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Introduction

In the economic literature productivity gains are known as main sources of revenue improvement [START_REF] Fulginiti | LDC agriculture: Nonparametric Malmquist productivity indexes[END_REF]. In the agricultural sector, many research papers have conducted productivity evaluation, based on various methodologies [START_REF] Darku | Historical Review of Agricultural Productivity Studies[END_REF]. The methodologies can be split in three categories: index numbers, parametric estimation (econometric approaches), and non-parametric estimation (like data envelopment analysis). The assumptions inherent to each approach are different from one model to another. As recently argued by [START_REF] O'donnell | An aggregate quantity-price framework for measuring and decomposing productivity and profitability change[END_REF], [START_REF] O'donnell | The sources of productivity change in the manufacturing sectors of the US economy[END_REF], most of the existing approaches do not satisfy all the required axioms and tests a productivity index should verify.

Our objectives in this paper are, first, to measure the productivity of French suckler cow farms during 1990-2013 by using an improved approach based on the Färe-Primont index [START_REF] O'donnell | The sources of productivity change in the manufacturing sectors of the US economy[END_REF]. Second, given the particularity of livestock systems regarding their contribution to greenhouse gas emissions, we develop a generalized Färe-Primont index which accounts for undesirable outputs. Third, we characterize the farms that have recorded some (pollutionadjusted) productivity gains in comparison to farms that have experienced (pollution-adjusted) productivity losses.

The paper is organised as follows. Section 2 presents the methodological background and the approach used for the (pollution-adjusted) productivity computation. Section 3 describes the database and Section 4 discusses the results. Section 5 concludes.

Methodology

Background on productivity change and decomposition

Let's first formalize the production technology and present usual measures of productivity change. We start by letting N denote the number of decision making units (DMUs) observed over 𝑇 periods of time. Each 𝐷𝑀𝑈 𝑛 uses 𝑥 𝑛𝑘 𝑡 = (𝑥 𝑛1 𝑡 , … , 𝑥 𝑛𝐾 𝑡 )′ vector of inputs (with 𝑥 ∈ ℝ + K ) and 𝑦 𝑛𝑞 𝑡 = (𝑦 𝑛1 𝑡 , … , 𝑦 𝑛𝑄 𝑡 )′ vector of outputs (with 𝑦 ∈ ℝ + Q ) in a specific period t, with 𝑡 = 1, … , 𝑇. The production technology in period 𝑡 can be defined as:

Ψ 𝑡 = �(𝑥 𝑡 , 𝑦 𝑡 ) ∈ ℝ + K+Q | 𝑥 𝑡 can produce 𝑦 𝑡 �
(1) .

Ψ 𝑡 verifies the regularity conditions which are the standard axioms of the production theory available in [START_REF] Färe | Multi-Output Production and Duality: Theory and Applications[END_REF], Färe and Grosskopf (2004).

Traditionally, in the case of one input 𝑥 𝑡 and one output 𝑦 𝑡 , total factor productivity (TFP) in period t, 𝑇𝐹𝑃 𝑡 , is measured as the ratio of output per unit of input (𝑦 𝑡 𝑥 𝑡 ⁄ ) [START_REF] Cooper | Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software[END_REF].

TFP change between two periods 𝑡 and 𝑡 + 1 can then be estimated by

𝑦 𝑡+1 𝑥 𝑡+1 ⁄ 𝑦 𝑡 𝑥 𝑡 ⁄
. 1 As such defined, TFP change is only based on the observed quantities of the different variables, independently from the structure of the production technology or the market behaviour.

Graphically, in Figure 1, the TFP change of 𝐷𝑀𝑈 𝐴 equals the ratio of the slopes of the rays from the origin and passing through the different points 𝐴 𝑡 and 𝐴 𝑡+1 :

𝑇𝐹𝑃 𝑡,𝑡+1 𝐴 = Slope 𝑂𝐴 𝑡+1 Slope 𝑂𝐴 𝑡 (2) .
1 This is also equivalent to the ratio of output change on input change: When dealing with multiple inputs/outputs, some weights are required to build an aggregate input and output index. As discussed in [START_REF] O'donnell | An aggregate quantity-price framework for measuring and decomposing productivity and profitability change[END_REF], the choice of an aggregator function must lie on the satisfaction of a number of axioms and tests any productivity index should verify (the axioms being monotonicity, linear homogeneity, homogeneity of degree 0, identity, proportionality, commensurability 2 ; and the tests being circularity or transitivity, time reversal…). 3

2 This axiom is also equivalent to independence of units of measurement or dimensionality.

If 𝑋 𝑡 ≡ 𝑋(𝑥 𝑡 ) and 𝑌 𝑡 ≡ 𝑌(𝑦 𝑡 ) denote the scalars of the aggregated input and output, then:

3 More on these axioms and tests can be found in [START_REF] Eichhorn | Fisher's Tests Revisited[END_REF].
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𝑇𝐹𝑃 𝑡,𝑡+1 = 𝑌 𝑡+1 𝑋 𝑡+1 ⁄ 𝑌 𝑡 𝑋 𝑡 ⁄ 4 (3) . [START_REF] O'donnell | An aggregate quantity-price framework for measuring and decomposing productivity and profitability change[END_REF] uses the term of 'multiplicatively complete' to characterize productivity measures that are in line with the ratio of an output quantity change index on an input quantity change index as shown in (3) [START_REF] Jorgenson | The Explanation of Productivity Change[END_REF]. 5 Index numbers like the Laspeyres, Paasche, Fisher, or Törnqvist indexes,6 [START_REF] Färe | Efficiency and productivity: Malmquist and more. The measurement of productive efficiency and productivity growth[END_REF] use prices for the aggregation of several inputs or outputs and the computation of quantity indexes ( ). As mentioned in [START_REF] O'donnell | An aggregate quantity-price framework for measuring and decomposing productivity and profitability change[END_REF], [START_REF] O'donnell | Measuring and decomposing agricultural productivity and profitability change*[END_REF], these indexes verify the multiplicatively completeness property. However, they do not verify the circularity test, 7O'Donnell, 2011 thereby they can only be used for binary comparisons ( ). Other price-based indexes like the Lowe productivity measure (O'Donnell, 2012) and the Geometric Young index (IMF, 2004 p10) can be used instead and they satisfy the circularity property.

In the performance benchmarking literature and particularly in the non-parametric framework (in which one can find the Data Envelopment Analysis -DEA -approach [START_REF] Charnes | Measuring the efficiency of decision making units[END_REF]),

the Malmquist productivity index introduced by Caves et al. (1982), Caves et al. (1982) has been proposed to handle the case of multi input/output technology [START_REF] Färe | Productivity growth, technical progress, and efficiency change in industrialized countries[END_REF][START_REF] Färe | Intertemporal Production Frontiers: With Dynamic DEA[END_REF] without resorting to price information. This measure uses the distance function to evaluate the efficiency of a DMU relative to a benchmark that defines the production frontier 4 When dealing with multiple inputs/outputs the term multi-factor productivity (MFP) is better than total factor productivity (TFP) [START_REF] O'donnell | The sources of productivity change in the manufacturing sectors of the US economy[END_REF]. In this paper we use TFP or MFP interchangeably to refer to multi-factor productivity. 5 The input and output aggregator functions 𝑋 𝑡 , 𝑌 𝑡 , 𝑋 𝑡+1 , 𝑌 𝑡+1 are non-negative, non-decreasing and linearly homogenous (homogeneity of degree 1). These properties are particularly important for the construction of meaningful TFP indexes. [START_REF] Shephard | Cost and production functions[END_REF]. 8 Although many applications have computed the oriented Malmquist productivity change 9 Fulginiti and Perrin, 1997 in the literature using agricultural data [START_REF] Färe | Malmquist productivity indexes: a survey of theory and practice. Index numbers[END_REF]pp162-164, Coelli and Rao, 2005[START_REF] Latruffe | Productivity change in Polish agriculture: an illustration of a bootstrapping procedure applied to Malmquist indices[END_REF], this widespread measure does not verify the completeness property and it cannot always be interpreted as a measure of productivity change (O'Donnell, 2012). Besides, Grifell-Tatjé and [START_REF] Grifell-Tatjé | A note on the Malmquist productivity index[END_REF] [START_REF] Rahman | Six Decades of Total Factor Productivity Change and Sources of Growth in Bangladesh Agriculture (1948-2008)[END_REF]Salim, 2013, Baležentis, 2015). These applications solely focus on the good outputs side, neglecting incidental outputs, by-products of agricultural activities.

As explained by O'Donnell (2012 p255) all the 'multiplicatively complete 𝑇𝐹𝑃 indexes can be exhaustively decomposed into measures of technical change and efficiency change'. Besides, the efficiency change can be further decomposed into technical, mix and scale efficiency change 8 The distance function is a way of aggregating several inputs and outputs by implicitly estimating levels of shadow prices for each variable. 9 The Malmquist is said to be oriented because it is either input or output oriented [START_REF] Lovell | The decomposition of Malmquist productivity indexes[END_REF]. 10 We can also refer to this index as the Hicks-Moorsteen index suggested in [START_REF] Diewert | The Measurement of Productivity[END_REF] who attributes this productivity measure to [START_REF] Hicks | Measurement of capital in relation to the measurement of other economic aggregates[END_REF] and [START_REF] Moorsteen | On Measuring Productive Potential and Relative Efficiency[END_REF]. This index has been reformulated and discussed in [START_REF] Bjurek | The Malmquist Total Factor Productivity Index[END_REF], [START_REF] Färe | Intertemporal Production Frontiers: With Dynamic DEA[END_REF], [START_REF] Briec | The Hicks-Moorsteen Productivity Index Satisfies the Determinateness Axiom[END_REF]. A further interest of this index is that it overcomes the infeasibility problem generally encountered in the Malmquist productivity index when computing cross periods efficiency (under variable returns to scale).

components. The operationalization of this decomposition requires some assumptions about the production technology. Actually several types of decompositions are possible given the completeness property. For instance in Figure 1, a complete TFP change index for 𝐷𝑀𝑈 𝐴 can be decomposed by using a third reference point 𝐵 (the transitivity test must be verified) or several other points. For instance the formula in (2) can be equivalently decomposed into:

𝑇𝐹𝑃 𝑡,𝑡+1 𝐴 = Slope 𝑂𝐴 𝑡+1 Slope 𝑂𝐴 𝑡 = Slope 𝑂𝐴 𝑡+1 Slope 𝑂𝐵 × Slope 𝑂𝐵 Slope 𝑂𝐴 𝑡 (4) .
For the next developments, point 𝐵 has been chosen to match with the concept of input/output efficiency measure [START_REF] O'donnell | Measuring and decomposing agricultural productivity and profitability change*[END_REF]. Given the monotonicity and the linear homogeneity of the distance functions [START_REF] Farrell | The Measurement of Productive Efficiency[END_REF][START_REF] Shephard | Theory of cost and production functions[END_REF], they can be easily used as input/output aggregators. As underlined in [START_REF] O'donnell | An aggregate quantity-price framework for measuring and decomposing productivity and profitability change[END_REF] the TFP decomposition in the literature has been conducted either in a top-down approach where for instance a Malmquist index is computed and then decomposed into generic factors -see [START_REF] Färe | Productivity growth, technical progress, and efficiency change in industrialized countries[END_REF], or in a bottom-up procedure where the different independent components of TFP are first computed and later combined into a productivity index [START_REF] Balk | Scale Efficiency and Productivity Change[END_REF]. The decompositions in this paper take advantage of both approaches.

The Färe-Primont productivity (FPP) index: computation and decomposition

The Färe-Primont productivity (FPP) index for 𝐷𝑀𝑈 𝑛 from 𝑡 to 𝑡 + 1 can be written as:

𝐹𝑃𝑃 𝑛 𝑡,𝑡+1 = 𝑇𝐹𝑃 𝑛 𝑡,𝑡+1 = 𝐷 𝑂 (𝑥 0 , 𝑦 𝑛 𝑡+1 , 𝑡 0 ) 𝐷 𝑂 (𝑥 0 , 𝑦 𝑛 𝑡 , 𝑡 0 ) × 𝐷 𝐼 (𝑥 𝑛 𝑡 , 𝑦 0 , 𝑡 0 ) 𝐷 𝐼 (𝑥 𝑛 𝑡+1 , 𝑦 0 , 𝑡 0 ) (5) .
where 𝐷 𝑂 (-) and 𝐷 𝐼 (-) are respectively the Shephard output and input distance functions and 𝑡 0 defines the observations that serve as benchmark to draw the representative frontier. (𝑥 0 , 𝑦 0 , 𝑡 0 ) is the vector of input/output quantities and time period respectively of an arbitrary observation which is chosen to be representative of the observations. O'Donnell (2011) used by default the sample mean of all the observations in all the periods.

𝐷 𝐼 (𝑥

Using (5), the output aggregator is equal to 𝑌(𝑦) = 𝐷 𝑂 (𝑥 0 , 𝑦, 𝑡 0 ) and the input aggregator corresponds to 𝑋(𝑥) = 𝐷 𝐼 (𝑥, 𝑦 0 , 𝑡 0 ).

For the decomposition of TFP, as earlier said we need to make some assumptions about the production technology. Based on these assumptions the efficiency component of TFP (TFPE) can be defined as: [START_REF] Ayres | Production, consumption, and externalities[END_REF] .

𝑇𝐹𝑃𝐸 𝑡 = 𝑇𝐹𝑃 𝑡 𝑇𝐹𝑃 𝑡 * ≤ 1 ( 
where 𝑇𝐹𝑃 𝑡 is the observed productivity and 𝑇𝐹𝑃 𝑡 * is the maximum possible 𝑇𝐹𝑃 [𝑇𝐹𝑃 𝑡 * = max 𝑛 𝑇𝐹𝑃 𝑛𝑡 ] in period 𝑡. 13 From (7) we can deduce that TFP change equals to:

𝑇𝐹𝑃 𝑡,𝑡+1 = 𝑇𝐹𝑃 𝑡+1 𝑇𝐹𝑃 𝑡 = 𝑇𝐹𝑃 𝑡+1 * 𝑇𝐹𝑃 𝑡 * × 𝑇𝐹𝑃𝐸 𝑡+1 𝑇𝐹𝑃𝐸 𝑡 (8) 
. 12 The output distance function is homogenous of degree -1 in 𝑥 (non-increasing) and linearly homogenous in 𝑦.

13 The maximum TFP may not exist in the case of technologies that exhibit increasing returns to scale everywhere.

Under this circumstance other decompositions are available (see O'Donnell (2010 p538) for other possible decompositions).

From (7) it makes sense to denote • The output technical efficiency score (OTE)

𝑂𝑇𝐸 𝑡 = 𝐷 𝑂 (𝑥 𝑡 , 𝑦 𝑡 , 𝑡) = 𝑌 𝑡 𝑌 � 𝑡 ≤ 1 (9) .
where 𝑌 � 𝑡 is the maximum technically attainable aggregate levels of output. Graphically on .

The OSE relates to the optimal size of the operations in relation to points that are technically efficient regarding the previous definitions.

𝑂𝑆𝐸 𝑡 = 𝑌 � 𝑡 𝑋 𝑡 ⁄ 𝑌 � 𝑡 𝑋 � 𝑡 ⁄ ≤ 1 (10) .
where 𝑌 � 𝑡 , 𝑋 � 𝑡 are respectively the aggregate outputs and inputs at a point that is optimal in terms of scale. Scale efficiency has been largely discussed in [START_REF] Balk | Scale Efficiency and Productivity Change[END_REF]. More simply, this efficiency • The output mix efficiency (OME)

The computation of the mix inefficiency is not as straightforward as OTE and OSE. Till now all the efficiency scores have been evaluated under a mix-restricted production technology.

Therefore mix inefficiency can be evaluated by relaxing this constraint, which results in an expansion of the input-output combinations available to DMUs (O'Donnell, 2012). 15

14 Considering the nature of the inputs (variable or fixed), a decomposition of the output efficiency 𝑂𝑇𝐸 is possible into output technical efficiency at full capacity and capacity utilization (see

The mix inefficiency is related to the combination of the different inputs and outputs without considering

De [START_REF] De Borger | The Malmquist Productivity Index and Plant Capacity Utilization[END_REF], [START_REF] Färe | Multi-Output Capacity Measures and Their Relevance for Productivity[END_REF]).

15 The mix-inefficiency here is different from the allocative inefficiency that is value-related.

their aggregate levels. In other words, the output mix inefficiency is related to iso-aggregateoutput lines in the same way iso-revenue lines operate. For instance, (𝑦 𝑡 ) = 𝛼 1 𝑦 1 𝑡 + 𝛼 2 𝑦 2 𝑡 (𝛼 1 , 𝛼 2 ≥ 0). Graphically, the mix unrestricted technology is defined by the points 𝐸, 𝐹, 𝐺 on Figure 2. On this graph, the restricted production possibilities set is bounded by the curve passing through points 𝐵, 𝐷, 𝐶. The OME index is then defined as:

𝑂𝑀𝐸 𝑡 = 𝑌 � 𝑡 𝑋 𝑡 ⁄ 𝑌 � 𝑡 𝑋 𝑡 ⁄ = 𝑌 � 𝑡 𝑌 � 𝑡 ≤ 1 (11) .
where 𝑌 � 𝑡 is aggregation of 𝑦 � 𝑡 such that 𝑦 � 𝑡 = arg max On Figure 2, starting from the mix-efficient point 𝐺 we can see that it is still possible to improve productivity by moving towards point 𝐹, the point of maximum productivity. The ROSE index can be defined as:

𝑅𝑂𝑆𝐸 𝑡 = 𝑌 � 𝑡 𝑋 𝑡 ⁄ 𝑌 * 𝑡 𝑋 * 𝑡 ⁄ ≤ 1 (12) .
where (𝑌 * 𝑡 , 𝑋 * 𝑡 ) are aggregates of (𝑦 

• Residual mix efficiency (RME)

Starting from a scale efficient point under a mix-restricted technology, we can compute the residual mix efficiency (RME) scores as follows:

𝑅𝑀𝐸 𝑡 = 𝑌 � 𝑡 𝑋 � 𝑡 ⁄ 𝑌 * 𝑡 𝑋 * 𝑡 ⁄ ≤ 1 17 (13) .
Graphically on Figure 2, this is equivalent to 𝑅𝑀𝐸 𝑡 = 𝑠𝑙𝑜𝑝𝑒 𝑂𝐷 𝑠𝑙𝑜𝑝𝑒 𝑂𝐹 . Point 𝐷 is denoted as the mixinvariant optimal scale (MIOS) from an inefficient firm operating at point 𝐴.

• TFP decompositions Among the infinite possibilities of decomposition of a TFP measure, the efficiency components defined above help to illustrate two of them:

𝑇𝐹𝑃 𝑡 = 𝑇𝐹𝑃 𝑡 * × 𝑇𝐹𝑃𝐸 𝑡 𝑇𝐹𝑃 𝑡 = 𝑇𝐹𝑃 𝑡 * × 𝑂𝑇𝐸 𝑡 × 𝑂𝑀𝐸 𝑡 × 𝑅𝑂𝑆𝐸 𝑡 𝑇𝐹𝑃 𝑡 = 𝑇𝐹𝑃 𝑡 * × 𝑂𝑇𝐸 𝑡 × 𝑂𝑆𝐸 𝑡 × 𝑅𝑀𝐸 𝑡 (14) .
Using aggregate quantities, the following decomposition is also equivalent

𝑇𝐹𝑃 𝑡 = 𝑌 𝑡 𝑋 𝑡 = 𝑌 𝑡 * 𝑋 𝑡 * × 𝑌 𝑡 𝑌 � 𝑡 × 𝑌 � 𝑡 𝑌 � 𝑡 × 𝑌 � 𝑡 𝑋 𝑡 ⁄ 𝑌 * 𝑡 𝑋 * 𝑡 ⁄ 𝑇𝐹𝑃 𝑡 = 𝑌 𝑡 𝑋 𝑡 = 𝑌 𝑡 * 𝑋 𝑡 * × 𝑌 𝑡 𝑌 � 𝑡 × 𝑌 � 𝑡 𝑋 𝑡 ⁄ 𝑌 � 𝑡 𝑋 � 𝑡 ⁄ × 𝑌 � 𝑡 𝑋 � 𝑡 ⁄ 𝑌 * 𝑡 𝑋 * 𝑡 ⁄ (15) .
All the decompositions in (14) and (15) can also be extended to the input orientation i.e. the input equivalence of 𝑂𝑇𝐸, 𝑂𝑆𝐸, 𝑂𝑀𝐸, 𝑅𝑂𝑆𝐸 can be similarly derived (which would be denoted respectively 𝐼𝑇𝐸, 𝐼𝑆𝐸, 𝐼𝑀𝐸, 𝑅𝐼𝑆𝐸).

17 𝑌 � 𝑡 = 𝑌 𝑡 𝑂𝑇𝐸 𝑡 ×𝑂𝑆𝐸 𝑡 and 𝑋 � 𝑡 = 𝑋 𝑡 × 𝐼𝑇𝐸 𝑡 × 𝐼𝑆𝐸 𝑡 • TFP change components
After having defined the previous efficiency scores for periods 𝑡 and 𝑡 + 1, the TFP change between 𝑡 and 𝑡 + 1 can then be computed and decomposed as follows:

𝑇𝐹𝑃 𝑡,𝑡+1 = 𝑇𝐹𝑃 𝑡+1 * 𝑇𝐹𝑃 𝑡 * × 𝑂𝑇𝐸 𝑡+1 𝑂𝑇𝐸 𝑡 × 𝑂𝑀𝐸 𝑡+1 𝑂𝑀𝐸 𝑡 × 𝑅𝑂𝑆𝐸 𝑡+1 𝑅𝑂𝑆𝐸 𝑡 𝑇𝐹𝑃 𝑡,𝑡+1 = 𝑇𝐹𝑃 𝑡+1 * 𝑇𝐹𝑃 𝑡 * × 𝑂𝑇𝐸 𝑡+1 𝑂𝑇𝐸 𝑡 × 𝑂𝑆𝐸 𝑡+1 𝑂𝑆𝐸 𝑡 × 𝑅𝑀𝐸 𝑡+1 𝑅𝑀𝐸 𝑡 (16) .
As earlier mentioned the ratio

𝑇𝐹𝑃 𝑡+1 *
𝑇𝐹𝑃 𝑡 * is a 'natural' measure of technical change which expresses progress when it is greater than one and regress when it is lower than one. The other ratios are measures of technical efficiency change, (residual) scale efficiency change, (residual) mix efficiency change. The same decomposition is also valid for the input side:

𝑇𝐹𝑃 𝑡,𝑡+1 = 𝑇𝐹𝑃 𝑡+1 * 𝑇𝐹𝑃 𝑡 * × 𝐼𝑇𝐸 𝑡+1 𝐼𝑇𝐸 𝑡 × 𝐼𝑀𝐸 𝑡+1 𝐼𝑀𝐸 𝑡 × 𝑅𝐼𝑆𝐸 𝑡+1 𝑅𝐼𝑆𝐸 𝑡 𝑇𝐹𝑃 𝑡,𝑡+1 = 𝑇𝐹𝑃 𝑡+1 * 𝑇𝐹𝑃 𝑡 * × 𝐼𝑇𝐸 𝑡+1 𝐼𝑇𝐸 𝑡 × 𝐼𝑆𝐸 𝑡+1 𝐼𝑆𝐸 𝑡 × 𝑅𝑀𝐸 𝑡+1 𝑅𝑀𝐸 𝑡 18 (17) .

Inclusion of undesirable outputs: pollution-adjusted productivity measure

Modelling pollution generating technologies has received an important attention in the literature with the development of several approaches [START_REF] Dakpo | Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric framework[END_REF]. In this paper we develop our measures based on the recent extension of the by-production approach discussed in [START_REF] Dakpo | On modeling pollution-generating technologies: a new formulation of the by-production approach[END_REF], which is an extension of the original by-production model introduced by Murty et al.

18

𝐼𝑇𝐸 𝑡 = 𝐷 𝐼 (𝑥, 𝑦, 𝑡) -1 = 𝑋 � 𝑡 𝑋 𝑡 ≤ 1, 𝐼𝑆𝐸 𝑡 = 𝑌 𝑡 𝑋 � 𝑡 ⁄ 𝑌 � 𝑡 𝑋 � 𝑡 ⁄ ≤ 1, 𝐼𝑀𝐸 𝑡 = 𝑌 𝑡 𝑋 � 𝑡 ⁄ 𝑌 𝑡 𝑋 � 𝑡 ⁄ = 𝑋 � 𝑡 𝑋 � 𝑡 ≤ 1, and 𝑅𝐼𝑆𝐸 𝑡 = 𝑌 𝑡 𝑋 � 𝑡 ⁄ 𝑌 * 𝑡 𝑋 * 𝑡 ⁄ ≤ 1.
16 (2012). The idea of the by-production approach lies mainly in the representation of two independent production processes: one associated to the production of good (intended) outputs and the other one to the generation of bad (unintended) outputs (Figure 4). and emission-causing inputs 𝑥 2 ∈ ℝ + K 2 . The new production technology can be presented as follows

Ψ 𝑡 = Ψ 𝑦 𝑡 ∩ Ψ 𝑏 𝑡 Ψ 𝑦 𝑡 = �(𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 ) ∈ ℝ + K+Q+R | 𝑥 𝑡 can produce 𝑦 𝑡 � Ψ 𝑏 𝑡 = �(𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 ) ∈ ℝ + K+Q+R | 𝑏 𝑡 can be generated by 𝑥 2 𝑡 � (18) .
The global technology Ψ 𝑡 lies at the intersection of two independent sub-technologies. The byproduction assumes cost disposability for undesirable outputs and conditional free/cost disposability assumptions for polluting inputs. Good and non-polluting inputs satisfy the free disposability property. More on the axiomatization of the by-production can be found in [START_REF] Murty | On the properties of an emission-generating technology and its parametric representation[END_REF]. The following sets can be defined:

𝒴(𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑏 𝑡 ) = [𝑦 𝑡 | (𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 ) ∈ Ψ 𝑡 ] 𝔅(𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑦 𝑡 ) = [𝑏 𝑡 | (𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 ) ∈ Ψ 𝑡 ] 𝒲(𝑦 𝑡 ) = [(𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑏 𝑡 ) | (𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 ) ∈ Ψ 𝑡 ] (19) .
The first set is the space of all intended outputs, given a fixed vector of inputs and bad outputs.

The second set represents the projections into the space of unintended outputs, while the third set is the projections into the space of (all) inputs and emissions. In the DEA framework, [START_REF] Murty | On modeling pollution-generating technologies[END_REF] proposed the following program assuming variable returns to scale (VRS):

Ψ 𝑡 = �(𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 ) ∈ ℝ + K+Q+R | 𝑦 𝑡 ≤ 𝑌 𝑡 𝜈 𝑡 ; 𝑥 1 𝑡 ≥ 𝑋 1 𝑡 𝜈 𝑡 ; 𝑥 2 𝑡 ≥ 𝑋 2 𝑡 𝜈 𝑡 ; 𝑏 𝑡 ≥ 𝐵 𝑡 𝜉 𝑡 ; 𝑥 2 𝑡 ≤ 𝑋 2 𝑡 𝜉 𝑡 ; 𝜈 ′ 𝑡 𝟙 = 1 ; 𝜉 ′ 𝑡 𝟙 = 1 ; 𝜈, 𝜉 ≥ 0� (20) .
The two sub-technologies are represented using two distinct intensity variables (𝜈, 𝜉). (𝑋, 𝑌, 𝐵)

denote the matrix of inputs, good outputs, and undesirable outputs of the 𝑁 DMUs which serve as benchmark. In the efficiency assessment, for consistency [START_REF] Dakpo | On modeling pollution-generating technologies: a new formulation of the by-production approach[END_REF] introduced in his extension some dependence constraints to bind the two sub-technologies. These constraints can be written as

𝑋 2 𝜈 = 𝑋 2 𝜉 (21) .
Considering that materials balance principles rules the generation of pollution in agriculture, the assumption of CRS is maintained under the bad output sub-technology i.e. we have removed the constraints 𝜉 ′ 𝑡 𝟙 = 1 from the DEA technology in (20). 19 Following some literature on environmental index computation ( Färe et al., 2004[START_REF] Zaim | Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework[END_REF], a pollution-adjusted productivity (𝑃𝑇𝐹𝑃) measure can be computed as follows:

𝑃𝑇𝐹𝑃 𝑡 = 𝑌(𝑦 𝑡 ) 𝐵(𝑏 𝑡 ) = 𝑌 𝑡 𝐵 𝑡 (22) .
where 𝐵(𝑏 𝑡 ) or 𝐵 𝑡 is the aggregated undesirable outputs. However, to keep in line with the traditional definition of a productivity indicator (as ratio of aggregated output on aggregated input), [START_REF] Abad | An environmental generalised Luenberger-Hicks-Moorsteen productivity indicator and an environmental generalised Hicks-Moorsteen productivity index[END_REF] introduced a generalized Hicks-Moorsteen index which is a ratio of an environmental good output index on an environmental input index. The particular feature of this generalized form lies in the definition of the environmental input index based on a distance function in 𝒲(𝑦 𝑡 ) space. Formally the productivity measure expressed in (22) is equivalent to

𝑃𝑇𝐹𝑃 𝑡 = 𝑌 𝑡 𝒜(𝑋 𝑡 , 𝐵 𝑡 ) (23) .
In the case 𝐵 𝑡 = 0 the formula in (23) is equivalent to the traditional productivity measure, and when 𝑋 𝑡 = 0 it is equivalent to formula (22). The relation in (23) makes perfect sense given that if we assume that production is a physical process governed by materials balance principles, a reduction in polluting inputs should be systematically followed by a decrease in bad outputs (see [START_REF] Ayres | Production, consumption, and externalities[END_REF] and [START_REF] Lauwers | Justifying the incorporation of the materials balance principle into frontierbased eco-efficiency models[END_REF] for details on materials balance principles). In this paper we thereby propose a generalized Färe-Primont index in light of the work of [START_REF] Abad | An environmental generalised Luenberger-Hicks-Moorsteen productivity indicator and an environmental generalised Hicks-Moorsteen productivity index[END_REF].

• A generalized Färe-Primont index 19 The CRS assumption here implies that with no polluting inputs there will be no pollution at all.

As previously, for the generalized version of the Färe-Primont pollution-adjusted productivity (GFPP) for a 𝐷𝑀𝑈 𝑛 from 𝑡 to 𝑡 + 1 we propose to use the following formulation

𝐺𝐹𝑃𝑃 𝑛 𝑡,𝑡+1 = 𝐷 𝑂 𝐸 (𝑥 0 , 𝑦 𝑛 𝑡+1 , 𝑏 0 , 𝑡 0 ) 𝐷 𝑂 𝐸 (𝑥 0 , 𝑦 𝑛 𝑡 , 𝑏 0 , 𝑡 0 ) × 𝐷 𝐼 𝐸 (𝑥 𝑛 𝑡 , 𝑦 0 , 𝑏 𝑛 𝑡 , 𝑡 0 ) 𝐷 𝐼 𝐸 (𝑥 𝑛 𝑡+1 , 𝑦 0 , 𝑏 𝑛 𝑡+1 , 𝑡 0 ) (24) .
where 𝐷 𝑂 𝐸 (-) and 𝐷 𝐼 𝐸 (-) are respectively the environmental Shephard output and input distance functions, and (𝑥 0 𝑡 0 , 𝑦 0 𝑡 0 , 𝑏 0 𝑡 0 ) is a represented DMU properly chosen.

𝐷 𝐼 𝐸 (𝑥, 𝑦, 𝑏, 𝑡) = max 𝜃 �𝜃 𝑡 > 0 | � 𝑥 𝑡 𝜃 𝑡 , 𝑏 𝑡 𝜃 𝑡 � ∈ 𝒲(𝑦 𝑡 )� 𝐷 𝑂 𝐸 (𝑥, 𝑦, 𝑏, 𝑡) = min 𝜙 �𝜙 𝑡 > 0 | 𝑦 𝑡 𝜙 𝑡 ∈ 𝒴(𝑥 1 𝑡 , 𝑥 2 𝑡 , 𝑏 𝑡 )� (25) .
Like in the case without undesirable outputs, the different components of the pollution-adjusted TFP can be derived in the same way as developed in section 2.2. As pointed out in O'Donnell (2012 p263) 'there are at least as many ways to decompose TFP efficiency as there are points in the production possibilities set.' In this paper we focus on the output decompositions because of 'the substantial lag between purchasing inputs and selling outputs' as underlined by Blancard et al. (2006 p351).

• Environmental output technical efficiency score (EOTE)

This efficiency score is computed as the OTE, except that here the technology is based on the use of the by-production. In terms of DEA formulation, 𝐸𝑂𝑇𝐸 𝑡 can be estimated using the envelopment approach in (26). = 1).

𝐷 𝑂 𝐸 (𝑥 𝑛 𝑡 , 𝑦 𝑛 𝑡 , 𝑏 𝑛 𝑡 , 𝑡) -1 = 𝐸𝑂𝑇𝐸 𝑛,𝑡 -1 = max 𝜙,𝜈,𝜉 𝜙 𝑛 𝑡 𝑠. 𝑡 ∑ 𝜈 𝑖 𝑡 𝑦 𝑖𝑞 𝑡 𝑁 𝑖=1 ≥ 𝜙 𝑛 𝑡 𝑦 𝑛𝑞 𝑞 = 1, … . , 𝑄 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 1 𝑡 𝑁 𝑖=1 ≤ 𝑥 𝑛𝑘 1 𝑡 𝑘 1 = 1, … , 𝐾 1 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 ≤ 𝑥 𝑛𝑘 2 𝑡 𝑘 2 = 1, … , 𝐾 2 (26) . ∑ 𝜉 𝑖 𝑡 𝑏 𝑖𝑟 𝑡 𝑁 𝑖=1 ≤ 𝑏 𝑛𝑟 𝑡 𝑟 = 1, … , 𝑅 ∑ 𝜉 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 ≥ 𝑥 𝑛𝑘 2 𝑡 𝑘 2 = 1, … , 𝐾 2 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 = ∑ 𝜉 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 𝑘 2 = 1, … , 𝐾 2 ∑ 𝜈 𝑖 𝑡 𝑁 𝑖=1 = 1 ; 𝜈 𝑖 𝑡 , 𝜉 𝑖 𝑡 ≥ 0; 𝑖 = 1, … , 𝑁

• Environmental output mix efficiency (EOME)

The ideas around the mix inefficiencies have been discussed previously in the case of the good outputs only OME. Here we only focus on practical computations in the DEA framework.

Basically, to compute the mix inefficiency we need to estimate the shadow prices associated to inputs and outputs in order to derive the slope of iso-aggregate-output line. It is at this stage that we can take advantage of the Färe-Primont output aggregator using the arbitrary representative observation. Recalling that DEA provides a piecewise linear representation of the technology (i.e. segments that are interconnected), we need to determine the feature of the iso-aggregate-output line by estimating 𝐷 𝑂 𝐸 (𝑥 0 , 𝑦 0 , 𝑏 0 , 𝑡 0 ) using the dual of the model in (26).

𝐷 𝑂 𝐸 (𝑥 0 , 𝑦 0 , 𝑏 0 , 𝑡 0 ) -1 = min 𝑉,𝑍,𝑈,𝑊,𝐷,𝛿 ∑ 𝑉 𝑘 1 𝑥 0𝑘 1 𝑡 0 𝐾 1 𝑘 1 =1 + ∑ �𝑉 𝑘 2 -𝑍 𝑘 2 �𝑥 0𝑘 2 𝑡 0 𝐾 2 𝑘 2 =1 + ∑ 𝑊 𝑟 𝑏 0𝑟 𝑅 𝑟=1 + 𝛿 𝑠. 𝑡 -∑ 𝑈 𝑞 𝑦 𝑖𝑞 𝑡 𝑄 𝑞=1 + ∑ 𝑉 𝑘 1 𝑥 𝑖𝑘 1 𝑡 𝐾 1 𝑘 1 + ∑ �𝑉 𝑘 2 + 𝐷 𝑘 2 �𝑥 𝑖𝑘 2 𝑡 𝐾 2 𝑘 2 =1 + 𝛿 ≥ 0 𝑖 = 1, … , 𝑁 ; 𝑡 = 1, … , 𝑇 ∑ 𝑊 𝑟 𝑏 𝑖𝑟 𝑡 𝑅 𝑟=1 -∑ �𝑍 𝑘 2 + 𝐷 𝑘 2 �𝑥 𝑖𝑘 2 𝑡 𝐾 2 𝑘 2 =1 ≥ 0 𝑖 = 1, … , 𝑁 ; 𝑡 = 1, … , 𝑇 ∑ 𝑈 𝑞 𝑄 𝑞=1 𝑦 0𝑞 𝑡 0 = 1 (27) 
𝑉, 𝑍, 𝑈, 𝑊 ≥ 0 ; 𝐷, 𝛿 unrestricted 20

Since (𝑥 0 , 𝑦 0 , 𝑏 0 ) is a representative observation (based on central tendency) for the whole sample, the multipliers (𝑉, 𝑍, 𝑈, 𝑊, 𝐷) are estimated using the whole sample (𝑁 × 𝑇). Actually, the program (27) is the linearization of a fractional program where: 28) .

𝐷 𝑂 𝐸 (𝑥 0 , 𝑦 0 , 𝑏 0 , 𝑡 0 ) = 𝑌(𝑦 0 ) = ∑ 𝑈 𝑞 𝑄 𝑞=1 𝑦 0𝑞 ∑ 𝑉 𝑘 1 𝑥 0𝑘 1 𝑡 0 𝐾 1 𝑘 1 =1 +∑ �𝑉 𝑘 2 -𝑍 𝑘 2 �𝑥 0𝑘 2 𝑡 0 𝐾 2 𝑘 2 =1 +∑ 𝑊 𝑟 𝑏 0𝑟 𝑅 𝑟=1 +𝛿 ( 
From (28) we can then derive the revenue deflated shadow price associated to each output as:

𝜕𝐷 𝑂 𝐸 (𝑥 0 ,𝑦 0 ,𝑏 0 ,𝑡 0 ) 𝜕𝑦 𝑞 = 𝑃 0𝑞 = 𝑈 𝑞 ∑ 𝑉 𝑘 1 𝑥 0𝑘 1 𝑡 0 𝐾 1 𝑘 1 =1 +∑ �𝑉 𝑘 2 -𝑍 𝑘 2 �𝑥 0𝑘 2 𝑡 0 𝐾 2 𝑘 2 =1 +∑ 𝑊 𝑟 𝑏 0𝑟 𝑅 𝑟=1 +𝛿 (29) .
The aggregated good output of each 𝐷𝑀𝑈 𝑛 can be determined as: 30) .

𝑌(𝑦 𝑛 ) = � 𝑃 0𝑞 * 𝑦 𝑛𝑞 𝑄 𝑞=1 ( 
Using these prices, the EOME index can be evaluated as: 20 Regarding the inequalities in (27), it should be noted that polluting inputs 𝑥 2 can be weighted positively or negatively given their weights under each sub-technology. This situation may sometimes generate some residual (scale or mix) efficiency scores greater than one.

𝐸𝑂𝑀𝐸 𝑛,𝑡 -1 = max 𝑦,𝜈,𝜉 𝑌�𝑦 𝑛 𝑡 � 𝑌 � �𝑦 𝑛 𝑡 � 21 𝑠. 𝑡. ∑ 𝜈 𝑖 𝑡 𝑦 𝑖𝑞 𝑡 𝑁 𝑖=1 ≥ 𝑦 𝑛𝑞 𝑞 = 1, … . , 𝑄 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 1 𝑡 𝑁 𝑖=1 ≤ 𝑥 𝑛𝑘 1 𝑡 𝑘 1 = 1, … , 𝐾 1 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 ≤ 𝑥 𝑛𝑘 2 𝑡 𝑘 2 = 1, … , 𝐾 2 (31) .
21 𝑌 � (𝑦 𝑛 𝑡 ) = 𝑌�𝑦 𝑛 𝑡 � 𝐸𝑂𝑇𝐸 𝑛𝑡 . ∑ 𝜉 𝑖 𝑡 𝑏 𝑖𝑟 𝑡 𝑁 𝑖=1 ≤ 𝑏 𝑛𝑟 𝑡 𝑟 = 1, … , 𝑅 ∑ 𝜉 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 ≥ 𝑥 𝑛𝑘 2 𝑡 𝑘 2 = 1, … , 𝐾 2 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 = ∑ 𝜉 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 𝑘 2 = 1, … , 𝐾 2 ∑ 𝜈 𝑖 𝑡 𝑁 𝑖=1 = 1 ; 𝑦, 𝜈 𝑖 𝑡 , 𝜉 𝑖 𝑡 ≥ 0; 𝑖 = 1, … , 𝑁
When using DEA it is not rare to obtain zero shadow prices for some variables. In this case O'Donnell (2011) recommended, when relying on the Färe-Primont index, to use sample average solutions of 𝑈 𝑞 instead. By contrast, in this paper we follow a different strategy. We rely on the estimation of full dimensional efficient facets (FDEFs) on which the representative DMU can be projected, and for which all prices are well defined (more discussion on the FDEFs can be found in [START_REF] Olesen | Identification and use of efficient faces and facets in DEA[END_REF], [START_REF] Portela | Zero weights and non-zero slacks: Different solutions to the same problem[END_REF], Zhu (2015 pp145-190)). The idea is to estimate all the hyperplanes associated to FDEF. In this paper we use the Qhull algorithm for generation of all FDEFs for all the sub-technologies (independently). Then for each face we compute the efficiency score and retain the appropriate hyperplane. To obtain the shadow prices as in (29), the coefficients of the hyperplane need to be normalized and deflated. This way of overcoming zero shadow prices is more robust than the sample average proposed in O'Donnell (2011).

• Environmental residual output scale component (EROSE)

The assessment of this component requires estimating the maximum possible pollution-adjusted

TFP �𝑃𝑇𝐹𝑃 * 𝑡 = 𝑌 * 𝑡 𝒜(𝑋 * 𝑡 ,𝐵 * 𝑡 )
� similarly as in formula (12). For this reason we need to define the input aggregator and therefore use the input equivalence of models (26) to (30). These models can be seen in Annex 2. The maximum PTFP can then be estimated as:

𝑃𝑇𝐹𝑃 * 𝑡 = arg max 𝑥>0,𝑦>0,𝑏>0 [𝑌 𝒜(𝑋, 𝐵) ⁄ | (𝑥, 𝑦, 𝑏) ∈ Ψ 𝑡 ] (32) 
.

More explicitly, this maximum can be estimated as follows using DEA

𝑃𝑇𝐹𝑃 * 𝑡 = max 𝑦,𝑥,𝑏,𝜈,𝜉 ∑ 𝑃 0𝑞 * 𝑦 𝑛𝑞 𝑄 𝑞=1 𝑠. 𝑡. ∑ 𝜈 𝑖 𝑡 𝑦 𝑖𝑞 𝑡 𝑁 𝑖=1 ≥ 𝑦 𝑛𝑞 𝑞 = 1, … . , 𝑄 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 1 𝑡 𝑁 𝑖=1 ≤ 𝑥 𝑛𝑘 1 𝑡 𝑘 1 = 1, … , 𝐾 1 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 ≤ 𝑥 𝑛𝑘 2 𝑡 𝑘 2 = 1, … , 𝐾 2 ∑ 𝜉 𝑖 𝑡 𝑏 𝑖𝑟 𝑡 𝑁 𝑖=1 ≤ 𝑏 𝑛𝑟 𝑡 𝑟 = 1, … , 𝑅 ∑ 𝜉 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 ≥ 𝑥 𝑛𝑘 2 𝑡 𝑘 2 = 1, … , 𝐾 2 ∑ 𝜈 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 = ∑ 𝜉 𝑖 𝑡 𝑥 𝑖𝑘 2 𝑡 𝑁 𝑖=1 𝑘 2 = 1, … , 𝐾 2 ∑ 𝓌 0𝑘 1 * 𝑥 𝑛𝑘 1 𝐾 1 𝑘 1 =1 + ∑ 𝓌 0𝑘 2 * 𝑥 𝑛𝑘 1 𝐾 2 𝑘 2 =1 + ∑ ℜ 0𝑟 * 𝑏 𝑟 𝑅 𝑟=1 = 1 𝑦, 𝑥, 𝑏, 𝜈 𝑖 𝑡 , 𝜉 𝑖 𝑡 ≥ 0; 𝑖 = 1, … , 𝑁 (33) 
.

Using (33), EROSE can be easily estimated. In addition, the environmental residual mix efficiency (ERME) can also be derived.

TFP decompositions and TFP change components can be assessed as in formulas ( 14) and (16).

Database and by-production technology specification

We use data from a network of French suckler cow farms located in the grassland areas of the centre of France (north Massif Central: Allier, Creuse, Nièvre, Puy de Dôme, Saône et Loire).

These farms are specialized in beef production using the 'Charolaise' breed. All the data used in this paper relate to the beef production activity only. In the case several activities are present on the farm, for instance crops and other animal rearing, only inputs allocated to beef production are used [START_REF] Charroin | Development of a coefficient set to analyze farm structure costs -Application to mechanization costs of mixed farming systems[END_REF]). The data is a balanced panel of 49 farms surveyed over the period 1990 to 2013 (1,176 observations in total).

We use the four following inputs: land (fodder area in hectares devoted to suckler cows production); labour devoted to beef production (in working units); herd size (in livestock units); and beef production related costs (operational and structural costs 22 For generalization of the by-production, we estimate a factorially determined production system where each output is described by its own technology ( in 2005 Euros). The single good output used here is the meat production estimated in tons of live weight. The pollutionadjusted productivity is adjusted for greenhouse gases (GHGs). The three GHGs, namely carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O), emitted by livestock farming are considered as bad outputs. [START_REF] Frisch | Theory of Production[END_REF][START_REF] Førsund | Good Modelling of Bad Outputs: Pollution and Multiple-Output Production[END_REF]. The global technology that is estimated is then the intersection of several sub-technologies as presented in (34).

Ψ = Ψ 𝑀𝑒𝑎𝑡 ∩ Ψ 𝐶𝑂 2 ∩ Ψ 𝐶𝐻 4 ∩ Ψ 𝑁 2 𝑂
(34) .

Prior to this paper, the different GHGs were assessed using the life cycle assessment (LCA) tool which evaluates at different stages of the production the corresponding environmental impacts [START_REF] Guinée | Handbook on life cycle assessment[END_REF]. In this case of suckler cow farms, emission factors for over three hundreds variables provided by GES'TIM [START_REF] Gac | Greenhouse Gases and Carbon Sequestration -Contributions for the environmental assessment of the agricultural activities[END_REF] and Dia' terre® (ADEME, 2011) and further adapted to our sample, were used to estimate the different GHGs levels. The boundary associated to the LCA incorporates all processes from the cradle to the farm gate. Given then the knowledge on the process of the generation of each GHG, inputs separation can be easily operated: carbon dioxide is generated by the production related costs variable; methane emissions are associated to the herd size; nitrous oxide is linked to the two polluting inputs, namely production related costs and herd size.

Table 1 displays descriptive statistics of the data used. Over the period (1990-2013) the 49 farms considered operated on average 123 hectares of land for the beef production activity, with an annual growth of this input of 2%. A similar annual growth trend is observed for the herd size, production costs, and meat output. By contrast, labour use has been reduced by 0.12% per year, 22 Operational costs also include the value of the cereals produced on the farm and purchased. To be consistent with an analysis based on quantities, some costs like loan interests, insurances, marketing costs and management costs were removed from the total production related costs.

with an average value over the period of 1.82 working unit. This suggests that labour efficiency has increased over the period. More details on the sample and on the previous variables can be found in [START_REF] Veysset | Productivity and technical efficiency of suckler beef production systems: trends for the period 1990 to 2012[END_REF]. As regard bad outputs, the increase in farm size and polluting inputs consumption is also reflected in the increasing trend of GHGs over the period of study.

The total GHG emissions are computed here by converting methane and nitrous oxide emissions into carbon dioxide equivalent using their global warming potential (for methane it is 25 and for nitrous oxide it is 298). Given this conversion, the pollution intensity (on average 14.4 kg of CO 2 equivalent per kg of live meat) has recorded a very small decrease over the whole period (cumulative decrease of 2% between 1990 and 2013). Notes: The livestock unit is a reference unit used for the aggregation of different types of animals on the basis of their nutritional or feed requirement; one livestock unit corresponds to one dairy cow which produces about 3,000 litres of milk per year. CO 2 -eq: carbon dioxide equivalent.

Source: the authors

Results

Partial productivity indexes

The partial productivity of a specific production factor is computed as the ratio of an output (quantity of meat production or GHGs) to this specific factor. Table 2 shows that land productivity has slightly decreased over the period 1990-2013 (the cumulative decrease rate is about 1.5% over the 23 years). In the same time, herd size productivity has increased by 4% mainly thanks to genetic improvements as well as to an accrued recourse to veterinary products (veterinary expenses have increased in volume23 by more than 37% from 1990 to 201324 ). Labour productivity has spectacularly increased by more than 62% over the whole period (2%/year), a very high figure compared to the other factors. Increase in structural fixed costs 25Regarding the bad outputs, the increase in production related costs directly implies an increase in carbon dioxide partial productivity index (CO 2 /production related costs). However, the nitrous oxide partial productivity index with respect to production related costs has substantially decreased over the whole period, by almost 13%. The main factor associated to nitrous oxide emission is the use of nitrogen fertilizer, which in this case has strongly decreased from the nineties. Nitrogen fertilizer in kg per hectare of fodder area has decreased from 39 in 1997 to 21 in 2013, that is to say a decrease of 46%. This induced a high decrease in nitrous oxide emissions, which also explains the negative tendency of the partial productivity index with regard to herd size (but at a smaller rate). Finally, the figures show that the major component of methane emissions is linked to the animal physiology and mainly enteric fermentation. This explains the zero change in the partial productivity of methane emissions relative to herd size.

(mechanization, buildings, overheads…) and the simplification of agricultural practices with the systematic purchase of concentrated (concentrates feed per cow have fluctuated from 927 kg in 1990 to 1,172 kg in 2013) can explain this increase in labour productivity. Nevertheless, an immediate consequence of the increase in feed and structural costs is the deterioration of the productivity of the associated production costs, namely by 7%. 

Productivity change, pollution-adjusted productivity changes and their components

Table 3 presents the results in terms of Total Factor Productivity change (dTFP) and its efficiency change components, while the results for the pollution-adjusted TFP change (dETFP) are presented in Table 4. Figure 5 represents the evolution of dTFP and two of its components (dTC: technical change; and dEC: efficiency change) over the period of analysis, while Figure 6 shows the same but when pollution is accounted for. For simplicity and comparison purpose we have retained year 1990 as reference base, i.e. all the variations are compared with respect to this specific year.

The change in TFP varies across years but with no clear temporal trend. However, a closer look to Figure 5 indicates that between 1990 and 2003, TFP has recorded a decreasing trend while between 2003 and 2013 the tendency is increasing (comparatively to year 1990). Overall, the last row in Table 3, which corresponds to the cumulative productivity change, indicates a very small negative change between 1990 and 2013 (the index for dTFP is 0.991, indicating a 0.9% decrease) (see last row in Table 3). When we consider pollution in the model, the decrease in the productivity index is stronger, by 8.4% (see last row in Table 4). Besides, on Figure 6 the decreasing trend of pollution-adjusted productivity is more obvious.

A closer look at the components of total productivity reveals a technical progress (dTC) of 3.6%, but this progress is offset by a decrease in technical efficiency (dEC) of 4.3%, resulting in unchanged TFP. In the case of pollution-adjusted productivity index, the major source of TFP decrease is technical efficiency deterioration (dEEC) (-5.4%), followed by technological regress (-3.1%). The deterioration in technical efficiency when not accounting for pollution, is imputable first to a decreasing efficiency of output production (Output Technical Efficiency -OTE -decreases by 3%), and to a lower extent to sub-optimal operation scale (Residual Output Scale Efficiency -ROSE -decreases by 1.3%). When GHG pollution is included in the model these two efficiency components seem to play equal role (respectively decreases by 2.6% and 3%). 

Characteristics of farms with high (pollution-adjusted or not) TFP growth

For each farm we compute the cumulative (pollution-adjusted or not) productivity growth from 1990 to 2013 (see Annex 2). Based on this, we split the observations in two groups: the first group includes farms that have recorded no decrease in cumulative (pollution-adjusted or not) productivity change (i.e. they have experienced an increase or no change in (pollution-adjusted or not) productivity over the whole period; these are the higher performers), and the second group includes the farms for which a decrease in their cumulative (pollution-adjusted or not) productivity change is observed (this, the lower performers). We then compare the characteristics of both groups using some parametric and non-parametric tests. The results for non-pollution adjusted TFP are presented in Table 4, which clearly shows (top row) that the total productivity change is significatively different between the two groups we have built. The results for pollution-adjusted TFP are in Table 5.

Surprisingly the partial productivities of the factors are not significatively different between the two groups. This confirms that partial productivities cannot always be good indicators of the performance of firms. The limits of partial productivities also coined 'key performance indicators' have been largely discussed in [START_REF] Bogetoft | Performance Benchmarking: Measuring and Managing Performance[END_REF].

Both groups of farms differ significantly in terms of several characteristics. First, numerical productivity, defined by the number of live-weaned calves born per cow serviced multiplied by 100 [START_REF] Veysset | Variability in greenhouse gas emissions, fossil energy consumption and farm economics in suckler beef production in 59 French farms[END_REF], is the most significant characteristic that distinguishes between both groups of farms: farms which have experienced an increase in TFP (namely TFP greater or equal to one) have on average a larger numerical productivity than farms which have experienced a decrease in TFP (namely TFP less than one). Second, the share of permanent grassland in fodder area is lower for farms that recorded TFP improvement than for farms that recorded TFP deterioration. This indicates that extensive livestock farming is not favourable to productivity progress. Third, farms with TFP increase were less indebted than farms experiencing TFP decrease, suggesting that farmers relied more on internal resources or subsidies than on debts for technological improvements.

Finally, a few other characteristics distinguish between the two groups of farms, although the difference is not strongly significant. Farms with positive TFP change or no change used more concentrates per livestock unit than farms with negative TFP change, a finding in line with the above finding regarding the share of permanent pasture. Nitrogen released per hectare of fodder area weakly distinguishes both groups of farms in one of the three tests: this pollution quantity is higher on average for farms with increased TFP than for farms with reduced TFP. This suggests that economic productivity may not be favourable to the environment. Total subsidies received per livestock unit also distinguish weakly both groups in one of the three tests: farms which performed best (TFP greater or equal to one) received on average less subsidies than farms which performed poorly. However, this finding needs to be toned down due to potentially endogeneity:

during the period studied, farms located in disadvantage areas received lump sum subsidies in the frame of the Common Agricultural Policy (CAP), and those farms may be the lowest performers due to the difficult environmental conditions in which they operate.

When accounting for pollution in TFP (Table 5), results indicate that one main characteristics distinguishes between both types of farms. The higher performers (TFP greater or equal to one) are characterized by a lower resort to concentrates per livestock units than low performers (TFP less than one). This finding is accentuated by the other characteristic that significantly distinguishes, although weakly, between both groups: the feed autonomy is slightly higher for better performing farms than for poorly performing farms. Notes: Feed autonomy represents the share of the herd's energy needs that are covered by own resources (produced on the farm), while grazing autonomy stands for the feed energy requirements that are covered by the own grassland areas. The stocking rate represents the number of livestock unit per unit of fodder area.

Source: the authors 

Conclusion

The multiplicatively complete Färe-Primont index has been used here to assess productivity changes and its components in French suckler cows. The results reveal the absence of productivity gains over the whole period of observation (1990 to 2013). Although some technical progress has been recorded over the period, it has been offset by technical efficiency decrease.

The first finding arises from the calculation of TFP changes and decompositions, both without accounting for GHG emissions and when accounting for them. The figures revealed a more gloomy picture when GHGs are taken into account than when they are not: there is a decrease of pollution-adjusted TFP, while when GHGs are not integrated there is a stagnation of TFP. The decrease of pollution-adjusted TFP is due to both technological regress and efficiency deterioration. Thus, while when GHGs are not considered technological progress has offset efficiency deterioration, this is not the case when GHGs are fully included in the farm technology. This indicates that technological regress is mainly due to the increase of GHG emissions during the period. It suggests that farmers did not have the right incentives to implement actions that would reduce such emissions.

The second main finding regards the comparison of highly and low performers, both without accounting for GHG emissions and when accounting for them. When GHG emissions are not accounting for, that recorded an increase in TFP during the period studied are characterized by a higher numerical animal productivity, a lower indebtedness ratio and a lower reliance to grass compared to maize. By contrast, when GHGs are integrated in the computation, farms that recorded an increase in TFP are those that relied less on external feed such as concentrates. This suggests that rooms for improvement mainly relate to changing the feed system of the farm, which is something that may be more easily implemented than changes in other pollutionemitting materials or reduction of enteric fermentation.

We finish with some methodological discussions. First, as regard to the computation of the Färe-Primont index itself. As largely explained in the methodology section, this index requires the definition of an arbitrary reference point. For our case study we have retained a representative DMU which is simply the average of the pooled sample. Fortunately our results are robust to the choice of reference point which is simply a mean to the goal of productivity assessment. Second, we have compared the features of the farms that have recorded productivity gains to farms that have faced some productivity losses. Parametric and non-parametric tests were conducted. These analysis are bivariate and do not account for possible interactions among the different variables.

A multivariate analysis could certainly provide more insightful results. Third, one limit of the empirical analysis relates to the labour input which is measured in full time equivalent workers.

This measure is an estimation but the number of working hours would be more precise;

unfortunately is not available in our database. Besides, the very high partial productivity of this factor may suggest an analysis without considering this input to check for the robustness of the findings. Fourth, in our estimation we have allowed for technological regress which for the specific case of livestock farming captures some environmental impacts. An interesting extension could be an analysis which precludes for regression in the technology. A sequential Färe-Primont index can be considered for this new decomposition.

Annex 1:

Environmental input aggregator The dual of this model at the representative point (𝑥 0 , 𝑦 0 , 𝑏 0 ) can be written as follows The aggregated environmental input of each 𝐷𝑀𝑈 𝑛 can be determined as: 
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 1 Figure 1: TFP change in the case of a single output and a single input

  (EC) component. The latter can be further decomposed into technical efficiency change (TEC), scale efficiency change (SCE) and mix efficiency change (MEC).
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 2 Figure 2: Input and output technical, scale and mix inefficiencies for aggregate input/output
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 2 Figure 2, the OTE score is equivalent to 𝐸 𝑡 = 𝑠𝑙𝑜𝑝𝑒 𝑂𝐴 𝑠𝑙𝑜𝑝𝑒 𝑂𝐶

  score can be obtained by estimating the output distance function under constant returns to scale (CRS): 𝑂𝑆𝐸 𝑡 = 𝐷 𝑂 �𝑥 𝑡 ,𝑦 𝑡 ,𝑡� 𝐶𝑅𝑆 𝐷 𝑂 (𝑥 𝑡 ,𝑦 𝑡 ,𝑡) 𝑉𝑅𝑆 . Graphically on Figure 2, 𝑂𝑆𝐸 𝑡 = 𝑠𝑙𝑜𝑝𝑒 𝑂𝐶 𝑠𝑙𝑜𝑝𝑒 𝑂𝐷 .

𝑦>0[

  𝑌(𝑦)| (𝑥 𝑡 , 𝑦) ∈ Ψ 𝑡 ]. The output mix efficiency is defined graphically as 𝑂𝑀𝐸 𝑡 = 𝑠𝑙𝑜𝑝𝑒 𝑂𝐶 𝑠𝑙𝑜𝑝𝑒 𝑂𝐺 on Figure 2. For another illustration see Figure 3 where the iso-output line is tangent to the output isoquant on point 𝐺. On Figure 3, the output mix efficiency equals to 𝑂𝑀𝐸 𝑡 = 𝑂𝐻 𝑂𝐺 . As underlined in O'Donnell (2010) mix inefficiencies are related to economies of scope while scale inefficiencies are directly linked to economies of scale.
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 3 Figure 3: Output oriented mix inefficiency
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 4 Figure 4: The by-production representation with two sub-technologies
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 66 Figure 6 is that efficiency change index mainly remains above one during the period, while technical change index remains below one.
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 56 Figure 5: Evolution of the 49 farms' average annual productivity change (dTFP in red) and its components (technical change, dTC, in green and efficiency change, dEC, in blue) over the period 1990-2013
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  Environmental output scale scale efficiency score (EOSE) This efficiency score is computed the same way as the OSE. Practically it is equivalent 𝐸𝑂𝑆𝐸 𝑡 = 𝐷 𝑂 𝐸 (𝑥 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 , 𝑡) 𝐶𝑅𝑆 𝐷 𝑂 𝐸 (𝑥 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 , 𝑡) 𝑉𝑅𝑆 ⁄ where 𝐷 𝑂 𝐸 (𝑥 𝑡 , 𝑦 𝑡 , 𝑏 𝑡 , 𝑡) 𝐶𝑅𝑆 can be estimated by

	removing the convexity constraint from (26) (∑ 𝜈 𝑖 𝑡 𝑁 𝑖=1

Table 1 : Descriptive statistics of the 49 farms over the period 1990-2013

 1 

		Minimum	Maximum	Mean (𝜇)	Standard deviation (𝜎)	Coefficient of variation (𝜎/𝜇)	Average annual growth (%)	Cumulative growth (%)
	Land (hectares)	40.6	442.2	122.8	55.3	0.45	2.08	60.54
	Labour							
	(working	0.49	4.55	1.82	0.64	0.35	-0.12	-2.64
	units)							
	Herd size							
	(livestock	41.7	457.0	155.8	71.2	0.46	1.83	51.71
	units)							
	Production							
	related costs (thousands	13.7	329.3	76.3	40.7	0.53	2.34	70.12
	2005 Euros)							
	Meat production (tons of live	12.1	173.9	48.7	24.7	0.51	2.01	58.16
	weight)							
	Carbon							
	dioxide emissions	13.4	787.0	106.1	75.3	0.71	2.60	80.53
	(tons)							
	Methane emissions	4.9	53.2	18.1	8.3	0.46	1.83	51.71
	(tons)							
	Nitrous oxide emissions	0.1	1.7	0.5	0.2	0.54	1.72	48.16
	(tons)							
	Total GHG							
	emissions (tons of CO 2 -	160.7	2589.4	696.1	348.0	0.50	1.92	54.89
	eq)							
	Pollution							
	intensity (kg CO 2 -eq/kg of	10.8	26.0	14.4	2.0	0.14	-0.09	-2.07
	live meat)							

Table 2 : Partial productivities' changes over the period 1990-2013: averages for the 49 farms

 2 

	Average annual growth (%)	Cumulative growth (%)

Table 3 : Productivity and efficiency changes over the period 1990-2013: averages for the 49 farms

 3 We use the prefix 'd' to underline that the table shows changes in the indices between two years where 1990 is the based year. dTC is a measure of technical change and dEC stands for the change in TFPE and is related to efficiency change. dOME equals one because there is only one output, and thus no mix inefficiencies can be found. The averages are computed using geometric means. Figures greater than one indicate a growth in the index considered (productivity or its components), while figures less than one indicate deterioration. Figures equal to one indicate no change. All computations were carried out using the R software.

	Period of time	dTFP	dTC	dEC	dOTE	dROSE	dOSE	dRME
	1990	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1991	1.004	1.019	0.985	0.992	0.993	1.003	0.990
	1992	1.027	1.008	1.019	0.998	1.021	1.013	1.008
	1993	1.054	1.057	0.998	0.997	1.001	1.029	0.972
	1994	1.035	1.041	0.994	0.996	0.998	1.026	0.973
	1995	1.043	1.044	0.999	1.002	0.997	1.042	0.956
	1996	1.026	1.046	0.981	1.002	0.978	1.007	0.972
	1997	1.029	1.027	1.002	1.004	0.998	1.017	0.981
	1998	1.030	1.032	0.998	0.985	1.014	1.020	0.994
	1999	1.037	1.091	0.951	0.997	0.953	0.981	0.972
	2000	1.050	0.990	1.060	1.020	1.040	1.034	1.006
	2001	1.017	1.036	0.982	0.985	0.996	1.000	0.996
	2002	1.020	1.012	1.007	0.949	1.062	1.032	1.029
	2003	0.962	1.057	0.911	0.968	0.941	1.014	0.928
	2004	0.990	0.960	1.031	1.000	1.031	1.014	1.017
	2005	1.007	1.077	0.935	0.991	0.943	0.973	0.970
	2006	0.993	0.987	1.007	1.016	0.991	0.997	0.993
	2007	1.009	0.963	1.048	1.029	1.018	1.020	0.999
	2008	1.012	1.074	0.942	0.998	0.944	0.987	0.957
	2009	1.012	1.069	0.947	0.988	0.958	0.980	0.978
	2010	1.032	1.075	0.960	0.994	0.966	0.989	0.976
	2011	1.017	1.005	1.012	1.005	1.007	1.008	0.999
	2012	1.037	1.047	0.991	0.979	1.012	1.018	0.995
	2013	0.991	1.036	0.957	0.970	0.987	1.003	0.984
	Notes: Source: the authors							

Table 4 : Pollution-adjusted productivity and efficiency changes over the period 1990-2013: averages for the 49 farms

 4 We have added the prefix 'dE' to denote that environmental changes are accounted for in the index. As previously, dEOME equals one because of the presence of only one good output.

	Period of time	dETFP	dETC	dEEC	dEOTE	dEROSE dEOSE	dERME
	1990	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	1991	0.984	1.057	0.930	0.995	0.935	0.996	0.938
	1992	1.005	0.974	1.032	0.997	1.034	1.020	1.014
	1993	1.056	0.967	1.093	0.993	1.100	1.035	1.063
	1994	1.040	0.959	1.084	1.013	1.070	1.019	1.051
	1995	1.038	1.030	1.008	0.986	1.023	1.035	0.988
	1996	1.020	0.975	1.046	1.009	1.036	1.003	1.034
	1997	0.955	0.869	1.100	1.016	1.082	0.997	1.085
	1998	0.944	0.907	1.041	0.999	1.042	1.016	1.026
	1999	0.977	0.920	1.063	1.021	1.041	0.993	1.048
	2000	0.988	0.972	1.016	1.008	1.008	1.026	0.983
	2001	0.958	0.833	1.150	0.993	1.158	0.999	1.159
	2002	0.974	0.979	0.994	0.958	1.038	1.006	1.032
	2003	0.886	0.856	1.035	0.973	1.064	0.996	1.068
	2004	0.912	0.832	1.097	0.997	1.100	1.000	1.100
	2005	0.991	0.926	1.070	1.000	1.071	0.992	1.079
	2006	0.973	1.007	0.966	1.019	0.948	0.980	0.967
	2007	0.982	0.913	1.076	1.015	1.060	1.017	1.042
	2008	0.947	0.825	1.148	0.992	1.157	0.990	1.169
	2009	0.983	0.950	1.035	0.984	1.052	0.969	1.085
	2010	0.990	1.046	0.947	0.987	0.959	1.004	0.955
	2011	0.992	1.001	0.991	0.994	0.997	0.999	0.998
	2012	0.963	0.937	1.027	0.978	1.050	1.016	1.034
	2013	0.916	0.969	0.944	0.974	0.970	0.999	0.971
	Notes: Source: the authors							

Table 4 : Characteristics of farms categorised according to their cumulative productivity change: means and tests of equality of means

 4 

		dTFP<1	dTFP>=1	Kolmogorov	Wilcoxon	
		(22 farms)	(27 farms)	Smirnov test	rank test	t-test
	Variables	Mean		P-value	
	dTFP	0.87	1.11	<5%	<5%	<5%
	Labour (working units)	1.83	1.82	>15%	>15%	>15%
	Land (hectares)	128.95	117.87	>15%	>15%	>15%
	Herd (livestock units)	157.89	154.09	>15%	>15%	>15%
	Production related costs (thousand 2005					
	Euros)	74.11	78.04	>15%	>15%	>15%
	Meat production (tons of live weight)	47.38	49.85	>15%	>15%	>15%
	Labour productivity	87.00	86.69	>15%	>15%	>15%
	Land productivity	0.38	0.42	>15%	<10%	<5%
	Herd productivity	0.30	0.32	>15%	<10%	<5%
	Production related costs productivity	0.66	0.65	>15%	>15%	>15%
		Farms characteristics			
	Numerical productivity (%)	84.92	89.00	<5%	<5%	<5%
	Feed autonomy (%)	92.94	92.46	<15%	>15%	>15%
	Grazing autonomy (%)	80.05	78.00	>15%	>15%	>15%
	Share of permanent grassland in					
	fodder area (%)	69.72	56.90	<15%	<10%	<10%
	Total subsidies per livestock unit (2005					
	Euros)	255.53	240.59	>15%	<15%	>15%
	Stocking rate (livestock units per					
	hectare)	1.25	1.30	>15%	>15%	>15%
	Share of hired labour in total labour (%)	10.72	11.90	>15%	>15%	>15%
	Average debt to asset ratio (%)	34.30	26.26	<15%	<5%	<5%
	Share of maize silage in fodder area (%)	3.85	3.86	>15%	>15%	>15%
	Nitrogen per hectare of fodder area					
	(kilogram)	28.44	33.22	<15%	>15%	>15%
	Concentrates per livestock unit					
	(kilogram)	568.60	656.93	<10%	>15%	<15%
	Gross margin per livestock unit (2005					
	Euros)	542.81	543.44	>15%	>15%	>15%
	Revenue per labour unit (2005 Euros)	4121	4348	>15%	>15%	>15%
	Share of lean animals sold in the total					
	number of animals sold (%)	0.75	0.74	>15%	>15%	>15%

Table 5 : Characteristics of farms categorised according to their cumulative pollution-adjusted productivity change: means and tests of equality of means
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		dETFP<1	dETFP>=1	Kolmogorov	Wilcoxon	
		(33 farms)	(16 farms)	Smirnov test	rank test	t-test
	Variables	Mean		P-value	
	dETFP	0.82	1.20	<5%	<5%	<5%
	Labour (working units)	1.86	1.75	>15%	>15%	>15%
	Land (hectares)	125.62	117.13	>15%	>15%	>15%
	Herd (livestock units)	162.10	142.79	>15%	>15%	>15%
	Production related costs (thousand 2005					
	Euros)	80.72	67.12	>15%	>15%	<15%
	Meat production (tons of live weight)	50.81	44.48	>15%	>15%	>15%
	Carbon dioxide emissions (tons)	115.10	87.67	>15%	>15%	<10%
	Methane emissions (tons)	18.86	16.62	>15%	>15%	>15%
	Nitrous oxide emissions (tons)	0.49	0.40	>15%	>15%	<15%
	Total GHG emissions (tons of CO 2 -eq)	732.40	621.32	>15%	>15%	>15%
	Pollution intensity (kg CO 2 -eq/kg of live					
	meat)	14..56	14.20	>15%	>15%	>15%
	CO 2 per production related costs index	1.35	1.28	>15%	>15%	>15%
	CH 4 per herd size index	0.12	0.12	>15%	>15%	>15%
	N 2 O per herd size index	0.003	0.003	>15%	>15%	>15%
	N 2 O per production related costs index	0.006	0.006	>15%	>15%	>15%
		Farms characteristics			
	Numerical productivity (%)	86.88	87.74	>15%	>15%	>15%
	Feed autonomy (%)	92.15	93.76	<10%	<15%	<15%
	Grazing autonomy (%)	77.47	81.87	>15%	<10%	<10%
	Share of permanent grassland in fodder					
	area (%)	61.26	65.54	>15%	>15%	>15%
	Total subsidies per livestock unit (2005					
	Euros)	242.93	256.30	>15%	>15%	>15%
	Stocking rate	1.29	1.25	>15%	>15%	>15%
	Share of hired labour in total labour (%)	12.16	9.73	>15%	>15%	>15%
	Average debt to asset ratio (%)	30.29	29.00	>15%	>15%	>15%
	Share of maize silage in fodder area (%)	4.23	3.07	>15%	<15%	>15%
	Nitrogen per hectare of fodder area					
	(kilogram)	32.55	28.04	>15%	>15%	>15%
	Concentrates per livestock unit					
	(kilogram)	651.67	546.31	<10%	<5%	<10%
	Gross margin per livestock unit (2005					
	Euros)	535.20	559.58	>15%	>15%	>15%
	Revenue per labour unit (2005 Euros)	4385.40	3958.61	>15%	>15%	>15%
	Share of lean animal sold in the total					
	number of animals sold (%)	0.72	0.80	>15%	>15%	>15%
	Source: the authors					

  Like previously, the program in (35) is the linearization of the fractional program in (36). 𝐼 𝐸 (𝑥 0 , 𝑦 0 , 𝑏 0 , 𝑡 0 ) = 𝒜(𝑋 0 , 𝑌 0 ) = 𝜕𝐷 𝐼 𝐸 �𝑥 0 , 𝑦 0 , 𝑏 0 , 𝑡 0 � 𝜕𝑥 𝑘 1 = 𝓌 0𝑘 1 =

							𝑉 𝑘 1	(38) .
							∑ 𝑈 𝑞 𝑄 𝑞=1	𝑦 0𝑞 𝑡 0 + 𝛿
							𝜕𝐷 𝐼 𝐸 �𝑥 0 , 𝑦 0 , 𝑏 0 , 𝑡 0 � 𝜕𝑥 𝑘 2	= 𝓌 0𝑘 2 =	∑ 𝑈 𝑞 𝑄 𝑞=1 𝑉 𝑘 2 -𝑍 𝑘 2 𝑦 0𝑞 𝑡 0 + 𝛿	(39)	.
							𝜕𝐷 𝐼 𝐸 �𝑥 0 , 𝑦 0 , 𝑏 0 , 𝑡 0 � 𝜕𝑏 𝑟	= ℜ 0𝑟 =	∑ 𝑈 𝑞 𝑄 𝑞=1 𝑊 𝑟 𝑦 0𝑞 𝑡 0 + 𝛿	(40)	.
	𝐷 𝐼 𝐸 (𝑥 𝑛 𝑡 , 𝑦 𝑛 𝑡 , 𝑏 𝑛 𝑡 , 𝑡) -1 = max 𝑉,𝑍,𝑈,𝑊,𝐷,𝛿,𝜎 ∑ 𝑄 𝑞=1	𝑈 𝑞	𝑦 0𝑞 𝑡 0 + 𝛿
	𝑠. 𝑡 ∑ 𝑄 𝑞=1	𝑈 𝑞 𝑦 𝑖𝑞 𝑡	-∑ 𝑉 𝑘 1 𝑥 𝑖𝑘 1 𝑡 𝐾 1 𝑘 1	-∑ 𝐾 2 𝑘 2 =1 �𝑉 𝑘 2 -𝐷 𝑘 2 �𝑥 𝑖𝑘 2 𝑡	+ 𝛿 ≤ 0 𝑖 = 1, … , 𝑁 ; 𝑡 = 1, … , 𝑇
	-∑ 𝑅 𝑟=1	𝑊 𝑟 𝑏 𝑖𝑟 𝑡	+ ∑ 𝐾 2 𝑘 2 =1 �𝑍 𝑘 2 -𝐷 𝑘 2 �𝑥 𝑖𝑘 2 𝑡	≤ 0 𝑖 = 1, … , 𝑁 ; 𝑡 = 1, … , 𝑇	(36)
	∑ 𝐾 1 𝑘 1 =1	𝑉 𝑘 1 𝑥 0𝑘 1 𝑡 0	+ ∑ 𝐾 2 𝑘 2 =1 �𝑉 𝑘 2 -𝑍 𝑘 2 �𝑥 0𝑘 2 𝑡 0	+ ∑ 𝑅 𝑟=1	𝑊 𝑟 𝑏 0𝑟	= 1
	𝑉, 𝑍, 𝑈, 𝑊 ≥ 0 ; 𝐷, 𝛿 unrestricted
	𝐷 ∑ 𝐾 1 𝑘 1 =1	𝑉 𝑘 1 𝑥 0𝑘 1 𝑡 0	+∑ 𝐾 2 ∑ 𝑄 𝑞=1 �𝑉 𝑘 2 -𝑍 𝑘 2 �𝑥 0𝑘 2 𝑡 0 𝑈 𝑞 𝑦 0𝑞 𝑡 0 +𝛿 𝑘 2 =1	+∑ 𝑅 𝑟=1	𝑊 𝑟 𝑏 0𝑟	(37) .
	From (36) we can then derive the cost deflated shadow price associated to each input and bad
	output as:				

Cumulative productivity change and its components' changes between 1990 and 2013 for each of the 49 farms

  𝒜(𝑋 𝑛 , 𝐵 𝑛 ) = � 𝓌 0𝑘 1 * 𝑥 𝑛𝑘 1

	Farm #		dTFP		dTC		Annex 2 dEC	dETFP		dETC		dEEC	
		36		1.171		1.036		1.131		1.124		0.969		1.159
		37		1.120		1.036		1.081		0.998		0.969		1.029
		38		1.070		1.036		1.033		0.744		0.969		0.767
	Farm #	39	dTFP	1.045	dTC	1.036	dEC	1.009	dETFP	1.087	dETC	0.969	dEEC	1.121
		1 40		0.912 1.018		1.036 1.036		0.880 0.983		1.002 0.792		0.969 0.969		1.033 0.817
		2 41		1.239 1.067		1.036 1.036		1.196 1.030		1.098 1.248		0.969 0.969		1.133 1.287
		3 42		0.873 0.813		1.036 1.036		0.843 0.785		1.080 0.962		0.969 0.969		1.114 0.993
		4 43		0.839 0.986		1.036 1.036		0.810 0.952		0.704 1.342		0.969 0.969		0.727 1.384
		5 44		0.725 0.965		1.036 1.036		0.700 0.932		0.946 0.846		0.969 0.969		0.975 0.872
		6 45		0.991 0.926		1.036 1.036		0.957 0.895		0.873 1.023		0.969 0.969		0.900 1.055
		7 46		0.780 0.863		1.036 1.036		0.753 0.833		0.721 0.878		0.969 0.969		0.744 0.906
		8 47		1.083 1.071		1.036 1.036		1.045 1.034		0.787 0.844		0.969 0.969		0.812 0.871
		9 48		1.016 1.085		1.036 1.036		0.981 1.048		1.341 0.789		0.969 0.969		1.383 0.814
	Source: the authors	10 49 11 12		0.742 0.996 1.015 1.020	𝐾 1 𝑘 1 =1 1.036 1.036 1.036 1.036		* 𝑥 𝑛𝑘 1 0.489 + � ℜ 0𝑟 * 𝑏 𝑟 𝑅 0.969 0.727 0.969 0.697 0.969 + � 𝓌 0𝑘 2 𝐾 2 0.716 0.962 0.980 𝑘 2 =1 𝑟=1 0.985 0.758 0.969		0.504 0.749 (41) . 0.719 0.781
		13		0.956		1.036		0.923		1.514		0.969		1.561
		14		1.139		1.036		1.100		1.351		0.969		1.393
		15		0.747		1.036		0.722		0.986		0.969		1.017
		16		1.477		1.036		1.426		1.554		0.969		1.603
		17		0.990		1.036		0.956		0.916		0.969		0.945
		18		1.342		1.036		1.296		1.067		0.969		1.101
		19		1.036		1.036		1.000		0.946		0.969		0.976
		20		1.227		1.036		1.185		1.111		0.969		1.146
		21		1.007		1.036		0.973		0.978		0.969		1.008
		22		1.029		1.036		0.993		0.841		0.969		0.868
		23		0.945		1.036		0.912		0.848		0.969		0.875
		24		1.089		1.036		1.052		1.045		0.969		1.078
		25		0.847		1.036		0.818		0.608		0.969		0.627
		26		0.872		1.036		0.842		0.863		0.969		0.890
		27		0.972		1.036		0.939		0.746		0.969		0.769
		28		0.933		1.036		0.901		0.806		0.969		0.832
		29		1.127		1.036		1.088		0.988		0.969		1.019
		30		1.081		1.036		1.044		0.855		0.969		0.882
		31		1.099		1.036		1.061		1.167		0.969		1.204
		32		1.112		1.036		1.074		0.812		0.969		0.838
		33		1.170		1.036		1.130		0.882		0.969		0.910
		34		0.534		1.036		0.516		0.510		0.969		0.526
		35		1.051		1.036		1.015		0.866		0.969		0.893

These indexes can be used to evaluate productivity change.

The circularity test states the following: if there are three consecutive periods of time 𝑡 1 , 𝑡 2 , 𝑡 3 and an index 𝐼, the circularity test is satisfied if 𝐼(𝑡 1 , 𝑡 3 ) = 𝐼(𝑡 1 , 𝑡 2 ) × 𝐼(𝑡 2 , 𝑡 3 )[START_REF] Fried | The measurement of productive efficiency and productivity growth[END_REF].

This index has been initially proposed inFäre and Primont (1995 pp36-38) as a quantity index.

The volume of veterinary expenses is approximated by using constant currency (2005 Euros).

In 1990 the veterinary expenses represented 5,901 Euros while in 2013 they were about 8,131 Euros (in constant prices).

In volume (2005 Euros) these costs have increased on average from 24,020 in 1990 to 43,535 in 2013, that is to say an increase of more than 80%.
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