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Abstract This paper presents a virtually controlled observer (VCO) used to estimate both, 

unmeasured states and unknown influent substrate concentrations in an anaerobic digestion process. 

This VCO is experimentally implemented in a pilot-scale AD process used for the treatment of wine 

distillery vinasses. This implementation was carried out under the complete ignorance of the process 

kinetics. Results indicate that the VCO is able to reconstruct the influent substrate concentration 

under moderate changes on the operating conditions, while showing also robustness and accuracy 

against model uncertainties and even sensor faults. 
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1. Introduction – In recent years, Control and Automatation (CA) of Wastewater Treatment Process 

(WWTP), has been revelead as a need for guarantying stability, safe operation, and maintaining of a good 

performance in WWTP [1]. Nevertheles, CA of WWTP requires also of Instrumentation that is not 

always easy to implement. This is true particularly in Anaerobic Digestion (AD) processes, that are 

complex WWTP in which organic matter determined as Chemical Oxygen Demand (COD) is first 

degraded into Volatile Fatty Acids (VFA) and then, from those, into CO2 and CH4. Despite AD is 

nowadays widely used in the agro-industrial field, it is well known that this kind of processes may 

become unstable under some operational conditions (e.g., high organic loads, low hydraulic retention 

times) [2] and then control process is necessary in order to guarantee stability efficiency and a good 

performance [3]. Furthermore, given the strong nonlinear behavior of this kind of processes, different 

estimation and control schemes have been proposed in the past [4], [5]. Nevertheless, most control laws 

are function of process inputs that usually are unknown, but actually, relatively few works has been paid 

attention regarding their estimation when is difficult to measure it [6]. Recently, [7] developed an 

observer-based estimator named Virtually Controlled Observer (VCO), to reconstruct simultaneously the 

influent COD and some unmeasured state variables in continuous anaerobic digestion processes. In the 

current paper, this approach is improved and extended to the estimation of influent VFA as well. In 

addition, this VCO is experimentally implemented in a 1 m3 fixed bed anaerobic digester used for the 

treatment of red wine vinasses from the Narbonne (France) area. This paper is organized as follows: First, 

some details about the data acquisition are provided and then, the AD model used in this work is briefly 

described. After, the VCO design is presented and the results on the experimental implementation are 

shown and discussed. Finally some conclusions are drawn. 

 

2. Material and methods - The experimental runs were carried out in a 0.948.35 m3 up-flow fixed-bed 

pilot-scale anaerobic reactor [8]. The measurements of pH, inflow flow rate (l/h), total organic carbon 

concentration (mg/l), partial pressure (mbar), volatile fat acids concentration (mg/l) and bicarbonate 

concentration (mmol/l) were taken every two minutes. The VCO design requires a dynamical model of 

the process [9], and it consist of an observer and an output feedback controller, in which, one of the 

observer's inputs (the hypothetical -unmeasured- influent substrate concentration) is updated by a 

feedback control, which regulates the estimation error of a measured output [7]. In order to deal with the 

kinetic process uncertainties, a classical asymptotic observer (CAO) was used, because it does not require 



the knowledge of the process kinetics and because of its excellent robustness and stability properties [10]. 

The control variable of the VCO is the error between the measured variables and the estimated ones. The 

manipulated variable is the input concentration used in the asymptotic observer. Once the error becomes 

less than an arbitrarily chosen value it is considered that the estimated influent concentration is 

approximately equal to the real. In the following, the model, the CAO and the VCO are briefly described. 

 

2.1 The anaerobic digester model. In this paper we use the structure of the model AM2 [9] that was 

validated precisely in the same up-flow fixed-bed pilot-scale anaerobic reactor considered in this paper. 

However, most of parameters were later updated in [8] and they were used in this work.  

 

qc = kLa CO2 - KHPc[ ]  

Pc =
f - f 2 - 4KHPTCO2

2KH

          (1) 

f = CO2 + KH PT +
k6

kLa
m2 S2( ) X2

 

In this model, S1  (g/l), S2 , Z  and C  (mmol/l) represent the concentrations of organic material measured 

as COD (which does not include volatile fatty acids), VFA, strong ions and total inorganic carbon, 

respectively, while X1  and X2  (g/l) are the concentrations of acidogenic and methanogenic bacteria 

respectively. In this paper biomass concentrations may be considered reasonably constants [8]. The 

superscript "in" is used to identify the influent concentration of each component while the dilution rate, 

D (d-1), is defined as the ratio between the volumetric inlet flow rate and the digester volume. Parameters 

k1, k2, k3, k4, k5 and k6  are the respective yield coefficients. qc (mmol/l-d) represents the CO2 gas flow 

rate, kLa (d-1) is the liquid-gas transfer coefficient, CO2 = C+S2 - Z  is the dissolved CO2 concentration, 

and KH
(mmol/l-atm) is the Henry´s constant. Pc  and PT (atm) are the CO2 partial pressure and total 

pressure, respectively. The specific growth rates, m1 S1( )  and m2 S2( )  (d-1) are the unknown specific 

growth rates described by Monod and Haldane-type functions, respectively.  

 

2.2 The Classical Asymptotic observer. In this paper, a CAO was designed to estimate Ẑ  and Ŝ1
 from the 

measurements of the state variables S2 , and C . Other measurements like D , Cin  and Z in  were 

considered available as well. Thus, using the model (1) and following the methodology described in [10], 

this CAO is depicted by the following equations:  

                  (2) 

Notice that the CAO is also function of S1

in, and  S2

in which are unknown and that are just the variables 

that, besides Ẑ  and Ŝ1
 we want to estimate . These variables, S1

in, and S2

in are actually recursively 

modified and estimated by the VCO as is described in the next subsection.  

 

2.3Virtually Controlled Observer. In this subsection we present the main approach used in this paper. 

Besides of S2  and C , it is considered that the measurement of S1  is also available. It will serve to be 

compared with his estimation by the CAO. As it can be seen in Fig. 1, the VCO (dotted line) consists of 

an asymptotic observer and an output feedback controller. Measurements of S2 , C  and D  are fed both, 



to the asymptotic observer and to the controller. The observer output variables are Ẑ  and Ŝ1
. The control 

variable is Ŝ1
, which is fedback to the controller via the observation error, e0 = Ŝ1 - S1

. The estimation of 

Ŝ1

in, and Ŝ2

in is made in two steps. In the first step, Ŝ2

in is estimated using the nominal value of S1

in  which 

was S1

in= 6 gCOD/l at 0 < t < 7 and 12 < t < 14 d, and S1

in= 12 gCOD/l at  8 < t < 12 d. Since the observer 

performance depends on the right value of the hypothetical influent substrate concentration, Ŝ2

in , then the 

goal of the controller is to lead the observation error asymptotically to zero, by manipulating Ŝ2

in. Once 

the absolute value of the observation error becomes less than an arbitrarily chosen value, within a 

reasonable time, it is considered that the estimated influent VFA concentration is approximately equal to 

the real one. Then, in the second step, following a similar procedure [7], Ŝ1

in is estimated by using Ŝ2

in , 

which was estimated in the first step. Notice that the bioreactor is in open-loop while the controller 

operates only upon the observer. The control laws were obtained by using the Lyapunov function V = e0

2  

and by demanding the observation error to have the stable dynamics   resulting in the following 

equations:  

 

                                                                                                                                                                     (3) 

 

In equation (3), kc =10 d-1 was used as controller gain. The derivatives  and were calculated 

numerically using the filtered data with a 50 min (25 data) floating window.  

Fig. 1. VCO implementation 
 

Fig 2. Measurements used by the CAO 

 

3. Results and Discussion – Fig. 2 shows the measurements of D , S2  and C . The predictions given by 

the model are shown also in this figure. Despite a small lack of accuracy at 8 < t < 12 d, that was caused 

for a mismatch in sensors, we confirm that the model is reasonably acceptable. Once sensors were 

recalibrated, at time t = 12 d, the model recovered its good performance. Estimations of Ŝ1
 and Ẑ  given 

by the CAO using these measurements are shown in Figures 3 and 4 respectively. As it is known this 

observer exhibits very good stability, convergence and performance properties, but it is not possible in 

general to tune its convergence time [10]. However, in our case, after a very short time (only 1 d), the 

CAO achieved a reasonable convergence and then their estimates could be used with certainty by the 

VCO. Only some small differences in the estimation of  Ẑ  at 8 < t < 12 d, caused again for the small 

sensor faults in this time period, were observed. However, this does not affect significantly the 

performance of the VCO. Figures 5 and 6 show the estimation of Ŝ1

in and Ŝ2

in. From these figures it can 

be seen that the VCO showed a very good performance estimating influent concentrations with a 

reasonable accuracy, even in the presence of perturbations, noise, and a full lack of knowledge on process 

kinetics. The only mismatch was observed at t = 8 d, due to the fault sensor already mentioned, but even 

when this sensor mismatch lasted for 4 days, the VCO recovered its performance in only a half of this 

time period, showing its robustness against to a fully lack of kinetics knowledge, noise and sensor faults. 



 
Fig. 3.  COD concentration estimate 

 
Fig. 4. Strong ions concentration estimate 

 
Fig. 5. Estimate of influent COD concentration 

 
Fig. 6. Estimate of influent VFA concentration 

 

4. Conclusions - Results show that the VCO has an acceptable performance to reconstruct the influent 

substrate concentration under different operating conditions, in spite of the full ignorance of the process 

kinetics and sensor faults. Moreover, the use of the VCO induced an exponentially stable dynamic to the 

observer. Thus, the VCO is a viable and useful alternative to estimate the influent composition in AD 

processes. 
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