical
analysis provided in this article reveals that accounting for unobserved heterogeneity to
relax the assumption of homogeneity in the transition process which grounds the simple
Markov chain model (MCM), leads to a better representation of the underlying structural
change process also in the farming sector. Using a more general framework to accounting
for heterogeneity in the rate of movement of farms, the 1-year transition probability matrix
is decomposed into, on the one hand, a fraction of `stayers' who remain in their initial size
category and, on the other hand, a fraction of `movers' who follow a standard Markovian
process. Accounting for such unobserved farm heterogeneity using a mover-stayer model
(MSM)allows deriving a closer estimate of the observed long-run transition matrix as well
as of the distribution of farms across size categories.

The results also show that the MSM leads to more accurate and robust estimates for
both the transition probabilities and the farm distribution forecasts than the simple MCM
whatever the number of time that farms remained in the database. This suggest that the
MSM is a more consistent modeling framework to describe farm transition process and
to perform farm size distribution forecasts than the simple MCM. Therefore, we conclude
that such a modeling framework allows recovering the data generating the process of farm
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structural change in a more e�cient way than the simple MCM, and is a better choice to
describe this process as well as to perform farm size distribution forecasts over time.

Still, the MSM, as proposed by Blumen et al. (1955) and implemented here, is quite
a restricted and simpli�ed version of the more general model which was presented at
the beginning of this article. Even though we improved Blumen et al. (1955)'s calibra-
tion method by using the elaborate expectation-maximization (EM algorithm) estimation
method of Frydman (2005), extending the MSM framework could lead to even more
economically sound, as well as statistically more accurate, models for the farming sector.
We brie�y mention some of such extensions which we think are promising. Firstly, more
heterogeneity across farms could be incorporated by allowing for more than two types of
farms. Considering for example movers at di�erent rate of movement may lead to a better
representation of the structural change process in the farming sector. Secondly, the quite
strong assumption of a `pure stayer' type could be relaxed because it may look unlikely
that some farms `never move', i.e, won't change size category over their entire lifespan.

Finally, the last direction we recommend to extend this modeling framework consists
in accounting for entries and exits and developing a non-stationary version of the M-MCM
model. Indeed, we think that such a generalized version of the MSM approach could
certainly prove very insightful for analyzing structural change in the farming sector, in
particular to get a better understanding of the impact of some explanatory variables,
including agricultural policies, on the development of farm numbers and sizes because it
should allow recovering the transition process in a more e�cient way.

References

Agreste Primeur (2011, December). Production is concentrated in specialised farms. In
Agricultural census 2010: Farm structure, Number number 272, pp. 4. Agreste: la
statistique agricole.

Anderson, T. W. and L. A. Goodman (1957, 03). Statistical inference about markov
chains. Annals of Mathematical Statistics 28 (1), 89�110.

Ben Arfa, N., K. Daniel, F. Jacquet, and K. Karantininis (2014). Agricultural policies
and structural change in french dairy farms: A nonstationary markov model. Canadian
Journal of Agricultural Economics/Revue canadienne d'agroeconomie.

Blumen, I., M. Kogan, and P. J. McCarthy (1955). The industrial mobility of labor as a
probability process, Volume VI. Cornell Studies in Industrial and Labor Relations.

Butault, J.-P. and N. Delame (2005). Concentration de la production agricole et croissance
des exploitations. Economie et statistique 390 (1), 47�64.

Cipollini, F., C. Ferretti, and P. Ganugi (2012). Firm size dynamics in an industrial
district: The mover-stayer model in action. In A. Di Ciaccio, M. Coli, and J. M.
Angulo Ibanez (Eds.), Advanced Statistical Methods for the Analysis of Large Data-Sets,
Studies in Theoretical and Applied Statistics, pp. 443�452. Springer Berlin Heidelberg.

Dempster, A. P., N. M. Laird, D. B. Rubin, et al. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal statistical Society 39 (1),
1�38.

21



Dutta, J., J. A. Sefton, and M. R. Weale (2001). Income distribution and income dynamics
in the united kingdom. Journal of Applied Econometrics 16 (5), 599�617.

Efron, B. (1979, 01). Bootstrap methods: Another look at the jackknife. Ann.
Statist. 7 (1), 1�26.

Efron, B. (1981). Censored data and the bootstrap. Journal of the American Statistical
Association 76 (374), 312�319.

European Commission (2010, 11). Farm Accounting Data Network. An A to Z of method-
ology. Brussels (Belgium): DG Agri.

Fougère, D. and T. Kamionka (2003). Bayesian inference for the mover-stayer model
in continuous time with an application to labour market transition data. Journal of
Applied Econometrics 18 (6), 697�723.

Frydman, H. (1984). Maximum likelihood estimation in the mover-stayer model. Journal
of the American Statistical Association 79 (387), 632�638.

Frydman, H. (2005). Estimation in the mixture of Markov chains moving with di�erent
speeds. Journal of the American Statistical Association 100 (471), 1046�1053.

Frydman, H. and A. Kadam (2004). Estimation in the continuous time mover-stayer
model with an application to bond ratings migration. Applied Stochastic Models in
Business and Industry 20 (2), 155�170.

Frydman, H., J. G. Kallberg, and D.-L. Kao (1985). Testing the adequacy of Markov
chain and mover-stayer models as representations of credit behavior. Operations Re-
search 33 (6), 1203�1214.

Frydman, H. and T. Schuermann (2008, June). Credit rating dynamics and Markov
mixture models. Journal of Banking and Finance 32 (6), 1062�1075.

Fuchs, C. and J. B. Greenhouse (1988). The EM algorithm for maximum likelihood
estimation in the mover-stayer model. Biometrics 44, 605�613.

Goodman, L. A. (1961). Statistical methods for the mover-stayer model. Journal of the
American Statistical Association 56 (296), 841�868.

Hallberg, M. C. (1969). Projecting the size distribution of agricultural �rms-an applica-
tion of a markov process with non-stationary transition probabilities. Amer. J. Agr.
Econ. 51 (2), 289�302.

Huettel, S. and R. Jongeneel (2011, January). How has the EU milk quota a�ected
patterns of herd-size change? European Review of Agricultural Economics 38 (4), 497�
527.

Jafry, Y. and T. Schuermann (2004). Measurement, estimation and comparison of credit
migration matrices. Journal of Banking & Finance 28 (11), 2603 � 2639. Recent Re-
search on Credit Ratings.

Karantininis, K. (2002). Information-based estimators for the non-stationary transition
probability matrix: An application to the Danish pork industry. Journal of Economet-
rics 107 (1), 275�290.

22



Langeheine, R. and F. Van de Pol (2002). Applied latent class analysis, Chapter Latent
markov chains, pp. 304�341. Cambridge Univ Pr.

Lee, T., G. Judge, and A. Zellner (1977). Estimating the parameters of the Markov
probability model from aggregate time series data. Amsterdam: North Holland.

Lee, T. C., G. G. Judge, and T. Takayama (1965). On estimating the transition proba-
bilities of a Markov process. Journal of Farm Economics 47 (3), 742�762.

Louis, T. A. (1982). Finding the observed information matrix when using the em algo-
rithm. Journal of the Royal Statistical Society. Series B (Methodological), 226�233.

MacRae, E. C. (1977). Estimation of time-varying Markov processes with aggregate data.
Econometrica 45 (1), 183�198.

McFarland, D. D. (1970). Intragenerational social mobility as a markov process: Including
a time-stationary markovian model that explains observed declines in mobility rates
over time. Am. Sociol. Rev., 463�476.

McLachlan, G. and T. Krishnan (2007). The EM algorithm and extensions, Volume 382.
John Wiley & Sons.

Morgan, T. M., C. S. Aneshensel, and V. A. Clark (1983). Parameter estimation for mover-
stayer models analyzing depression over time. Sociological Methods & Research 11 (3),
345�366.

Piet, L. (2011). Assessing structural change in agriculture with a parametric Markov
chain model. illustrative applications to EU-15 and the USA. XIIIth Congress of the
European Association of Agricultural Economists, Zurich (Switzerland).

Spilerman, S. (1972). The analysis of mobility processes by the introduction of indepen-
dent variables into a Markov chain. American Sociological Review 37 (3), 277�294.

Stavins, R. N. and B. F. Stanton (1980). Alternative Procedures for Estimating the Size
Distribution of Farms. Department of Agricultural Economics, New York State College
of Agriculture and Life Sciences.

Storm, H., T. Heckelei, and R. C. Mittelhammer (2011). Bayesian estimation of non-
stationary Markov models combining micro and macro data. Discussion Paper 2011:2,
University of Bonn, Institute for Food and Resource Economics, Bonn (Germany).

Swensen, A. R. (1996). On maximum likelihood estimation in the mover-stayer model.
Communications in statistics. Theory and methods A 25 (8), 1717�1728.

van de Pol, F. and R. Langeheine (1989). Multiway data analysis. Amsterdam, The
Netherlands: North-Holland Publishing Co.

Weiss, C. R. (1999). Farm growth and survival: Econometric evidence for individual
farms in upper austria. Amer. J. Agr. Econ. 81 (1), 103�116.

Zepeda, L. (1995). Asymmetry and nonstationarity in the farm size distribution of
Wisconsin milk producers: An aggregate analysis. American Journal of Agricultural
Economics 77 (4), 837�852.

23



Zimmermann, A. and T. Heckelei (2012, September). Structural change of European dairy
farms: A cross-regional analysis. Journal of Agricultural Economics 63 (3), 576�603.

Zimmermann, A., T. Heckelei, and I. P. Dominguez (2009). Modelling farm structural
change for integrated ex-ante assessment: Review of methods and determinants. Envi-
ronmental Science and Policy 12 (5), 601�618.

24



A. Appendix

A.1. Frydman (2005)'s speci�cation of the mixed Markov chain model (M-MCM)

As the number of parameters to estimate increases with the number of homogeneous agent
types (G), the estimation of equation (5) could be an ill-posed problem. As an issue,
Frydman (2005) proposed a parameterization of the M-MCM to decrease the number of
parameters to be estimated. Considering heterogeneity in the rate of movement of agents
and assuming that all types-g TPMs are related to a speci�c one namely the generator
matrix (M), only the elements of Sg (i.e., the shares of type-g agents in each category)
and the generator matrix elements (mij) are estimated. All the others possible TPMs
(Mg, ∀ 1 ≤ g ≤ G− 1) are then derived from the generator matrix using the relative rate
of movement of agent type-g.

Assuming that all type-g transition probability matrices (TPMs) are related to a
speci�c one, chosen arbitrarily as that of the last agent type, the TPM of any agent
type-g is writes as:

Mg = I−Λg + ΛgM for 1 ≤ g ≤ G− 1 (20)

where Λg = diag(λi,g), M = MG (i.e., ΛG = I) and 0 ≤ λi,g ≤ 1
1−mii

(∀i ∈ J) with
0 ≤ mii ≤ 1 the main diagonal elements of matrix M, that is, the probability to remain
in the starting category from one period to the next for movers.

The λi,g parameters inform about heterogeneity in the rates of movement across
homogeneous agent types: λi,g = 0 if type-g agents starting in state i never move out of
i; 0 < λi,g < 1 if they move at a lower rate than the generator matrix M; λi,g > 1 if they
move at a higher rate than the generator matrix M and; the expected time spent in state
i of observations generated by Mg is given by 1/[λi,g(1−mii)] (∀λi,g > 0).

A.2. Maximum likelihood of the mixed Markov chain model (M-MCM)

Consider a population of n agents k, each agent k is observed at some discrete time points
on time interval [0, Tk] with Tk ≤ T , where T is the time horizon of all observations.
According to Anderson and Goodman (1957), the likelihood that the transition history
of agent k (Xk) was generated by the speci�c Markov chain (i.e., that k belongs to type
g), conditional on knowing that k was initially in state ik, is given by:

lk,g = sik,g
∏
i 6=j

(mij,g)
nij,k

∏
i

(mii,g)
nii,k (21)

where sik,g is the share of type-g agents initially in category ik, nij,k is the number of
transitions from i to j made by agent k, with j 6= i, nii,k is the total time spent by k in
category i and mii,g and mij,g are elements of matrix Mg.

Under Frydman (2005)'s speci�cation of the M-MCM as de�ned by equation (20),
that is, all speci�c matrices Mg are related to a generator matrix M, the likelihood
rewrites:

lk,g = sik,g
∏
i 6=j

(λi,gmij)
nij,k

∏
i

(mii,g)
nii,k (22)

where λi,g is the relative rate of movement of agent type-g and therefore mii,g = 1−λi,g +
λi,gmii as a consequence of the relation established in equation (20).
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Then, the log-likelihood function for the whole population writes:

logL =
n∑

k=1

G∑
g=1

(Yk,gloglk,g) (23)

where Yk,g is an indicator variable which equals 1 if agent k belongs to type g and 0
otherwise. The likelihood of the MSM can be easily derived by stating G=2 and Λ1=0
according to the relation established in equation (20).

A.3. Computing standard errors from EM algorithm equations

To compute standard errors from EM algorithm equations, two components are required
(Louis, 1982): the observed information matrix given by the negative of the Hessian
matrix of the log-likelihood function and the missing information matrix obtained from
the gradient vector, that is, the vector of score statistic based on complete information.
Since the log-likelihood function given by equation (11) is twice di�erentiable with respect
to the model parameters, the standard errors can be thus computed as follows.

Let Ωc(Z; ŝ∗i , m̂
∗
ij) and Ωm(Z; ŝ∗i , m̂

∗
ij) (i, j = 1, ..., J) be the observed (d × d) infor-

mation matrices in terms of complete and missing information, respectively, where Zk =
(Xk, Yk), (with Yk unobserved information) and d is the number of estimated parameters.
The observed information matrix in terms of incomplete information can then be derived
as:

Ω(X; ŝ∗i , m̂
∗
ij) = Ωc(Z; ŝ∗i , m̂

∗
ij)−Ωm(Z; ŝ∗i , m̂

∗
ij), (24)

where Ωm(Z; ŝ∗i , m̂
∗
ij) is given by:

Ωm(Z; ŝ∗i , m̂
∗
ij) = E[Sc(Z; ŝ∗i , m̂

∗
ij)× Sc(Z; ŝ∗i , m̂

∗
ij)
′], (25)

where Sc(Z; ŝ∗i , m̂
∗
ij) is the vector of score statistic in terms of complete information.

Therefore, if the observed information matrix in terms of incomplete information just
described Ω(X; ŝ∗i , m̂

∗
ij) is invertible, the standard errors are given by:

SE = {ψ1/2
ll′ }, (26)

where SE is the 1 × d vector of standard errors, Ψ = {ψll′} = Ω−1(X; ŝ∗i , m̂
∗
ij) is de-

�ned as the asymptotic covariance matrix of the maximum likelihood estimators ŝ∗i and
m̂∗ij (∀i, j = 1, ..., J) under incomplete information and l, l′ = 1, ..., d (McLachlan and
Krishnan, 2007).
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