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Summary. The paper investigates whether accounting for unobserved heterogeneity in farms’
size transition processes improves the representation of structural change in agriculture. Con-
sidering a mixture of two types of farm, the mover–stayer model is applied for the first time
in an agricultural economics context. The maximum likelihood method and the expectation–
maximization algorithm are used to estimate the model’s parameters. An empirical application
to a panel of French farms from 2000 to 2013 shows that the mover–stayer model outperforms
the homogeneous Markov chain model in recovering the transition process and predicting the
future distribution of farm sizes.
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1. Introduction

In most developed countries, the number of farms has decreased sharply and their average
size has increased continually over recent decades. Structural change has long been a subject
of considerable interest to agricultural economists and policy makers. Previous studies aimed
in particular to understand the mechanisms underlying this process to identify the key drivers
that influence the observed trends, and to generate prospective scenarios. This paper makes a
methodological contribution to the literature. More specifically, the aim of the research was to
investigate whether a mixture modelling approach could account for unobserved heterogeneity
in the size transition process of farms and, in doing so, to improve the estimation and prediction
of structural change in agriculture.

As Zimmermann et al. (2009) showed in their review, it has become quite common in agri-
cultural economics to study the way that farms experience size change by applying the so-called
Markov chain model (MCM) to aggregate series of farm numbers by size categories (see Huettel
and Jongeneel (2011), Zimmermann and Heckelei (2012) or Ben Arfa et al. (2014) for recent ex-
amples). Although the MCM framework is essentially a statistical modelling approach, Stokes
(2006) showed that a Markovian transition process may be derived from a structural model
of intertemporal profit maximization, giving theoretical grounds to using the MCM. Basically,
this model states that a farm’s size at a given date is the result of a probabilistic process which
depends on only its size in the previous period since, in general, a first-order Markov process is
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assumed. In its simplest version, the MCM framework assumes stationarity and homogeneity,
i.e. it assumes that transition probabilities are invariant over time and that all farms move from
one category to another according to the same unique stochastic process, conditionally on their
initial size. Although MCMs were first developed in this simplest form, two directions have been
investigated to improve the modelling framework when applied to farming. Firstly, assuming
that farms’ transition probabilities may vary over time, non-stationary MCMs have been de-
veloped to investigate the effects of time varying variables such as agricultural policies on farm
structural changes (see Zimmermann et al. (2009) for a review). Secondly, assuming that the
transition process may differ depending on farm and/or farmer characteristics, some studies
have accounted for farm heterogeneity in modelling structural change. However, to date, to the
best of our knowledge, only observed heterogeneity (such as regional location, type of farming,
legal status or age group) has been considered, implying that all farms sharing the same observed
characteristics follow the same stochastic process (see Zimmermann and Heckelei (2012) for a
recent example).

We argue that structural change in agriculture may also pertain to individual characteristics
or behaviours of farms and/or farmers which are not observable in practice. From a theoretical
point of view, this unobserved heterogeneity may originate from several sources that relate to,
for example, the imperfect functioning of land and/or credit markets, or farmer preferences. For
example, when considering size as measured in terms of the operated area, farmers may not all
have the same opportunities to enlarge their farm simply because they may not be faced with the
same land supply: because land is mostly released on retirement, a farmer who is surrounded
only by young colleagues will not find plots to buy or rent. Even if land offers exist, farmers
may have different abilities to negotiate with landowners, may face unequal conditions to access
credit or simply may not be willing to extend their business for personal reasons. In any case, such
types of rationale may not be fully linked to observable variables related to human capital such
as education, to land market such as land prices, to credit market such as the interest rate, etc. As
a result, even if they share the same observed characteristics, farms with an equal initial size may
not experience structural change at the same speed or to the same extent. Therefore, as farm level
data have become more widely available, accounting for unobserved heterogeneity in farms’ size
transition processes may allow the underlying data-generating process to be recovered in a more
efficient way than with a simple homogeneous MCM. In this paper, we investigate whether or
not this is so by comparing two alternative modelling frameworks, namely the homogeneous
MCM, which does not account for heterogeneity, and the mover–stayer model (MSM), which
accounts for unobserved heterogeneity.

The MSM extends the MCM framework by considering two types of agent following two
different transition processes: the ‘movers’ who follow a first-order Markovian process and the
‘stayers’ who never experience a transition. Because it derives from the MCM, the MSM exhibits
the same mathematical simplicity and stability properties that have made Markovian approaches
attractive for modelling dynamic random phenomena in economics (Meyn and Tweedie, 2009).
However, since it has been shown that economic transition processes are often not ‘purely’
Markovian (Bickenbach and Bode, 2001), the MSM enables relaxation of the homogeneity
assumption underlying the MCM. The MSM has thus allowed evidencing the presence of un-
observed heterogeneity in several economic issues such as social (Singer and Spilerman, 1974,
1976), labour (Blumen et al., 1955; Fougere and Kamionka, 2003, 2008) or income mobility
(Shorrocks, 1976; Dutta et al., 2001), financial rating (Frydman and Kadam, 2004) or firm size
dynamics (Cipollini et al., 2012).

There are two reasons why there have been so few studies that explicitly account for farm
heterogeneity. Firstly, most previous studies focus on specific farm types such as dairy farming
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or hog production. The researchers may therefore have assumed that such groups are sufficiently
homogeneous to justify discarding heterogeneity issues. Secondly, studies that investigate the
potential drivers of structural change in farming emphasize the role of economic factors such
as market or policy variables. The researchers have therefore plainly left heterogeneity issues
in the background, considering heterogeneity as a control variable rather than a variable of
key interest. Although our implementation of the MSM compares with similar studies in other
strands of economics, the primary contribution of our work is to demonstrate that unobserved
heterogeneity is also present in the process of farm structural change, and that the MSM also
constitutes a relevant model in this specific sector. In our case, the agents studied are farms and we
investigate how their size, measured in economic terms, evolves over time. ‘Mover’ farms change
size according to a first-order Markovian process, whereas ‘stayer’ farms always remain in their
initial size category. In our view, considering this stayer type of farmers is justified because, since
structural change in agriculture is a long-term process and because of the potential sources of
unobserved heterogeneity that were listed above, some farms may experience no size change at
all or no sufficiently large size changes to move to another size category for a sufficiently long
period of time to qualify as stayers. To establish our result, we compare the respective strength
of both the MCM and the MSM by using a panel of 17285 commercial French farms observed
during the period 2000–2013. We estimate transition probability matrices (TPMs) and perform
short- to long-term out-of-sample projections of farm size distributions for both models, which
allow us to compare their respective performance, firstly, in predicting farms’ size transition
probabilities and, secondly, in performing farm size distribution forecasts over time.

The paper is structured as follows: in the first section we introduce the way in which the
homogeneous MCM can be generalized into the mixed MCM (MMCM) and how the specific
MSM is derived. In the next two sections, we describe the method that is used to estimate
MSM parameters and the two measures, namely the likelihood ratio and the average marginal
error (AME), used to compare the respective performances of the MCM and the MSM. We
then report our application to France, starting with a description of the data that are used and
following with a presentation of the results. Finally, we conclude with some considerations on
how further to extend the approach that is described here.

2. Modelling a transition process by using the Markov chain framework

Consider a population of N agents that is partitioned into a finite number J of categories or
‘states of nature’. Assuming that agents move from one category to another during a certain
period of time r according to a stochastic process, we define the number nj,t+r of agents in
category j at time t + r as

nj,t+r =
J∑

i=1
ni,tp

.r/
ij,t .1/

where ni,t is the number of agents in category i at time t, and p
.r/
ij,t is the probability of moving

from category i to category j between t and t + r. As such, p
.r/
ij,t is subject to the standard non-

negativity and summing to 1 constraints for probabilities:

p
.r/
ij,t �0, ∀ i, j, t,

J∑
j=1

p
.r/
ij,t =1, ∀ i, t: .2/

Then, since we focus on the issue of accounting for heterogeneity, similarly to work that
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has been done by others (Major, 2008; Cipollini et al., 2012), we restrict our analysis to the
stationary case where the r-step TPM P.r/

t ={p
.r/
ij,t} is time invariant, i.e. P.r/

t =P.r/ for all t. In
matrix notation, equation (1) can then be rewritten as

nt+r =nt ×P.r/ .3/

where nt+r ={nj,t+r} and nt ={nj,t} are row vectors.
Using individual level data, the observed r-step transition probabilities can then be computed

from a contingency table as

p
.r/
ij =ν

.r/
ij

/∑
j

ν
.r/
ij .4/

where ν
.r/
ij is the total number of r-step transitions from category i to category j during the

period of observation and Σjν
.r/
ij the total number of r-step transitions out of category i.

2.1. The simple Markov chain model
Assuming that the transition process of agents is Markovian first order, Anderson and Goodman
(1957) showed that the maximum likelihood estimator of the one-step TPM corresponds to the
observed transition matrix, i.e. Π̂=P.1/. Under the assumption of stationarity, the r-step TPM
Π̂

.r/
is then obtained by raising the one-step transition matrix to the power r:

Π̂
.r/ = Π̂

r
: .5/

The MCM approach thus assumes that agents in the population are homogeneous, i.e. they
all move according to the same stochastic process that is described by Π̂. However, in general,
whereas Π̂ is a consistent estimate of P.1/, Π̂

.r/
proves to be a poor estimate of P.r/ (Blumen

et al., 1955). In particular, the main diagonal elements of Π̂
.r/

largely underestimate those of P.r/.
This means that, in general, π̂

.r/
ii �p

.r/
ii . In other words, the simple MCM tends to overestimate

agents’ mobility because of the homogeneity assumption.

2.2. Accounting for unobserved heterogeneity: the mixed Markov chain model
One way to obtain a one-step TPM that leads to a more consistent r-step estimate consists in re-
laxing the assumption of homogeneity in the transition process underlying the MCM approach.

Following Poulsen (1983), Frydman (2005) proposed to ground the source of population het-
erogeneity on the rate of agents’ movement; agents may move across categories at various speeds,
each according to one of several types of transition process. This usually constitutes unobserved
heterogeneity because observing the set of transitions that an agent actually experienced does
not, in general, unambiguously reveal which stochastic process generated this specific sequence
and hence the agent’s type.

Implementing this idea leads to considering a mixture of Markov chains to capture the pop-
ulation heterogeneity. It is considered that the population is divided into a discrete number G

of homogeneous types or groups of agents instead of just one, each agent belonging to one and
only one of these types. Assuming that each agent type is characterized by its own elementary
Markov process, the general form of the MMCM then consists in decomposing the one-step
transition matrix as

Φ={φij}=
G∑

g=1
SgMg .6/

where Mg ={mij,g} is the TPM defining the one-step Markov process followed by type g agents,
and Sg =diag.si,g/ is a diagonal matrix that gathers the shares of type g agents in each category.
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Since every agent in the population must belong to one and only one type g, the constraint that
ΣG

g=1Sg = I must hold, where I is the J ×J identity matrix.
Since we consider only the stationary case here, it is assumed that neither Mg nor Sg varies over

time. Then, the r-step TPM for any future time period r can be defined as the linear combination
of the r-step processes:

Φ.r/ =
G∑

g=1
SgMr

g: .7/

With the MCM and MMCM modelling frameworks as defined above,

(a) the MMCM reduces to the MCM if G= 1, i.e. only one type of agents is considered or,
equivalently, the homogeneity assumption holds, and

(b) the aggregate overall MMCM process that is described by Φ.r/ as defined by equation (7)
may no longer be Markovian even if each agent type follows a specific Markov process.

2.3. A simple implementation of the mixed Markov chain model: the mover–stayer
model
In this paper, we stick to the simplest version of the MMCM, namely the MSM that was first
proposed by Blumen et al. (1955). In this restricted approach, only two types of homogeneous
agents are considered: those who always remain in their initial category (the stayers) and those
who follow a first-order Markovian process (the movers). Formally, this leads to rewriting
equation (6) in a simpler form as

Φ=S+ .I −S/ M: .8/

With regard to the general formulation (6), this corresponds to setting G = 2 and defining
S1 =S and M1 = I for stayers, and S2 = I−S and M2 =M for movers. Thus, following equation
(7), the MSM overall population r-step TPM can be expressed as

Φ.r/ =S+ .I −S/ Mr: .9/

3. Estimation method

Various methods have been used to estimate the MSM parameters ranging from a simple cali-
bration method (Goodman, 1961), minimum χ2 (Morgan et al., 1983) and maximum likelihood
(Frydman, 1984) to Bayesian inference (Fougere and Kamionka, 2003). Frydman (2005) was
the first to develop a maximum likelihood estimation method for the general MMCM. In the
following section, we present the corresponding strategy in the simplified case of the MSM,
which consists of two steps: firstly, under complete information, i.e. as if the population hetero-
geneity were perfectly observable; secondly, under incomplete information, i.e. accounting for
the fact that population heterogeneity is not actually observed.

3.1. Likelihood maximization under complete information
Under complete information the status of each agent k, either stayer (denoted S) or mover
(denoted M), is perfectly known ex ante and can be recorded through a dummy variable Yk,S
where Yk,S =1 if agent k is a stayer and Yk,S =0 if agent k is a mover. The log-likelihood of the
MSM for the entire population is then

log.L/=
N∑

k=1
Yk,S log.lk,S/+

N∑
k=1

.1−Yk,S/ log.lk,M/ .10/
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where the first sum on the right-hand side is the overall log-likelihood that is associated with
stayers and the second sum is the overall log-likelihood that is associated with movers.

At the individual level, conditionally on knowing that k was initially in size category i:

(a) the likelihood that agent k is a stayer, lk,S, is given by si, the share of agents who never
move out of category i during the entire observation period;

(b) the likelihood that agent k is a mover is (Frydman and Kadam, 2004)

lk,M = .1− si/
∏
i�=j

m
νij,k
ij

∏
i

m
νii,k
ii .11/

where νij,k is the number of transitions from category i to category j made by agent k

and νii,k is the total number of times that agent k stayed in category i. On the right-hand
side of equation (11), the first product is thus the probability that agent k moves out of
category i, whereas the second product is the probability that agent k stays in category i

from one period to the next, even though k is a mover.

Substituting lk,S and lk,M in equation (10), the log-likelihood of the MSM for the entire
population can be expressed as

log.L/=∑
i

ni log.1− si/+∑
i

ni,S log{si=.1− si/}+ ∑
i�=j

νij log.mij/+∑
i

νii,M log.mii/ .12/

where ni and ni,S are respectively the numbers of agents and stayers who were initially in
category i, νij = ΣN

k νij,k is the total number of transitions from category i to category j,
νii,M =ΣN

k .1−Yk,s/νii,k is the total number of times that movers stayed in category i and mij

and mii are the elements of the transition probability matrix M of movers.

3.2. The expectation–maximization algorithm under incomplete information
Since in practice it is unlikely to know beforehand which farms actually behave as stayers among
those who remain in their starting category during the observation period, equation (12) cannot
be used to estimate the MSM parameters directly. Because the transition process is assumed to
be stochastic, even movers may remain in their initial category for a long time before moving,
so they may not appear as movers but as stayers during the observed period. In this case,
Fuchs and Greenhouse (1988) suggested that the MSM parameters could be estimated by using
the expectation–maximization (EM) algorithm that was developed by Dempster et al. (1977):
rather than observing the dummy variable Yk,S, the EM algorithm allows its expected value
E{Yk,S|Xk.0/= i} to be estimated, i.e. the probability for each farm k to be a stayer, given farm
k’s initial category i and observed transition sequence.

Following Frydman and Kadam (2004), the four steps of the EM algorithm are defined in
the case of the MSM as follows.

(a) Initialization: arbitrarily choose initial values s0
i for the shares of stayers and m0

ii for the
main diagonal entries of the TPM of movers, M.

(b) Expectation: at iteration p of the algorithm, compute the probability that farm k is a
stayer, Ep {Yk,S|Xk.0/= i, θp}, where θp = .s

p
i , m

p
ii/ is the vector of iteration p values of

the parameters to be estimated. If at least one transition is observed for farm k then set
Ep {Yk,S|Xk.0/= i, θp} = 0; otherwise this probability is given by, according to Bayes’s
law

Ep {Yk,S|Xk.0/= i, θp}= lk,S

lk,S + lk,M
: .13/



Movers and Stayers in the Farming Sector 7

Replacing lk,S and lk,M in this equation, we obtain

Ep{Yk,S|Xk.0/= i, θp}= s
p
i

s
p
i + .1− s

p
i /.m

p
ii/

νii,k
: .14a/

Then compute
(i) the expected value of the number of stayers in category i, Ep.ni,S/, as

Ep.ni,S/=
N∑
k

Ep {Yk,S|Xk.0/= i, θp} .14b/

(ii) and the expected value of the total number of times that movers remain in category
i, Ep.νii,M/, as

Ep.νii,M/=
N∑
k

[1−Ep {Yk,S|Xk.0/= i, θp}]νii,k: .14c/

(c) Maximization: update s
p
i and m

p
ii by maximizing equation (12) using the expected values

of ni,S and νii,M obtained at iteration p. The new parameters are thus given by

s
p+1
i = Ep.ni,S/

ni
,

m
p+1
ii = Ep.νii,M/

νi +Ep.νii,M/
:

.14d/

(d) Iteration: return to expectation step (b) using s
p+1
i and m

p+1
ii and iterate until the param-

eters converge.

When convergence is reached, the optimal values sÅi and mÅ
ii are considered to be the search

values for estimators ŝi and m̂ii. Then, m̂ij derives from m̂ii as

m̂ij = νij

νi
.1− m̂ii/ ∀ i �= j .15/

where νi =Σj �=iνij is the total number of transitions out of category i.
Following Frydman (2005), the standard errors that are attached to the MSM parameters can

be computed directly from the EM equations by using the method that was proposed by Louis
(1982). Since the log-likelihood function that is given by equation (12) is twice differentiable
with respect to the model parameters, both the Fisher information matrix and the missing
information matrix can be straightforwardly derived (see McLachlan and Krishnan (2007) for
more details). The standard errors that are attached to the overall 1-year TPM Φ can then be
derived by applying the standard delta method to equation (8) (Oehlert, 1992). Finally, because
it is more complicated to apply the delta method to equation (9) because it involves powers of
matrices, we used a bootstrap sampling method to compute standard errors attached to the
r-step TPMs M.r/ and Φ.r/ (Efron, 1979; Efron and Tibshirani, 1986).

4. Model comparison

Two types of analysis were conducted to assess whether or not the MSM outperforms the MCM.

4.1. Likelihood ratio test
The likelihood ratio test allows a comparison of the in-sample performance of the two models in
recovering the data-generating process. As stated by Frydman and Kadam (2004), the likelihood
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ratio statistic for the MSM is given by

LR= LMCM.Π̂/

LMSM.Ŝ, M̂/
.16/

where LMCM and LMSM are the estimated maximum likelihoods for the MCM and the MSM
respectively. The asymptotic distribution of −2log.LR/, under H0, is χ2 with .G−1/×J degrees
of freedom. In the case of the MSM, the likelihood ratio tests the hypothesis that the process
follows an MCM (H0 : Ŝ = 0) against the hypothesis that it is a mixture of movers and stayers
(H1 : Ŝ �=0). The observed log-likelihood for both models can be derived from equation (10), by
imposing Yk,S = 0 for all agents k for the MCM and by replacing Yk,S by its optimal expected
value EÅ.Yk,S/ for the MSM.

4.2. Average marginal error
The estimated parameters were used to compute the corresponding r-step TPMs, i.e. Π̂

.r/ =Π̂
r

for the MCM and Φ̂
.r/ = Ŝ+ .I− Ŝ/M̂

r
for the MSM. These r-step TPMs were then used to per-

form out-of-sample short- to long-term projections of farm distributions across size categories
according to equation (1) (see below).

On the one hand, TPMs from both models were compared with the observed TPM, providing
a second in-sample assessment in addition to the likelihood ratio test. Following Frydman
et al. (1985) who compared percentage differences between predicted and observed transition
probabilities, we compute an AME for each model based on the formulation of Cipollini et al.
(2012) of the expected marginal distribution. The AMEs for the transition probability matrices
are thus obtained as

AMETPM = 1
JJ

∑
i,j

√{(
p̂

.r/
ij −p

.r/
ij

p
.r/
ij

)2}
.17/

where p̂
.r/
ij and p

.r/
ij are the predicted and observed TPM entries respectively:

(a) p̂
.r/
ij ≡ π̂

.r/
ij under the MCM whereas p̂

.r/
ij ≡ φ̂

.r/

ij under the MSM;
(b) p

.r/
ij derives from equation (4).

On the other hand, AMEs were similarly computed for both the MCM and the MSM pro-
jections of farm size distributions with respect to those actually observed, providing an out-of-
sample comparison of the models. The AMEs for the projected farm size distributions at time
t + r are thus obtained as

AMEFSD.t + r/= 1
J

∑
j

√{(
n̂j,t+r −nj,t+r

nj,t+r

)2 }
.18/

where n̂j,t+r are the predicted proportions of farms in size category j at time t + r by using either
π̂

.r/
ij for the MCM or φ̂

.r/

ij for the MSM, and nj,t+r are the observed counterparts.
In contrast with some dissimilarity indices (Jafry and Schuermann, 2004) or the matrix of

residuals (Frydman et al., 1985), the AME provides a global view of the distance between
the predicted TPM or population distribution across size categories and the observed ones. It
can be interpreted as the average percentage of deviations on predicting the observed TPM
or population distribution across size categories. Thus, the higher the AME, the greater the
difference between the computed TPM or distribution and the observed one is. The better
model is therefore the model that yields the lowest AME.
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5. Data

In our empirical application, we used the 2000–2013 ‘Réseau d’information comptable agri-
cole’ (RICA) data, which is the French strand of the Farm Accountancy Data Network. The
network is an annual survey defined at European Union level and carried out in each member
state. The information that is collected at individual level relates to both the physical and the
structural characteristics of farms and their economic and financial characteristics. To comply
with accounting standards that may differ from one country to the next, the European Union
level questionnaire was adapted for France, but the results were unchanged whether the original
or adapted version of the questionnaire was used.

In France, the RICA data are produced and disseminated by the Ministry for Agriculture’s
Statistical and Foresight Office. It focuses on ‘medium and large’ farms (see below) and consti-
tutes a stratified and rotating panel of approximately 7000 farms surveyed each year. About 10%
of the sample is renewed every year so, on average, farms are observed during five consecutive
years. However, some farms may be observed only once, and others several but not consecutive
times. Some farms remained in the database over the entire period that was studied, i.e. 14 con-
secutive years. Each farm in the data set is assigned year-specific weighting factors that reflect
its annual stratified sampling probabilities, allowing for extrapolation at the population level
when the database is used in its cross-sectional dimension. However, when the database is used
as a panel, as here, these extrapolation weights should not be used because they are not relevant
in the intertemporal dimension.

Because we considered all 17285 farms in the 2000–2013 sample, whatever the type of farm-
ing, we chose to concentrate on size as defined in economic terms. In accordance with Euro-
pean Union regulation (CE) N◦1242/2008, European farms are classified into 14 economic
size (ES) categories, evaluated in terms of total standard output (SO) expressed in euros.
As mentioned above, in France, the RICA survey focuses on medium and large farms, i.e.
those whose SO is greater than or equal to C 25000; this corresponds to ES category 6 and
above. Since size categories are not equally represented in the sample, we aggregated the nine
ES categories that are available in the RICA survey into five categories: strictly less than
C50000 of SO (ES category 6); from C50000 to less than C100000 of SO (ES category 7); from
C100000 to less than C150000 of SO (the lower part of ES category 8); from C150000 to
less than C250000 of SO (the upper part of ES category 8); C250000 of SO and more (ES
categories 9–14).

As the RICA survey is a rotating panel, farms that either enter or leave the sample in a given
year cannot be considered as actual entries into or exits from the agricultural sector. Thus,
we could not work directly on the evolution of farm numbers but rather on the evolution of
population shares by size categories, i.e. the size distribution in the population. Table 1 presents
the year-by-year evolution by size categories of farm numbers in the sample as well as for the
extrapolated population. It also reports the average ES in thousands of euros of SO both at the
sample and at the extrapolated population levels.

Fig. 1 shows that the share of smaller farms (below C100000 of SO) decreased from 56%
to 46% between 2000 and 2013 whereas the share of larger farms (above C150000 of SO)
increased from 28% to 38%, and the share of intermediate farms (C100000 to less than
C150000 of SO) remained stable at 16%. As a consequence, as can be seen from Table 1 and Fig.
1, the average economic size of French farms was multiplied by more than 1.25 over this period.
Table 1 also reveals that the size distribution became more heterogeneous since the standard
deviation of economic size was multiplied by almost 1.5, which is a feature that has already
been observed for the population of French farms as a whole and in other periods (Butault and
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Table 1. Distribution by ES and average ES for the sample studied, 2000–2013†

Year Numbers of farms by the following ES categories (×103 C) Total Average ES
(standard deviation)

0–50 50–100 100–150 150–250 � 250

2000 790 2234 1629 1762 1342 7757 168.88 (179.01)
87924 129691 59857 67367 41457 386296 134.46 (151.72)

2001 746 2231 1625 1817 1382 7801 170.98 (180.88)
84442 123900 57583 67741 41890 375556 136.75 (155.04)

2002 713 2128 1663 1818 1443 7765 177.57 (198.12)
81228 118571 58104 65448 42344 365695 140.99 (184.50)

2003 690 1975 1562 1693 1393 7313 176.27 (193.55)
78249 113662 56961 64946 42859 356677 141.08 (176.08)

2004 707 1940 1538 1707 1437 7329 177.67 (188.47)
75481 109118 56118 64252 43419 348388 142.63 (169.30)

2005 741 1927 1516 1711 1467 7362 178.03 (181.95)
72896 104906 54811 64112 44007 340732 144.55 (161.46)

2006 756 1922 1488 1688 1491 7345 181.21 (209.21)
70516 101035 54202 63443 44740 333936 146.99 (171.49)

2007 774 1845 1552 1694 1511 7376 182.27 (191.10)
68286 97435 54032 62390 45491 327634 150.08 (172.33)

2008 780 1866 1511 1721 1587 7465 185.49 (200.25)
66201 94098 52412 62889 46338 321938 153.47 (185.00)

2009 778 1816 1517 1734 1624 7469 188.43 (205.95)
64243 90970 51137 63151 47278 316779 156.14 (186.03)

2010 652 1885 1537 1770 1608 7452 190.53 (199.03)
62429 88104 51320 62062 48267 312182 157.88 (174.96)

2011 638 1856 1468 1791 1658 7411 194.89 (207.58)
60743 85444 49285 63292 49381 308145 162.11 (189.23)

2012 651 1797 1396 1794 1679 7317 200.28 (249.45)
59152 82943 47911 63953 50626 304585 166.69 (227.41)

2013 658 1769 1361 1804 1701 7293 202.41 (240.15)
57668 80638 46821 64414 51939 301480 169.49 (225.53)

†For each year, the first row reports figures at the sample level and the second row reports figures for the extrapolated
population. Source, Agreste, RICA France 2000–2013—authors’ calculations.

Delame, 2005; Desriers, 2011). Lastly, Table 1 reveals that these observations apply at sample
level also, even though the sample is skewed towards larger sizes with regard to the population
as a whole.

To assess which model performed better, we compared the MCM and the MSM on the basis
of both in-sample estimation and out-of-sample size distribution forecasts. To do so, we split
the RICA database into two parts:

(a) observations from 2000 to 2010 were used to estimate the parameters of both models;
(b) observations from 2011 to 2013 were used to compare actual farm size distributions with

their predicted counterparts for both models.

In doing so we assumed that, in the case of the MSM, 11 years are a sufficiently long interval
for a robust estimation of the movers’ transition process.

Before proceeding with the results, it should also be noted that, because we worked with
panel subsets of the full sample and therefore could not account for extrapolation weights in
the estimations as explained above, the transition probabilities that are reported in the next
section can only be viewed as conditional on having been observed over a specific number of
consecutive years during the entire period under study. Projected population distributions that
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Fig. 1. Extrapolated population shares by farm size categories and average ES (�103 C) (source, Agreste,
RICA France 2000–2013—authors’ calculations): , 0–50; , 50–100; , 100–150; , 150–250; , �250;
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were obtained from these transition probabilities should therefore be interpreted with due care
from an empirical point of view. They were performed here to compare the forecasting power
of the models studied, for which the above caveat applies to the same extent.

6. Results

In this section, we first report the results of in-sample estimations, i.e. the estimated 1-year
TPMs for the MCM and the MSM. We then compare the models based on in-sample results to
assess which model performs better in recovering the underlying transition process from both
a short-term and a long-term perspective. Lastly, we compare the models’ ability to forecast
future farm size distributions on the basis of out-of-sample observations.

6.1. In-sample estimation results
The MCM and MSM parameters were estimated by using 10 subsamples according to the
minimum length of time that farms remain in the database. For brevity, here we report only
those for the balanced subsample, i.e. using the 2000–2010 balanced panel consisting of 2170
individual farms and 21700 observed transitions over the 11 years. However, when any of the
unbalanced panels were considered, the results, and hence conclusions, remained similar to
those reported here.

Table 2 reports the estimated 1-year TPM under the MCM assumption. As is usual, the matrix
is strongly diagonal, meaning that its main diagonal elements exhibit by far the largest values
and that probabilities rapidly decrease as we move away from the main diagonal. This means
that, overall, farms are more likely to remain in their initial size category from one year to the
next. This does not mean no size change at all but, at least, no change that is sufficient to move
to another category as we defined them.

Table 3 reports the estimated shares of stayers, Table 4 reports the TPM of movers and Table
5 reports the corresponding 1-year TPM for the entire population under the MSM assumption.
Two main results can be seen from Tables 3–5. Firstly, the estimated stayer shares (Table 3)
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Table 2. Estimated 1-year TPM under the MCM (Π̂)†

Date t ES TPM for the following date t +1 ES classes (×103 C):
class (×103 C)

0–50 50–100 100–150 150–250 � 250

0–50 0.917 0.079 0.002 0.002 0.001
(0.024) (0.007) (0.001) (0.001) (0.001)

50–100 0.030 0.898 0.065 0.005 0.002
(0.002) (0.013) (0.004) (0.001) (0.001)

100–150 0.002 0.062 0.854 0.080 0.002
(0.001) (0.004) (0.014) (0.004) (0.001)

150–250 0.001 0.004 0.054 0.886 0.055
(0.000) (0.001) (0.003) (0.012) (0.003)

� 250 0.000 0.001 0.003 0.048 0.948
(0.000) (0.001) (0.001) (0.003) (0.014)

†Log-likelihood, log.LMCM/ = −8689:36: estimated parameters are in italics; stan-
dard errors are in parentheses. Source, Agreste, RICA France 2000–2010—authors’
calculations.

show that the probability of being a stayer is close to or above 30% whatever the category that
is considered; it reaches almost 50% for farms below C50000 of SO and is even higher than 60%
for farms over C250000 of SO. This means that, according to the MSM and depending on the
size category, at least 30% of the farms are likely to remain in their initial category for at least
another 10 years. Secondly, the TPM (Table 4) reveals that, even though movers are by definition
expected to move from one category to another in the next 10 years, nevertheless, the highest
probability for them is to remain in the same category from one year to the next. Since the average
time that is spent by movers in a particular category is given by 1=.1−mii/, it can be seen from
Table 4 that movers in the intermediate ES class .1=.1−0:793/=4:8/ were likely to remain in the
same category for almost 5 years, whereas those above C250000 of SO .1=.1−0:875/=8/ were
likely to remain for 8 years before moving. In other words, farms that remained in a particular
category for quite a long time (theoretically even over the entire observation period) were not

Table 3. Estimated stayer shares ŝi †

ES class (× 103 C) Stayer share ŝi

0–50 0.494
(0.036)

50–100 0.422
(0.021)

100–150 0.291
(0.016)

150–250 0.371
(0.017)

�250 0.650
(0.021)

†Log-likelihood, log.LMSM/=−8384:08: es-
timated parameters are in italics; standard
errors are in parentheses. Source, Agreste,
RICA France 2000–2010—authors’ calcula-
tions.
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Table 4. Mover transition probability matrix M̂†

Date t ES Matrix for the following date t +1 ES classes (× 103 C):
class (× 103 C)

0–50 50–100 100–150 150–250 � 250

0–50 0.837 0.154 0.004 0.004 0.001
(0.041) (0.012) (0.002) (0.002) (0.001)

50–100 0.055 0.815 0.118 0.009 0.003
(0.004) (0.022) (0.006) (0.002) (0.001)

100–150 0.002 0.089 0.793 0.113 0.003
(0.001) (0.005) (0.020) (0.005) (0.001)

150–250 0.002 0.007 0.087 0.816 0.088
(0.001) (0.001) (0.004) (0.020) (0.004)

�250 0.001 0.003 0.007 0.114 0.875
(0.001) (0.001) (0.002) (0.007) (0.027)

†Log-likelihood, log.LMSM/ =−8384:08: estimated parameters are in italics; stan-
dard errors are in parentheses. Source, Agreste, RICA France 2000–2010—authors’
calculations.

Table 5. Overall population 1-year TPM Φ̂†

ES class (× 103 C) TPM for the following date t +1 ES classes (× 103 C):

0–50 50–100 100–150 150–250 � 250

0–50 0.917 0.078 0.002 0.002 0.001
(0.019) (0.011) (0.001) (0.001) (0.001)

50–100 0.032 0.893 0.068 0.005 0.002
(0.003) (0.012) (0.005) (0.001) (0.001)

100–150 0.002 0.062 0.854 0.080 0.002
(0.001) (0.004) (0.014) (0.005) (0.001)

150–250 0.001 0.005 0.055 0.884 0.055
(0.000) (0.001) (0.004) (0.012) (0.004)

�250 0.000 0.001 0.003 0.040 0.956
(0.000) (0.001) (0.001) (0.005) (0.009)

†Log-likelihood, log.LMSM/ =−8384:08: estimated parameters are in italics; stan-
dard errors are in parentheses. Source, Agreste, RICA France 2000–2010—authors’
calculations.

necessarily stayers but could be movers who had not yet moved. Together, these two results yield
a 1-year TPM for the whole population that is also highly diagonal (Table 5).

6.2. In-sample model comparison
Both models show that, at the overall population level, farms were more likely to remain in their
initial size category from year to year, confirming that structural change in the agricultural sector
is a slow process which would be worth investigating in the long term. In this respect, although
the 1-year TPMs look very similar across both models, the resulting long-term transition model
differs between the MCM, given by equation (5), and the MSM, given by equation (9). It is
therefore important to assess which model performs better in recovering the true underlying
transition process.
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The first assessment method that was used, i.e. the likelihood ratio test, reveals that the MSM
yields a better fit than the MCM: the value of the test statistic as defined by equation (16) is
−2log.LR/ = −2.−8689:36 + 8384:08/ = 610:56, which is highly significant since the critical
value of a χ2-distribution with .G − 1/ × J = 5 degrees of freedom and the 1% significance
level is χ2

0:99.5/=15:09. This leads to the rejection of the H0 assumption that the stayer shares
are all 0, and thus to the conclusion that the MSM allows the data-generating process to be
recovered more efficiently than does the MCM. The MSM should therefore also lead to a better
approximation of transition probabilities in the long term.

The second assessment method that was used allows this very point to be evaluated. Estimated
parameters for both models were used to derive the corresponding 10-year TPMs, namely
Π̂

.10/ =Π̂
10

for the MCM and Φ̂
.10/ = Ŝ+ .I− Ŝ/M̂

10
for the MSM. These estimated long-term

matrices were then compared with the observed matrix P.10/, which is derived from equation (4).
It appears from a visual inspection of the panels of Tables 6 and 7 that the MSM 10-year matrix
more closely resembles the matrix that is actually observed than the MCM 10-year matrix.
In particular, we find as expected that the diagonal elements of Π̂

.10/
largely underestimate

those of P.10/ whereas those of Φ̂
.10/

are far closer. This means that the MCM largely tends
to overestimate the farms’ mobility in the long term, with regard to the MSM. The AMEs
that are reported in Table 8 confirm the MSM’s superiority over the MCM in modelling the
long-term transition process. The AME for the overall predicted 10-year TPM is around 0.95
for the MCM whereas it is about 0.78 for the MSM. This means that the MSM is about 17
percentage points closer to the observed TPM than is the MCM in the long term. However, the
AMEs also confirm that the improvement arises principally from the main diagonal elements:
when only these are considered, the MSM performs about five times better than the MCM
(0:292=0:057 = 5:1), whereas both models are almost comparable for off-diagonal elements,
with the MCM this time performing slightly better (0:657=0:724 = 0:9).

6.3. Out-of-sample projections
In-sample estimation results lead us to conclude that accounting for unobserved heterogeneity
in the rate of farms’ movement, as the MSM does, avoids overestimating their mobility across
size categories. The MSM should therefore also lead to a more accurate prediction of the farms’
size distribution in the long term without hampering its short-term prediction.

To validate this point, we performed out-of-sample short- to long-term projections of
farm size distribution by using the parameters estimated for both models. To do this, farm
size distributions in 2011, 2012 and 2013 were predicted from a short- to long-term perspective,

Table 6. Observed 10-year TPM†

Date t ES TPM for the following date t +1 ES classes
class (× 103 C) (× 103 C):

0–50 50–100 100–150 150–250 � 250

0–50 0.715 0.235 0.029 0.014 0.007
50–100 0.107 0.641 0.199 0.038 0.015

100–150 0.020 0.146 0.536 0.268 0.030
150–250 0.010 0.032 0.096 0.630 0.232
�250 0.005 0.021 0.020 0.124 0.830

†Source, Agreste, RICA France 2000–2010—authors’ calculations.
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Table 7. Predicted 10-year TPMs for both models†

Date t ES TPMs for the following date t +1 ES classes (× 103 C):
class (× 103 C)

0–50 50–100 100–150 150–250 � 250

(a) MCM predicted 10-year TPM Π̂
.10/

0–50 0.476 0.361 0.106 0.043 0.014
(0.028) (0.020) (0.008) (0.006) (0.004)

50–100 0.141 0.467 0.240 0.116 0.036
(0.011) (0.015) (0.011) (0.007) (0.004)

100–150 0.044 0.234 0.338 0.281 0.103
(0.004) (0.011) (0.013) (0.011) (0.007)

150–250 0.015 0.082 0.193 0.428 0.282
(0.002) (0.005) (0.010) (0.013) (0.013)

�250 0.005 0.026 0.068 0.245 0.656
(0.001) (0.003) (0.005) (0.013) (0.018)

(b) MSM predicted 10-year TPM Φ̂
.10/

0–50 0.690 0.140 0.097 0.053 0.020
(0.017) (0.010) (0.007) (0.005) (0.003)

50–100 0.060 0.684 0.126 0.090 0.040
(0.007) (0.010) (0.007) (0.005) (0.003)

100–150 0.041 0.119 0.586 0.164 0.090
(0.004) (0.007) (0.012) (0.009) (0.006)

150–250 0.018 0.062 0.117 0.676 0.127
(0.002) (0.004) (0.006) (0.010) (0.009)

�250 0.005 0.021 0.048 0.093 0.833
(0.001) (0.002) (0.003) (0.005) (0.008)

†Estimated parameters are in italics; bootstrap standard errors are in parentheses (1000
replications). Source, Agreste, RICA France 2000–2010—authors’ calculations.

Table 8. AMETPM between the predicted 10-year TPMs Π̂.10/ and Φ̂.10/ and the
observed TPM P.10/†

Model Overall matrix Main diagonal elements Off-diagonal elements

MCM 0.949 0.292 0.657
(0.044) (0.010) (0.036)

MSM 0.781 0.057 0.724
(0.034) (0.007) (0.035)

†Bootstrap standard errors are in parentheses (1000 replications). Source, Agreste,
RICA France 2000–2010—authors’ calculations.

by applying the estimated r-step TPMs (for 1� r �11) to the corresponding observed distribu-
tions from 2000 to 2012. In other words, distributions in 2011, 2012 and 2013 were predicted: by
applying the estimated 1-year TPMs (Π̂ for the MCM and Φ̂ for the MSM) to the observed distri-
butions in 2010, 2011 and 2012 respectively; by applying the estimated 2-year TPMs (Π̂

.2/ =Π̂
2

for the MCM and Φ̂
.2/ = Ŝ + .I − Ŝ/M̂

2
for the MSM) to the observed distributions in 2009,

2010 and 2011 respectively; and so forth. This process was continued by applying the estimated
r-step TPMs (Π̂

.r/ = Π̂
r

for the MCM and Φ̂
.r/ = Ŝ+ .I − Ŝ/M̂

r
for the MSM) to the observed

distributions in 2011− r, 2012− r and 2013− r and varying r up to 11. Then, the resulting distri-
butions for both models were compared with distributions actually observed in 2011, 2012 and
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Fig. 2. AMEFSD.t C r/ between the out-of-sample projections of farm size distributions and the actually
observed distributions for the MCM model ( , Q3–Q1; , 2011; , 2012; , 2013; , 2011–2013
average) and the MSM ( , Q3–Q1; �, 2011; �, 2012; �, 2013; , 2011–2013 average) (see the text
for an explanation on how short- to long-term projections were obtained; the interquartile ranges Q3–Q1
were obtained from the 1000 bootstrap replications; source, Agreste, RICA France 2000–2013—authors’
calculations)

2013 (see Table 1). The corresponding AMEs that are reported in Fig. 2 summarize the results
that were obtained for the 1000 bootstrap replications. Four conclusions can be drawn from Fig.
2. Firstly, as expected, the accuracy of both models decreases when increasing the time horizon
of projections: the computed AMEs are significantly smaller in the short term than they are
in the medium and long term for both models. Secondly, both models are almost comparable
in the short run, confirming that adopting the MSM modelling framework does not degrade
year-by-year forecasts with regard to the MCM. Thirdly, the MSM performs significantly better
than the MCM in both the medium term and the long term. For example, the average AME
for the MCM (0.088) is 1.3 times that of the MSM (0.068) for 5-year interval projections and
is 1.5 times for 11-year interval projections (0.121 for the MCM compared with 0.082 for the
MSM). Fourthly, Fig. 2 also shows that the accuracy and robustness of farm size distribution
predictions decrease more rapidly for the MCM than for the MSM when increasing the time
horizon of projections since the AMEs as well as the interquartile ranges of the 1000 bootstrap
replications increase more rapidly for the MCM than for the MSM.

7. Concluding remarks

To our knowledge, this is the first paper in applied statistics to investigate whether accounting
for unobserved heterogeneity in farms’ size transition processes improves the representation of
structural change. Existing literature on structural change in agriculture has so far accounted
only for observed heterogeneity. Considering a mixture of two types of farm, the so-called
MSM is applied for the first time in an agricultural economics context. Our results show that,
with regard to the MCM and even using the simple MSM framework, accounting for unob-
served farm heterogeneity allows closer estimates of both the observed transition matrix and
farms’ distribution across size categories in the long term to be derived, without degrading
any short-term analysis. This result is consistent with findings in other strands of economic
literature, i.e. by relaxing the assumption of homogeneity in the transition process, which is
the basis of the MCM, the MSM gives a better representation of the underlying structural
change process. Moreover, checks of robustness show that these conclusions remain valid when
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using different boundaries for size interval definitions and/or using different numbers of size
categories.

However, this modelling framework remains a somewhat restricted and simplified version of
the more general MMCM that we presented as an introduction to the MSM. Extending the
MSM further could therefore lead to even more economically sound, and statistically more
accurate, models for the farming sector. We briefly mention here some of the extensions that
we believe are promising. Firstly, more heterogeneity across farms could be incorporated by
allowing for more than two unobserved types. For example, accounting for different types of
movers could provide a better representation of the structural change process in the farming
sector by allowing farms that mainly tend to enlarge to be separated from farms that mainly
tend to shrink. Secondly, the relatively strong assumption of a ‘pure stayer’ type could be
relaxed because it appears unlikely that some farms ‘never move at all’, i.e. will not change size
category over their entire lifespan even if they do not do so for a relatively high number of
consecutive years. In other words, an ‘almost stayer’ type could be hypothesized rather than a
pure stayer type. In this respect, the robustness of the MSM to the number of years during which
farms are observed could be investigated. Indeed, by considering 11 years to perform in-sample
estimations, our results show that movers may stay for 5–8 years in a given category before
experiencing a sufficiently large (positive or negative) size change to reach another category.
We can then infer that, the shorter the observation period, the higher the number of farms
that would be inappropriately considered as pure stayers. From a methodological point of
view, this leads to the conclusion that sufficiently long panel data need to be available if the
MSM is to be empirically implemented. This could be seen as a shortcoming of the MSM with
regard to the MCM but it is consistent with farm structural change being a long-term and slow
process.

The empirical application in this study showed that accounting for unobserved farm hetero-
geneity is important when analysing structural change in farming, and that a mixture modelling
framework such as the MSM is relevant to do this. However, although we could put forward
some theoretical explanations for unobserved heterogeneity, to our knowledge, there is, as yet,
no formal framework in agricultural economics that could help to identify the potential sources
of this heterogeneity and to guide the empirical measurement of how they may affect farms’
transition processes. We hope that the results that are presented here and the limitations that
were mentioned will contribute to encouraging the development of such theoretical frameworks
for a better understanding of structural change under the assumption of heterogeneous farm
populations.

Our final recommendations are that, when implemented for thorough empirical studies, the
modelling framework proposed should be extended to account for entries and exits, that factors
driving homogeneous group membership—including observed heterogeneity variables—should
be investigated and that a non-stationary version of the MMCM model should be developed.
Since this should allow the transition process to be recovered more efficiently, it would surely
prove to be very useful for analysing the factors that drive structural change in the farming
sector, including agricultural policies, not only from a size distribution perspective, but also
with regard to the evolution of farm numbers.
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