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Abstract 

Sharka, caused by Plum Pox Virus (PPV), is by far the most important infectious disease of peach 

[P. persica (L.) Batsch] and other Prunus species. The progressive spread of the virus in many 

important growing areas throughout Europe poses serious issues to the economic sustainability of 

stone fruit crops, peach in particular. The adoption of internationally agreed-upon rules for 

diagnostic tests, strain-specific monitoring schemes and spatial-temporal modeling of virus spread, 

are all essential for a more effective sharka containment. The EU regulations on nursery activity 

should be modified based on the zone delimitation of PPV presence, limiting open-field production 

of propagation materials only to virus-free areas. Increasing the efficiency of preventive measures 

should be augmented by the short-term development of resistant cultivars. Putative sources of 

resistance/tolerance have been recently identified in peach germplasm, although the majority of 

novel resistant sources to PPV-M have been found in almond. However, the complexity of 

introgression from related-species imposes the search for alternative strategies. The use of genetic 

engineering, particularly RNAi-based approaches, appears as one of the most promising 

perspectives to introduce a durable resistance to PPV in peach germplasm, notwithstanding the 

well-known difficulties of in vitro plant regeneration in this species. In this regard, rootstock 

transformation to induce RNAi-mediated systemic resistance would avoid the transformation of 

numerous commercial cultivars, and may alleviate consumer resistance to the use of GM plants.  
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Introduction 2 

Sharka, caused by Plum Pox Virus (PPV), is the most devastating viral disease of peach and other 3 

stone fruits, resulting in significant economic losses (Cambra et al., 2006; Sochor et al., 2012). The 4 

progressive worldwide spread of this destructive disease requires a coordinated, focused effort to 5 

implement effective approaches to control its diffusion. Decades of research experience have made 6 

clear the need for transnational coordination involving not only researchers but all who are 7 

associated with the fruit industry including the phytosanitary services other than the growers 8 

themselves. An International Workshop on sharka disease in peach (Milan and Cesena, Italy, 2016, 9 

https://sites.google.com/site/ppvsymposium2016), gave the opportunity to review and update the 10 

state-of-art with particular attention to the main limitations and short-term perspectives. 11 

  The aim of this article is to provide a comprehensive picture of the current available 12 

possibilities to contrast sharka disease and to implement the resistance in peach, focusing on crucial 13 

aspects: the virus spread and management strategies within the EU regulatory framework; old and 14 

novel sources of genetic resistance (including the peach-related species almond and P. davidiana) 15 

and breeding perspectives; the application of novel genomics tools for the introgression of 16 

resistance and novel approaches for developing non-host resistance; the opportunity of using 17 

genetic engineering techniques, as already experienced in other fruit-tree species. 18 

 19 

Spread of sharka disease 20 

Currently, PPV is spreading in many countries, with the occurrence of several strains with 21 

different epidemiology and specific infective capabilities. However, precise information and 22 

tracking of PPV distribution, correlated with the specific strain(s), is lacking in many peach 23 

growing regions. Little is known about the epidemiology of the Eastern Europe strains. Five new 24 

strains have been discovered in the last 10 years. The general framework of the PPV strains 25 

currently established includes, in addition to the most common PPV-M, -D and -REC, the strains -T 26 

(Turkey, Albania), -An (Albania), -EA (Egypt), -W (Canada, Ukraine, Russia, Latvia), -CR 27 

(Russia) and -C (Moldavia, Belarus and Russia), the last two generally limited to cherry. 28 

Homologous recombination plays an important role in PPV evolution (Garcia et al., 2014). Several 29 

features including higher aphid transmission rates, a reduced latency period, faster virus diffusion in 30 

the orchards from primary infected plants and broad host range, confer to PPV-M the highest 31 

epidemicity in peach (Dallot et al., 2003). Information about the dynamics of host infection as it 32 

affects disease spread remains scarce. 33 

Several strategies have been deployed to manage sharka disease, depending on the epidemic 34 

context. Eradication, based on orchard surveillance and removal of infected plants has been widely 35 

adopted in Western Europe and North America, whereas tolerant cultivars have been used in 36 
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Eastern Europe (particularly for plum). In the former case, it becomes imperative to organize and 37 

carry out efficient strain-specific monitoring schemes implementing spatial-temporal modeling of 38 

disease spread. In France, surveillance intensity varies according to disease risk and control 39 

activities of the Plant Health Services are supported by skilled private professional organizations. 40 

The heterogeneity of PPV diagnostic tests is one of the main limitations for disease management. 41 

The test method(s) should be established by specific internationally agreed-upon rules. More rapid 42 

and accurate techniques for PPV diagnosis on candidate plants entering into the certification system 43 

are required, along with the ability to detect virus infection during the latency period. Novel 44 

techniques, such as Digital Droplet PCR (ddPCR) (Gutiérrez-Aguirre et al., 2015) with the potential 45 

to detect up to one copy of viral RNA and isothermal amplification by reverse transcription-46 

recombinase polymerase (Zhang et al., 2014), applicable directly on-field, are quite promising. To 47 

develop the next generation of novel diagnostics, close cooperation among all the interested actors, 48 

including entomologists will be important. For more information on PPV management strategies, 49 

see Rimbaud et al., (2015). 50 

Regulatory framework  51 

Considering the spread of sharka in Europe, the disease can no longer be controlled through 52 

quarantine legislation only, but the latter must be combined with the regulation of the Plant 53 

Propagating Material Quality. Evidence of such changes in the EU policies are found within 54 

documents in preparation which are now discussed in the context of the Harmonization of the 55 

Certification Scheme for Fruit Plants, particularly the Annex to the Commission Implementing 56 

Directive amending Annex IV Part A Section II of Directive 2000/29/EC on protective measures 57 

against the introduction in the Community of organisms harmful to plants or plant products and 58 

against their spread within the Community. Concerning PPV, many of the directives contained in 59 

the documents are not compatible with the epidemiology of the disease and its danger. For example, 60 

the time intervals provided for diagnostic tests are too long for an effective management. Another 61 

controversial and unexplained aspect is the criterion allowing the possibility to maintain mother 62 

plants under field condition in endemic areas.  63 

The control of nursery plant material and trading pathways is critical. Insufficient controls 64 

on hundreds of new peach varieties offered to nurseries and growers every year, and the sporadic 65 

presence of PPV infected material in nurseries, along with the trade and/or exchange of 66 

uncontrolled materials for grafting by fruit growers, set up ideal conditions for national and 67 

international virus spread. Moreover, the release of the European Plant Passport according to the 68 

EU regulations and upon Phytosanitary Service control does not guarantee preventative testing of 69 

trade materials. In this regard the inspection and control on breeding and nursery materials, the 70 

utilization of virus-free (VF) certified plants, the restriction of  nursery activities to pest-free areas 71 
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or under screenhouse, and the safeguarding of pest-free areas are all imperative. For the 72 

management of sharka disease it is essential that: 73 

 i) the effective and adequate application of a mandatory certification system for propagation 74 

material be used for all EU members; 75 

 ii) the zone delimitation of European fruit growing areas based on PPV presence should 76 

limit the nursery production in open field only in virus-free areas (alternatively, in secure 77 

screenhouses); 78 

 iii) PPV isolates detected in new foci be characterized molecularly and serologically for risk 79 

assessment evaluation; 80 

 iv) PPV infection status of any new cultivar released and its behavior toward PPV infection 81 

be evaluated at least for the most common PPV strains (M, D and Rec). 82 

 In conclusion, EU legislation must consider all these aspects since PPV should be regarded 83 

as a quarantine pest and the level of alert be enforced and not reduced. 84 

 85 

Source of resistance to sharka and breeding perspectives 86 

The results of two decades of research confirm the absence of immune or resistant cultivars 87 

in peach germplasm, although a general low susceptibility to PPV-D strain has been reported 88 

(Rubio et al., 2012). The introgression of resistance from peach-related species, such as Prunus 89 

davidiana (Carrière) (Pascal et al., 1998) and Prunus dulcis (Webb) (Pascal et al., 2002; Martìnez-90 

Gòmez et al., 2004), has been unsuccessful so far, mainly due to the difficulty in combining PPV 91 

resistance with traits suitable for the peach marketing (Moing et al., 2003). Most of the limitations 92 

come from the low rates of resistant individuals produced by crossbreeding and by the many 93 

unfavorable traits expressed by F1 hybrids, requiring at least several rounds of backcrossing to 94 

recover ‘commercial’ fruit traits. The absence of molecular markers associated with resistance, 95 

which would facilitate the selection of resistant seedlings, adds to the complexity of breeding PPV 96 

resistant cultivars. The introduction of resistance from P. davidiana has been recently suspended by 97 

French breeding programs in favor of the introgression from almond. As a result of the 98 

collaboration between INRA-Avignon (France) and CEBAS-CSIC (Spain) several almond cultivars 99 

resistant to PPV-M were identified, including ‘Del Cid’, and have been chosen by INRA as resistant 100 

parents for building hybrid populations. Nevertheless, the experience within the Italian PPVCON 101 

project suggests that the use of almond as a resistance donor could suffer from the same limitations 102 

observed in resistant peach selections coming from UCD hybrids [(‘Padre’(almond) x ‘54P455’ 103 

(peach)) x ‘Hesse’ (peach) x self], characterized by poor fruit quality (Liverani et al., 2011). 104 
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Among other approaches attempted to confer sharka resistance, the use of aphid-resistant 105 

peach selections proved to be ineffective, since the trait was unable to ensure a protection against 106 

virus transmission in endemic areas (Liverani et al., 2015). 107 

The extensive evaluation of more than 300 peach cultivars from core collections and 108 

recently released varieties showed the presence of a small number of accessions highly tolerant to 109 

the PPV-M strain (e.g. infectable by the virus but asymptomatic or developing only mild symptoms, 110 

particularly on fruit) (Liverani et al., 2011). A promising resistant selection (e.g. ‘Spasena’) derived 111 

from the resistant parent ‘Dupnsika’ (Gabova et al., 1994) is currently under evaluation at the Fruit 112 

Growing Institute of Plovdiv (Bulgaria). Notably, the selection process occurring in open-field 113 

conditions within endemic sites, allows an increased reliability of resistance evaluation results. 114 

Indeed, as observed from field trials in Italian endemic areas, PPV-M was able to infect in just a 115 

few years about 70% of advanced selections, found resistant after several years of screenhouse 116 

‘heavy test’ evaluations, i.e. grafting on already infected GF305 (Liverani et al., 2015). In 117 

perspective, the outdoor trials in endemic areas appear as a more practical, cost-effective and 118 

reliable solution for the screening of promising selections. 119 

An interesting research field is the use of resistant rootstocks, such as the almond cultivar 120 

‘Garrigues’, to induce resistance in the scion (Rubio et al., 2013). The postulated mechanism 121 

responsible for the prevention or recovery from infection is the systemic transmission by graft 122 

(almond) to scion (peach) of a silencing signal. Apart from the repeatability of the experiment in 123 

peach cultivars other than the already tested 'GF305', some other questions are raised about its 124 

durability in time and in the field. Most important, considering the general tolerance of peach 125 

species to PPV-D strain, further studies should ascertain the stability of this mechanism against the 126 

most virulent PPV-M strain. 127 

In conclusion, a divergent strategy for incoming breeding programs appears evident among 128 

some Italian and French research groups: the former is aiming at (short-term) development of 129 

cultivars highly tolerant to PPV-M (no symptoms, at least on fruit) cultivars suitable for the 130 

preservation of a peach industry in endemic areas; the latter attempts to introduce durable resistance 131 

(no virus replication in the tree) from almond (as PPV-M resistant parent or as a resistance-inducing 132 

rootstock). The introduction of tolerant plants is a matter of debate, since epidemiologists are 133 

concerned about the possible development of more aggressive PPV strains raising by recombination 134 

from mixed PPV infections and also for increasing the difficulties of implementing containment 135 

strategies on asymptomatic plants, since a PPV inoculum reservoir still persists in the area. 136 

 137 

Molecular and functional genomics 138 
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As demonstrated by several studies, the resistance to sharka conferred by the P. davidiana 139 

clone ‘P1908’ is of a quantitative nature, regulated by several QTLs with small effects, often 140 

variable across years (Decroocq et al., 2005). Linkage mapping experiments performed on 141 

progenies derived from different cross combinations of ‘P1908’ and/or SD hybrids ('P1908' x 142 

‘Summergrand’) also demonstrated that QTL numbers and positions are affected by the genetic 143 

background of the peach parents (Marandel et al., 2009; Rubio et al., 2010). Currently, candidate 144 

gene(s) or molecular markers associated with PPV resistance have not been identified in P. 145 

davidiana or derived peach hybrids, hindering the short-term launching of marker-assisted selection 146 

(MAS) programs. The availability of the Peach Genome reference sequence and a 9K SNP array 147 

platform (Verde et al., 2012), in addition to the availability of novel, powerful ’omics’ tools may 148 

accelerate the identification of the genetic basis of PPV resistance in peach related species. For 149 

example, a Genotyping-By-Sequencing approach has been recently adopted to develop high-density 150 

genome markers for the introgression of resistance from almond (French FruitSELGEN project). 151 

While this approach is undoubtedly promising at the scientific level, concerns still persist about the 152 

real possibility of developing valuable cultivars from peach-almond hybrid(s) in the short-medium 153 

term. 154 

The main bottlenecks for the identification of the genetic bases of PPV resistance, are still 155 

the cost, complexity and time-consuming phenotyping procedures, given the well-known 156 

unresolved issues: 157 

 i) The lack of standardized phenotyping methods among research groups, i.e ‘heavy test’ 158 

(see above) vs. ‘standard test’ (by inoculating buds from infected plants onto the accessions to be 159 

challenged), restricting the cross-validation of results. 160 

 ii) A subjective and non-uniform interpretation of visual symptoms and discrepancies in 161 

terminology, particularly for ‘resistance’ and ‘tolerance’. An alternative scoring system to 162 

overcome the strong subjectivity of symptoms evaluation is still lacking. A proposal for a 163 

standardized terminology is shown in Table 1. 164 

 iii) The long-term requirement of evaluation trials for a reliable assessment of resistance. No 165 

quick protocol for resistance evaluation has been implemented so far and is not recommended, since 166 

the alternance of resting and growing periods is obviously important for the reliability of the trial. 167 

 iv) The reliability of ‘in-field’ resistance evaluation vs. ‘screenhouse’ testing. 168 

 Knowledge of the mechanism of PPV-peach interaction at physiological, proteomic, 169 

metabolic and gene expression level are still scarce, although it may have practical implication for 170 

disease management (reviewed by Clemente-Moreno et al., 2015) or for the development of 171 

biomarkers to detect early PPV infection, especially for nursery mother trees. Recently, proteome 172 

analysis of PPV-infected peach plant showed that infection affected the abundance of proteins 173 
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related to photosynthesis, carbohydrate and amino acid metabolism (Clemente-Moreno et al., 2013). 174 

RNA-seq of peach leaf transcriptome after PPV-D infection demonstrated the complexity of plant 175 

response and the critical role of early responsive genes as a reaction against virus replication and 176 

translocation, before symptoms development (Rubio et al., 2015). Unfortunately, the experiments 177 

above were not performed on PPV resistant accessions, thus there are not information about 178 

candidate genes involved in sharka resistance in peach so far. 179 

Developing non-host resistance in peach is a new frontier of research. Viruses encode a 180 

limited number of essential proteins, since recruit plant proteins (host factors) for every stage of the 181 

infection cycle (Garcia et al., 2015; van Schie and Takken, 2014). Gene(s) coding for such factors 182 

can be considered as susceptibility (S) genes and their mutation or loss of function limit the ability 183 

of the pathogen to cause disease. For example, recessive resistance to some Potyviruses, PPV 184 

included, is associated with mutations of genes belonging to the eukaryotic translation initiation 185 

factors (eIF) family in several plant species, thus representing an excellent candidate to also confer 186 

non-host resistance in peach. Different tools have been deployed to explore the possibility of 187 

developing a non-host resistance in peach: 188 

 i) EcoTILLING approach, searching for peach variants in which susceptibility gene(s) are 189 

deleted or non-functional. Nevertheless, as a consequence of reduced genetic diversity, peach shows 190 

the lowest number of variants in comparison with other Prunus species. All promising individuals 191 

are hybrids (peach crossed to almond or peach wild related species); 192 

 ii) TILLING approach, by creating de novo non-functional host genes through chemical 193 

mutagenesis (EMS). Three thousand individuals derived from the susceptible peach rootstock 194 

‘GF305’ are currently under screening by whole-genome re-sequencing to evaluate the mutation 195 

rate after EMS treatment and the mutation rate in susceptibility genes. 196 

iii) S gene(s) silencing and/or Genome Editing (discussed in the next section). 197 

The application of novel ‘omics’ approaches holds great promise for unraveling the 198 

complexity of the genetic mechanisms regulating sharka resistance. This knowledge is essential for 199 

developing useful molecular tools in breeding PPV resistant varieties as well for implementing 200 

more efficient disease management strategies. The development of non-host resistance in peach is 201 

an ambitious target, that is now moving its first steps. 202 

 203 

Introducing resistance in peach by genetic engineering 204 

In light of the complexity of breeding PPV-resistant peach cultivars by conventional 205 

strategies, as determined by the absence of resistant cultivars, by the low genetic diversity in peach 206 

germplasm, and by the ineffectiveness of introgression from related species, genetic engineering 207 
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(GE) approaches appear an alternative strategy at the current status of knowledge (Ilardi and 208 

Tavazza, 2015).  209 

Long-term evaluations, lasting over 20 years, in both screenhouse and endemic areas 210 

throughout Eastern Europe, have demonstrated the effectiveness of GE approaches to confer stable 211 

and durable sharka resistance in plum (Scorza et al., 2016). PPV resistance in transgenic 212 

‘HoneySweet’ plum is based on RNA interference (RNAi), triggered by a complex multi copy 213 

insertion of an inverted repeat/hairpin configuration of the PPV coat protein (PPV-CP) transgene, 214 

activating the production of 25-26nt class siRNA and ultimately leading to viral RNA degradation 215 

(Kundu et al., 2008). A more detailed knowledge of PTGS mechanisms has led to the development 216 

of more effective tools for RNAi-mediated engineered resistance. In particular, intron hairpin RNA 217 

(ihpRNA) constructs have proven to be highly effective inducers of local and systemic resistance 218 

against PPV in both model species N. benthamiana (Pandolfini et al., 2003; Di Nicola-Negri et al., 219 

2005) and P. domestica (Hily et al., 2007; Monticelli et al., 2012). In addition, PPV-derived 220 

ihpRNA constructs were able to induce high resistance to a wide range of PPV strains (Di Nicola-221 

Negri et al., 2010; Ravelonandro et al., 2014) also under variable abiotic and biotic conditions that 222 

are known to have a negative impact on gene silencing in plants (Di Nicola et al., 2014). 223 

Advantages of ihpRNA constructs include the high flexibility (it is possible to target multiple 224 

sequences from different PPV genomic regions or different PPV strains, Wang et al., 2013), high 225 

stability of siRNAs production, no documented interference with the endogenous RNA silencing 226 

machinery, robust and durable antiviral resistance and absence of transgene-derived proteins. Some 227 

questions related to undesirable consequences of RNAi still remain, such as off-target effects 228 

leading to changes in the host transcriptome; trade-off between defense and growth/development 229 

processes; and virus escape from silencing (Fuentes et al., 2016). However, the risk of such off-230 

target effects can be identified by a well-developed science based risk assessment and reduced by a 231 

continuous monitoring as defined in a proper post-monitoring program to be applied after the 232 

release of the new events.  233 

However, the application of genetic transformation techniques in peach has been limited by 234 

the difficulties in developing efficient regeneration and transformation protocols. Nevertheless, a 235 

protocol for in vitro regeneration via organogenesis, has been already developed for one of the most 236 

widely used peach rootstocks ‘GF677’ (Sabbadini et al., 2015). The protocol may be further 237 

improved by using different selection markers since ‘GF677’ appears to be naturally rather resistant 238 

to the antibiotic kanamycin. At present, the availability and the already demonstrated capabilities of 239 

many viral-derived constructs to induce RNAi against PPV, jointly with a high probability of 240 

transforming ‘GF677’, make the hypothesis of rootstock engineering one of the most feasible and 241 

promising for peach cultivars (MIUR - PRIN VIRES project). Root-to-scion (and scion-to-root) 242 
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siRNAs transfer has been already demonstrated in several annual model plants (reviewed in Pyott 243 

and Molnar, 2015). Rootstock transformation would be appealing, for several reasons: the scion 244 

would maintain its genetic background; no gene flow, because pollen and seeds would not be 245 

allowed to be produced by the genetically modified rootstock; the same transgenic rootstock can be 246 

used for many cultivars, avoiding the transformation of each single accession; and it may simplify 247 

many aspects related to the opinion of the consumers on GM plants (Lemgo et al., 2013). Recently, 248 

this approach has been successfully applied in a cherry rootstock to induce RNAi-mediated 249 

systemic resistance to Prunus Necrotic Ringspot Virus (Song et al., 2013; Zhao and Song, 2014), 250 

although the stability and durability of this approach requires further evaluation. On the contrary, 251 

transmission of RNA silencing was not observed in non-transgenic scions in apple (Flachowsky et 252 

al., 2012), and thus, additional research is required to set-up the appropriate strategies for an 253 

efficient silencing through grafting (Gohlke and Mosher, 2015). 254 

While the ability of PPV-resistant ‘HoneySweet’ plum to transfer the silencing signal has 255 

not been demonstrated, the idea to use it directly as a rootstock in European peach growing areas is 256 

attractive. The main limitation arises from the implementation of experimental field trials, which 257 

require the approval of competent authorities. ‘HoneySweet’ and other reported GE and 258 

conventional PPV resistant Prunus should be field tested as rootstocks (and as scions) in PPV 259 

endemic areas. This work requires that competent authorities evaluate GE field tests on scientific 260 

merit and realistic biosafety issues, and that local authorities guarantee the safety of these plantings 261 

against destruction by radical GE opponents.  262 

In spite of the success obtained through GE approaches to induce virus resistance in several 263 

crops, public concerns over the potential ecological impact of GE organisms and/or products 264 

strongly limit their use in Europe. In this sense, the approval of ‘HoneySweet’ by US authorities is a 265 

paradigm shift for fruit trees in terms of the application of GE technology (Scorza et al., 2013). Risk 266 

assessment is an integral part of GE plant production, and the time and costs that it requires should 267 

be added to those of plant transformation, selection and evaluation. In addition to the molecular 268 

analysis of plants, the biochemical characterization of fruits and the evaluation of resistance, further 269 

information may be required from authorities and consumers, including plant-virus and plant-insect 270 

interactions, gene flow and the potential risk of off-target gene silencing (All of which were 271 

addressed for ‘HoneySweet’ in the U.S. regulatory dossiers). Excluding marker proteins, the risks 272 

associated with newly expressed proteins (i.e. allergenicity or toxicity) would not be meaningful for 273 

RNAi-based engineering, due to the lack of viral proteins produced by RNAi plants. 274 

Genome editing is a novel and promising type of GE, based on the use of engineered 275 

nucleases for the introduction of mutations at target genomic sequences. Despite the growing 276 

positive opinion about its application from authorities and consumers, it is still hardly applicable in 277 
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peach. In order to maintain clonal stability in vegetative propagated plants, the application of 278 

genome editing techniques requires the development of effective protocols of plant regeneration 279 

from protoplast culture, unavailable in peach. Lacking the possibility of transient expression, stable 280 

transformation with the Cas9 system will be necessary (Jia and Wang, 2014; Xu, 2013), which will 281 

then require a round of backcrossing or self-pollination for its removal after editing procedures and 282 

regeneration. The mandatory germline transition generates a novel cultivar that must then be 283 

evaluated before market introduction. In addition, some concerns still persist about how this 284 

procedure of developing non transgenic plants using GE techniques would be classified by the 285 

authorities. Despite this, the resistance conferred by the editing of susceptibility genes (S) to confer 286 

PPV resistance is an interesting perspective. The eIF4E(s), cPGK, DBP1 and/or PpDDXL genes 287 

recently functionally characterized in peach represent good candidates for the application of 288 

Genome Editing (Castelló et al., 2011; Poque et al., 2015; Huang et al., 2010). However, because S 289 

genes have a function other than as a compatibility factor for the pathogen, the side effects caused 290 

by their mutation demand a one-by-one assessment of their usefulness for application. Plant 291 

regeneration from protoplast cell lines has never been demonstrated in peach and this remains the 292 

major issue for the application of genome editing in heterozygous vegetatively propagated plants. 293 

Therefore, current knowledge of RNAi approaches seem more suitable to yield positive results. 294 

A relatively recent technology for rapid cycle breeding (‘FastTrack’) developed in other 295 

species (apple, plum, etc.) is a breeding system that uses a GE tree expressing a flowering pathway 296 

gene, such as FT gene orthologs, to obtain fruiting trees in one year (or even less) (Flachowsky et 297 

al, 2011; Srinivasan et al, 2012). Shortening the juvenile stage in peach would accelerate the 298 

conventional breeding procedures for the introgression of sharka resistance from peach-related 299 

species. Also, the final resulting trees would not be GE unless the PPV resistance gene used is a 300 

transgene. 301 

 302 

Conclusions 303 

 The containment of sharka disease spread is one of the most important priorities of the 

European peach industry. The complexity of this phytosanitary issue does not allow simple, rapid 

solutions. The application of preventive measure with the maximum alert level and, possibly, their 

reinforcement through the implementation of more effective management strategies, are of utmost 

importance. The adoption of internationally agreed-upon rules for diagnostic tests, strain-specific 

monitoring schemes and spatial-temporal modeling of virus spread, are all essential for a more 

effective sharka containment. The EU regulations on nursery activity should be modified based on 

the zone delimitation of PPV presence, limiting open-field production of propagation materials only 

to virus-free areas. Prevention should be combined with the introduction of genetic resistance in a 
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reasonable time, but not at the expense of high fruit quality productions. A part from still to be 

verified existence of intraspecific sources of PPV resistance in peach, the complexity of 

introgression from related-species imposes the search for alternative strategies. Currently, the use of 

genetic engineering, particularly RNAi-based approaches, appears as one of the most promising 

perspectives, notwithstanding the well-known difficulties of in vitro plant regeneration in this 

species. Rootstock transformation to induce RNAi-mediated systemic resistance to PPV would 

avoid the transformation of numerous commercial cultivars, and may alleviate consumer concerns 

to the use of GM plants. In this regard, the use of genetic engineering approaches represent a 

fundamental opportunity, and as such it should be supported not only from a technical-scientific 

view point, but also in a broader socio-political context.   
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 471 

Table 1. Proposal for a standardized terminology. *Immunity: non-host resistance (plant cannot be 472 

infected); Resistant:  negative ELISA and RT-PCR assay, no visible symptoms; Susceptible: 473 

positive or negative ELISA, positive RT-PCR assay, symptoms on plant organs from absence 474 

(tolerant) to severe (sensitive) (mandatory specification of organ/tissue). ‘Recovery reaction’, 475 

characterized by an initial low infection (RT-PCR positive only) later followed by no detectable 476 

infection (RT-PCR negative). 477 

 478 

Classification Visual Sympthoms ELISA RT-PCR 

Non-host 

Immune - - - 

Host 

Resistant absent - - 

Susceptible 
absent (tolerant) to 

severe (sensitive) 
+/- + 

Recovery absent -  + to - 
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