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Abstract: The Latent Block Model (LBM) is a model-based method to
cluster simultaneously the d columns and n rows of a data matrix. Param-
eter estimation in LBM is a difficult and multifaceted problem. Although
various estimation strategies have been proposed and are now well under-
stood empirically, theoretical guarantees about their asymptotic behavior is
rather sparse and most results are limited to the binary setting. We prove
here theoretical guarantees in the valued settings. We show that under
some mild conditions on the parameter space, and in an asymptotic regime
where log(d)/n and log(n)/d tend to 0 when n and d tend to infinity, (1)
the maximum-likelihood estimate of the complete model (with known la-
bels) is consistent and (2) the log-likelihood ratios are equivalent under the
complete and observed (with unknown labels) models. This equivalence al-
lows us to transfer the asymptotic consistency, and under mild conditions,
asymptotic normality, to the maximum likelihood estimate under the ob-
served model. Moreover, the variational estimator is also consistent and,
under the same conditions, asymptotically normal.
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V. Brault, C. Kertbin and M. Mariadassou/Consistency and asymptotic normality of LBM estimatork
1. Introduction

Co-clustering is an unsupervised method to cluster simultaneously the n rows
and d columns of a rectangular data matrix. The assignments of each row to
one of the row-clusters and of each column to one of the column-clusters are
unknown and the aim is to determine them. Then, rows and columns can be
re-ordered according to their assignments, highlighting the natural structure of
the data with distinct blocks having homogeneous observations. This leads to a
parsimonious data representation, as can be shown on Figure 1.

Fi1G 1. A binary data matriz before (left) and after (middle) row and column reordering, and
its parsimonious data representation (right).

Co-clustering can be used in numerous applications, and especially ones with
large data sets, such as recommendation systems (to discover a segmentation of
customers with regard to a segmentation of products), genomics (to simultane-
ously define groups of genes having the same expression with regards to groups
of experimental conditions) or text mining (to define simultaneously groups of
texts and groups of words).

Among the co-clustering methods, the Latent Block Model (LBM) defines a
probabilistic model as a mixture model with latent rows and columns assign-
ments. LBM can deal with binary [6], Gaussian [8], categorical [9] or count [7]
data. Due to the complex dependency structure induced by this modelisation,
neither the likelihood, nor the distribution of the assignments conditionally to
the observations needed in the E-step of the EM algorithm, traditionnally used
for mixture models, are numerically tractable. Estimation can be however per-
formed either with a variational approximation leading to an approximate value
of the maximum likelihood estimator, or with a Bayesian approach (VBayes al-
gorithm or Gibbs sampler). For example, [9] recommends using a Gibbs sampler
combined with a VBayes algorithm.

The asymptotics of the maximum likelihood (MLE) and variational (VE)
estimators also raise interesting theoretical questions. This topic was first ad-
dressed for the stochastic block model (SBM) [13], where the data is a random
graph encoded by its adjacency binary matrix: the rows and columns represent
the nodes, so that there is only one partition, shared by rows and columns, and
a unique asymptotic direction.

For a binary SBM and under the true parameter value, Theorem 3 of [4]
states that the distribution of the assignments conditionally to the observations
converges to a Dirac of the real assignments. Moreover, this convergence remains
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valid under the estimated parameter value, assuming that this estimator con-
verges at rate at least n~!, where n is the number of nodes (Proposition 3.8).
This assumption is not trivial, and it was not established that such an estimator
exists except in some particular cases ([1] for example). [10] presented a unified
frame for LBM and SBM in case of valued observations satisfying a concentra-
tion inequality, and showed the consistency of the conditional distribution of the
assignments under all parameter values in a neighborhood of the true value. [3]
and [2] proved the consistency and asymptotic normality of the MLE for the bi-
nary SBM but failed to account for complications induced by symmetries in the
parameter. Building upon the work from [4], they first studied the asymptotic
behavior of the MLE in the complete model (observations and assignments) with
binary observations which is simple to handle; then, they showed that the com-
plete likelihood and the marginal likelihood have similar asymptotic behaviors
by the use of a Bernstein inequality for bounded observations.

Following the main ideas of [2], we prove that the observed likelihood ra-
tio and the complete likelihood ratio computed at the true assignments are
asymptotically equivalent, up to a multiplicative term. This term depends on
some model symmetry and was omitted in [2] although it is necessary to prove
the asymptotic results. We then settle the asymptotic normality of the maxi-
mum likelihood and variational estimators. All these results are stated not only
for binary observations, but also more generally for observations coming from
univariate exponential families in canonical form, which is essential regarding
the LBM usages. This leads us to develop a Bernstein-type inequality for sub-
exponential variables as the Hoeffing’s concentration inequality used in [2] is
only relevant for upper-bounded observations.

The paper is organized as follows. The model, main assumptions and nota-
tions are introduced in Section 2, where the concept of model symmetry is also
discussed. Section 3 proves the asymptotic normality of the complete likelihood
estimator, and section 4 studies conditional and profile log-likelihoods. Our main
result showing that the observed likelihood ratio behaves like the complete like-
lihood ratio is stated in section 5, and its consequences in terms of consistency
and asymptotic normality of the MLE and variational estimators are presented
in section 6. Most of the proofs are postponed to the appendices to improve the
general readibility : appendix A for properties of conditional and profile log-
likelihoods, B for the steps of the main result, C for concentration inequalities
for specific sub-exponential variables and D for other technical results.

2. Model, assumptions and definitions

We observe a data matrix X = (z;;) with n rows and d columns. The LBM
assumes that there exists a latent structure in the form of the Cartesian product
of a partition of g row-clusters by a partition of m column-clusters with the
following characteristics:

e the latent row assignments z = (z1,...,2,) are independent and identi-
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cally distributed with a common multinomial distribution on g categories:
2z, ~ M1, 70 = (m1,...,7g))

For k=1,...,9, zix = 1 if row ¢ belongs to row-group k, 0 otherwise.
In the same way, the latent column assignments w = (wq,...,wy) are
i.i.d. multinomial variables with m categories:

W NM(I,p: (p177pm))

For £ =1,...,m, wj; = 1 if column j belongs to column-group ¢ and 0
otherwise.

e the row and column assignments are independent: p(z, w) = p(z)p(w)

e conditionally to row and column assignments z x w, the observed data
X;; are independent, and their conditional distribution ¢(., &) belongs to
the same parametric family, which parameter o only depends on the given
block:

Xijl{ziwse = 1} ~ (., axe)-
Hence, the complete parameter set is @ = (7, p, @) € ©, with o = (a1, ..., Qgm)
and © the parameter space. Figure 2 summarizes these notations.

Remark 2.1. Group, class and cluster in one hand, label and assignment in the
other hand will be used indistinctly. Moreover, for notation convenience, .,

n d m
Zj’ > ks 2o stand for 3757 Zj:l? PERTD Dyiae

d
1 - : d
1) - 1) : 1d
. — 1
i feaa| - Tl - N a1l e aim |1
n 'L } 'L g
[£253% €274 Xpm | Tk
am ‘ am " "
| . . . . . .
X . Oégl (,\’,gg Ogm [ Tg
g
.- - P1 Pe Pm
1 VA m
m

Fic 2. Notations. Left: Notations for the elements of observed data matriz are in black,
notations for the block clusters are in blue. Right: Notations for the model parameter.

When performing inference from data, we note 8 = (w*, p*, @*) the true
parameter set, i.e. the parameter values used to generate the data, and z*
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and w* the true (and usually unobserved) row and column assignments. For
indicator membership variables z and w, we also note:

o Zyp =2k and wyy = Zj Wig
e 2%, and w’, their counterpart for z* and w*.

The confusion matrix allows one to compare the partitions.

Definition 2.2 (confusion matrices). For given assignments z and z* (resp. w
and w* ), we define the confusion matrix between z and z* (resp. w and w*),
noted Ry(z) (resp. Ry (w)), as follows:

1 * 1 *
Ry (2)kk = - Zzikzik/ and Ry, (W)er = p Zwﬂwﬂ/
7 J

2.1. Likelihood

When the labels are known, the complete log-likelihood is given by:
Le(z,w;0) = logp(x, 2, w; 0)

Zik wjg . ZikWjp
= log Hﬂ—kk HP@J H @ (ijs oge) ™"
i,k 3.t

i.d.k b (2.1)
s (T ) (T | (T )
i J ()

In an unsupervised setting, the labels are unobserved and the observed log-
likelihood is obtained by marginalization over all the label configurations:

L£(0) =log p(x;0) = log Z p(x,2,w;0)
z€EZweW

Due to the double missing data structure z for rows and w for columns, neither
the observed likelihood nor the E-step of the EM algorithm are tractable. Esti-
mation can can nevertheless be performed either by numerical approximation,
or by MCMC methods [see 8, 9].

2.2. Assumptions

We focus here on LBM where ¢ belongs to a regular univariate exponential
family set in canonical form:

o(z, a) = b(x) exp(az — ¥(a)),

The canonical parameter a belongs to a space A, so that ¢(-, ) is well defined
for all « € A. Classical properties of exponential families insure that 1) is convex,
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infinitely differentiable on A, and (¢/)~! is well defined on ¢/(A). When X, ~

o),
E[Xo] = ¢'(a) and V[X,] = 4" ().

Moreover, we make the following assumptions on the parameter space :

Hy : There exists a positive constant ¢, and a compact C,, such that
O Cle,1—d? x[e,1—d™ x CI*™ with C, C A.

Hj : The true parameter 8* = (7*, p*, a*) lies in the relative interior of ©.
Hs : 0" is identifiable up to a permutation

The previous assumptions are standard. Notice that the following conditions
are necessary for Hz to hold:

H3,: The map o — ¢(+, ) is injective.
Hsyp,: Each row and each column of a* is unique.

[9] gives sufficient conditions for the generic identifiability of the categorical
LBM, i.e. except on a manifold set of null Lebesgue measure in ® and this
property is easily extended to the case of observations from a univariate expo-
nential family. For binary SBM, [2] added the assumption p > (logn)/n on the
parameter p of the Bernoulli distribution to take into account sparsity.

Assumption H;p ensures that the group proportions m; and py are bounded
away from 0 and 1 so that no group disappears when n and d go to infinity. It
also ensures that « is bounded away from the boundaries of A and that there
exists a positive value k > 0, such that [a — k,a + K] C A for all parameters o
of C,, which is essential to prove a uniform Bernstein inequality on the X.

Moreover, we define the quantity §(a) that captures the separation between
row-groups or column-groups: low values of d(a) mean that two row-classes or
two column-classes are very similar.

Definition 2.3 (class distinctness). For 8 = (m, p, ) € ©. We define:
d(a) = min {Ig;él? max KL(ge, ager ), 1161;12 max KL( gy, Oék/g)}

with KL(a, ') = Eq[log(o(X, o) /o(X, )] = ¢/ (a)(a— ')+ (a’) —(a) the
Kullback divergence between ¢(., ) and (., o).

Remark 2.4. Since a* has distinct rows and distinct columns (Hs), §(a*) > 0.

Remark 2.5. These assumptions are satisfied for many distributions, including
but not limited to:

e Bernoulli, when the proportion p is bounded away from 0 and 1, or natural
parameter o = log(p/(1 — p)) bounded away from +oo;

e Poisson, when the mean A is bounded away from 0 and +oo, or natural
parameter o = log(A) bounded away from +o0;

o Gaussian with known variance when the mean p, which is also the natural
parameter, is bounded away from Foo.
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In particular, the conditions stating that 1 is twice differentiable and that (z)) =1
exists are equivalent to assuming that X, has positive and finite variance for
all values of « in the parameter space.

2.3. Model Symmetry

The LBM is a generalized mixture model and as such is subject to label switch-
ing. Moreover, the study of the asymptotics will involve the complete likelihood
where symmetry properties on the parameter must be taken into account. We
first recall the definition of a permutation in LBM, then define equivalence re-
lationships for assignments and parameter, and discuss model symmetry.

Definition 2.6 (permutation). Let s be a permutation on {1,...,g9} and t a
permutation on {1,...,m}. If A is a matriz with g columns, we define A® as
the matriz obtained by permuting the columns of A according to s, i.e. for any
row i and column k of A, A3, = Ajsu)- If B is a matriz with m columns and
C is a matriz with g rows and m columns, B' and C*' are defined similarly:

s t s, t __
A" = (Aisw) ;. B'=(Buw);, C" = (Cotnw)iy
Definition 2.7 (equivalence). We define the following equivalence relationships:

e Two assignments (z,w) and (z',w’) are equivalent, noted ~, if they are
equal up to label permutation, i.e. there exist two permutations s and t
such that z' = z° and w' = wt.

o Two parameters @ and 0’ are equivalent, noted ~, if they are equal up
to label permutation, i.e. there exist two permutations s and t such that
(7%, pt,a®t) = (n', p/, ). This is label-switching.

e (0,z,w) and (0',z',w') are equivalent, noted ~, if they are equal up to
label permutation on «, i.e. there exist two permutations, s and t such that
(o, 2", w') = (o, 2, W),

The last equivalence relationship is not concerned with 7 and p. It is useful
when dealing with the conditional likelihood p(x|z, w; @) which depends neither
on 7 nor p: in fact, if (8,2, w) ~ (0',2',w’), then for all x, we have p(x|z, w; 0) =
p(x|z’, w’;0"). Note also that z ~ z* (resp. w ~ w*) if and only if the confusion
matrix IRy(z) (resp. IR, (w)) is equivalent to a diagonal matrix.

Definition 2.8 (symmetry). We say that the parameter 6 exhibits symmetry
for the permutations s,t if
(7%, pt,a™) = (m, p, cx).

0 exhibits symmetry if it exhibits symmetry for any non trivial pair of permuta-
tions (s,t). Finally the set of pairs (s,t) for which @ exhibits symmetry is noted
Sym(0).

Remark 2.9. The set of parameters that exhibit symmetry is a manifold of
null Lebesgue measure in ®. This notion of symmetry is subtler than and dif-
ferent from label switching. To emphasize the difference between equivalence
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and symmetry, consider the following model: w# = (1/2,1/2), p = (1/3,2/3)

and @ = 31 32 ) with a3 # ag. The only permutations of interest here
2 Qi
are s = t = [1 2]. Choose any z and w. Because of label switching, we know

that p(x,z°, wt;0%") = p(x,z,w;0). (z°,w') and (z,w) have the same likeli-
hood but under different parameters @ and 8", If however, p = (1/2,1/2), then
(s,t) € Sym(@) and 8*" = @ so that (z,w) and (z°, w') have the same likelihood
under the same parameter 6. In particular, if (z, w) is a maximum-likelihood
assignment under 6, so is (z%, w'). In other words, if  exhibits symmetry, the
maximum-likelihood assignment is not unique under the true model and there
are at least # Sym(0) of them. This has important implications for the asymp-
totics of the observed likelihood ratio.

2.4. Distance and local assignments

We define the distance up to equivalence between two sets of assignments as
follows:

Definition 2.10 (distance). The distance, up to equivalence, between configu-
rations z and z* is defined as

lz —2*lo~ = inf |12’ — 2]l
Z ~Z

where, for all matriz z, ||-|, is the Hamming norm
Izlly = > 1{zix # 0}
ik

A similar definition is set for the distance between w and w*.

This allows us to define a neighborhood of radius 7 in the assignment space,
taking into account equivalent assignments classes.

Definition 2.11 (Set of local assignments). We note S(z*, w*,r) the set of con-
figurations that have a representative (for ~) within relative radius v of (z*, w*):

Sz, w*,r)={(z,w) : ||z —2"||o~ <7n and |w — w*||o,~ < rd}

3. Asymptotic properties in the complete data model

As stated in the introduction, we first study the asymptotic properties of the
complete data model. Let 8. = (7, p, &) be the MLE of 6 in the complete data
model, where the real assignments z = z* and w = w* are known. We can
derive the following general estimates from Equation (2.1):

ra) = ZE () = Ut
m(z) = == Pe(W) = —
D ij TijZikWje (3.1)

fkg(Z,W) = akg = akg(Z,W) = (w/)71 (fkg(z,w))

Z4kpW4y
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Proposition 3.1. The matrices X+ = Diag(n*)—n* (7*) T, X ,. = Diag(p*)—
p* (p*)T are semi-definite positive, of rank g —1 and m — 1, and 7 and p are
asymptotically normal:

Vi (# (2°) = 1) 3 N(0,8x) and Vd(p(W*) = p*) —— N(0,5,)

n—oo
(3.2)
Similarly, let V(a*) be the matriz defined by [V (a*)|ge = 1/¢" (o) and
Y v = Diag ™' (7*)V (a*) Diag ™' (p*). Then:
Vnd (@ (2%, w*) = ) —2— N (0, S i) for all k¢
and the components & ¢ are independent.
Proof: Since 7 (z*) = (71 (2*),..., 74 (2*)) (resp. p (w*)) is the sample mean

of n (resp. d) i.i.d. multinomial random variables with parameters 1 and =*
(resp. p*), a simple application of the central limit theorem (CLT) gives:

F(l—mp) if k=K (L—pp) if £=0
S = (1 — %) 1 and X gy = p; (1= py) 1
’ — TR if k#K ’ —p; 0} it (40

which proves Equation (3.2) where X+ and X,. are semi-definite positive of
rank g — 1 and m — 1.

Similarly, ¢’ (Qre (2%, w*)) is the average of 2%, w}, = nd7y, (z*) pe (W*) i.i.d.
random variables with mean ¢’ (o},) and variance ¥ (af,). nd7y (2*) pr (W)
is itself random but 7y, (2*) py (W*) — i p; almost surely. Therefore, by

n,d—+00

Slutsky’s lemma and the CLT for random sums of random variables [12], we

have:
* *
sz Xijzikwje

VTR (0 (@0 (0" w*) = 0/ a)) = vy (o2

P N (0,4 (o)

- vlaio)

The differentiability of (/')~! and the delta method then gives:
/ ~ * k) % D 1
nd (Qke (2", W*) — aggy) m N (O, W;:PP/’”(QQ))

and the independence results from the independence of e (z*, w*) and Q¢ (2*, w*)
assoon as k # k' or £ # ¢, as they involve different sets of independent variables.
O

Proposition 3.2 (Local asymptotic normality). Let L the map defined on ©
by 0 = (m,p,a) — logp (x,2z*,w*; 0). For any s, t and u in a compact set, we
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have:

S t U
c* (7r*+, *—|—,a*—|—) =L5(0") + 5T Yo + 7Y o + Tr(u” Yor
Vn P Vd Vvnd 07) P ( )

1 1 1
- (2STE7T*S + itTZp*t + B Tr((u® u)TEa*))

+ OP(l)

where ® denotes the Hadamard product of two matrices (element-wise product)
and X+, Xp+ and X+ are defined in Proposition 3.1. Y r«, Y 5» are asymptot-
ically Gaussian with zero mean and respective variance matrices Lqx, Xp» and
Yo+ is a matriz of asymptotically independent Gaussian components with zero
mean and variance matric Ygx .

Proof.
By Taylor expansion,

* ( * S * t * U >
LN+ —,p"+—=,a" + —
¢ \/ﬁ P \fd \/7"Td

1 1 1
= L0+ —=sTVLE_(0%) + —=
() N ~(07) Vd Vnd

+%STH,T (60%) s+ étTHp (0")t + %Tr (u®u)"Hq (8%)) +op(1)

t'vLE,(6%) + Tr (u" VL, (67))

where VLE (0%), VL, (0%) and VL, (0”) denote the respective components
of the gradient of £} evaluated at " and H,, H, and H, denote the conditional
hessian of £} evaluated at 8*. By inspection, Hy /n, H,/d and Hq /nd converge
in probability to constant matrices and the random vectors VL: _(6%) /\/n,
VL, (6) /Vd and VL, (%) /v/nd converge in distribution to Gaussian vec-
tors by the central limit theorem.

O

4. Profile Likelihood

Our main result compares the observed likelihood ratio p(x;0)/p(x;0*) with
the complete likelihood p(x, z*, w*; 0) /p(x, z*, w*; ™). To study the behavior of
these likelihoods, we shall work conditionally to the true configurations (z*, w*)
that have enough observations in each row or column group. We therefore define
in section 4.1 so called regular configurations and prove that they occur with
high probability. We then introduce in section 4.2 conditional and profile log-
likelihood ratios and state some of their properties.
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4.1. Regular assignments

Definition 4.1 (c-regular assignments). Let z € Z and w € W. For any ¢ > 0,
we say that z and w are c-regular if

Inkin Zyp > cn and m@ian > cd.
In regular configurations, each row-group for example has (n) members,
where u,, = Q(n) if there exists two constant a,b > 0 such that for n enough
large an < w, < bn. ¢/2-regular assignments, with ¢ defined in Assumption

Hy, have high Pg+-probability in the space of all assignments, uniformly over all
0™ € O, as stated in Proposition 4.2.

Proposition 4.2. Define Z; and Wi as the subsets of Z and VW made of
c¢/2-regular assignments, with ¢ defined in assumption Hy. Note 1 the event
{(z*,w*) € Z1 x W1}, then:

_ 2 d 2
Py~ (Ql) < gexp (_n;) + mexp (—;) .

Each z; is a sum of n i.i.d Bernoulli random variables with parameter 7 >
Tmin > ¢. The proof is straightforward and stems from a simple Hoeffding bound

2 2
Po- (Z+k < "%) < Po- <Z+k < n%) < exp <2n (%) ) < exp (n;:)

and a union bound over g values of k, with similar approach for w,.

4.2. Conditional and profile log-likelihoods

Introducing the conditional log-likelihood ratio

_ p(x|z, w; 6)
Frq(0,z,w) = log DXz w8

the complete likelihood can be written as follows
p(x,2,w;0) = p(z, w; 0)p(x|z*, w*; 0") exp(Frna (8, 2, w)).

The study of F, 4 will be of crucial importance, as well as its maximum over ©.
After some definitions, we examine some useful properties.

Definition 4.3. The conditional expectation G of Fpq is defined as:

p(x|z, w; 0)
p(x|z*, w*; 0%)

G(0,z,w) = Eg- |log

zﬂw*] =Eg+ [Fra(0,z,w)| 2", w*]

Moreover, the profile log-likelihood ratio A and its expectation A are defined as:
Az, w) = max Foa(0,z,w)

Az, w) = max G(0,z,w).
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Remark 4.4. As F,,4 and G only depend on 6 through a, we will sometimes
replace 8 with o in the expressions of F,; and G. Replacing F,, 4 and G by
their profiled version A and A allows us to get rid of the continuous argument
a of F,4 and to rely instead only on discrete contrasts A and A.

Now, Proposition 4.5 characterizes which values of @ maximize F},q and G to
reach A and A. Propositions 4.6 and 4.7 in turn describes properties of G and
A relative to (z,w).

Proposition 4.5 (maximum of G and A in ). Let 6, = (Zr¢(z, W), 7% (2), Pe(W))
be the mazimum likelihood estimator of the complete model, as defined in Equa-
tion 3.1. Conditionally on z*,w*, define the following quantities:

S5 = (Sgo)ee = (V' (0%0)) o
[Ry(2)7S* R, (w)] (4.1)

Tk(2)pe(w)

Tio(z, W) = Eo+ [Tre(z, w)|2", w*] = it

with Tre(z,w) =0 for z and w such that T(z) = 0 or pe(w) = 0.
Then Fpq(0,2z,w) (resp. G(0,z,w)) is mazimum in o for o = a(z, w) (resp.
a(z,w)) defined by:

a2 W) = () @relz, W) and Glz,w)ie = (&) (@nelz, W),

Hence,
A(z,w) = Fri(a(z,w),z,w)
Az, w) = Gla(z, w), 2, w)

Note that although Tpe = ]Eg* [i‘\kg‘ Z*7 W*], in general [e%¥) 75 ]Eg* [&m Z*7 W*]
by non linearity of (¢’ )~L. Nevertheless, since (1)')~! is Lipschitz over compact
subsets of ¢’(A), with high probability, |Gge — Gre| and |Zge — Tge| are of the
same order of magnitude.

Proposition 4.6 (maximum of G and A in (0,2, w)). Let KL(a, ') = ¢/ () (a—
o)+ (o)) —(a) be the Kullback divergence between (., a) and o(.,a’) then:
G(0,2,w) = —nd> > Ry(2)r xR (W)ee KL(ofy, ape) <0 (42)
K,k €,
Conditionally on the set 1 of reqular assignments and for n,d > 2/c,

(i) G is mazimized at (a*,z*, w*) and its equivalence class. _
(i) A is mazimized at (z*,w*) and its equivalence class and A(z*, w*) = 0.

(i1i) The mazimum of A (and hence the mazimum of G) is well separated.

Property (4ii) of Proposition 4.6 is a direct consequence of the local upper-
bound for A as stated as follows:

Proposition 4.7 (Local upperbound for A) Conditionally upon 1, there exists
a positive constant C such that for all (z,w) € S(z*,w*,C):

- co(a*)
Az, w) < — 1

(d]|z = 2"[|o,~ +nllw —w"jo,~)

imsart-ejs ver. 2014/10/16 file: ejs-BraultKeribinMariadassou.tex date: July 4, 2019



V. Brault, C. Keribin and M. Mariadassou/Consistency and asymptotic normality of LBM estimatord

The proofs of these propositions are reported in Appendix A. Proof of Propo-
sition 4.5 follows from a straightforward calculation, proof of Proposition 4.6
uses the technical Lemma D.1 to characterize the maximum of G and proof
of Proposition 4.7 uses regularity properties of the gradient of A to control its
behavior near its maximum.

5. Main Result

Our main result matches the asymptotics of complete and observed likelihoods
and is the key to prove the consistency of maximum likelihood and variational
estimators. It is set under the assumptions described in section 2.2 and the
following asymptotics for the number of rows n and columns d:

(Hy) : log(d)/n — 0 and log(n)/d — 0.

Theorem 5.1 (complete-observed). Let x be a matriz of n X d observations of
a LBM with true parameter 8* = (w*, p*, a*) and known g X m order, which
conditional distribution belongs to a regular univariate exponential family. The
true random and unobserved assignations for rows and columns are denoted z*
and w* respectively. Define # Sym(0) as the number of pairs of permutations
(s,t) for which @ exhibits symmetry.

If assumptions Hy to Hy are fulfilled, then, the observed likelihood ratio be-
haves like the complete likelihood ratio, up to a bounded multiplicative factor:

p(x;0)  #Sym(0) ax p(x,z*, w*;0')
p(x;07)  #Sym(07) o'~6 p(x,z*, w*;0)

(14+0p(1)) +o0p(1)

where the op is uniform over all @ € ©.

The maximum over all 8 that are equivalent to @ stems from the fact that
because of label-switching, 6 is only identifiable up to its ~-equivalence class
from the observed likelihood, whereas it is completely identifiable from the com-
plete likelihood. The terms # Sym are needed to take into account cases where
6 exhibits symmetry. These were omitted by [2] for SBM, although they are
also needed in this case, see remark 5.3. When no 8 € ® exhibits symmetry,
the following corollary is immediately deduced :

Corollary 5.2. If © contains only parameters that do not exhibit symmetry:

p(x;0) p(x,z*, w*;0)
— =1 _—— 1 1 1
p(x;0%) P p(x,z*, w*; 0%) (1+o0p(1)) +op(1)

where the op is uniform over all 8 € ©.

General sketch of the proof. The proof relies on the following decomposi-
tion of the observed likelihood:

p(x;0) = Z p(x,2z,w;0) = Z p(x,2z,w;0)+ Z p(x,2,w;0).

(z,w) (z,w)~(z* ,W*) (z,w)ne(z* ,Ww*)
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where the second term shall be proved to be asymptotically negligible. Its control
stems from the study of the conditional log-likelihood F,4, see Equation 4.2. In
fact, the contribution of configurations that are not equivalent to (z*, w*) leads
itself to the study of a global control, and a sharper local control of F, 4. Hence,
the proof relies on the examination of the asymptotic behavior of F,4 on three
types of configurations that partition Z x W:

1. global control for assignations (z, w) sufficiently far from (z*, w*), i.e. such
that A(z, w) is of order Q(—nd). Proposition 5.5 gives a large deviation
result for F,,q — A(z, w) to prove that F,q is also of order —Qp(nd). A key
point will be the use of Proposition C.4, establishing a specific concentra-
tion inequality for sub-exponential variables. In turn, those assignments
contribute as a op(p(x,2z*, w*;0%)) to the sum (Proposition 5.6).

2. local control: a small deviation result (Proposition 5.7) is needed to show
that the combined contribution of assignments close to but not equivalent
to (z*,w*) is also a op(p(x,z*,w*;0*)) (Proposition 5.8).

3. equivalent assignments: Proposition 5.9 examines which of the remaining
assignments, all equivalent to (z*, w*), contribute to the sum.

Once these propositions proved, the proof is straightforward, as can be seen
below. They are in turn carefully presented and discussed in dedicated sub-
sections as they represents the core arguments and their proofs are themselves
postponed to Appendix B for more readability.

Proof.
We work conditionally to €21, defined in Proposition 4.2, i.e., the high probabilty
event that (z*, w*) is a ¢/2-regular assignment. We choose (z*,w*) € Z; x W,

and a sequence t,q decreasing to 0 but satisfying ¢,4 > max (”Jid, 103(7%1 )>.

This is possible thanks to Assumption (Hy). We write:

p(X;H) = Z p(X,Z,W;G)

(z,w)~(z* ,Ww*)

+ Z p(x,2z,w;0) + Z p(z, w,x;0)

(z,w)¢S(z* , W*,tna) (z,w)€S(z* ,W* ,tna)
(z,w)»(z",w")

According to Proposition 5.6, conditionally to £2; and for n, d large enough that
2v/2ndt,q > gm, we can write
sup Z p(z,w,x;0) = op(p(z*, w*,x;0%))

0€® (, w)¢S(z*,w* tna)

Since t,q decreases to 0, it gets smaller than C' (defined in proposition 5.8) for
n, d large enough. As this point, Proposition 5.8 ensures that:

sup § p(Z,W,X; 0) = OP(p(Z*aW*7X;0*))
€O (s w)eS (=" w* tna)
(z,w)=(z* ,w*)
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And therefore the observed likelihood ratio reduces to:

PG 0) _ (w)~w)
p(x;0%) Z p(x,2,w;0%) + p(x;2*, w*,0%)op(1)

(z,w)~(z* ,Ww*)

Proposition 5.9 allows us to conclude

p(x;0)  #Sym(0) p(x,z*, w*;6')
> * max *
p(x;0")  #Sym(6”) o'~6 p(x,z*, w*; 67)

(14 0p(1)) + 0op(1).

O

Remark 5.3. As already pointed out, if 6 exhibits symmetry, the maximum
likelihood assignment is not unique under 6, and # Sym(6) terms contribute
with the same weight. This was not taken into account by [2], and it is interesting
to see why it should be also present for SBM. Recall that SBM has only one set
of labels z. The proof relies on the the decomposition

p(x;0) = p(x,2:0) = Y p(x,2;0)+ Y p(x,2;6)

where the second term of the sum is neglectible compared to the first term. Now,

z' ~ z* means that there exists a permutation ¢ : [g] — [g] such that z’ = z*

and p(x,z') = p(x,2;0"). The first term is written on Page 1941, Equation (25)

in [2] as

> px,250) = 3 p(x.z:6) = (1+ o(1)) maxp(x, z*:0')

6'~0
z/ ~z* 0'~06
However, the first equality is not always correct. Actually, we have
dopx2i0)= > px,z750)= Y p(x,2%0")
z/~z* t:[g]—[g] t:[g]—[g]

Take a special case of symmetry where 7 = (1/g,...,1/g) and a = (p — q)Iy +
qlg17. Then we have 0" = 6 for all t. Thus,

> p(x,7;0) = g! p(x,7";6).

z' ~z*

Even for the SBM, we thus have generally:

> p(x,7360) = (1+0(1))# Sym(6) max p(x, 2%; 6')

z’' ~z*
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5.1. Global Control

A large deviation inequality for configurations (z, w) far from (z*, w*) is build
and used to prove that far away configurations make a small contribution to
p(x;8). Since we restricted « in a bounded subset of A, there exists two positive
values M, and k such that Co + (—k,k) C [-M,, M,] C A. Moreover, the
variance of X, is bounded away from 0 and +oco. We note

sup  V(X,) =052 < 400 and inf  V(X,)=¢?>0.
a€[—Mqy, M) a€[—My, M.

Proposition 5.4. With the previous notations, if « € Cy and X, ~ (., ),
then X, is sub-exponential with parameters (52, k71).

The latter proposition is a direct consequence of the definition of sub-exponential
variables, see Appendix C.

Proposition 5.5 (large deviations of F,4). Let Diam(©) = supg g/ [|0 — 6 o
For all e, g < ko and n,d

A}zd(gnd)

0,z,w 2\/ 2nd€nd

d 2
< g"m%exp (—n;"d> (5.1)

=P (sup {Fnd(Q,z,w) — A(z,w)} > ond Diam(®)2v/2¢,,4 [1 + gm})

In particular, if n and d are large enough that 2v/2nde,q > gm, the previous
inequality ensures that with high probability, F,,4(, z, w)—A(z, w) is no greater
than gnd Diam(©)4v/2¢,,4.

The concentration inequality used in [2] to prove an analog result for SBM
is not sufficient here, as it can be used only for upper-bounded observations,
which is obviously not the case for all exponential families. We instead develop
a Bernstein-type inequality for sub-exponential variables (Proposition C.4) to
upper bound F,4(0,z, w) — A(z, w). Proposition 5.5 relies heavily on this Bern-
stein inequality. A straightforward consequence of this deviation bound is that
the combined contribution of assignments far away from (z*,w*) to the sum
is negligible, assuming that the numbers n of rows and d of columns grow at
commensurate rates, as stated in the following proposition:

Proposition 5.6 (contribution of far away assignments). Assume (Hy) and

choose t,q decreasing to 0 such that t,q > max("n—gl, 103%51) ). Then conditionally

on Q1 and for n,d large enough that 2v/2ndt,q > gm, we have:

sup Y plzw,x0) = op(p(z", W, x;0%))
0€O (4 w)gS(z* ,w tna)
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5.2. Local Control

Proposition 5.5 gives deviations of order Op(v'nd), which are only useful for
(z, w) such that G and A are large compared to v'nd. For (z, w) close to (z*, w*),
we need tighter concentration inequalities, of order op(—(n + d)), as follows:

Proposition 5.7 (small deviations F,4). Conditionally upon 1,

Az, w) — A(z*, w™)
sup ~ "
(zw)w(z w*) A2 — 2*[Jo,~ + nf[w — W*lo

=op(1)

The next proposition uses Propositions 4.6 and 5.7 to show that the combined
contribution to the observed likelihood of assignments close to (z*, w*) is also
a op of p(z*, w*, x;0):

Proposition 5.8 (contribution of local assignments). With the previous nota-
tions and C' the radius for local assignments defined in Proposition 4.7,

sup Z p(z,w,x;0) = op(p(z*, w*,x;0%))
€ (zw)es(a’ w C)
(z,w)me(z* ,w*)

5.3. Equivalent assignments

It remains to study the contribution of equivalent assignments.

Proposition 5.9 (contribution of equivalent assignments). For all € ©, we
have

p(x,2z,w;0) p(x, 7%, W 0')
_px,z,w;0) 0 Pzt w6 1
( )z(:* *)p(x,z*,w*;e*) # Sym( )g}ﬁgp(xl*’w*;e*)( +op(1))

where the op is uniform in 6.

The maximum over ' ~ 0 accounts for equivalent configurations whereas
# Sym(0) is needed when 6 exhibits symmetry, as noticed in Remark 5.3.

6. Asymptotics for the Maximum Likelihood (MLE) and Variational
(VE) Estimators

This section is devoted to the asymptotics of the MLE and VE in the incomplete
data model as a consequence of the main result 5.1.

6.1. ML estimator

Theorem 6.1 (Asymptotic behavior of @MLE). Denote EMLE the maximum
likelihood estimator and use the notations of Proposition 3.1. There exist per-
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mutations s of {1,...,g9} and t of {1,...,m} such that
#® (") = T = or (n72), BW) = Phurp = or (7172),

& (2" W)~ @ = or((nd) ).

The proof relies on the local asymptotic normality of the MLE in the complete
model, as stated in Proposition 3.2, and on our main theorem.

Proof.

We may prove the corollary by contradiction. Note first that unless © is con-
strained and with high probablhty, HMLE and 0 <(z*, w*) exhibit no symme-
tries. Indeed, equalities like Ty = Zjs ¢ have vanishingly small probabilities of
being simultaneously true when X;; is discrete and null when X;; is continuous.
Assume then that ming(75,, 5 — & (W*)) # op (v/n), ming (Pl 5 — P (W*)) #
op (\/E) or min (&), 5 — @ (2, w*)) # op (\/ nd) where s and ¢ are permuta-
tions of {1,...,¢} and {1,...,m}. Then, by Proposition 3.2 and the consistency
of 0. (z*,w*)

~ ~s,t
min £} (90 (", w*)) o (aMLE) = Qp(1). (6.1)
But, since 0, (z*,w*) and 0,1 maximise respectively 5 ((:zz: VV:: fgL)) and p((::*))

and have no symmetries, it follows by Theorem 5.1 that

~ ~s,t
p(xz*,w*;@c (z*,w*)) p(x z*, w* BLLE) .
p(x,z*, w*;0%) TR T ko wn07) | or(l)

which contradicts Equation (6.1) and concludes the proof.

6.2. Variational estimator

Due to the complex dependence structure of the observations, the maximum
likelihood estimator of the LBM is not numerically tractable, even with the
EM-algorithm. In practice, a variational approximation can be used, see for
example [5]: for any joint distribution Q € Q on Z x W a lower bound of £(0)
is given by

‘](Q79) = ‘C(g)_KL (Q,p(.,.;@,x))
= EqlLlc(z,w;0)]+H(Q).
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where H (Q) = —Eg[log(Q)]. Choose Q to be the set of factorized distributions,
such that for all (z,w)

Q(z,w) =Q(2)Q(w) = [JQzix = D™ [[ Q@ (wje = )"
ik Jit
allows to obtain tractable expressions of J (Q, 0) as a lower bound of the log-

likelihood. The variational estimate 0,,, of 0 is defined as

0,ar € argmax max J ,0).
var egeg QEQ (Q )

T}le following corollary states that é,m has the same asymptotics as EM LE
and 0.

Theorem 6.2 (Variational estimate). Under the assumptions of Theorem 5.1
there exist permutations s of {1,...,g9} and t of {1,...,m} such that

7() = o =or (n72), B =Pl =op (47172),

a( w)—ay, = op((md)?).

Proof.
Remark first that for every 0 and for every (z, w),

p(x,2,w;0) < exp[J (6 x 0w, 8)] < max exp [J (Q,0)] < p(x;6)
where §, denotes the dirac mass on z. By dividing by p (x;0*), we obtain
pixzw:0) _ 823 P @O) ) g
p(x;0%) ~ p(x;07) T p(x;07)
As this inequality is true for every couple (z, w), we have in particular:
p(x,2*, w*; 0) p (.t wio) 3oy o®l/(Q.0)
max ————~- =max = < -
o~ p(x;67) p(x;6%)

(zw)~(z*w) P (x;07)
Noticing that p (x;0*) = # Sym(0*)p (x,z*,w*;0") (1 + 0,(1)), Theorem 5.1
therefore leads to the following bounds:

p(x,z*, w*;0') 0o P [7(Q,0)]

—_— (1 1) <
ggi?p(x,z*,w*;e*)( +or(l) <

p(x,z*, w*;0%)

< # Sym(O)maxp (e 2", 6)

$25p (2w (o) For(l):

Again, unless © is constrained, 5\/ AR exhibits no symmetries with high proba-
bility and the same proof by contradiction as in section 6.1 gives the result.

O
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7. Conclusion

The Latent Block Model offers challenging theoretical questions. We solved un-
der mild assumptions the consistency and asymptotic normality of the maximum
likelihood and variational estimators for observations with conditional density
belonging to a univariate exponential family, and for a balanced asymptotic rate
between the number of rows n and the number of columns d: log(d)/n — 0 and
log(n)/d — 0 as n and d tend to infinity. Our results extend those of [2] for binary
SBM not only by managing the double direction of LBM, but also by consider-
ing larger types of observations. That brought us to define specific concentration
inequalities as large and moderate deviations concerning sub-exponential vari-
ables. Moreover, we dealt with specific cases of symmetry that were not taken
into account as of now.

A specific framework of sparsity was studied by [2]. This is especially conve-
nient for SBM, to model reasonable network settings: increasing sparsity (i.e.
number of 0) can be done directly by scaling the Bernoulli parameters pg, with a
common factor that should decrease no faster than Q(log®(n)/n), with § > 2, to
ensure consistency. This could also be considered for binary LBM. However this
approach fails to model actual observations in the more general valued setting.
The equivalent approach could be to consider the product of a Bernoulli variable
with the actual observation value. Note however, than even without consider-
ing sparsity we recover essentially the same rate: in the sparse-SBM case, each
node should be connected to Q(log’(n)) others to ensure consistency whereas
in the dense-LBM case, each of the n-row should should be characterized by
Q(log®(n)) columns (and vice-versa) to ensure consistency.

Alternative research direction could be to explore asymptotic settings where
the numbers n of rows and d columns grow at very different rates. Other open
question concern estimation of the number of row and column groups and set-
tings where the number of groups increases with n and d.
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Appendix A: Proofs of section 4
A.1. Proof of Proposition 4.5 (maximum of G and A in 0)

Proof.
Define v(z,a) = za —(a). For z fixed, v(z, ) is maximized at o = (¢')~1(z).
Manipulations yield

Fnd(a7sz) = logp(x; z,wW, 0) - Ing(X; Z*aW*v 0*)

=nd [Zzﬁk V(Ze(2, W), auier) ZZ 7k ( W*)V(ka(Z*7W*)7aze)]
k¢

which is maximized at axs = (')~ (Zke(z, w)). Similarly

G(a,z,w) = Eg+[log p(x; 2z, w, 0) — log p(x; 2", w*,0%)|z*, w*]

=nd [ZZM V(The(z, W), k) ZZM (w* V(W(%e)ﬂie)]

is maximized at oy = (¢¥') " (Ze(z, W))
O
A.2. Proof of Proposition 4.6 (maximum of G and A in (0,z,w))
Proof.
We condition on (z*, w*) and prove Equation (4.2):
p(x; Z’ W7 0) * *
G(O,Z,W) = Eg* |:10gp()(z*vv‘k0*) z ,W :|

=233 3 Ea e — o) — (o) —v(oio)] sy

J k,k" 00
=nd Y > Ry(@)ppRon (W)e.er 1 () (e — afiy) + () — Plagre)]
k,k’ 0,0
= —ndZZ]R k k’ ( )gﬁe/ KL(O&Zbak/@/)
k.k" £.0

If (z*,w”*) is regular, and for n,d > 2/c, all the rows of IRy(z) and IR, (w)
have at least one positive element and we can apply lemma D.1 (which is an
adaptation for LBM of Lemma 3.2 of [2] for SBM) to characterize the maximum
for G.

The maximality of A(z*, w*) results from the fact that A(z, w) = G(a(z, w), z, w)
where &(z, w) is a particular value of , A is immediately maximum at (z, w) ~
(z*,w*), and for those, we have a(z, w) ~ a*.

The separation and local behavior of G around (z*,w*) is a direct conse-
quence of the proposition 4.7.

O
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A.3. Proof of Proposition 4.7 (Local upper bound for _/1)
Proof.

We work conditionally on (z*, w*). The principle of the proof relies on the
extension of A to a continuous subspace of M,([0,1]) x M,,([0,1]), in which
confusion matrices are naturally embedded. The regularity assumption allows
us to work on a subspace that is bounded away from the borders of M,([0,1]) x
M,,(]0,1]). The proof then proceeds by (1) computing the gradient of A at and
around its argmax and (2) using those gradients to control the local behavior
of A around its argmax. The local behavior allows in turn to show that A is
well-separated.

Note that A only depends on z and w through IRy(z) and IR,,(w). We can
therefore extend it to matrices (U, V') € U, x V. where U is the subset of matrices
M,y([0,1]) with each row sum higher than ¢/2 and V is a similar subset of
Mu(0.1).

A(U7 V) = —nd Z Z U Voo KL (0125, dk/zl)
koK' £,

where

age = o (U, V) = (d}/)il ( [UT]-V]k£

Vs
and 1 is the g x m matrix filled with 1. Confusion matrices IRy(z) and IR,, (w)
satisfy Ry(z)1l = @ (z*) and R, (W)l = p(w*), with 1T = (1,...,1)T a vector
only containing 1 values, and are obviously in U, and V. as soon as (z*,w*) is
¢/2 regular.

The maps fi e : (U, V) — KL(aj,,are(U,V)) are twice differentiable with
second derivatives bounded over U, x V, and therefore so is /~\(U, V). Tedious
but straightforward computations show that the derivative of A at (Dr,D,) =

(Diag(# (")), Diag(p(w")) is:

) 1 a[\
Appr(W*) == — . 3Ukk/ sz YKL (agp, afryp)
1 OA
B@W(Z*) = — nd 6‘/[@/ D7T7D E 7Tk KL ake,ak)p)

A(w*) and B(z*) are the matrix-derivative of —A/nd at (D, D,,). Since (z*, w*)
is ¢/2-regular and by definition of §(a*), A(W*) g > cd(a*)/2 (resp. B(W* ) >
cS(a*)/2) if k # k' (resp. £ # ¢') and A(w*)p, = 0 (resp. B(z*)y = 0) for all
k (resp. £). By boundedness of the second derivative, there exists C' > 0 such
that for all (D,,D,) and all (H,G) € B(D,,D,,C), we have:

~1 0A (H.0) > Bedle) if g o4 g g =L a[x( ) > Bedle’) i g o4 ¢
—— * n - *
nd U < @) g — g nd Wy < D) f g =g
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Choose U and V in (U, x V)N B(D,, D,, C) satistying Ull = 7(z*) and VI =
p(w*). U — D, and V — D, have nonnegative off diagonal coefficients and
negative diagonal coefficients. Furthermore, the coefficients of U, V, D, D, sum
up to 1 and Tr(D,) = Tr(D,) = 1. By Taylor expansion, there exists a couple
(H,G) also in (U x V.) N B(D,, D,,C) such that

—1- —1- oA oA
> Cé(;l*) B (U=Dr)ur 43 (V=Dy)ewr =) (U=Dr)ie—=) (V—=D,)er]
kK =y k P

_ 05(3*) (1= Te(U)) + (1 — Te(V))]

To conclude the proof, assume without loss of generality that (z, w) € S(z*, w*, C)
achieves the ||.||o,~ norm (i.e. it is the closest to (z*,w*) in its representative
class). Then (U, V) = (Ry(z), Ry, (w)) is in (U, xV.)NB(D,, D,, C) and satisfy
Ull = w(z*) (resp. VII = p(w*)). We just need to note n(1 — Tr(IR,(z))) =
|z — z*||o,~ (resp. d(1 — Tr(IR,,,(W))) = ||w — w*||o,~) to end the proof.

O

Appendix B: Proofs of section 5
B.1. Proof of Proposition 5.5 (global convergence F,q)

Proof.
Conditionally upon (z*,w*),

Fra(0,z,w) — A(Z,W) < Foi(0,z,w) — G(0,z,w)

- Z Z<a2i% - a;;w;) (xij - W(Of%w;))
i g
- Z Z (awrer — og) Wi

kk' o0
S sup Z Z ]-—‘kk/lf/ Wkk/zel =7
2

rers**m*  Gr o
[IT||co <Diam(®)

uniformly in 8, where the Wy ¢ are independent and defined by:
Wikeer =Y > Zhwiezipwse (x5 — 9 (0G))
i g

is the sum of ndR,(z)kr R (W)ee sub-exponential variables with parameters
(6%,1/k) and is therefore itself sub-exponential with parameters
(ndR(z) ki R (W) 00 5%, 1/ ). According to Proposition C.4,
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Eg+[Z|z*,w*] < gm Diam(®)vnds? and Z is sub-exponential with parameters
(nd Diam(©)2(2v/2)%52,2v/2 Diam(®)/k). In particular, for all ¢, 4 < Gk

z*, W*)

< PPg+ (Z > Eg«[Z|z", Ww*| + 5Diam(®)nd2\/§€n,d‘ z", W*)

nde?
S exp < 2n,d>

We can then remove the conditioning and take a union bound to prove Equa-
tion (5.1).

Pg+ <Z > ggm Diam(©)vnd {1 + Szgfnd}

O

B.2. Proof of Proposition 5.6 (contribution of far away
assignments)

Proof.
Conditionally on (z*,w*), we know from proposition 4.6 that A is maximal in
(z*,w*) and its equivalence class. Choose 0 < t,q decreasing to 0 but sat-

isfying t,q > max ("n—tld, lo\g}%i )>. This is always possible with assumption

H,: log(d)/n — 0 and log(n)/d — 0. According to 4.6 (iii), for all (z,w) ¢
S(z*, W*, tna)

]\(Z,W) < 705(;1*) M

4

(nllw = w*{lo,~ + df|z — 2"

lo~) < — ndt,q (B.1)

since either ||z — z*||o,~ > ntpq or [|[W — w*|jg.~ > dtng.

. 5(a )t _ . . .
Set £,q = inf (#&;&@, /{0). By proposition 5.5, and with our choice

of €,4, with probability higher than 1 — Al ,(ena),
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Z p(x,z,w;0)
(z,w)ZS(z*,W*,tna)
— p(X|Z*, W*7 0*) Z p(Z, w; G)and(0,z,w)—A(z,w)+A(z,w)
(z,w)¢S(z* ,w* tna)
< p(x|z*, w*, 0%) ZP(L w: a)and(O,z,w)71~\(z,w)7ndtndc6(a*)/4
< p(x|z*, w*,0%) > " p(z, w; @) dinacda)/8
z,W

P62 W5 0%) it gcstaty/s
p(z*, w*;0%)

*
< p(x,2*,w*;0%) exp (—ndtndas(a)

1
3 +(n+d)logc>

= p(x7 Z*7 W*; 0*)0(1)

where the second line comes from inequality (B.1), the third from the global
control studied in Proposition 5.5 and the definition of ,,4, the fourth from the
definition of p(x,z*, w*;0), the fifth from the bounds on 7* and p* and the
last from t,q > (n + d)/nd.

In addition, we have ,4 > log(nd)/v/nd so that the series dond Al (ena)
converges and:

Z p(X7Z7W; 0) :p(X;Z*7W*’0*)OP(1)

(z,w)¢S(z* , Ww*,tnaq)

B.3. Proof of Proposition 5.7 (local convergence F,q)
Proof.

We work conditionally on (z*,w*) € Z; x W;. Choose ¢ < kg2 small. As-
signments (z, w) at ||.||o,~-distance less than ¢/4 of (z*, w*) are also ¢/4-regular.
According to Proposition C.2, Ty, and Ty, are at distance at most ¢ with prob-
ability higher than 1 — 2exp (732(%2515))' Manipulation of A and A yield

Fhq(0,z,w) — A(z,w) <A(z,w) — A(Z7W)

nd - nd
= Z Z 7k (2)pe(W) [f (Fhe) — f(Zre)]
k¢
_ Z Z Tk (2") D (W) gy (Thop — Tiio)
[
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where f(z) = —z(¢) " @) o () T (@), Tfy = Tre(z*, W) and T3, = ¥’ (af,).
The function f is twice differentiable on A with f/(z) = —(¢') () nd f” (z) =
—1/9" o ()71 (x). f' (resp. f") are bounded over I = v/ ([—~M,, M,]) by M,

(resp. 1/a?) so that:
F(@re) = F(@re) = [ (@re) @re — Tie) + Q (@re — The)?)

By Proposition C.2, (ZTxs — Zxe)? = Op(1/nd) where the Op is uniform in z, w
and does not depend on z*, w*. Similarly,

F'(@re) = (@) + UTre — Tiyp) = g + AT — Ty)

Ty is a convex combination of the S}, = 1’(aj,) therefore,

|Tre — Ty = [IR-‘?(Z)TS*]RW(W)]M _7*
M 7 (2) pe(w) H
Ry (2) 5 Ron (W) e )
< ]- - g/\ ~ Sri’lax S:nln
B ( 7k (2) pe(W) ( )
Note that:
~ ~ R, (z)re R, (W
> Ful(z)pe(w) <1 B 97(? )(kzk“ vE') M) = D Ry@mRu(w)er
k.t k\Z)Pe (k' 012 (K, 0)
= [1 = Tr(Ry(z)) Tr(R;, (w))]
_ lz=2"o~ | W= w"lo~
n d
and Tpy — Tre = op(1). Therefore
z—2"||g.~ w— W~
Zﬁk QZre — Tge) X (Toe — Tpe) = 0p <| - o~ | y lo >

The remaining term writes

> e [Fr(2)pe (W) (@re — Tae) — T (27)Pe(w*) (@ — Tho)]

k.t
and is also op((||z — z*||o,~/n + ||[W — W*[|g,~./d) uniformly in (z, w) and (z*, w*) €
Q1 by Proposition C.3. It follows that:

Az, w) — A(z*, w*)
sup ~ "
(zw)m(z*,w) 4z = 2o~ +nflw — w0~

= op(1)
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B.4. Proof of Proposition 5.8 (contribution of local assignments)

Proof.

By Proposition 4.2, it is enough to prove that the sum is small compared to
p(z*, w*,x;0%) on Q1. We work conditionally on (z*,w*) € Z; x Wj. Choose
(z,w) in S(z*,w*,C) with C defined in Proposition 4.7.

log (pp(z,w,xs 0) ) ~ log (pp(z,W;O) ) - Fon(6,7,w)

(z*, w*,x;0%) (z*, w*;60%)

For C small enough, we can assume without loss of generality that (z, w) is the
representative closest to (z*, w*) and note r1 = ||z — z*||o and ro = ||w — w*||o.
Then:

where the first line comes from the definition of A, the second line from Propo-
sition 4.6 and the third from Proposition 5.7. Thanks to corollary D.3, we also
know that:

log <m> < Op(1) exp {Mca(r1 +r2)}

There are at most (:ﬁ) (:’2) g™ m™ assignments (z,w) at distance 1 and ro of
(z*,w*) and each of them has at most g9m™ equivalent configurations. There-
fore,

Z(Z,W)GS(Z*,W* ,é) p(Z, W, Xj 0)

(7, W) (2", w")

p(z*7w*7x; 0*)

<op(1) Y (Z) (”>gg+7'1mm+7'2 exp ((rl o) My — 05(2‘*) (dry + nra) (1 + 0p(1))>

T2
ri4re>1

=5 (a*)(1+op (1 n S(a*)(1 1 d
:Op(l) (1+e(g+1)10gg+MC/4,dw) (1+€(m+1)105m+1\/[c/4*7lw> 1

< Op(1)ang exp(anq)

cs(a*)(1+op(1) cs(a*)(1+op (1)
1 n 1

where a,,q = nel9t1)logg+Me/s—d +de(m+1)logm+Me 4 —

op(1) as soon as n > logd and d > logn.
O
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B.5. Proof of Proposition 5.9 (contribution of equivalent
assignments)

Proof.

Choose (s,t) permutations of {1,...,¢} and {1,...,m} and assume that z = z*°
and w = w*!. Then p(x,z, w;0) = p(x,z"*, wh'; 0) = p(x, z*, w*; 0°"). If fur-
thermore (s,t) € Sym(0), %" = 0 and immediately p(x, z, w; 0) = p(x,z*, w*; 0).
We can therefore partition the sum as

Z p(x,z,w;0) = Zp(x,z*’s,w*7t;0)
s,t

(z,w)~(z*,w*)
= Zp(x7 Z*a W*; 087]5)
s,t

= ) #Sym(8')p(x, 2", w*; 0)
0'~6

= #Sym(0) Y p(x, 2", w*; 6')

6'~6

p(x,z*, w*; 0) unimodal in 6 with a mode in gc. By consistency of 56, either
p(x,z*, w*;0) = op(p(x,z*,w*;0%)) or p(x,z*,w*;0) = Op(p(x,2z*,w*;0%))
and @ — 0*. In the latter case, any 8’ ~ @ other than 6 is bounded away from
0* and thus p(x,z*, w*;0') = op(p(x,z*, w*;8*)). In summary,

prz ,w*; 0") e p(x,z*, W*'0')(1+0 (1))
P (x,2z*, Ww*; 9*)_0'~9p(xz w*; %) P

Appendix C: Concentration for sub-exponential variables

Concentration inequalities for sub-exponential variables play a key role: in par-
ticular Proposition C.4 for global convergence and Propositions C.2 and C.3 for
local convergence. We present here some properties of sub-exponential variables,
then derives the needed concentration inequalities.

Recall first that a random variable X is sub-exponential with parameters
(12,b) if for all A such that [\ < 1/b,

2.2
E[eNXEXD)] < exp <>\ T > .
- 2

In particular, all distributions coming from a natural exponential family are sub-
exponential. Sub-exponential variables satisfy a large deviation Bernstein-type
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inequality:
t2 T2
S) if 0<t< T
P(X - E[X] > t) < eXp( 27) HUstEg
exp (—%) if t> o
So that

C.1. Properties

The sub-exponential property is preserved by summation and multiplication.
e If X is sub-exponential with parameters (72,b) and « € R, then so is X
with parameters (a?72, ab)
e If the X;, i = 1,...,n are sub-exponential with parameters (72,b;) and
independent, then so is X = X+ - -+X,, with parameters (), 77, max; b;)
Moreover, Lemma C.1 defines the sub-exponential property of the absolute value
of a sub-exponential variable.

Lemma C.1. If X is a zero mean random variable, sub-exponential with pa-

rameters (o2,b), then | X| is sub-exponential with parameters (8a2,2v/2b).

Proof.

Note p = E|X| and consider Y = |X| — u. Choose A such that |A| < (2v/2b)~1.
We need to bound E[e*Y]. Note first that E[e*Y] < E[e*X] + E[e™*¥] < +o0 is
properly defined by sub-exponential property of X and we have

AY APE[Y]Y]
E[e*Y] <1+ ;22 —

where we used the fact that E[Y] = 0. We know bound odd moments of |AY].
X 1
E[|)\y|2k+1] S (E[|)\Y|2k]E[|)\Y‘2k+2])1/2 S 5()\2kE[Y2k] 4 )\2k+2E[Y2k+2])
where we used first Cauchy-Schwarz and then the arithmetic-geometric mean
inequality. The Taylor series expansion can thus be reduced to

11 A 1 1 ks
E[e’\y]§1+<2+m>E[Y B +kz_2<(2k)!+2{(2k_1)!+(2k+1)!]>ﬂﬁ[y ¥

too 2k 2k
SZQM E[Y?"]

7 (2k)!
+oo 2k 2k 220X —2V20X
AFE[X
< 23k(2][€)'] = cosh (2\/5)\)() =F le +2€ 1
k=0 :
8A202
<e ?
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where we used the well-known inequality E[|X — E[X]|¥] < 2*E[| X|*] to substi-
tute 22FE[X 2*] to E[Y2*].

C.2. Concentration inequalities

Proposition C.2 (Maximum in (z,w)). Let (z,w) be a configuration and
To(z,w) resp. Trpe(z,w) be defined in Equations (3.1) and (4.1). Under the
assumptions of the section 2.2, for all e >0

~ ~ de?
P (TE%VXH&XWIC(Z)M(WHSUIC,Z — Tpe| > 5) < g"MtmdH exp (—2((;;:_2_16)) .

C.1)

Additionally, the suprema over all ¢/2-reqular assignments satisfies:

~ _ n+1l _ d+1 ndC2€2
P max  max|Tre — Tre| >€) < g™ m T exp o )
Z2€Z,WweEW:  k,l 8(a2 + k7 le)

(C.2)

Note that equations C.1 and C.2 remain valid when replacing ¢/2 by any
¢ <c/2.

Proof.

The random variables X;; are subexponential with parameters (52,1/k).
Conditionally to (z*, w*), z4pwye(T e —Tke) is a sum of 24w centered subex-
ponential random variables. By Bernstein’s inequality [11], we therefore have for
allt >0

S t?
P(zyrwie|The — Te| > t) < 2exp <_2(z+kw+502 n /ilt)>

In particular, if t = ndx,

~ ~ ~ _ ndax?
P (71 (2)pe(W)|Zhe — Zre| = ) < 2exp <2(%k(2)ﬁe(W)U2 n ,ﬁ—lm)>

ndx?
R )

uniformly over (z,w). Equation (C.1) then results from a union bound. Simi-
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larly,

P (|Zr,e — The| > x) = P(Tr(2)pe(W)|Z,e — Tre| > Tr(2)pe(W)x)
2 2~ 2
< 2exp ( ___nds jTQk(Z) Pf(‘f) _ >
2(71(2)pe(W)a? + K~ taTy(2) pe(W))
ndc?a?
8(62 + k~1x)

< 2exp (

Where the last inequality comes from the fact that c¢/2-regular assignments
satisfy 7 (z)pe(w) > c?/4. Equation (C.2) then results from a union bound
over Z; x Wi C Z x W.

O

Proposition C.3 (Maximum in non equivalent (z,w)). Let (z, W) be any con-
figuration and (z,w) the ~-equivalent configuration that achieves ||z — z*||o =
|z—2z*|jo,~ and [|[Ww—w*|lo = || W—W*|0.~, let Tke = T ¢(z, W) (Tesp. Tie(z,W))
and T3, = Tie(z*, W) (resp. T}, = Tpe(z*,w*) = 9¥'(af,)) be as defined in
Equations (3.1) and (4.1). Under the assumptions of the section 2.2, for all

e < ,%62,

]P’( max  max A TR(@)Pe(W) Tk = Tre) = Tu(2)pe(W) (T — Tf)] 6) —o(l)

(2, W) (z* ,w*) kil n|lw — w*||o + d||z — z*||o
Proof.
Note r1 = ||z — z*||p and ro = ||[w — w*||o. The numerator within the max in

the fraction can be expanded to

Zie(z,w) =Y (zakwie — 25,w5) (Xij — AZe wt,
i3 '

)

and is thus a sum of at most N = nre + dry non-null centered sub-exponential
random variables with parameters (5%,1/k). It is therefore a centered sub-
exponential with parameters (N2, 1/x). By Bernstein inequality, for all ¢ < k5?2

we have
(nry + dry)e?
262 ’

There are at most n"' g™ g9 z at ||.||o,~ distance r1 of z* and d"™>m™m™ z at
IIllo,~ distance 2 of w*. An union bound shows that:

P(Z > e(nry + dry)) < exp <

Z
P < max max M(Z’ W) > E)
(z,w)%(z*,w*) Kkl nllw—w*|o+d||z —z*]o
< E E gmP(Zye(z, w) > e(nry + dry))

ritr221|z—z"lo,~ [|Z2—2*]lo,~

< Z g9m™ exp (—(nrz +dry)e?/26% + r1 log(ng) + 72 log(dm)) =o(1)
ri+re>1

where the last equality is true as soon as ne,q > logd and de,q > logn.

imsart-ejs ver. 2014/10/16 file: ejs-BraultKeribinMariadassou.tex date: July 4, 2019



V. Brault, C. Keribin and M. Mariadassou/Consistency and asymptotic normality of LBM estimatd¥k

O

Proposition C.4 (concentration for sub-exponential). Let X1, ..., X,, be inde-
pendent zero mean random variables, sub-exponential with parameters (Ui2 ,0i).
Note V¢ =3, 07 and b = max; b;. Then the random variable Z defined by:

Z = sup r; X;
7o <M

is also sub-exponential with parameters (8M3VE,2v/2Mb). Moreover E[Z] <
MVy/n so that for all t > 0,

t2
P(Z — MVyy/n > t) < exp
( ovnzt) < Xp( 2(8M2V02+2\/§Mbt)>

Proof.

Note first that Z can be simplified to Z = M ). |X;|. We just need to bound
bound E[Z]. The rest of the proposition results from the fact that the | X;| are
subexponential (802,2+v/2b;) by Lemma C.1 and standard properties of sums of
independent rescaled subexponential variables.

E[Z]=E rselg" Xi:FiXi =E lzz:MXA] < Mzi:\/E[Xf]

ITlloe <M

1/2 1/2
=My o <M <Z1> (Zﬁ) = MVy/n

using Cauchy-Schwarz.

Appendix D: Technical lemmas

Lemma D.1 is the working horse for proving Proposition 4.6. Corollary D.3 is
needed for Theorem 5.8 and Lemma D.2 is an intermediate result for Corollary

D.3.

Lemma D.1.

Let n and 77 be two matrices from Mgxm(©) and f:© x © — R, a positive
function, A a (squared) confusion matriz of size g and B a (squared) confusion
matriz of size m. We denote Dyogpror = (e, Tikrer). Assume that

all the rows of n are distinct;

all the columns n are distinct;

flz,y) =0z =y;

each row of A has a non zero element;
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e cach row of B has a non zero element;

and note

S =Y Aw Budinr

kk' oo

Then,

A, B are permutation matrices s,t

Y=0&< st N

n=mn>"ie (k)N = Ns(k)t(€)

Proof.

If A and B are the permutation matrices corresponding to the permutations s
et t: A;; = 01if ¢ # s(j) and B;; = 0if ¢ # t(j). As each row of A contains a
non zero element and as Ay, > 0 (vesp. By, > 0) for all k (resp. £), the
following sum X reduces to

X = Z Z At Beor dpoogrer = Z Z AsykBeoyedsryeoyre
7

kk' et k

¥ is null and sum of positive components, each component is null. However, all
Agyr and Bygye are not null, so that for all (k, /), dskyeeyre = 0 and fre =
Ns(k)t(0)-
Now, if A is not a permutation matrix while ¥ = 0 (the same reasoning holds
for B or both). Then A owns a column k that contains two non zero elements,
say A,k and Ap,i. Let £ € {1...m}, there exists by assumption ¢’ such that
By # 0. As ¥ = 0, both products Ak, Bew dic,eker and Ay, 1 Bep di, e are zero.
{AklkBM/dklekZ/ =0 N {dklekw =0 - {ﬂkle =M et = Dot
Aok Beordyyoner =0

Mkt = Nrer
The previous equality is true for all ¢, thus rows k; and ks of n are identical,
and contradict the assumptions.

doorer =0

O

Lemma D.2.

Let Z, be the subset of Z of c-reqular configurations, as defined in Defi-
nition 4.1. Let S = {w = (m1,m2,...,mg) € [0,1]9 : >7_, m = 1} be the
g-dimensional simplex and note S¢ = S9N [e,1 — c]9. Then there exists two
positive constants M. and M/ such that for all z, z* in Z; and all w € SY

llog p(z: 7 (2)) — log pl(z*: 7(z*))| < M.|lz 2]

Proof.
Consider the entropy map H : S¢ — R defined as H(w) = — >.7_, m log(my).
The gradient VH is uniformly bounded by %4 = log1=< in ||.||-norm over

S9N e, 1 — ¢)9. Therefore, for all w, * € S N [e, 1 — ¢]9, we have

M.
2

[H(m) — H(7")| < —=[l7 — 7"y
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To prove the inequality, we remark that z € Z; translates to w(z) € S9N e, 1 —
]9, that logp(z; 7(z)) — log p(z*; w(z*)) = n[H(7(z)) — H(7w(z*))] and finally
that |7 (z) — @ (z*)|l1 < 2|z — 2*[|o-

O

Corollary D.3. Let z* (resp. w*) be ¢/2-reqular and z (resp. w) at ||.]|o-
distance c/4 of z* (resp. w*). Then, for all 8 € ©

Io p(z, w; 6)

Sy < Orexp (Moya(lln = 2o + I~ wllo))

Proof.
Note then that:

p(z,w;0)  plz,wi;m,p) p(z, w; T, p) p(z*, w*; 7 (z*), p(Ww*))

p(z*, w*; 0%) p(z*, w* %, p*)  p(z*,w*;m(z*), p(W*))  p(z*, w*;7*, p*)

p(z, w;w(z), p(w)) p(z*, w*;m(z"), p(W"))

<
- Pl W R @), W) plar, W p)
. (ot PE W R W)
< e (Mol o+ llw —wi o)} x B 2P
< Or(1)exp {Mea(llz = 2"l + W = w* o)}

where the first inequality comes from the definition of 7(z) and p(w) and the
second from Lemma D.2 and the fact that z* and z (resp. w* and w) are
c¢/4-regular. Finally, local asymptotic normality of the MLE for multinomial

proportions ensures that 2 (z;’(‘;’:’fff;)*a’ﬁp(*";’*)) = Op(1).

O
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