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Outlines

> Introduction: Aims of a farm-to-fork modelling. Main 
case study: the fate of Bacillus cereus in a cooked, 
pasteurized and chilled food

> Part I: How to model the food pathway?

> Part II: Which distributions for the model inputs?

> Part III: How to validate the model?

Quantitative Microbial Risk Assessment by farm-to-
fork modelling

Evira, Helsinki, Finland, 
27 October 2011
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Introduction

Aims of a farm-to-fork modelling
> In order to assess an unknown risk through the modelling of 
known stages (into Codex guidelines)

> Very unknown risk: large consuming population and large variability of the 
pathogen effects, many unobservable contaminations
> But well-known farming and industrial processes, partially known bacterial 
dynamics, expert knowledge and sparse data through the food chain

> Following the contamination of a product from farm-to-fork and beyond 
gathering sparse data and expert knowledge through the food chain

> In order to do sensitivity analyses: for example, scenarios
> Re-engineering, in order to elaborate control plans, to evaluate new policy

> A powerful tool if including uncertainty and variability of all quantities

Evira, Helsinki, Finland, 
27 October 2011
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Main case study
A product-pathogen pair

Courgette purée (Refrigerated Processed 
Food of Extended Durability)
Each contamination is a mixture of 6 types 
of strains with their own characteristics of 
survival, growth potential and virulence 
(nothing to death)
Aim: to assess the contamination in a 
package before consumption according the 
type of bacteria

Bacillus cereus in a cooked, 
pasteurized and chilled food

Evira, Helsinki, Finland, 
27 October 2011
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Part I: How to model the food pathway?
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How to model the food pathway?
Introduction

> Sources of a foodborne disease? Where does the serving at risk come from 
(raw products?, firms?)? Which population of interest?

> To start: initial contamination is required (probability of contamination of 
the raw product, quantity of bacteria (cfu) with its associated uncertainty and 
variability

> To finish: product contamination at a process step, population exposure (if 
consumption data), number of diseases (if a dose-response model)

> A time unit for exposure, number of disease: per day, year… 
> A huge task! So, a well-defined framework, a representative case for 
decision

Which product? Which population? 
Where to start? Where to finish?

Evira, Helsinki, Finland, 
27 October 2011
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How to model the food pathway?
Case study

A specific food/pathogen couple: 6 types of 
B. cereus strains/a 400g package of 
courgette purée
The beginning: the contamination in a batch 
of raw courgettes (344 kg) in the factory.
The end: the contamination in a package 
(400g) after home storage in refrigerators

Bacillus cereus in a cooked, 
pasteurized and chilled food

Evira, Helsinki, Finland, 
27 October 2011
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How to model the food pathway?
Tool

> Standard approach: Monte Carlo 
simulation 

> In order to take into account the 
uncertainty associated with the knowledge 
and the variability of the phenomenon, and 
because no analytic solution exists to the 
final distributions of interest

> To sample from random 
distributions (pseudo-random 
sampled numbers from a software) 

The numeric tool

Evira, Helsinki, Finland, 
27 October 2011

Uncertainty Propagation
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How to model the food pathway?
Tool

> Number of iterations? (N, i indexes the iteration)

> Depending on the desired precision
> For a mean: (law of large numbers)

> Stability of the results comparing 
to their standard error 

Monte Carlo simulation

Evira, Helsinki, Finland, 
27 October 2011
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How to model the food pathway?
Outputs in the case study

After iterating 2000 batches and 100 packages by batch:  % of 
packages containing at least one B. cereus spore (per genetic 
group or not (Total)) at the end of home storage in refrigerators

Bacillus cereus in a cooked, pasteurized 
and chilled food

Evira, Helsinki, Finland, 
27 October 2011
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How to model the food pathway?
Outputs in the case study

After iterating 2000 batches and 100 packages by batch:  mean 
proportion of each genetic group relatively to the whole B. 
cereus population in the contaminated packages at the end of 
home storage in refrigerators

Bacillus cereus in a cooked, pasteurized 
and chilled food

Evira, Helsinki, Finland, 
27 October 2011

II: 16.8%

III: 10.2%

IV: 73%
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How to model the food pathway?
Outputs in the case study

After iterating 2000 batches and 100 packages by batch:  mean 
concentration (log CFU/g) into the contaminated packages (per 
genetic group or not (Total)) at the end of home storage in 
refrigerators

Bacillus cereus in a cooked, pasteurized 
and chilled food

Evira, Helsinki, Finland, 
27 October 2011
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How to model the food pathway?
Outputs in the case study

After iterating 2000 batches and 100 packages by batch:  
confidence interval at 95% of the B. cereus concentration into 
the contaminated packages (Total or per genetic group) at the 
end of home storage in refrigerators (and at process stages) 

Bacillus cereus in a cooked, pasteurized 
and chilled food

Evira, Helsinki, Finland, 
27 October 2011

Initial contamination of 
300-kg batches of 

raw courgettes

After cooking of 
300-kg batches 

of 
raw courgettes

After mixing with 
ingredients and 

partitioning into 400-g 
packages

After pasteurisation 
of 400-gpackages

At the end of 
home storage 

in 
refrigerators

II [-1.5;0] [-5.5;-0.6] [-2.6;-0.6] [-2.6;-0.8] [-2.6;6.7]

III [-4;-2.4] [-5.5;-2.8] [-2.6;-1] [-2.6;-1.1] [-2.6;0]

IV [-4;-2.4] [-5.5;-2.9] [-2.1;-0.4] [-2.6;-0.6] [-2.6;1.7]

V [-4;-2.5] [-5.5;-3.1] [-2.6;-2.3] [-2.6;-2.6] [-2.6;3.4]

VI [-1.6;0] [-5.5;-1.5] [-2.6;-1.8] [-2.6;-2.3] [-2;7.8]

VII [-4;-2.4] [-5.5;-2.7] [-2.6;-2.1] [-2.6;-2.1] [-2.6;-2.1]

Total [-1;0.2] [-5.5;-0.6] [-1.8;-0.4] [-2.6;-0.5] [-2.6;3.5]
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How to model the food pathway?
Outputs in the case study

After iterating 2000 batches and 100 packages by batch:  
distribution of the concentration of the group IV and % of 
packages at risk if the bacteria will not be killed during the 
preparation of the product (by microwave cooking)

Bacillus cereus in a cooked, pasteurized 
and chilled food

Evira, Helsinki, Finland, 
27 October 2011

high risk (more than 5 log cfu/g)

moderate risk (between [3 ; 7] log cfu/g)

low risk (below 3 log cfu/g)
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How to model the food pathway?
Model

The model: the contamination change through the 
food pathway

Evira, Helsinki, Finland, 
27 October 2011

Uncertainty Propagation
1. Raw vegetable batch

3. Blending

4. Mixing

5. Partitioning in 
860 packages

9. Refrigerated road transport

10. Cold storage at retail 

11. Home transportation

12. Home cold storage

Ingredients

7. Pasteurisation

8. Cold storage at the company

2. Cooking

6. Time interval
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How to model the food pathway?
Model

> Continuous time or not (modelling the main steps)?
> Continuous time necessitates differential equation of 

the variation of contamination
For example: bacterial growth model

What level of model?

Evira, Helsinki, Finland, 
27 October 2011
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How to model the food pathway?
Model

> Continuous time or not (modelling the main steps)?
> Continuous time can necessitate differential equation of 

the factors which influence the contamination. For example: 
temperature in milk depending on milk volume

> Could be computational intensive because of a 
long pathway. Does one want to assess the contamination at each 
time (t)? Which benefits to consider the variation of the 
influencing factors at each time?

What level of model?

Evira, Helsinki, Finland, 
27 October 2011
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How to model the food pathway?
Model

Example

Modelling Listeria 
monocytogenes
growth in farm tank milk

Evira, Helsinki, Finland, 
27 October 2011

Farm bulk tank

t
First 

milking 

Second 

milking

Third

milking 

Fourth 

milking

I. Albert, R. Pouillot et J.-B. Denis. 
Stochastically modeling Listeria monocytogenes growth 
in farm tank milk, Risk Analysis, 25 : 1171-1185, 2005.
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How to model the food pathway?
Model

Example

Modelling Listeria 
monocytogenes
growth in farm tank milk

Evira, Helsinki, Finland, 
27 October 2011

Farm bulk tank

t
First 

milking

Second 

milking

Third

milking 

Fourth 

milking

I. Albert, R. Pouillot et J.-B. Denis. 
Stochastically modeling Listeria monocytogenes growth 
in farm tank milk, Risk Analysis, 25 : 1171-1185, 2005.

> No difference between the final concentration (y1) 
in the complete model (temperature varying at each 
time) and in the model with a constant temperature 
(mean of the varying temperature)

> difficult to guess a priori!

20
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How to model the food pathway?
Model

> If modelling by step, which steps?
> Do not forget the objectives

> Steps where results are needed
> For example: exposure

> Steps where impacting mechanisms are: new 
contaminations, bacteria dynamics changes, portioning, 
hygiene, consumption, dose-response effects…

> Steps where data are
> For example: durability studies

What level of model?

Evira, Helsinki, Finland, 
27 October 2011
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1. Raw vegetable batch

3. Blending

4. Mixing

5. Partitioning in 
860 packages

9. Refrigerated road transport

10. Cold storage at retail 

11. Home transportation

12. Home cold storage

Ingredients

7. Pasteurisation

8. Cold storage at the company

2. Cooking

6. Time interval

How to model the food pathway?
Model in the case study

Bacillus cereus in a cooked, pasteurized and chilled food

Evira, Helsinki, Finland, 
27 October 2011

 Impacting 
mechanisms

Step in the 
food pathway

Model or distribution

Contamination 1, 4 BetaPert distributions

Inactivation 2, 3, 7
Primary model: Weibull model (Mafart et al., 2002)

Secondary model: Bigelow model (Couvert et al., 2005)
Partitioning 5 Multinomial distribution

Germination 6, 8 Empirical model (see Afchain et al., 2008)

Growth 8, 9, 10, 11, 12

Primary model: Logistic model with delay (Rosso et al., 1995)
Secondary model: Cardinal Temperature model with 

inflection point (Rosso et al., 1993)
Competition model (see Afchain et al., 2008)
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How to model the food pathway?
Model

Construction of a Bayesian network
with probabilistic or deterministic links between the nodes

Evira, Helsinki, Finland, 
27 October 2011

V=(Vi)iЄГ is a Bayesian Network w.r.t the Graph G if 
for all i in Г : 

Vi ||  VГ \desc(i) | Vpa(i) 

desc(i): descendants of node i, any node on a 
directed path starting from i
pa(i): parents of node i, any node with an arrow 
emanating from it pointing to i

Helpful tool: Helpful tool: Bayesian Networks (BN)Bayesian Networks (BN)

V1

V3

V2

V4

V5

• G=(Г, Σ) a finite Directed Acyclic Graph
• V=(Vi)iЄГ  a set of random variables (nodes)

A probabilistic graphical model

V=(Vi)iЄГ is a Bayesian Network w.r.t the graph G if:

Ex: p(v1,v2,v3,v4,v5) = p(v1)p(v2|v1)p(v3|v1,v2)p(v4|v2,v3)p(v5|v1,v4)

23

A node without 
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A stochastic link 
(dependency)

A deterministic 
link
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Evira, Helsinki, Finland, 
27 October 2011

How to model the food pathway?
Model in the case study

24

1. Raw vegetable batch

3. Blending

4. Mixing

5. Partitioning in 
860 packages

9. Refrigerated road transport

10. Cold storage at retail 

11. Home transportation

12. Home cold storage

Ingredients

7. Pasteurisation

8. Cold storage at the company

2. Cooking

6. Time interval
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How to model the food pathway?
Model

The functional or deterministic links

Evira, Helsinki, Finland, 
27 October 2011

Ø The heat inactivation model:   Weibull model (Peleg and Cole, 1998) and Biglow model (Biglow 
et al., 1920). t: duration of the thermal process

ØThe growth model: logistic model with delay (Rosso et al., 1995)
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How to model the food pathway?
Model

Where do these models come from? 

Evira, Helsinki, Finland, 
27 October 2011

26

> Predictive microbiology
> For example: 
Inactivation models

Primary models 
(dynamics in constant 
environment)

Fitting a model to 
experimental data
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How to model the food pathway?
Model

Inactivation model 

Evira, Helsinki, Finland, 
27 October 2011
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The model: ( )
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• t  is time; N0 > 0, is the true unknown value of the initial number of 
bacteria at time t = 0; Nres > 0, is the true unknown value of the 
residual number of bacteria (observation of a stop in the population 
decrease at the end of the heat treatment when sigmoidal curve)
• represents the time of the first decimal reduction 
concentration for the non-resistant bacteria: at         ,

( 0)δ >
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I. Albert and P. Mafart. A modified Weilbull model for Bacterial inactivation. International Journal of Food Microbiology, 100 :
197-211, 2005.
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How to model the food pathway?
Model

Inactivation model 

Evira, Helsinki, Finland, 
27 October 2011
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The statistical regression model:
Expectation model:

For                 ,
are the discrepancies between the observations          and their 

expectations         (because of the biological variability of the phenomenon)
are centred random variables                      , assumed  to be independent 

Variance model:

The variability of the response depends on its level
corresponds to the logarithmic transformation (which can be tested)

One additional parameter to estimate but it allows to take into account a variance 
heterogeneity much more adapted to the observations

)()()( tttN εγ +=
ntt ≤≤0

( )tε ( )tN
( )tγ

( )[ ]( )0=tE ε( )tε

( )[ ] ( )q

t
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How to model the food pathway?
Model

Evira, Helsinki, Finland, 
27 October 2011
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Model fit to experimental data: nonlinear model with unequal variance errors 
(see function gnls in R) 

Type A (Nres= 0)
Example: Bacillus pumilus at 98°C

Parameter Mean Standard
deviation

Gaussian CI
(95%)

δ 0.04 0.01 [ ]06.0;02.0
p 0.32 0.02 [ ]35.0;29.0

0N 8106× 8101× [ ]88 108;104 ××

q 1.89 0.03 [ ]95.1;83.1
2σ 0.33

Inactivation model 
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Time
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Model fit to experimental data: 
Type B (Nres= 0)
Example: Clostridium botulinum at 111°C

Inactivation model 

Parameter Mean Standard
deviation

Gaussian CI
(95%)

δ 0.04 0.01 [ ]06.0;02.0
p 0.32 0.02 [ ]35.0;29.0

0N 8106× 8101× [ ]88 108;104 ××

q 1.89 0.03 [ ]95.1;83.1
2σ 0.33
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Model fit to experimental data: 
Type C 
Example: Listeria innocua at 55°C

Inactivation model 

Parameter Mean Standard
deviation

Gaussian CI (95%)

δ 5.7 0.27 [ ]24.6;17.5
p 2.27 0.16 [ ]58.2;96.1

0N 9109.6 × 9101.1 × [ ]99 101.9;106.4 ××

resN 2 559 950 [ ]22 1044;106 ××

q 1.87 0.03 [ ]93.1;82.1
2σ 1.45
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Comparison to the model proposed by Geeraerd et al. (2000)
Example: Bacillus cereus at 96°C

Inactivation model 

Model AIC value
Modified Weibull 291.53

Geeraerd et al. 290.91
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Comparison to the model proposed by Geeraerd et al. (2000)
Example: Listeria innocua at 55°C

Inactivation model 

Model AIC value
Modified Weibull 364.67

Geeraerd et al. 365.25
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How to model the food pathway?
Model

The stochastic links

Evira, Helsinki, Finland, 
27 October 2011

Ø Any stochastic link is possible but one needs an idea about the parameters of the assumed 
distribution: ex: normal distribution on the logit of the probability of a contaminated product

Ø For random impacting mechanisms in the food chain: ex: partitioning (homogeneous contamination)

34

( )lo g it ( , )f f fp N m s=

I. Albert, E. Grenier, J.-B. Denis, J. Rousseau. Quantitative Risk Assessment from Farm to Fork and Beyond: a global Bayesian Approach 
concerning food-borne diseases, Risk Analysis, 28(2) : 557-571, 2008. 

~ (0 , 0 .2 2 )fm N ~ (0 , 0 .2 )fs U

89 cfu 93 cfu 126 cfu 88 cfu 99 cfu 99 cfu 106 cfu 93 cfu 109 cfu 98 cfu

1000 cfu 1 batch

10 
packages

Multinomial distribution: n bacteria in a batch with probability pi = 1/10 to be in the package i
Мult(n, (p1,..,pk)), avec p1,..,pk = 1 and Σini = n

(homogeneous repartition of the bacteria 
in the batch)
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How to model the food pathway?
Model in the case study

Bacillus cereus in a 
cooked, pasteurized 
and chilled food: the 
Bayesian network

Evira, Helsinki, Finland, 
27 October 2011

Stochastic link: multinomial 
distribution describing the 
partioning of the bacteria due 
to the portioning of a 344kg 
batch into 860 packages of 
400g each
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How to model the food pathway?
Model in the case study

Bacillus cereus in a 
cooked, pasteurized 
and chilled food: the 
Bayesian network

Evira, Helsinki, Finland, 
27 October 2011
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Stochastic 
link

Deterministic 
links Distributions of the 

ancestor nodes 
have to be 

determined 
(called inputs 
afterwards)
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Part II: Which distributions for the model 
inputs?
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Which distributions for the model inputs?
Introduction

> Because of uncertainty and variability in all parameters and 
because these quantities are of interest

> No constant, always imperfect knowledge: Bayesian point of 
view

Why probability distributions?

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Introduction

> Marginal approach:
> Classical approach:

> To fit a distribution to raw data
> To fit a distribution to expert opinion 

> To sample directly into the data sets
> Global approach: to keep all raw data and perform a global inference

> Evidence synthesis

Which distributions?

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Marginal approach

> Estimating the parameters of the chosen distributions from the 
dataset

> Bayesian inference with WinBugs or OpenBugs 
R. Pouillot, I. Albert, M. Cornu et J.-B. Denis. Estimation of uncertainty and variability in 
bacterial growth using Bayesian inference. Application to Listeria monocytogenes. IJFM, 
81 : 87-104, 2003. 
> Frequentist methods (ex: Max. Likelihood)

>  R package “fitdistrplus” (for continuous or discrete data)

R. Pouillot, ML. Delignette-Muller. Evaluating variability and uncertainty 
separately in microbial assessment using two R, IJFM, 142: 330-340, 2010. 

Fitting distributions to data

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Marginal approach

> Assessing the goodness-of-fit 
> Ex: Kolmogorov-Smirnov statistics:

> A more sophisticate statistics: Anderson-Darling statistics
> Anderson-Darling test

> In Bayesian framework : posterior predictive model checks
> Goodness-of-fit Bayesian p-value
B.P. Carlin, T.A. Louis. Bayesian Methods for Data Analysis, CRC Press, 
Chapman & Hall, Third Edition, page 88

Fitting distributions to data

Evira, Helsinki, Finland, 
27 October 2011

sup ( ) ( )n
x

KS F x F x= −
Empirical cumulative distribution function Cumulative distribution function of the fitted distribution
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Which distributions for the model inputs?
Marginal approach

> Comparing different fitted distributions (models) 

> Frequentist approaches: 
> Examples: AIC, BIC for non nested models

> In a Bayesian framework: 
> Examples: Bayesian Factor or DIC 

(not always univariate distributions) 

Fitting distributions to data

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Marginal approach in the case study

Bacillus cereus in a cooked, pasteurized and chilled food
Time-temperature profiles of raw vegetable cooking

18 17 13.6 14.9 9.5 15.1 13.7
45.8 17.1 18.6 30.8 28.8 37.6 42.7
62 46 33.4 39.3 32.6 57 40.6
71.3 61.6 59 52.1 32.3 67.6 38.9
79.7 75.1 78.9 63.9 32 76.4 37.3
86.9 86.9 78.9 74 31.7 80.5 64.2
93.1 95.4 85.9 83.4 31.6 87 75.2
98.1 99.2 90.8 89.8 31.4 92 83.4

Evira, Helsinki, Finland, 
27 October 2011

Equivalent heat treatment times at 90°C
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where
- tk –tk-1 (min) is the time interval between two temperature measurements,
- Tk (°C) is the k-th observed temperature in sample (T0, …, Tn) constituted by n+1 temperatures T0, …, Tn, where Tn is measured at the end of the
thermal process.
- z (°C) is the increase in temperature resulting in a 10-fold reduction in the time to first decimal reduction
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Which distributions for the model inputs?

Marginal approach in the case study

Bacillus cereus in a cooked, pasteurized and chilled food

Evira, Helsinki, Finland, 
27 October 2011

Equivalent heat treatment times at 90°C

Fitting of an exponential distribution:
Exp(1/145) on [ 20, +∞ [ using the R function 
fitdistr( )
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Which distributions for the model inputs?
Marginal approach

> Variability between batches? strains? (clusters): a variance 
decomposition: variance between and within-clusters of data
> ANOVA with a random effect or hierarchical model in Bayesian 
statistics:  for i=1,..,I clusters and  j=1,…ni (several data in a cluster)

(Gaussian model)
> Then, overdispersion 
of the outputs
> To act accordingly
for further sampling plans for example

Modelling the variability between clusters into the 
dataset

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Marginal approach

> In order to take into account the 
uncertainty around the parameters of 
the fitted distribution. Example: Figure : (a) 
Modelling of Tmin,i parameter variability amongst strains 
expressed by the cumulative density function of N(-2.47, 
1.26); (b) Modelling of Tmin,i parameter variability and 
uncertainty using a second order simulation: 100  M*Tmin
values are randomly selected from a N(-2.47, 0.690) 
distribution and 100 S*Tmin values are randomly selected 
from a W(2.21, 1.43) distribution. The 100 respective 
cumulative density function Tmin,i ~ N(M*Tmin, S*Tmin) are 
presented.
R. Pouillot, I. ALBERT, M. Cornu et J.-B. Denis. Estimation of uncertainty and 
variability in bacterial growth using Bayesian inference. Application to Listeria 
monocytogenes. International Journal of Food Microbiology, 81 : 87-104, 2003. 

Second-order Monte Carlo simulation

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Marginal approach

> Elicitation: acquisition of information from a person or group in a 
manner that does not disclose the intent of the interview 

> Interview on tangible parameters for the expert
Example: Exponential dose-response model

p(d) = 1 – exp(-αd ), where p(d) = Prob to die with d
α = shape parameter, not concrete interpretation !

Fitting distributions to expert opinion

Evira, Helsinki, Finland, 
27 October 2011

P(d) exponential

0
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0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2,5 5 7,5 10

Alpha 0,04
Alpha 0,1
Alpha 0,2
Alpha 0,3

Questions on Xd: nb of dead mice when n mice received a same dose d
Xd | p(d) ~ Bin(n, p(d)), where p(d) = Prob to die with d 

Example of question in terms of  proportion:
« An experiment concerns 10 mice injected with a dose d. If 
you have done 100 experiments, how many experiments lead to 
less than 2 dead mice? » 

P(Xd ≤ 2) => P(p(d) ≤ 0.2) = P(log(α) < g(0.2)) where 
g is the inverse function: log(α ) → p(d) 
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Which distributions for the model inputs?
Marginal approach

> To try to capture the expert’s confidence in his/her response and 
introduce it in the modelling

> Example: considering elicited data as data. In the likelihood of 
these data, one incorporates larger variances for uncertain responses
> The knowledge of the expert is partial, so parametric distributions 
makes sense

>  Expert feedback
> Ask for p-probabilities or q-quantiles of the quantity X, let him/her 
choose the level p or q if possible (because they depends on his/her knowledge)

> Expert training: ex: dice throw

Fitting distributions to expert opinion

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Marginal approach

Evira, Helsinki, Finland, 
27 October 2011

p(d₀=4) by mixture (--), pooling estimates (solid line), 
hierarchical (-⋅) approaches. The density of beta(.5,.5) 
(⋅⋅⋅) is an example of non informative p(d)

Fitting distributions to expert opinion
> Combining opinions from different 
experts

> The unique distribution of the 
parameter of interest comes from: pooling 
estimates, a mixture of the different 
experts’ distributions or a hierarchical 
approach taking variation between and 
within experts’ groups into account 

I. Albert, S. Donnet, C. Guihenneuc, S. L. Choy, K. Mengersen and 
J. Rousseau. Combining expert opinions in prior elicitation, 
submitted, 2011.
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Which distributions for the model inputs?

> No fitted distributions
> If a large representative data set  
> Sampling into the simulated values obtained after a Bayesian 
analysis from a MCMC algorithm 

> The simulated values belong to the parameter posterior 
distribution
> The simulated values belong to the predictive 
distribution of 

> Precision depends on the MC error

To sample directly into the data sets

Evira, Helsinki, Finland, 
27 October 2011

~ ( | , )y g y xθ
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Which distributions for the model inputs?
Global approach

> 1) Specifying the marginal distributions of the inputs from expert 
opinion or vague information
> 2) Running the model to check that all variables behave sensibly
> 3) Incorporating data within a Bayesian paradigm 

> Data are represented by new random va. in the Bayesian 
networks whose distributions depend on the core model va.

> complementary va. and new inputs (parameters 
requiring new prior distributions) could be necessary

> in the Bayesian setting, this substep corresponds to the 
definition of the likelihood

Bayesian evidence synthesis

Evira, Helsinki, Finland, 
27 October 2011
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Which distributions for the model inputs?
Global approach in a case study

Assessing the prevalence of campylobacteriosis in France in a 
modelling from chicken farms to illness

Evira, Helsinki, Finland, 
27 October 2011

gfs ~ Bin(nfs, pfs)
gfs: number of chicken flocks 
contaminated out of nfs in a sample  
(s=1,…,16)
logit(pfs) ~ N(mf, sf)

gbs ~ Bin(nbs, pbs)
gfs: number of chicken carcasses 
contaminated out of nbs in a sample 
(s=1,…14)
logit(pbs) ~ N(mb, sb)
…..

I. Albert, E. Grenier, J.-B. Denis, J. Rousseau. Quantitative Risk Assessment from Farm to Fork and Beyond: a global Bayesian Approach 
concerning food-borne diseases, Risk Analysis, 28(2) : 557-571, 2008. 
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Which distributions for the model inputs?
Global approach in a case study

Assessing the prevalence of campylobacteriosis in France from 
related human studies of the disease 

(from active surveillance systems, laboratory surveys, physician surveys, epidemiological surveys,…)

Evira, Helsinki, Finland, 
27 October 2011

r1,i ~ Bin(n1,i, Q1)
r1,i: number of stool cultures (SC) 
done out of n1,i  people  (i=1,…,6)
Q1: probability of having a SC

Q2: probability of having a 
campylobacteriosis
Q3: probability of having an 
acute gastroenteritis, and so on 
…
A model relates all the Qs 
parameters

I. Albert, E. Espié, H. de Valk, J.-B. Denis. A Bayesian evidence synthesis for estimating campylobacteriosis prevalence, Risk Analysis, 31(7): 
1141-1155, 2011.
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Which distributions for the model inputs?
Global approach

> Kind of meta-analysis encompassing diverse results from diverse 
sources that inform indirectly the parameters of interest through 
parameters that are functions of them
> In a Bayesian setting, each piece of evidence contributes to the 
likelihood through its likelihood function. The likelihood of the model 
is the product of the likelihood functions
> The posterior distribution of the parameters of interest is obtained 
via Bayes’s theorem:

Bayesian evidence synthesis

Evira, Helsinki, Finland, 
27 October 2011

( ) ( )( | )P Data P Data Pθ θ θ∝
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Which distributions for the model inputs?
Global approach

> Compared with marginal approach
> A better propagation of the uncertainty associated to the  
data sets

> The sample sizes define the precision of the 
estimates

> All sparse data are pooled in the likelihood and reduce the 
global uncertainty 

> As in the marginal approach, a distribution is chosen. Here it is the 
likelihood function

Bayesian evidence synthesis

Evira, Helsinki, Finland, 
27 October 2011
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Part III: How to validate the model?
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How to validate the model?
Introduction

> Check that all variables behave sensibly
> Using plots, scenarios,…

> Validation step based on the global behaviour of 
the locally constructed system

> Using “back-calculation” (Bayesian inference from data obtained 
“downstream” in the food chain). Comparing posterior inference to 
substantive knowledge

> Predictive check
> Posterior predictive check and discrepancy measures
> Cross-validation
> One validation sample

Check the model behaviour for a prediction goal

Evira, Helsinki, Finland, 
27 October 2011
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How to validate the model?
Check that all variates behave sensibly

> Check the model behaviour in extreme contexts
> For example, verify if a very large contamination in input 
(out of the real variability) induces a contamination 
downstream in accordance with what it is known about 
the microbial dynamics

> Plot the marginal and bivariate distributions of variables or 
pairs of variables of interest known by the experts

> Produce some conditional distributions corresponding to 
specific cases well known by the experts

Using plots, scenarios,…

Evira, Helsinki, Finland, 
27 October 2011
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How to validate the model?
Check that all variates behave sensibly

> Are the posterior distributions of the variables in accordance 
with what it is known?

> Expert feedback
> if agreement because reduced uncertainty  or 
new expert opinion
> if no agreement, questioning of the model 
construction (links between the variables, prior 
distributions)

> Posterior distributions in accordance with data
> But they also depend on the modelling

Using Bayesian inference in a subjective context

Evira, Helsinki, Finland, 
27 October 2011
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a 
cooked, pasteurized 
and chilled food: using data from durability 
studies to improve the model

> To augment the model to link 
the data sets 
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a 
cooked, pasteurized 
and chilled food: using data 
from durability studies

> 68% of left-censored data 
but some quantifications and 
specifications of strain types

Data (source) Product Conditions Contamination in log CFU/g
(detected genetic groups*)

5 packages of 800g 21 days at 4°C < 1,7

5,5 (VI)
3 (VI)

7,5 (VI)
3,8 (II)
3,1 (II)
6 (IV)

7,2 (II and IV)
6,4 (IV)
6,3 (IV)
6,3 (IV)
3,7 (II)
2,7 (II)
3,7 (II)
3,9 (VI)

5 (II)
< 2 for the 23 other packages

5,2 (VI)
4,7 (VI)
5,4 (II)
4,4 (VI)
5,4 (VI)
4,7 (VI)
3,9 (II)

< 2 for the 20 other packages

15 packages 
coming from the 

same batch
(INRA)

55 packages 
coming from 

different batchs
(COMPANY)

27 packages of 
400g

10 days at 4°C 
then 20 days 

at  8°C

5 packages of 800g 21 days at  10°C

5 packages of 800g 21 days at 
20-25°C

28 packages of 
400g

20 days at 4°C 
then 10 days 

at  8°C
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a 
cooked, pasteurized 
and chilled food: using data from 
durability studies

> Augmented Bayesian network:
A new intermediate variable (CA, concentration 
after storage in durability studies) and a new 

parameter (σ, experimental error)

Likelihood:
2

10 10
10 2

10 10

(log ( ), ) log ( )
log ( ) ~

(log ( ), ) (; ) log ( )

A obs
js ij jobs

js A obs
js j ij j

N C if C
C

N C C if C
σ α

σ α α
 >
 ≤

j: package, s: genetic group, α: limit of detection            (inference with vague prior on σ) 
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a cooked, pasteurized and chilled food: 
Update of the B. cereus concentrations through the food pathway 

Increase for 
groups II and VI 
in accordance 

to data
MC prevalence (%)

Genetic 
Group Initial After cooking Milk (ingredient) Starch 

(ingredient) 

After mixing with 
ingredients and 

partitioning

After 
pasteurization After home cold storage

II 100 60 100 100 28 13 13
III 100 48 100 100 80 40 40
IV 100 45 100 100 100 84 84
V 100 24 100 100 5 0.1 0.1
VI 100 45 100 100 6 0.03 0.03
VII 100 64 100 100 10 1 1

Total 100 83 100 100 100 88 88
MCMC prevalence (%)

II 100 100 100 100 80 59 59
III 100 87 100 100 65 1 1
IV 100 86 100 100 100 72 72
V 100 82 100 100 6 0.00 0.00
VI 100 93 100 100 50 15 15
VII 100 99 100 100 19 0.05 0.05

Total 100 100 100 100 100 90 90

+

+
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a cooked, pasteurized and chilled food: 
Update of the B. cereus concentrations through the food pathway 

MC 95% CI

Genetic 
Group Initial After Cooking Milk (ingredient) Starch 

(ingredient) 

After mixing with 
ingredients and 

partitioning
After pasteurization After home cold 

storage

II [-1.6; 0.1] [-5.3; -1] [-5.1; -2.6] [-3.8; -1.7] [-2.9; -1] [-2.7; -1] [-2.5; 4.7]
III [-4; -2.4] [-5.4; -2.9] [-1.6; 0.9] [-3.8; -1.8] [-2.9; -0.9] [-2.7; -1] [-2.7; 0.2]
IV [-4; -2.4] [-5.4; -3.2] [-1.6; 0.8] [-0.8; 1.2] [-2.2; -0.3] [-2.6; -0.5] [-2.6; 0.1]
V [-4; -2.4] [-5.4; -3.7] [-5.1; -2.6] [-3.8; -1.7] [-2.9; -2.3] [-2.9; -2.3] [-2.8; 1.4]
VI [-1.6; 0] [-5.4; -2.3] [-5.1; -2.6] [-3.8; -1.7] [-2.9; -2.3] [-2.9; -2.4] [-2.8; 8.3]
VII [-4; -2.4] [-5.4; -2.9] [-5.1; -2.6] [-3.8; -1.8] [-2.9; -2.3] [-2.7; -2.1] [-2.7; -2.1]

Total [-1.1; 0.2] [-5.3; -1.1] [-0.9; 1] [-0.8; 1.2] [-1.9; -0.3] [-2.6; -0.5] [-2.5; 1.8]
MCMC 95% CI

II [-1.7; 0.1] [-2.8; -0.7] [-5.1; -2.6] [-3.8; -1.7] [-2.9; -0.7] [-2.6; -0.9] [-2.5; 1.1]
III [-4.1; -2.4] [-5.1; -2.7] [-1.7; -0.1] [-3.8; -1.8] [-2.9; -1.8] [-2.9; -2.1] [-2.9; -1.7]
IV [-4; -2.3] [-5.3; -2.9] [-1.6; 0.7] [-0.8; 0.8] [-2; -0.7] [-2.8; -1.5] [-2.8; -1.3]
V [-4.1; -2.4] [-5.4; -3.5] [-5.1; -2.6] [-3.8; -1.8] [-2.9; -2.3] [-2.7; -2.3] [-2.6;-1.9]
VI [-1.3; 0.2] [-4.8; -1.5] [-5.1; -2.6] [-3.7; -1.4] [-2.9; -2.1] [-2.9; -2.3] [-2.7; 3.7]
VII [-4.1; -2.4] [-4.7; -2.7] [-5.1; -2.6] [-3.8; -1.7] [-2.9; -2.3] [-2.6; -2.3] [-2.6; -2.3]

Total [-0.8; 0.3] [-2.6; -0.6] [-1; 0.7] [-0.7; 0.8] [-1.8; -0.5] [-2.6; -0.9] [-2.6; 1.4]

Lower 
prediction

64



D I E T                    
A G R I C U L T U R E

E N V I R O N M E N T

D I E T                    
A G R I C U L T U R E

E N V I R O N M E N T

 

z

IITmin VITmin
max10log N

σ
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(a) Inactivation biological parameters and σ

(b) Growth biological parameters

(c) Inactivation process parameters and two initial concentrations 

IIδ VIδ VIp

C
eqt
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a 
cooked, pasteurized 
and chilled food:
Prior beliefs update: Prior 
(dashed) vs posterior 
(solid) distributions of the 
most updated inputs over 
66            

Expert Feedback:

: reduced uncertainty

: expert agreement,
prior belief change

:  question the                   
modeling
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a 
cooked, pasteurized and chilled food:
Bayesian inference

> to link the data and the QMRA model if it exists yet
> Some difficulties in complex models

- Implementation of the MCMC algorithms 
- Look at the algorithm convergence because very large auto-
correlation in a chain of simulated values (strong correlation 
between consecutive values of a parameter because high 
correlation between the parameters through the used models)

- so very low convergence
In this case study, jags software used and 2 Markov chains of 1 million iterations in burn-in and 
1 million for posterior distributions per chain (thin of 1000 iterations for the posterior 
distributions keeping 1000 iterations per chain)

> But some updates can be obtained with not many data because very 
subjective priors (shifts)
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How to validate the model?
Predictive check

> Comparing measurements (data) to the posterior predictive 
distribution 

yrep: replicated data that could have been observed with the same model

> Discrepancy measures
> Choose a measure that will be used to compare data to 

predictive simulations 
> ex: largest value, smallest value, average, 

standard deviation, omnibus goodness-of-fit measure (χ2)

Posterior Predictive Check

Evira, Helsinki, Finland, 
27 October 2011

( | ) ( | ) ( | )rep repp y y p y p y dθ θ θ= ∫
Sampling distribution Parameter Posterior distribution
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How to validate the model?
Model validation in the case study

Evira, Helsinki, Finland, 
27 October 2011

Bacillus cereus in a 
cooked, pasteurized and chilled food: Posterior predictive check (mixture of prior 
knowledge and data)

Data Data Data

Data Data

LoD

overestim. overestim. overestim.

overestim. overestim.
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How to validate the model?
Predictive check

> Rotation estimation and validation
> Randomly splitting the data set into K subsamples. Of the K 
subsamples, a single subsample is retained as the validation 
data set for testing the model, and the remaining K − 1 
subsamples are used for the parameter estimation
> Same goodness-of-fit criteria than before
> Then, combine or average the K results
> Leave-one-out validation

> Computational intensive

Cross-validation

Evira, Helsinki, Finland, 
27 October 2011
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How to validate the model?
Predictive check

> Another data set for validation
>  But less data for estimation

>  A good way to act?: 
> To compare the data obtained “downstream” in the food 
chain to prior predictive results (simulated values 
obtained through Monte Carlo simulations) using 
goodness-of-fit criteria (depending to objectives) and 
then if accordance to proceed Bayesian inference to 
update the prior knowledge and to look at the posterior 
distributions (coherence or not)

One validation sample

Evira, Helsinki, Finland, 
27 October 2011
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Conclusion
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Conclusion

> Well-define the objectives: simplification is possible driven by 
objectives
> Modelling at the level where you have the most knowledge
> To gather a maximum of data, new experiments if possible
> Do not forget that your results depend on your modelling, your 
prior opinion if you are Bayesian
> Bayesian networks and DAG: helpful tools to construct a complex 
modelling
> Bayesian inference to update the prior knowledge and to validate 
> All QMRA is incomplete, uncertain, just one help for risk 
management

Do not forget your objectives

Evira, Helsinki, Finland, 
27 October 2011
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Conclusion

> A better modelling taking account of an acute objective
> ex: loss function, utility function, cost function

> Better elicitation of the expert opinions
> In so complex models, which are the parameters that have to be 
better informed a priori?
> A simultaneous modelling for a risk and a benefice 
> ABC (Approximate Bayesian Computation) techniques to 
perform Bayesian inference 
> To use a QMRA farm-to-fork modelling to reach a Food Safety 
Objective (FSO)

Perspectives

Evira, Helsinki, Finland, 
27 October 2011
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Thank you very much for your 
attention

Kiitos!

Evira, Helsinki, Finland, 
27 October 2011


